import argparse import csv from collections import defaultdict import json from tqdm import tqdm import smart_open if __name__ == "__main__": parser = argparse.ArgumentParser( description="Calculate instructions stats for a large JSONL file." ) parser.add_argument("input_file", help="path to input JSONL file") parser.add_argument("output_file", help="path to output CSV file") args = parser.parse_args() stats = defaultdict(lambda: defaultdict(int)) with smart_open.open(args.input_file, "rt", encoding="utf-8") as reader: for item in tqdm(map(json.loads, reader)): stats[item["language"]][f"{item['@type']} count"] += 1 stats[item["language"]][f"{item['@type']} text length"] += item[ "text_length" ] stats[item["language"]]["items count"] += 1 stats[item["language"]]["text length"] += item["text_length"] with smart_open.open(args.output_file, "wt", encoding="utf-8") as writer: w = csv.DictWriter( writer, fieldnames=[ "language", "FAQPage count", "FAQPage text length", "HowTo count", "HowTo text length", "items count", "text length", ], ) w.writeheader() for language, language_stats in stats.items(): w.writerow( { "language": language, "FAQPage count": language_stats["FAQPage count"], "FAQPage text length": language_stats["FAQPage text length"], "HowTo count": language_stats["HowTo count"], "HowTo text length": language_stats["HowTo text length"], "items count": language_stats["items count"], "text length": language_stats["text length"], } )