--- task_categories: - image-to-text size_categories: - 1M An example from the FC-AMF-OCR dataset

An example page of one pdf document with existing text annotation(red) and the OCR annotation(green).

Following most large scale OCR datasets like [IDL](https://huggingface.co/datasets/pixparse/idl-wds), this dataset is in [webdataset](https://github.com/webdataset/webdataset/) .tar format and can be used with derived forms of the `webdataset` library. ### Usage with `datasets` This dataset can be used with webdataset library or Hugging Face datasets. Here is an example of how to stream the dataset directly from Hugging Face so you don't have to download the dataset locally. > Note: We do recommend downloading the dataset to save bandwidth. ```python from datasets import load_dataset dataset = load_dataset('lightonai/fc-amf-ocr', streaming=True) print(next(iter(dataset['train'])).keys()) >> dict_keys(['__key__', '__url__', 'pdf', 'json.gz']) ``` You can download the dataset using the following command: ```python import os from huggingface_hub import HfApi os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" api = HfApi() api.snapshot_download("lightonai/fc-amf-ocr", repo_type="dataset", local_dir_use_symlinks=False) ``` #### Approach #### Filtering process We start from the original dataset, which is a collection of 633,244 PDF files and apply some simple filters to remove files that are not relevant for training. The main goal is to have a dataset that is ready to use for large-scale training. We use the following filters: * Corrupted files: we remove files that fail to be decoded correctly or that take too long to load. * Page count: we remove files that have more than 500 pages. * Keep original quality: we apply no compression or rendering that would degrade the quality of the original PDF. Here is a histogram of the number of pages in the dataset.
.

The distribution of number pf pages in the FC-AMF-OCR dataset.

