# PFLlib: Personalized Federated Learning Algorithm Library # Copyright (C) 2021 Jianqing Zhang # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. import numpy as np import os import sys import random import torch import torchvision import torchvision.transforms as transforms from utils.dataset_utils import check, separate_data, split_data, save_file random.seed(1) np.random.seed(1) num_clients = 20 dir_path = "FashionMNIST/" # Allocate data to users def generate_dataset(dir_path, num_clients, niid, balance, partition): if not os.path.exists(dir_path): os.makedirs(dir_path) # Setup directory for train/test data config_path = dir_path + "config.json" train_path = dir_path + "train/" test_path = dir_path + "test/" if check(config_path, train_path, test_path, num_clients, niid, balance, partition): return # Get FashionMNIST data transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]) trainset = torchvision.datasets.FashionMNIST( root=dir_path+"rawdata", train=True, download=True, transform=transform) testset = torchvision.datasets.FashionMNIST( root=dir_path+"rawdata", train=False, download=True, transform=transform) trainloader = torch.utils.data.DataLoader( trainset, batch_size=len(trainset.data), shuffle=False) testloader = torch.utils.data.DataLoader( testset, batch_size=len(testset.data), shuffle=False) for _, train_data in enumerate(trainloader, 0): trainset.data, trainset.targets = train_data for _, test_data in enumerate(testloader, 0): testset.data, testset.targets = test_data dataset_image = [] dataset_label = [] dataset_image.extend(trainset.data.cpu().detach().numpy()) dataset_image.extend(testset.data.cpu().detach().numpy()) dataset_label.extend(trainset.targets.cpu().detach().numpy()) dataset_label.extend(testset.targets.cpu().detach().numpy()) dataset_image = np.array(dataset_image) dataset_label = np.array(dataset_label) num_classes = len(set(dataset_label)) print(f'Number of classes: {num_classes}') # dataset = [] # for i in range(num_classes): # idx = dataset_label == i # dataset.append(dataset_image[idx]) X, y, statistic = separate_data((dataset_image, dataset_label), num_clients, num_classes, niid, balance, partition, class_per_client=2) train_data, test_data = split_data(X, y) save_file(config_path, train_path, test_path, train_data, test_data, num_clients, num_classes, statistic, niid, balance, partition) if __name__ == "__main__": niid = True if sys.argv[1] == "noniid" else False balance = True if sys.argv[2] == "balance" else False partition = sys.argv[3] if sys.argv[3] != "-" else None generate_dataset(dir_path, num_clients, niid, balance, partition)