008927629739273.env / Esrgan.py
kohaq's picture
Rename Esrgan to Esrgan.py
3e23a36 verified
import spaces
import os
import torch
from PIL import Image
from RealESRGAN import RealESRGAN
import gradio as gr
from huggingface_hub import HfApi
import datetime
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model2 = RealESRGAN(device, scale=2)
model2.load_weights('weights/RealESRGAN_x2.pth', download=True)
model4 = RealESRGAN(device, scale=4)
model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
model8 = RealESRGAN(device, scale=8)
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
def upload_to_hf(image_path, folder, filename):
api = HfApi()
api.upload_file(
path_or_fileobj=image_path,
path_in_repo=f"{folder}/{filename}",
repo_id='DamarJati/esr-dev',
repo_type='dataset',
token=os.getenv('HF_TOKEN')
)
@spaces.GPU()
def inference(image, size):
global model2, model4, model8
if image is None:
raise gr.Error("Image not uploaded")
width, height = image.size
if width >= 5000 or height >= 5000:
raise gr.Error("The image is too large.")
if torch.cuda.is_available():
torch.cuda.empty_cache()
folder = ''
result = None
if size == '2x':
try:
result = model2.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model2 = RealESRGAN(device, scale=2)
model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
result = model2.predict(image.convert('RGB'))
folder = '2'
elif size == '4x':
try:
result = model4.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model4 = RealESRGAN(device, scale=4)
model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
result = model4.predict(image.convert('RGB'))
folder = '4'
else:
try:
result = model8.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model8 = RealESRGAN(device, scale=8)
model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
result = model8.predict(image.convert('RGB'))
folder = '8'
# Generate a timestamp-based filename
timestamp = datetime.datetime.now().strftime("%H%M%S%f%d%m%Y")
filename = f"{timestamp}.png"
# Save the original and upscaled images to local temporary files
original_filename = f"original_{filename}"
upscaled_filename = f"{folder}_{filename}"
image.save(original_filename)
result.save(upscaled_filename)
# Upload the original image and upscaled image to Hugging Face Datasets
upload_to_hf(original_filename, "original", filename)
upload_to_hf(upscaled_filename, folder, filename)
print(f"Image size ({device}): {size} ... OK")
return result
title = "Real ESRGAN UpScale: 2x 4x 8x"
description = "AI-powered image resolution enhancement .<br>Donation: https://ko-fi.com/Damarjati"
gr.Interface(
inference,
[gr.Image(type="pil"), gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model')],
gr.Image(type="pil", label="Output"),
title=title,
description=description,
examples=[['example0.jpg', "2x"]],
allow_flagging='never',
cache_examples=False
).queue(api_open=True).launch(show_error=True, show_api=True)