File size: 7,651 Bytes
347557c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8312457
347557c
 
 
 
 
 
 
 
8312457
347557c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8312457
347557c
 
 
 
 
8312457
347557c
 
 
 
 
8312457
347557c
 
 
 
 
8312457
347557c
 
 
 
 
8312457
347557c
 
 
 
 
8312457
347557c
 
 
 
 
8312457
347557c
 
 
 
 
8312457
347557c
 
8312457
 
 
 
 
 
347557c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8312457
 
 
 
 
347557c
8312457
347557c
 
 
 
 
 
 
 
 
 
 
 
 
 
8312457
347557c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Acknowledgement: dataset builder script adapted from https://huggingface.co/datasets/glue/blob/main/glue.py

import datasets
import pdb
import jsonlines

CITATION_BLOB = '''
@article{krishna2023usb,
  title={USB: A Unified Summarization Benchmark Across Tasks and Domains},
  author={Krishna, Kundan and Gupta, Prakhar and Ramprasad, Sanjana and Wallace, Byron C and Bigham, Jeffrey P and Lipton, Zachary C},
  booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
  year={2023}
}
'''

DESCRIPTION_BLOB = '''
The USB benchmark consists of labeled datasets for a collection of 8 tasks dealing with text summarization, 
particularly focusing on factuality and controllability of summary generation.
Paper can be found here : https://arxiv.org/abs/2305.14296
'''


class USBConfig(datasets.BuilderConfig):
    def __init__(
        self,
        featurespec,
        label_column,
        citation=CITATION_BLOB,
        data_url="processed_data.tar.gz",
        label_classes=None,
        process_label=lambda x: x,
        **kwargs,
    ):
        super(USBConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
        self.featurespec = featurespec
        self.label_column = label_column
        
        self.citation = citation
        self.label_classes = label_classes
        self.process_label = process_label
        self.url = "https://github.com/kukrishna/usb"

        self.data_url=data_url


class USB(datasets.GeneratorBasedBuilder):
    """The Unified Summarization Benchmark."""

    BUILDER_CONFIGS = [
        USBConfig(
            name="topicbased_summarization",
            description="Generate a short summary of the given article covering the given topic",
            featurespec={"summ_idx": "int", "input_lines": "listsent", "topic_name": "sent", "output_lines":"listsent"},
            label_column="output_lines",
        ),
        USBConfig(
            name="fixing_factuality",
            description="Given a summary sentence (claim) and presented evidence from the article, edit the summary to remove unsupported or contradicting facts",
            featurespec={"summ_idx": "int", "input_lines": "listsent", "initial_summary": "sent", "fixed_summary":"sent"},
            label_column="fixed_summary",
        ),
        USBConfig(
            name="unsupported_span_prediction",
            description="Given a summary sentence (claim) and presented evidence from the article, mark the parts of the summary which are not supported by the evidence by surrounding them with [] and [/] tags.",
            featurespec={"summ_idx": "int", "input_lines": "listsent", "summary": "sent", "annotated_summary":"sent"},
            label_column="annotated_summary",
        ),
        USBConfig(
            name="evidence_extraction",
            description="Given an article and its summary, for each summary sentence, produce a minimal list of sentences from the article which provide sufficient evidence for all facts in the summary sentence.",
            featurespec={"input_lines": "listsent", "summary_lines": "listsent", "evidence_labels":"listlistint"},
            label_column="evidence_labels",
        ),
        USBConfig(
            name="multisentence_compression",
            description="Given a list of sentences from an article, generate a single sentence summary of the presented cluster of sentences.",
            featurespec={"summ_idx": "int", "input_lines": "listsent", "output_lines": "listsent"},
            label_column="output_lines",
        ),
        USBConfig(
            name="extractive_summarization",
            description="Given an article, generate an extractive summary by producing a subset o the article's sentences",
            featurespec={"input_lines": "listsent", "labels": "listint"},
            label_column="labels",
        ),
        USBConfig(
            name="abstractive_summarization",
            description="Given an article, generate its abstractive summary",
            featurespec={"input_lines": "listsent", "output_lines": "listsent"},
            label_column="output_lines",
        ),
        USBConfig(
            name="factuality_classification",
            description="Given a summary sentence (claim) and presented evidence from the article, predict whether all facts of the claim are supported by and in agreement with the presented evidence, or not.",
            featurespec={"summ_idx": "int", "input_lines": "listsent", "summary_sent": "sent", "label":"int"},
            label_column="label",
        ),
        USBConfig(
            name="all_annotations",
            description="All annotations collected in the creation of USB dataset in one place.",
            featurespec={},
            label_column=None,
        ),
    ]

    def _split_generators(self, dl_manager):

        data_root = dl_manager.download_and_extract(self.config.data_url)
        
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_file": f"{data_root}/{self.config.name}/train.jsonl",
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "data_file": f"{data_root}/{self.config.name}/validation.jsonl",
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_file": f"{data_root}/{self.config.name}/test.jsonl",
                    "split": "test",
                },
            ),
        ]
    
    def _generate_examples(self, data_file, split):
        with jsonlines.open(data_file) as f:
            for ex_idx,example in enumerate(f):
                example["id"] = example["id"]+":"+str(ex_idx)
                example["domain"] = example["id"].split("/")[0]
                yield example["id"], example

    def _info(self):
        features = {}
        features["id"] = datasets.Value("string")
        features["domain"] = datasets.Value("string")

        if self.config.name=="all_annotations":
            # handle this as a special case
            features["source"] = datasets.Sequence({"txt": datasets.Value("string"), "section_name": datasets.Value("string"), "section_index": datasets.Value("int32"), "is_header":datasets.Value("bool")})
            features["summary"] = datasets.Sequence({"pre_edit": datasets.Value("string"), "post_edit": datasets.Value("string"), "evidence": datasets.Sequence(datasets.Value("int32"))})
        
        for (feature_name,dtype) in self.config.featurespec.items():
            hf_dtype = None
            if dtype=="int":
                hf_dtype = datasets.Value("int32")
            elif dtype=="listint":
                hf_dtype = datasets.Sequence(datasets.Value("int32"))
            elif dtype=="listlistint":
                hf_dtype = datasets.Sequence(datasets.Sequence(datasets.Value("int32")))
            elif dtype=="sent":
                hf_dtype = datasets.Value("string")
            elif dtype=="listsent":
                hf_dtype = datasets.Sequence(datasets.Value("string"))
            else:
                raise NotImplementedError

            features[feature_name] = hf_dtype

        return datasets.DatasetInfo(
            description=DESCRIPTION_BLOB,
            features=datasets.Features(features),
            homepage=self.config.url,
            citation=self.config.citation,
        )