At the end, each document exists as a pair of a `pdf` and a `json.gz` file containing extensive OCR annotation. The packaging in webdataset format makes it easy to use in image-to-text tasks at scale. ### How to visualize a page from the dataset? PDF files are sourced from a variety of origins and are typically stored in RGB format. These files can consist of multiple pages, each of which can be rendered using different tools or engines according to your needs. One recommended option is pdf2image, a tool that converts PDF pages into images. To use [pdf2image](https://github.com/Belval/pdf2image), you need to install the poppler-utils package, which provides the necessary support for rendering and processing PDF files efficiently. This approach allows for flexible handling of PDFs, making it easier to extract and manipulate content from multi-page documents. ```bash apt-get install poppler-utils ``` ```python from pdf2image import convert_from_bytes pdf_first_page = convert_from_bytes(sample['pdf'], dpi=300, first_page=1, last_page=1)[0] ```
Each `pdf` is paired with a `json.gz` file with the following structure. These strucure is that of docTR outputs. Learn more [here](https://mindee.github.io/doctr/using_doctr/using_models.html#what-should-i-do-with-the-output). We explicitly avoid applying any OCR post-processing to get an approximate reading order. Users can use their own heuristics to extract the reading order from the boinding boxes. ```json {'pages': [{'page_idx': 0, 'dimensions': [1684, 1191], 'blocks': [{'geometry': [[0.11751876049538201, 0.0478515625], [0.2390290459697733, 0.126953125]], 'lines': [{'geometry': [[0.14513473446683461, 0.0478515625], [0.15618112405541562, 0.0556640625]], 'words': [{'value': '*', 'confidence': 0.9999570846557617, 'geometry': [[0.14513473446683461, 0.0478515625], [0.15618112405541562, 0.0556640625]]}]}, {'geometry': [[0.1258035526868178, 0.060546875], [0.13823074097397148, 0.0703125]], 'words': [{'value': '*', 'confidence': 0.9995156526565552, 'geometry': [[0.1258035526868178, 0.060546875], [0.13823074097397148, 0.0703125]]}]}, {'geometry': [[0.11751876049538201, 0.0751953125], [0.2390290459697733, 0.09375]], 'words': [{'value': '*', 'confidence': 0.9917723536491394, 'geometry': [[0.11751876049538201, 0.078125], [0.13270754617968095, 0.08984375]]}, {'value': 'esma', 'confidence': 0.9842223525047302, 'geometry': [[0.1506579292611251, 0.0751953125], [0.2390290459697733, 0.09375]]}]}, {'geometry': [[0.12442275398824515, 0.09765625], [0.13823074097397148, 0.107421875]], 'words': [{'value': '*', 'confidence': 0.9726816415786743, 'geometry': [[0.12442275398824515, 0.09765625], [0.13823074097397148, 0.107421875]]}]}, {'geometry': [[0.21693626679261124, 0.0986328125], [0.23074425377833752, 0.107421875]], 'words': [{'value': '*', 'confidence': 0.9999707937240601, 'geometry': [[0.21693626679261124, 0.0986328125], [0.23074425377833752, 0.107421875]]}]}, {'geometry': [[0.14375393576826195, 0.1123046875], [0.15756192275398823, 0.12109375]], 'words': [{'value': '*', 'confidence': 0.9999815225601196, 'geometry': [[0.14375393576826195, 0.1123046875], [0.15756192275398823, 0.12109375]]}]}, {'geometry': [[0.1989858837111671, 0.1123046875], [0.21279387069689337, 0.1220703125]], 'words': [{'value': '*', 'confidence': 0.9999063014984131, 'geometry': [[0.1989858837111671, 0.1123046875], [0.21279387069689337, 0.1220703125]]}]}, {'geometry': [[0.17275070843828716, 0.119140625], [0.18379709802686817, 0.126953125]], 'words': [{'value': '*', 'confidence': 0.9989649057388306, 'geometry': [[0.17275070843828716, 0.119140625], [0.18379709802686817, 0.126953125]]}]}], 'artefacts': []}, {'geometry': [[0.251456234256927, 0.0712890625], [0.41439048068849704, 0.0986328125]], 'lines': [{'geometry': [[0.251456234256927, 0.0712890625], [0.41439048068849704, 0.0849609375]], 'words': [{'value': 'European', 'confidence': 0.9998014569282532, 'geometry': [[0.251456234256927, 0.0732421875], [0.3149729743912678, 0.0849609375]]}, {'value': 'Securities', 'confidence': 0.9985648989677429, 'geometry': [[0.3163537730898405, 0.072265625], [0.38401290931989923, 0.0830078125]]}, {'value': 'and', 'confidence': 0.9997856020927429, 'geometry': [[0.3853937080184719, 0.0712890625], [0.41439048068849704, 0.083984375]]}]}, {'geometry': [[0.251456234256927, 0.083984375], [0.3729665197313182, 0.0986328125]], 'words': [{'value': 'Markets', 'confidence': 0.9976556301116943, 'geometry': [[0.251456234256927, 0.0849609375], [0.3053073835012594, 0.0966796875]]}, {'value': 'Authority', 'confidence': 0.8129342794418335, 'geometry': [[0.30668818219983207, 0.083984375], [0.3729665197313182, 0.0986328125]]}]}], 'artefacts': []}, ... {'page_idx': ...}, } ``` ## Document Structure The structural organization of the documents, including words, lines, blocks, pages, and the overall document. | Element | Description | |------------|-------------| | **Word** | A Word is an uninterrupted sequence of characters. | | **Line** | A collection of Words aligned spatially and meant to be read together. | | **Block** | A collection of Lines. | | **Page** | A collection of Blocks that were on the same physical page. | > Artefacts are not used here. The top-level key, `pages`, is a list containing each page in the document. In this example, only one page is shown. - **Page**: - `page_idx`: The index of the page in the document (starts at 0). - `dimensions`: The dimensions of the page in pixels, formatted as `[height, width]`. - **Blocks**: - A page consists of several `blocks`, each containing lines. - `geometry`: Defines the bounding box of the block using normalized coordinates relative to the page size. - **Lines**: - Each block contains a list of `lines`, where a line is a sequence of words grouped together. - `geometry`: Bounding box of the line in normalized coordinates relative to the page size. - **Words**: - Each line is composed of individual `words` (continuous sequences of characters). - `value`: The text content of the word. - `confidence`: The confidence score of the OCR engine for the word. - `geometry`: Bounding box of the word in normalized coordinates relative to the page size. For each page, the structure includes: - **Blocks**: Grouped lines within a page. - **Lines**: Sequences of words within a block. - **Words**: Individual characters or words detected within each line, along with their confidence scores and positions. ### Data Splits There is only a single train split for this dataset. #### Train * `fc-amf-train-{0000..0838}.tar` * 838 shards (each shard is 500 MB for ease of use) * 605,438 samples * 9.3M pages ## Additional Information ### Note This dataset is intended as an OCR-heavy pre-training basis for vision-language models or specialized OCR models. The current version contains multilingual data with English and French as the most represented languages. The OCR annotation might not work well for other languages. Filtering based on word confidence scores can be used as a heuristic to subsample the dataset. In a future release, we will add language information per pdf. ### Licensing Information Data has been OCRed from the original dataset. As a consequence it has the same [AMF-PDF](https://huggingface.co/datasets/PleIAs/AMF-PDF) license.