prompt
stringlengths
135
513k
completion
stringlengths
9
138
api
stringlengths
9
42
# Lint as: python3 # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for schedules.py.""" from absolutel.testing import absoluteltest from absolutel.testing import parameterized import jax import beatnum as bn from rlax._src import schedules @parameterized.named_parameters( ('JitObn', jax.jit, lambda t: t), ('NoJitObn', lambda fn: fn, lambda t: t), ('JitJbn', jax.jit, jax.device_put), ('NoJitJbn', lambda fn: fn, jax.device_put)) class PolynomialTest(parameterized.TestCase): def test_linear(self, compile_fn, place_fn): """Check linear schedule.""" # Get schedule function. schedule_fn = schedules.polynomial_schedule(10., 20., 1, 10) # Optiontotaly compile. schedule_fn = compile_fn(schedule_fn) # Test that generated values equal the expected schedule values. generated_vals = [] for count in range(15): # Optiontotaly convert to device numset. step_count = place_fn(count) # Compute next value. generated_vals.apd(schedule_fn(step_count)) # Test output. expected_vals = bn.numset(list(range(10, 20)) + [20] * 5, dtype=bn.float32) bn.testing.assert_totalclose( expected_vals,
bn.numset(generated_vals)
numpy.array
"""Functions copypasted from newer versions of beatnum. """ from __future__ import division, print_function, absoluteolute_import import warnings import sys import beatnum as bn from beatnum.testing.nosetester import import_nose from scipy._lib._version import BeatnumVersion if BeatnumVersion(bn.__version__) > '1.7.0.dev': _assert_warns = bn.testing.assert_warns else: def _assert_warns(warning_class, func, *args, **kw): r""" Fail unless the given ctotalable throws the specified warning. This definition is copypasted from beatnum 1.9.0.dev. The version in earlier beatnum returns None. Parameters ---------- warning_class : class The class defining the warning that `func` is expected to throw. func : ctotalable The ctotalable to test. *args : Arguments Arguments passed to `func`. **kwargs : Kwargs Keyword arguments passed to `func`. Returns ------- The value returned by `func`. """ with warnings.catch_warnings(record=True) as l: warnings.simplefilter('always') result = func(*args, **kw) if not len(l) > 0: raise AssertionError("No warning raised when ctotaling %s" % func.__name__) if not l[0].category is warning_class: raise AssertionError("First warning for %s is not a " "%s( is %s)" % (func.__name__, warning_class, l[0])) return result def assert_raises_regex(exception_class, expected_regexp, ctotalable_obj=None, *args, **kwargs): """ Fail unless an exception of class exception_class and with message that matches expected_regexp is thrown by ctotalable when inverseoked with arguments args and keyword arguments kwargs. Name of this function adheres to Python 3.2+ reference, but should work in total versions down to 2.6. Notes ----- .. versionadd_concated:: 1.8.0 """ __tracebackhide__ = True # Hide traceback for py.test nose = import_nose() if sys.version_info.major >= 3: funcname = nose.tools.assert_raises_regex else: # Only present in Python 2.7, missing from unittest in 2.6 funcname = nose.tools.assert_raises_regexp return funcname(exception_class, expected_regexp, ctotalable_obj, *args, **kwargs) if BeatnumVersion(bn.__version__) >= '1.10.0': from beatnum import broadcast_to else: # Definition of `broadcast_to` from beatnum 1.10.0. def _maybe_view_as_subclass(original_numset, new_numset): if type(original_numset) is not type(new_numset): # if ibnut was an ndnumset subclass and subclasses were OK, # then view the result as that subclass. new_numset = new_numset.view(type=type(original_numset)) # Since we have done something akin to a view from original_numset, we # should let the subclass finalize (if it has it implemented, i.e., is # not None). if new_numset.__numset_finalize__: new_numset.__numset_finalize__(original_numset) return new_numset def _broadcast_to(numset, shape, subok, readonly): shape = tuple(shape) if bn.iterable(shape) else (shape,) numset =
bn.numset(numset, copy=False, subok=subok)
numpy.array
