"""C4 dataset based on Common Crawl.""" import gzip import json import warnings import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """\ A colossal, cleaned version of Common Crawl's web crawl corpus. Based on Common Crawl dataset: "https://commoncrawl.org". This is the processed version of Google's C4 dataset by AllenAI. """ _CITATION = """ @article{2019t5, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, journal = {arXiv e-prints}, year = {2019}, archivePrefix = {arXiv}, eprint = {1910.10683}, } """ _URL = "https://github.com/allenai/allennlp/discussions/5056" _VARIANTS = ["en", "realnewslike", "en.noblocklist", "en.noclean"] _N_SHARDS_PER_SPLIT = { "en": {"train": 1024, "validation": 8}, "realnewslike": {"train": 512, "validation": 1}, "en.noblocklist": {"train": 1024, "validation": 8}, "en.noclean": {"train": 7168, "validation": 64}, } _DATA_URL = "https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/{name}/c4-{split}.{index:05d}-of-{n_shards:05d}.json.gz" class C4(datasets.GeneratorBasedBuilder): """C4, a colossal, cleaned version of Common Crawl's web crawl corpus.""" BUILDER_CONFIGS = [datasets.BuilderConfig(name) for name in _VARIANTS] def _info(self): warnings.warn( "Dataset 'c4' is deprecated and will be deleted. Use 'allenai/c4' instead.", FutureWarning, ) return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "timestamp": datasets.Value("string"), "url": datasets.Value("string"), } ), supervised_keys=None, homepage=_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): data_urls = {} for split in ["train", "validation"]: n_shards = _N_SHARDS_PER_SPLIT[self.config.name][split] data_urls[split] = [ _DATA_URL.format(name=self.config.name, split=split, index=index, n_shards=n_shards) for index in range(n_shards) ] train_downloaded_files = dl_manager.download(data_urls["train"]) validation_downloaded_files = dl_manager.download(data_urls["validation"]) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files} ), ] def _generate_examples(self, filepaths): """This function returns the examples in the raw (text) form by iterating on all the files.""" id_ = 0 for filepath in filepaths: logger.info("generating examples from = %s", filepath) with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: for line in f: if line: example = json.loads(line) yield id_, example id_ += 1