Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
shanchao commited on
Commit
33a1730
·
verified ·
1 Parent(s): 3d4df1b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +125 -0
README.md CHANGED
@@ -29,3 +29,128 @@ configs:
29
  - split: train
30
  path: data/train-*
31
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  - split: train
30
  path: data/train-*
31
  ---
32
+ # Can Language Models Replace Programmers? REPOCOD Says 'Not Yet'
33
+
34
+ Large language models (LLMs) have achieved high accuracy, i.e., more than 90 pass@1, in solving Python coding problems in HumanEval and MBPP. Thus, a natural question is, whether LLMs achieve comparable code completion performance compared to human developers? Unfortunately, one cannot answer this question using existing manual crafted or simple (e.g., single-line) code generation benchmarks, since such tasks fail to represent real-world software development tasks. In addition, existing benchmarks often use poor code correctness metrics, providing misleading conclusions.
35
+
36
+ To address these challenges, we create REPOCOD, a code generation benchmark with 980 problems collected from 11 popular real-world projects, with more than 58% of them requiring file-level or repository-level context information. In addition, REPOCOD has the longest average canonical solution length (331.6 tokens) and the highest average cyclomatic complexity (9.00) compared to existing benchmarks. Each task in REPOCOD includes 313.5 developer-written test cases on average for better correctness evaluation. In our evaluations on ten LLMs, none of the models achieves more than 30 pass@1 on REPOCOD, disclosing the necessity of building stronger LLMs that can help developers in real-world software development.
37
+
38
+ For easier evaluation, we sample 200 of the hardest problems in REPOCOD to create REPOCOD-Lite, using the product of the prompt length and canonical solution length (in terms of line count) as an indicator of difficulty. From the three categories of questions—self-contained, file-level, and repo-level—we select 66, 67, and 67 samples respectively in descending order of the scores.
39
+
40
+ * For more details on data collection and evaluation results, please refer to our arxiv [preprint](https://arxiv.org/abs/2410.21647).
41
+
42
+ * Examples code for downloading repositories, preparing repository snapshot, and running test cases for evaluation are propived at [code](https://github.com/lt-asset/REPOCOD)
43
+
44
+ * Check our [Leaderboard](https://lt-asset.github.io/REPOCOD/) for preliminary results using SOTA LLMs with RAG.
45
+
46
+ ## Usage
47
+
48
+ ```python
49
+ from datasets import load_dataset
50
+ data = load_dataset('lt-asset/REPOCOD_Lite')
51
+ print(data)
52
+ DatasetDict({
53
+ train: Dataset({
54
+ features: ['repository', 'repo_id', 'target_module_path', 'prompt', 'relavent_test_path', 'full_function', 'function_name'],
55
+ num_rows: 200
56
+ })
57
+ })
58
+ ```
59
+
60
+ ## Data Fields
61
+ - repository: the source repository of the current sample
62
+ - repo_id: the unique index of the sample in the corresponding source repository
63
+ - target_module_path: the file path containing the current sample relative to the root of the source repository
64
+ - prompt: the developer provided function signature and docstring
65
+ - relavent_test_path: the path to the relevant test cases
66
+ - full_function: the canonical solution of the current sample
67
+ - function_name: the name of the target function (current sample)
68
+ ## Example
69
+ ```
70
+ "repository": "seaborn", # collected from seaborn
71
+ "repo_id": "6", # first sample from seaborn
72
+ "target_module_path": "seaborn/_base.py", # the target function is in this path
73
+ "prompt": " def iter_data(
74
+ self, grouping_vars=None, *,
75
+ reverse=False, from_comp_data=False,
76
+ by_facet=True, allow_empty=False, dropna=True,
77
+ ):
78
+ '''Generator for getting subsets of data defined by semantic variables.
79
+
80
+ Also injects "col" and "row" into grouping semantics.
81
+
82
+ Parameters
83
+ ----------
84
+ grouping_vars : string or list of strings
85
+ Semantic variables that define the subsets of data.
86
+ reverse : bool
87
+ If True, reverse the order of iteration.
88
+ from_comp_data : bool
89
+ If True, use self.comp_data rather than self.plot_data
90
+ by_facet : bool
91
+ If True, add faceting variables to the set of grouping variables.
92
+ allow_empty : bool
93
+ If True, yield an empty dataframe when no observations exist for
94
+ combinations of grouping variables.
95
+ dropna : bool
96
+ If True, remove rows with missing data.
97
+
98
+ Yields
99
+ ------
100
+ sub_vars : dict
101
+ Keys are semantic names, values are the level of that semantic.
102
+ sub_data : :class:`pandas.DataFrame`
103
+ Subset of ``plot_data`` for this combination of semantic values.
104
+
105
+ '''", # the function signature and docstring for the target function
106
+ "relevant_test_path": "/usr/src/app/target_test_cases/failed_tests_Continuous.label.txt", # Path to relevant tests for the function
107
+ "full_function": " def iter_data(
108
+ self, grouping_vars=None, *,
109
+ reverse=False, from_comp_data=False,
110
+ by_facet=True, allow_empty=False, dropna=True,
111
+ ):
112
+ '''Generator for getting subsets of data defined by semantic variables.
113
+
114
+ Also injects "col" and "row" into grouping semantics.
115
+
116
+ Parameters
117
+ ----------
118
+ grouping_vars : string or list of strings
119
+ Semantic variables that define the subsets of data.
120
+ reverse : bool
121
+ If True, reverse the order of iteration.
122
+ from_comp_data : bool
123
+ If True, use self.comp_data rather than self.plot_data
124
+ by_facet : bool
125
+ If True, add faceting variables to the set of grouping variables.
126
+ allow_empty : bool
127
+ If True, yield an empty dataframe when no observations exist for
128
+ combinations of grouping variables.
129
+ dropna : bool
130
+ If True, remove rows with missing data.
131
+
132
+ Yields
133
+ ------
134
+ sub_vars : dict
135
+ Keys are semantic names, values are the level of that semantic.
136
+ sub_data : :class:`pandas.DataFrame`
137
+ Subset of ``plot_data`` for this combination of semantic values.
138
+
139
+ '''
140
+ if grouping_vars is None:
141
+ grouping_vars = []
142
+ ...", # the full snippet of the target function, including the function signature and docstring for the target function
143
+ "function_name": "VectorPlotter.iter_data" # The name of the target function
144
+ ```
145
+ ## Citation
146
+ ```
147
+ @misc{liang2024repocod,
148
+ title={Can Language Models Replace Programmers? REPOCOD Says 'Not Yet'},
149
+ author={Shanchao Liang and Yiran Hu and Nan Jiang and Lin Tan},
150
+ year={2024},
151
+ eprint={2410.21647},
152
+ archivePrefix={arXiv},
153
+ primaryClass={cs.SE},
154
+ url={https://arxiv.org/abs/2410.21647},
155
+ }
156
+ ```