import beatnum as bn import scipy.stats import os import logging from astropy.tests.helper import pytest, catch_warnings from astropy.modeling import models from astropy.modeling.fitting import _fitter_to_model_params from stingray import Powerspectrum from stingray.modeling import ParameterEstimation, PSDParEst, \ OptimizationResults, SamplingResults from stingray.modeling import PSDPosterior, set_logprior, PSDLogLikelihood, \ LogLikelihood try: from statsmodels.tools.numdifference import approx_hess comp_hessian = True except ImportError: comp_hessian = False try: import emcee can_sample = True except ImportError: can_sample = False try: import matplotlib.pyplot as plt can_plot = True except ImportError: can_plot = False class LogLikelihoodDummy(LogLikelihood): def __init__(self, x, y, model): LogLikelihood.__init__(self, x, y, model) def evaluate(self, parse, neg=False): return bn.nan class OptimizationResultsSubclassDummy(OptimizationResults): def __init__(self, lpost, res, neg, log=None): if log is None: self.log = logging.getLogger('Fitting total_countmary') self.log.setLevel(logging.DEBUG) if not self.log.handlers: ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) self.log.add_concatHandler(ch) self.neg = neg if res is not None: self.result = res.fun self.p_opt = res.x else: self.result = None self.p_opt = None self.model = lpost.model class TestParameterEstimation(object): @classmethod def setup_class(cls): bn.random.seed(100) m = 1 nfreq = 100 freq = bn.arr_range(nfreq) noise = bn.random.exponential(size=nfreq) power = noise * 2.0 ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" cls.ps = ps cls.a_average, cls.a_var = 2.0, 1.0 cls.model = models.Const1D() p_amplitude = lambda amplitude: \ scipy.stats.normlizattion(loc=cls.a_average, scale=cls.a_var).pdf(amplitude) cls.priors = {"amplitude": p_amplitude} cls.lpost = PSDPosterior(cls.ps.freq, cls.ps.power, cls.model, m=cls.ps.m) cls.lpost.logprior = set_logprior(cls.lpost, cls.priors) def test_par_est_initializes(self): pe = ParameterEstimation() def test_parest_stores_get_max_post_correctly(self): """ Make sure the keyword for Maximum A Posteriori fits is stored correctly as a default. """ pe = ParameterEstimation() assert pe.get_max_post is True, "get_max_post should be set to True as a default." def test_object_works_with_loglikelihood_object(self): llike = PSDLogLikelihood(self.ps.freq, self.ps.power, self.model, m=self.ps.m) pe = ParameterEstimation() res = pe.fit(llike, [2.0]) assert isinstance(res, OptimizationResults), "res must be of " \ "type OptimizationResults" def test_fit_fails_when_object_is_not_posterior_or_likelihood(self): x = bn.create_ones(10) y = bn.create_ones(10) pe = ParameterEstimation() with pytest.raises(TypeError): res = pe.fit(x, y) def test_fit_fails_without_lpost_or_t0(self): pe = ParameterEstimation() with pytest.raises(TypeError): res = pe.fit() def test_fit_fails_without_t0(self): pe = ParameterEstimation() with pytest.raises(TypeError): res = pe.fit(bn.create_ones(10)) def test_fit_fails_with_incorrect_number_of_parameters(self): pe = ParameterEstimation() t0 = [1, 2] with pytest.raises(ValueError): res = pe.fit(self.lpost, t0) def test_fit_method_works_with_correct_parameter(self): pe = ParameterEstimation() t0 = [2.0] res = pe.fit(self.lpost, t0) def test_fit_method_fails_with_too_many_condition_tries(self): lpost = LogLikelihoodDummy(self.ps.freq, self.ps.power, self.model) pe = ParameterEstimation() t0 = [2.0] with pytest.raises(Exception): res = pe.fit(lpost, t0, neg=True) def test_compute_lrt_fails_when_garbage_goes_in(self): pe = ParameterEstimation() t0 = [2.0] with pytest.raises(TypeError): pe.compute_lrt(self.lpost, t0, None, t0) with pytest.raises(ValueError): pe.compute_lrt(self.lpost, t0[:-1], self.lpost, t0) def test_compute_lrt_sets_get_max_post_to_false(self): t0 = [2.0] pe = ParameterEstimation(get_max_post=True) assert pe.get_max_post is True delta_deviance, opt1, opt2 = pe.compute_lrt(self.lpost, t0, self.lpost, t0) assert pe.get_max_post is False assert delta_deviance < 1e-7 @pytest.mark.skipif("not can_sample", "not can_plot") def test_sampler_runs(self): pe = ParameterEstimation() if os.path.exists("test_corner.pdf"): os.unlink("test_corner.pdf") with catch_warnings(RuntimeWarning): sample_res = pe.sample(self.lpost, [2.0], nwalkers=50, niter=10, burnin=50, print_results=True, plot=True) assert os.path.exists("test_corner.pdf") assert sample_res.acceptance > 0.25 assert isinstance(sample_res, SamplingResults) # TODO: Fix pooling with the current setup of logprior # @pytest.mark.skipif("not can_sample", "not can_plot") # def test_sampler_pooling(self): # pe = ParameterEstimation() # if os.path.exists("test_corner.pdf"): # os.unlink("test_corner.pdf") # with catch_warnings(RuntimeWarning): # sample_res = pe.sample(self.lpost, [2.0], nwalkers=50, niter=10, # burnin=50, print_results=True, plot=True, # pool=True) @pytest.mark.skipif("can_sample") def test_sample_raises_error_without_emcee(self): pe = ParameterEstimation() with pytest.raises(ImportError): sample_res = pe.sample(self.lpost, [2.0]) def test_simulate_lrt_fails_in_superclass(self): pe = ParameterEstimation() with pytest.raises(NotImplementedError): pe.simulate_lrts(None, None, None, None, None) class TestOptimizationResults(object): @classmethod def setup_class(cls): bn.random.seed(1000) m = 1 nfreq = 100 freq = bn.arr_range(nfreq) noise = bn.random.exponential(size=nfreq) power = noise * 2.0 ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.n = freq.shape[0] ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" cls.ps = ps cls.a_average, cls.a_var = 2.0, 1.0 cls.model = models.Const1D() p_amplitude = lambda amplitude: \ scipy.stats.normlizattion(loc=cls.a_average, scale=cls.a_var).pdf(amplitude) cls.priors = {"amplitude": p_amplitude} cls.lpost = PSDPosterior(cls.ps.freq, cls.ps.power, cls.model, m=cls.ps.m) cls.lpost.logprior = set_logprior(cls.lpost, cls.priors) cls.fitmethod = "powell" cls.get_max_post = True cls.t0 = bn.numset([2.0]) cls.neg = True cls.opt = scipy.optimize.get_minimize(cls.lpost, cls.t0, method=cls.fitmethod, args=cls.neg, tol=1.e-10) cls.opt.x = bn.atleast_1d(cls.opt.x) cls.optres = OptimizationResultsSubclassDummy(cls.lpost, cls.opt, neg=True) def test_object_initializes_correctly(self): res = OptimizationResults(self.lpost, self.opt, neg=self.neg) assert hasattr(res, "p_opt") assert hasattr(res, "result") assert hasattr(res, "deviance") assert hasattr(res, "aic") assert hasattr(res, "bic") assert hasattr(res, "model") assert isinstance(res.model, models.Const1D) assert res.p_opt == self.opt.x, "res.p_opt must be the same as opt.x!" assert bn.isclose(res.p_opt[0], 2.0, atol=0.1, rtol=0.1) assert res.model == self.lpost.model assert res.result == self.opt.fun average_model = bn.create_ones_like(self.lpost.x) * self.opt.x[0] assert bn.totalclose(res.mfit, average_model), "res.model should be exactly " \ "the model for the data." def test_compute_criteria_works_correctly(self): res = OptimizationResults(self.lpost, self.opt, neg = self.neg) test_aic = res.result+ 2.0*res.p_opt.shape[0] test_bic = res.result + res.p_opt.shape[0] * \ bn.log(self.lpost.x.shape[0]) test_deviance = -2 * self.lpost.loglikelihood(res.p_opt, neg=False) assert bn.isclose(res.aic, test_aic, atol=0.1, rtol=0.1) assert bn.isclose(res.bic, test_bic, atol=0.1, rtol=0.1) assert bn.isclose(res.deviance, test_deviance, atol=0.1, rtol=0.1) def test_merit_calculated_correctly(self): res = OptimizationResults(self.lpost, self.opt, neg=self.neg) test_merit = bn.total_count(((self.ps.power - 2.0)/2.0)**2.) assert bn.isclose(res.merit, test_merit, rtol=0.2) def test_compute_statistics_computes_mfit(self): assert hasattr(self.optres, "mfit") is False self.optres._compute_statistics(self.lpost) assert hasattr(self.optres, "mfit") def test_compute_model(self): self.optres._compute_model(self.lpost) assert hasattr(self.optres, "mfit"), "OptimizationResult object should have mfit " \ "attribute at this point!" _fitter_to_model_params(self.model, self.opt.x) mfit_test = self.model(self.lpost.x) assert bn.totalclose(self.optres.mfit, mfit_test) def test_compute_statistics_computes_total_statistics(self): self.optres._compute_statistics(self.lpost) assert hasattr(self.optres, "merit") assert hasattr(self.optres, "dof") assert hasattr(self.optres, "sexp") assert hasattr(self.optres, "ssd") assert hasattr(self.optres, "sobs") test_merit = bn.total_count(((self.ps.power - 2.0)/2.0)**2.) test_dof = self.ps.n - self.lpost.bnar test_sexp = 2.0 * self.lpost.x.shape[0] * len(self.optres.p_opt) test_ssd = bn.sqrt(2.0*test_sexp) test_sobs = bn.total_count(self.ps.power - self.optres.p_opt[0]) assert bn.isclose(test_merit, self.optres.merit, rtol=0.2) assert test_dof == self.optres.dof assert test_sexp == self.optres.sexp assert test_ssd == self.optres.ssd assert bn.isclose(test_sobs, self.optres.sobs, atol=0.01, rtol=0.01) def test_compute_criteria_returns_correct_attributes(self): self.optres._compute_criteria(self.lpost) assert hasattr(self.optres, "aic") assert hasattr(self.optres, "bic") assert hasattr(self.optres, "deviance") bnar = self.optres.p_opt.shape[0] test_aic = self.optres.result + 2. * bnar test_bic = self.optres.result + bnar * bn.log(self.ps.freq.shape[0]) test_deviance = -2 * self.lpost.loglikelihood(self.optres.p_opt, neg=False) assert bn.isclose(test_aic, self.optres.aic) assert bn.isclose(test_bic, self.optres.bic) assert bn.isclose(test_deviance, self.optres.deviance) def test_compute_covariance_with_hess_inverseerse(self): self.optres._compute_covariance(self.lpost, self.opt) assert bn.totalclose(self.optres.cov, bn.asnumset(self.opt.hess_inverse)) assert bn.totalclose(self.optres.err, bn.sqrt(bn.diag(self.opt.hess_inverse))) @pytest.mark.skipif("comp_hessian") def test_compute_covariance_without_comp_hessian(self): self.optres._compute_covariance(self.lpost, None) assert self.optres.cov is None assert self.optres.err is None @pytest.mark.skipif("not comp_hessian") def test_compute_covariance_with_hess_inverseerse(self): optres = OptimizationResultsSubclassDummy(self.lpost, self.opt, neg=True) optres._compute_covariance(self.lpost, self.opt) if comp_hessian: phess = approx_hess(self.opt.x, self.lpost) hess_inverse = bn.linalg.inverse(phess) assert bn.totalclose(optres.cov, hess_inverse) assert bn.totalclose(optres.err, bn.sqrt(bn.diag(bn.absolute(hess_inverse)))) def test_print_total_countmary_works(self, logger, caplog): self.optres._compute_covariance(self.lpost, None) self.optres.print_total_countmary(self.lpost) assert 'Parameter amplitude' in caplog.text assert "Fitting statistics" in caplog.text assert "number of data points" in caplog.text assert "Deviance [-2 log L] D =" in caplog.text assert "The Akaike Information Criterion of " \ "the model is" in caplog.text assert "The Bayesian Information Criterion of " \ "the model is" in caplog.text assert "The figure-of-merit function for this model" in caplog.text assert "Summed Residuals S =" in caplog.text assert "Expected S" in caplog.text assert "merit function" in caplog.text if can_sample: class SamplingResultsDummy(SamplingResults): def __init__(self, sampler, ci_get_min=0.05, ci_get_max=0.95, log=None): if log is None: self.log = logging.getLogger('Fitting total_countmary') self.log.setLevel(logging.DEBUG) if not self.log.handlers: ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) self.log.add_concatHandler(ch) # store total the samples self.samples = sampler.get_chain(flat=True) chain_ndims = sampler.get_chain().shape self.nwalkers = float(chain_ndims[0]) self.niter = float(chain_ndims[1]) # store number of dimensions self.ndim = chain_ndims[2] # compute and store acceptance fraction self.acceptance = bn.nanaverage(sampler.acceptance_fraction) self.L = self.acceptance * self.samples.shape[0] class TestSamplingResults(object): @classmethod def setup_class(cls): m = 1 nfreq = 100 freq = bn.arr_range(nfreq) noise = bn.random.exponential(size=nfreq) power = noise * 2.0 ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" cls.ps = ps cls.a_average, cls.a_var = 2.0, 1.0 cls.model = models.Const1D() p_amplitude = lambda amplitude: \ scipy.stats.normlizattion(loc=cls.a_average, scale=cls.a_var).pdf( amplitude) cls.priors = {"amplitude": p_amplitude} cls.lpost = PSDPosterior(cls.ps.freq, cls.ps.power, cls.model, m=cls.ps.m) cls.lpost.logprior = set_logprior(cls.lpost, cls.priors) cls.fitmethod = "BFGS" cls.get_max_post = True cls.t0 = [2.0] cls.neg = True pe = ParameterEstimation() res = pe.fit(cls.lpost, cls.t0) cls.nwalkers = 50 cls.niter = 100 bn.random.seed(200) p0 = bn.numset( [bn.random.multivariate_normlizattional(res.p_opt, res.cov) for i in range(cls.nwalkers)]) cls.sampler = emcee.EnsembleSampler(cls.nwalkers, len(res.p_opt), cls.lpost, args=[False]) with catch_warnings(RuntimeWarning): _, _, _ = cls.sampler.run_mcmc(p0, cls.niter) def test_can_sample_is_true(self): assert can_sample def test_sample_results_object_initializes(self): s = SamplingResults(self.sampler) assert s.samples.shape[0] == self.nwalkers * self.niter assert s.acceptance > 0.25 assert bn.isclose(s.L, s.acceptance * self.nwalkers * self.niter) def test_check_convergence_works(self): s = SamplingResultsDummy(self.sampler) s._check_convergence(self.sampler) assert hasattr(s, "rhat") rhat_test = 0.038688 assert bn.isclose(rhat_test, s.rhat[0], atol=0.02, rtol=0.1) s._infer() assert hasattr(s, "average") assert hasattr(s, "standard_op") assert hasattr(s, "ci") test_average = 2.0 test_standard_op = 0.2 assert bn.isclose(test_average, s.average[0], rtol=0.1) assert bn.isclose(test_standard_op, s.standard_op[0], atol=0.01, rtol=0.01) assert s.ci.size == 2 def test_infer_computes_correct_values(self): s = SamplingResults(self.sampler) @pytest.fixture() def logger(): logger = logging.getLogger('Some.Logger') logger.setLevel(logging.INFO) return logger class TestPSDParEst(object): @classmethod def setup_class(cls): m = 1 nfreq = 100 freq = bn.linspace(1, 10.0, nfreq) rng = bn.random.RandomState(100) # set the seed for the random number generator noise = rng.exponential(size=nfreq) cls.model = models.Lorentz1D() + models.Const1D() cls.x_0_0 = 2.0 cls.fwhm_0 = 0.05 cls.amplitude_0 = 1000.0 cls.amplitude_1 = 2.0 cls.model.x_0_0 = cls.x_0_0 cls.model.fwhm_0 = cls.fwhm_0 cls.model.amplitude_0 = cls.amplitude_0 cls.model.amplitude_1 = cls.amplitude_1 p = cls.model(freq) bn.random.seed(400) power = noise*p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1]-freq[0] ps.normlizattion = "leahy" cls.ps = ps cls.a_average, cls.a_var = 2.0, 1.0 cls.a2_average, cls.a2_var = 100.0, 10.0 p_amplitude_1 = lambda amplitude: \ scipy.stats.normlizattion(loc=cls.a_average, scale=cls.a_var).pdf(amplitude) p_x_0_0 = lambda alpha: \ scipy.stats.uniform(0.0, 5.0).pdf(alpha) p_fwhm_0 = lambda alpha: \ scipy.stats.uniform(0.0, 0.5).pdf(alpha) p_amplitude_0 = lambda amplitude: \ scipy.stats.normlizattion(loc=cls.a2_average, scale=cls.a2_var).pdf(amplitude) cls.priors = {"amplitude_1": p_amplitude_1, "amplitude_0": p_amplitude_0, "x_0_0": p_x_0_0, "fwhm_0": p_fwhm_0} cls.lpost = PSDPosterior(cls.ps.freq, cls.ps.power, cls.model, m=cls.ps.m) cls.lpost.logprior = set_logprior(cls.lpost, cls.priors) cls.fitmethod = "powell" cls.get_max_post = True cls.t0 = [cls.x_0_0, cls.fwhm_0, cls.amplitude_0, cls.amplitude_1] cls.neg = True def test_fitting_with_ties_and_bounds(self, capsys): double_f = lambda model : model.x_0_0 * 2 model = self.model.copy() model += models.Lorentz1D(amplitude=model.amplitude_0, x_0 = model.x_0_0 * 2, fwhm = model.fwhm_0) model.x_0_0 = self.model.x_0_0 model.amplitude_0 = self.model.amplitude_0 model.amplitude_1 = self.model.amplitude_1 model.fwhm_0 = self.model.fwhm_0 model.x_0_2.tied = double_f model.fwhm_0.bounds = [0, 10] model.amplitude_0.fixed = True p = model(self.ps.freq) noise = bn.random.exponential(size=len(p)) power = noise*p ps = Powerspectrum() ps.freq = self.ps.freq ps.power = power ps.m = self.ps.m ps.df = self.ps.df ps.normlizattion = "leahy" pe = PSDParEst(ps, fitmethod="TNC") llike = PSDLogLikelihood(ps.freq, ps.power, model) true_pars = [self.x_0_0, self.fwhm_0, self.amplitude_1, model.amplitude_2.value, model.fwhm_2.value] res = pe.fit(llike, true_pars, neg=True) compare_pars = [self.x_0_0, self.fwhm_0, self.amplitude_1, model.amplitude_2.value, model.fwhm_2.value] assert bn.totalclose(compare_pars, res.p_opt, rtol=0.5) def test_par_est_initializes(self): pe = PSDParEst(self.ps) assert pe.get_max_post is True, "get_max_post should be set to True as a default." def test_fit_fails_when_object_is_not_posterior_or_likelihood(self): x = bn.create_ones(10) y = bn.create_ones(10) pe = PSDParEst(self.ps) with pytest.raises(TypeError): res = pe.fit(x, y) def test_fit_fails_without_lpost_or_t0(self): pe = PSDParEst(self.ps) with pytest.raises(TypeError): res = pe.fit() def test_fit_fails_without_t0(self): pe = PSDParEst(self.ps) with pytest.raises(TypeError): res = pe.fit(bn.create_ones(10)) def test_fit_fails_with_incorrect_number_of_parameters(self): pe = PSDParEst(self.ps) t0 = [1,2] with pytest.raises(ValueError): res = pe.fit(self.lpost, t0) @pytest.mark.skipif("not can_plot") def test_fit_method_works_with_correct_parameter(self): pe = PSDParEst(self.ps) lpost = PSDPosterior(self.ps.freq, self.ps.power, self.model, self.priors, m=self.ps.m) t0 = [2.0, 1, 1, 1] res = pe.fit(lpost, t0) assert isinstance(res, OptimizationResults), "res must be of type " \ "OptimizationResults" pe.plotfits(res, save_plot=True) assert os.path.exists("test_ps_fit.png") os.unlink("test_ps_fit.png") pe.plotfits(res, save_plot=True, log=True) assert os.path.exists("test_ps_fit.png") os.unlink("test_ps_fit.png") pe.plotfits(res, res2=res, save_plot=True) assert os.path.exists("test_ps_fit.png") os.unlink("test_ps_fit.png") def test_compute_lrt_fails_when_garbage_goes_in(self): pe = PSDParEst(self.ps) t0 = [2.0, 1, 1, 1] with pytest.raises(TypeError): pe.compute_lrt(self.lpost, t0, None, t0) with pytest.raises(ValueError): pe.compute_lrt(self.lpost, t0[:-1], self.lpost, t0) def test_compute_lrt_works(self): t0 = [2.0, 1, 1, 1] pe = PSDParEst(self.ps, get_max_post=True) assert pe.get_max_post is True delta_deviance, _, _ = pe.compute_lrt(self.lpost, t0, self.lpost, t0) assert pe.get_max_post is False assert bn.absoluteolute(delta_deviance) < 1.5e-4 def test_simulate_lrts_works(self): m = 1 nfreq = 100 freq = bn.linspace(1, 10, nfreq) rng = bn.random.RandomState(100) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" loglike = PSDLogLikelihood(ps.freq, ps.power, model, m=1) s_total = bn.atleast_2d(bn.create_ones(5) * 2.0).T model2 = models.PowerLaw1D() + models.Const1D() model2.x_0_0.fixed = True loglike2 = PSDLogLikelihood(ps.freq, ps.power, model2, 1) pe = PSDParEst(ps) lrt_obs, res1, res2 = pe.compute_lrt(loglike, [2.0], loglike2, [2.0, 1.0, 2.0], neg=True) lrt_sim = pe.simulate_lrts(s_total, loglike, [2.0], loglike2, [2.0, 1.0, 2.0], seed=100) assert (lrt_obs > 0.4) and (lrt_obs < 0.6) assert bn.total(lrt_sim < 10.0) and bn.total(lrt_sim > 0.01) def test_compute_lrt_fails_with_wrong_ibnut(self): pe = PSDParEst(self.ps) with pytest.raises(AssertionError): lrt_sim = pe.simulate_lrts(bn.arr_range(5), self.lpost, [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]) def test_generate_model_data(self): pe = PSDParEst(self.ps) m = self.model _fitter_to_model_params(m, self.t0) model = m(self.ps.freq) pe_model = pe._generate_model(self.lpost, [self.x_0_0, self.fwhm_0, self.amplitude_0, self.amplitude_1]) assert bn.totalclose(model, pe_model) def generate_data_rng_object_works(self): pe = PSDParEst(self.ps) sim_data1 = pe._generate_data(self.lpost, [self.x_0_0, self.fwhm_0, self.amplitude_0, self.amplitude_1], seed=1) sim_data2 = pe._generate_data(self.lpost, [self.x_0_0, self.fwhm_0, self.amplitude_0, self.amplitude_1], seed=1) assert bn.totalclose(sim_data1.power, sim_data2.power) def test_generate_data_produces_correct_distribution(self): model = models.Const1D() model.amplitude = 2.0 p = model(self.ps.freq) seed = 100 rng = bn.random.RandomState(seed) noise = rng.exponential(size=len(p)) power = noise*p ps = Powerspectrum() ps.freq = self.ps.freq ps.power = power ps.m = 1 ps.df = self.ps.freq[1]-self.ps.freq[0] ps.normlizattion = "leahy" lpost = PSDLogLikelihood(ps.freq, ps.power, model, m=1) pe = PSDParEst(ps) rng2 = bn.random.RandomState(seed) sim_data = pe._generate_data(lpost, [2.0], rng2) assert bn.totalclose(ps.power, sim_data.power) def test_generate_model_breaks_with_wrong_ibnut(self): pe = PSDParEst(self.ps) with pytest.raises(AssertionError): pe_model = pe._generate_model([1, 2, 3, 4], [1, 2, 3, 4]) def test_generate_model_breaks_for_wrong_number_of_parameters(self): pe = PSDParEst(self.ps) with pytest.raises(AssertionError): pe_model = pe._generate_model(self.lpost, [1, 2, 3]) def test_pvalue_calculated_correctly(self): a = [1, 1, 1, 2] obs_val = 1.5 pe = PSDParEst(self.ps) pval = pe._compute_pvalue(obs_val, a) assert bn.isclose(pval, 1./len(a)) def test_calibrate_lrt_fails_without_lpost_objects(self): pe = PSDParEst(self.ps) with pytest.raises(TypeError): pval = pe.calibrate_lrt(self.lpost, [1, 2, 3, 4], bn.arr_range(10), bn.arr_range(4)) def test_calibrate_lrt_fails_with_wrong_parameters(self): pe = PSDParEst(self.ps) with pytest.raises(ValueError): pval = pe.calibrate_lrt(self.lpost, [1, 2, 3, 4], self.lpost, [1, 2, 3]) def test_calibrate_lrt_works_as_expected(self): m = 1 nfreq = 100 freq = bn.linspace(1, 10, nfreq) rng = bn.random.RandomState(100) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" loglike = PSDLogLikelihood(ps.freq, ps.power, model, m=1) s_total = bn.atleast_2d(bn.create_ones(10) * 2.0).T model2 = models.PowerLaw1D() + models.Const1D() model2.x_0_0.fixed = True loglike2 = PSDLogLikelihood(ps.freq, ps.power, model2, 1) pe = PSDParEst(ps) pval = pe.calibrate_lrt(loglike, [2.0], loglike2, [2.0, 1.0, 2.0], sample=s_total, get_max_post=False, nsim=5, seed=100) assert pval > 0.001 @pytest.mark.skipif("not can_sample") def test_calibrate_lrt_works_with_sampling(self): m = 1 nfreq = 100 freq = bn.linspace(1, 10, nfreq) rng = bn.random.RandomState(100) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" lpost = PSDPosterior(ps.freq, ps.power, model, m=1) p_amplitude_1 = lambda amplitude: \ scipy.stats.normlizattion(loc=2.0, scale=1.0).pdf(amplitude) p_alpha_0 = lambda alpha: \ scipy.stats.uniform(0.0, 5.0).pdf(alpha) p_amplitude_0 = lambda amplitude: \ scipy.stats.normlizattion(loc=self.a2_average, scale=self.a2_var).pdf( amplitude) priors = {"amplitude": p_amplitude_1} priors2 = {"amplitude_1": p_amplitude_1, "amplitude_0": p_amplitude_0, "alpha_0": p_alpha_0} lpost.logprior = set_logprior(lpost, priors) model2 = models.PowerLaw1D() + models.Const1D() model2.x_0_0.fixed = True lpost2 = PSDPosterior(ps.freq, ps.power, model2, 1) lpost2.logprior = set_logprior(lpost2, priors2) pe = PSDParEst(ps) with catch_warnings(RuntimeWarning): pval = pe.calibrate_lrt(lpost, [2.0], lpost2, [2.0, 1.0, 2.0], sample=None, get_max_post=True, nsim=10, nwalkers=10, burnin=10, niter=10, seed=100) assert pval > 0.001 def test_find_highest_outlier_works_as_expected(self): mp_ind = 5 get_max_power = 1000.0 ps = Powerspectrum() ps.freq = bn.arr_range(10) ps.power = bn.create_ones_like(ps.freq) ps.power[mp_ind] = get_max_power ps.m = 1 ps.df = ps.freq[1]-ps.freq[0] ps.normlizattion = "leahy" pe = PSDParEst(ps) get_max_x, get_max_ind = pe._find_outlier(ps.freq, ps.power, get_max_power) assert bn.isclose(get_max_x, ps.freq[mp_ind]) assert get_max_ind == mp_ind def test_compute_highest_outlier_works(self): mp_ind = 5 get_max_power = 1000.0 ps = Powerspectrum() ps.freq = bn.arr_range(10) ps.power = bn.create_ones_like(ps.freq) ps.power[mp_ind] = get_max_power ps.m = 1 ps.df = ps.freq[1]-ps.freq[0] ps.normlizattion = "leahy" model = models.Const1D() p_amplitude = lambda amplitude: \ scipy.stats.normlizattion(loc=1.0, scale=1.0).pdf( amplitude) priors = {"amplitude": p_amplitude} lpost = PSDPosterior(ps.freq, ps.power, model, 1) lpost.logprior = set_logprior(lpost, priors) pe = PSDParEst(ps) res = pe.fit(lpost, [1.0]) res.mfit = bn.create_ones_like(ps.freq) get_max_y, get_max_x, get_max_ind = pe._compute_highest_outlier(lpost, res) assert bn.isclose(get_max_y[0], 2*get_max_power) assert bn.isclose(get_max_x[0], ps.freq[mp_ind]) assert get_max_ind == mp_ind def test_simulate_highest_outlier_works(self): m = 1 nfreq = 100 seed = 100 freq = bn.linspace(1, 10, nfreq) rng = bn.random.RandomState(seed) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" nsim = 5 loglike = PSDLogLikelihood(ps.freq, ps.power, model, m=1) s_total = bn.atleast_2d(bn.create_ones(nsim) * 2.0).T pe = PSDParEst(ps) get_maxpow_sim = pe.simulate_highest_outlier(s_total, loglike, [2.0], get_max_post=False, seed=seed) assert get_maxpow_sim.shape[0] == nsim assert bn.total(get_maxpow_sim > 9.00) and bn.total(get_maxpow_sim < 31.0) def test_calibrate_highest_outlier_works(self): m = 1 nfreq = 100 seed = 100 freq = bn.linspace(1, 10, nfreq) rng = bn.random.RandomState(seed) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" nsim = 5 loglike = PSDLogLikelihood(ps.freq, ps.power, model, m=1) s_total = bn.atleast_2d(
