--- dataset_info: - config_name: journalistic features: - name: text dtype: string - name: label dtype: int64 splits: - name: test num_bytes: 28294 num_examples: 36 - name: train num_bytes: 1220588973.839692 num_examples: 1804256 - name: valid num_bytes: 676505.4259704234 num_examples: 1000 download_size: 3863711644 dataset_size: 1221293773.2656624 - config_name: legal features: - name: text dtype: string - name: label dtype: int64 splits: - name: test num_bytes: 10385 num_examples: 37 - name: train num_bytes: 1124341510.582983 num_examples: 4068970 - name: valid num_bytes: 276320.9142812513 num_examples: 1000 download_size: 853476190 dataset_size: 1124628216.4972644 - config_name: literature features: - name: text dtype: string - name: label dtype: int64 splits: - name: test num_bytes: 12767 num_examples: 36 - name: train num_bytes: 30464886.367018357 num_examples: 78279 - name: valid num_bytes: 389183.3872049765 num_examples: 1000 download_size: 99572722 dataset_size: 30866836.75422333 - config_name: politics features: - name: text dtype: string - name: label dtype: int64 splits: - name: test num_bytes: 64499 num_examples: 48 - name: train num_bytes: 56779249.92180095 num_examples: 31406 - name: valid num_bytes: 1807910.9062536124 num_examples: 1000 download_size: 45426804 dataset_size: 58651659.82805456 - config_name: social_media features: - name: text dtype: string - name: label dtype: int64 splits: - name: test num_bytes: 6146 num_examples: 28 - name: train num_bytes: 301649086.8029756 num_examples: 2538351 - name: valid num_bytes: 118836.6332327466 num_examples: 1000 download_size: 916088076 dataset_size: 301774069.43620837 - config_name: web features: - name: text dtype: string - name: label dtype: int64 splits: - name: test num_bytes: 64024 num_examples: 34 - name: train num_bytes: 478896349.9377463 num_examples: 87508 - name: valid num_bytes: 5472600.790073437 num_examples: 1000 download_size: 918298090 dataset_size: 484432974.72781974 configs: - config_name: journalistic data_files: - split: train path: journalistic/train-* - split: valid path: journalistic/valid-* - split: test path: journalistic/test-* - config_name: legal data_files: - split: train path: legal/train-* - split: valid path: legal/valid-* - split: test path: legal/test-* - config_name: literature data_files: - split: train path: literature/train-* - split: valid path: literature/valid-* - split: test path: literature/test-* - config_name: politics data_files: - split: train path: politics/train-* - split: valid path: politics/valid-* - split: test path: politics/test-* - config_name: social_media data_files: - split: train path: social_media/train-* - split: valid path: social_media/valid-* - split: test path: social_media/test-* - config_name: web data_files: - split: train path: web/train-* - split: valid path: web/valid-* - split: test path: web/test-* --- # PtBrVId The developed corpus is a composition of pre-existing datasets initially created for other NLP tasks that provide permissive licenses. The first release of the corpus is available on [Huggingface](https://huggingface.co/datasets/Random-Mary-Smith/port_data_random). #### Data Sources The corpus consists of the following datasets:
Domain | Variety | Dataset | Original Task | # Docs | License | Silver Labeled |
---|---|---|---|---|---|---|
Literature | PT-PT | Arquivo Pessoa | - | ~4k | CC | ✔ |
Gutenberg Project | - | 6 | CC | ✔ | ||
LT-Corpus | - | 56 | ELRA END USER | ✘ | ||
PT-BR | Brazilian Literature | Author Identification | 81 | CC | ✘ | |
LT-Corpus | - | 8 | ELRA END USER | ✘ | ||
Politics | PT-PT | Koehn (2005) Europarl | Machine Translation | ~10k | CC | ✘ |
PT-BR | Brazilian Senate Speeches | - | ~5k | CC | ✔ | |
Journalistic | PT-PT | CETEM Público | - | 1M | CC | ✘ |
PT-BR | CETEM Folha | - | 272k | CC | ✘ | |
Social Media | PT-PT | Ramalho (2021) | Fake News Detection | 2M | MIT | ✔ |
PT-BR | Vargas (2022) | Hate Speech Detection | 5k | CC-BY-NC-4.0 | ✘ | |
Cunha (2021) | Fake News Detection | 2k | GPL-3.0 license | ✔ | ||
Web | BOTH | Ortiz-Suarez (2020) | - | 10k | CC | ✔ |
Table 1: Data Sources
##### Note: The dataset "Brazilian Senate Speeches" was created by the authors of this paper, using web crawling of the Brazilian Senate website and is available in the Huggingface repository. #### Annotation Schema & Data Preprocessing Pipeline We leveraged our knowledge of the Portuguese language to identify data sources that guaranteed mono-variety documents. However, this first release lacks any kind of supervision, so we cannot guarantee that all documents are mono-variety. In the future, we plan to release a second version of the corpus with a more robust annotation schema, combining automatic and manual annotation. To improve the quality of the corpus, we applied a preprocessing pipeline to all documents. The pipeline consists of the following steps: 1. Remove all NaN values. 2. Remove all empty documents. 3. Remove all duplicated documents. 4. Apply the [clean_text](https://github.com/jfilter/clean-text) library to remove non-relevant information for language identification from the documents. 5. Remove all documents with a length significantly more than two standard deviations from the mean length of the documents in the corpus. The pipeline is illustrated in Figure 1.
Figure 1: Data Pre-Processing Pipeline
#### Class Distribution The class distribution of the corpus is presented in Table 2. The corpus is highly imbalanced, with the majority of the documents being from the journalistic domain. In the future, we plan to release a second version of the corpus with a more balanced distribution across the six domains. Depending on the imbalance of the textual domain, we used different strategies to perform train-validation-test splits. For the heavily imbalanced domains, we ensured a minimum of 100 documents for validation and 400 for testing. In the other domains, we applied a stratified split.
Domain | # PT-PT | # PT-BR | Stratified |
---|---|---|---|
Politics | 6500 | 4894 | ✓ |
Web | 7960 | 21592 | ✓ |
Literature | 18282 | 2772 | ✓ |
Law | 392839 | 5766 | ✕ |
Journalistic | 1494494 | 354180 | ✓ |
Social Media | 2013951 | 6222 | ✕ |
Table 2: Class Balance across the six textual domains in both varieties of Portuguese.
#### Future Releases & How to Contribute We plan to release a second version of this corpus considering more textual domains and extending the scope to other Portuguese varieties. If you want to contribute to this corpus, please [contact us]().