# PFLlib: Personalized Federated Learning Algorithm Library # Copyright (C) 2021 Jianqing Zhang # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. import numpy as np import os import random from utils.dataset_utils import split_data, save_file from scipy.sparse import coo_matrix from os import path # https://github.com/FengHZ/KD3A/blob/master/datasets/AmazonReview.py def load_amazon(base_path): dimension = 5000 amazon = np.load(path.join(base_path, "amazon.npz")) amazon_xx = coo_matrix((amazon['xx_data'], (amazon['xx_col'], amazon['xx_row'])), shape=amazon['xx_shape'][::-1]).tocsc() amazon_xx = amazon_xx[:, :dimension] amazon_yy = amazon['yy'] amazon_yy = (amazon_yy + 1) / 2 amazon_offset = amazon['offset'].flatten() # Partition the data into four categories and for each category partition the data set into training and test set. data_name = ["books", "dvd", "electronics", "kitchen"] num_data_sets = 4 data_insts, data_labels, num_insts = [], [], [] for i in range(num_data_sets): data_insts.append(amazon_xx[amazon_offset[i]: amazon_offset[i + 1], :]) data_labels.append(amazon_yy[amazon_offset[i]: amazon_offset[i + 1], :]) num_insts.append(amazon_offset[i + 1] - amazon_offset[i]) # Randomly shuffle. r_order = np.arange(num_insts[i]) np.random.shuffle(r_order) data_insts[i] = data_insts[i][r_order, :] data_labels[i] = data_labels[i][r_order, :] data_insts[i] = data_insts[i].todense().astype(np.float32) data_labels[i] = data_labels[i].ravel().astype(np.int64) return data_insts, data_labels random.seed(1) np.random.seed(1) data_path = "AmazonReview/" dir_path = "AmazonReview/" # Allocate data to users def generate_dataset(dir_path): if not os.path.exists(dir_path): os.makedirs(dir_path) # Setup directory for train/test data config_path = dir_path + "config.json" train_path = dir_path + "train/" test_path = dir_path + "test/" if not os.path.exists(train_path): os.makedirs(train_path) if not os.path.exists(test_path): os.makedirs(test_path) root = data_path+"rawdata" # Get AmazonReview data if not os.path.exists(root): os.makedirs(root) os.system(f'wget https://drive.google.com/u/0/uc?id=1QbXFENNyqor1IlCpRRFtOluI2_hMEd1W&export=download -P {root}') X, y = load_amazon(root) labelss = [] for yy in y: labelss.append(len(set(yy))) num_clients = len(y) print(f'Number of labels: {labelss}') print(f'Number of clients: {num_clients}') statistic = [[] for _ in range(num_clients)] for client in range(num_clients): for i in np.unique(y[client]): statistic[client].append((int(i), int(sum(y[client]==i)))) train_data, test_data = split_data(X, y) save_file(config_path, train_path, test_path, train_data, test_data, num_clients, max(labelss), statistic, None, None, None) if __name__ == "__main__": generate_dataset(dir_path)