every_prompt / bin /get_stats.py
dchaplinsky's picture
Upload 2 files
ee0c069
import argparse
import csv
from collections import defaultdict
import json
from tqdm import tqdm
import smart_open
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Calculate instructions stats for a large JSONL file."
)
parser.add_argument("input_file", help="path to input JSONL file")
parser.add_argument("output_file", help="path to output CSV file")
args = parser.parse_args()
stats = defaultdict(lambda: defaultdict(int))
with smart_open.open(args.input_file, "rt", encoding="utf-8") as reader:
for item in tqdm(map(json.loads, reader)):
stats[item["language"]][f"{item['payload']['@type']} count"] += 1
stats[item["language"]][f"{item['payload']['@type']} text length"] += item[
"text_length"
]
stats[item["language"]]["items count"] += 1
stats[item["language"]]["text length"] += item["text_length"]
with smart_open.open(args.output_file, "wt", encoding="utf-8") as writer:
w = csv.DictWriter(
writer,
fieldnames=[
"language",
"FAQPage count",
"FAQPage text length",
"HowTo count",
"HowTo text length",
"items count",
"text length",
],
)
w.writeheader()
for language, language_stats in stats.items():
w.writerow(
{
"language": language,
"FAQPage count": language_stats["FAQPage count"],
"FAQPage text length": language_stats["FAQPage text length"],
"HowTo count": language_stats["HowTo count"],
"HowTo text length": language_stats["HowTo text length"],
"items count": language_stats["items count"],
"text length": language_stats["text length"],
}
)