# PFLlib: Personalized Federated Learning Algorithm Library # Copyright (C) 2021 Jianqing Zhang # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. import numpy as np import os import random import torchvision from utils.dataset_utils import split_data, save_file from PIL import Image random.seed(1) np.random.seed(1) dir_path = "Omniglot/" # Allocate data to users def generate_dataset(dir_path): if not os.path.exists(dir_path): os.makedirs(dir_path) # Setup directory for train/test data config_path = dir_path + "config.json" train_path = dir_path + "train/" test_path = dir_path + "test/" if not os.path.exists(train_path): os.makedirs(train_path) if not os.path.exists(test_path): os.makedirs(test_path) root = dir_path+"rawdata" # Get Omniglot data torchvision.datasets.Omniglot(root=root, background=True, download=True) torchvision.datasets.Omniglot(root=root, background=False, download=True) X = [[] for _ in range(20)] y = [[] for _ in range(20)] dir = os.path.join(root, "omniglot-py/") dirs = os.listdir(dir) label = 0 for ddir in dirs: if '.' not in ddir: ddir = os.path.join(dir, ddir) ddirs = os.listdir(ddir) for dddir in ddirs: if '.' not in dddir: dddir = os.path.join(ddir, dddir) dddirs = os.listdir(dddir) for ddddir in dddirs: ddddir = os.path.join(dddir, ddddir) file_names = os.listdir(ddddir) for i, fn in enumerate(file_names): fn = os.path.join(ddddir, fn) img = Image.open(fn) X[i].append(np.expand_dims(np.asarray(img), axis=0)) y[i].append(label) label += 1 print(f'Number of labels: {label}') train_data, test_data = split_data(X, y) save_file(config_path, train_path, test_path, train_data, test_data, 20, label, None, None, None, None) if __name__ == "__main__": generate_dataset(dir_path)