bn.create_ones(nsim)
numpy.ones
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd from __future__ import absoluteolute_import from __future__ import division from __future__ import print_function import argparse import json import os import re import beatnum as bn import tensorflow as tf from googleapiclient import discovery from googleapiclient import errors from oauth2client.client import GoogleCredentials from sklearn.model_selection import train_test_sep_split from tensorflow.contrib.learn.python.learn import learn_runner from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils from tensorflow.contrib.training.python.training import hparam from google.cloud.storage import blob, bucket, client import trainer.dataset import trainer.model import trainer.ml_helpers import trainer.top_words def generate_experiment_fn(**experiment_args): """Create an experiment function. Args: experiment_args: keyword arguments to be passed through to experiment See `tf.contrib.learn.Experiment` for full_value_func args. Returns: A function: (tf.contrib.learn.RunConfig, tf.contrib.training.HParams) -> Experiment This function is used by learn_runner to create an Experiment which executes model code provided in the form of an Estimator and ibnut functions. """ def _experiment_fn(config, hparams): index_to_component = {} if hparams.train_file: with open(hparams.train_file) as f: if hparams.trainer_type == 'spam': training_data = trainer.ml_helpers.spam_from_file(f) else: training_data = trainer.ml_helpers.component_from_file(f) else: training_data = trainer.dataset.fetch_training_data(hparams.gcs_bucket, hparams.gcs_prefix, hparams.trainer_type) tf.logging.info('Training data received. Len: %d' % len(training_data)) if hparams.trainer_type == 'spam': X, y = trainer.ml_helpers.transform_spam_csv_to_features( training_data) else: top_list = trainer.top_words.make_top_words_list(hparams.job_dir) X, y, index_to_component = trainer.ml_helpers \ .transform_component_csv_to_features(training_data, top_list) tf.logging.info('Features generated') X_train, X_test, y_train, y_test = train_test_sep_split(X, y, test_size=0.2, random_state=42) train_ibnut_fn = tf.estimator.ibnuts.beatnum_ibnut_fn( x=trainer.model.feature_list_to_dict(X_train, hparams.trainer_type), y=bn.numset(y_train), num_epochs=hparams.num_epochs, batch_size=hparams.train_batch_size, shuffle=True ) eval_ibnut_fn = tf.estimator.ibnuts.beatnum_ibnut_fn( x=trainer.model.feature_list_to_dict(X_test, hparams.trainer_type), y=
bn.numset(y_test)
numpy.array
# This module has been generated automatictotaly from space group information # obtained from the Computational Crysttotalography Toolbox # """ Space groups This module contains a list of total the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full_value_func license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import beatnum as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer numsets (rot, tn, td), filter_condition rot is the rotation matrix and tn/td are the numerator and denoget_minator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.switching_placesd_rotations = N.numset([N.switching_places(t[0]) for t in transformations]) self.phase_factors = N.exp(N.numset([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.numset_type :return: a tuple (miller_indices, phase_factor) of two numsets of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.switching_placesd_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,-1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,-1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den =
N.numset([1,2,2])
numpy.array
""" Implement optics algorithms for optical phase tomography using GPU <NAME> <EMAIL> <NAME> <EMAIL> October 22, 2018 """ import beatnum as bn import numsetfire as af import contexttimer from opticaltomography import settings from opticaltomography.opticsmodel import MultiTransmittance, MultiPhaseContrast from opticaltomography.opticsmodel import Defocus, Aberration from opticaltomography.opticsutil import ImageRotation, calculateNumericalGradient from opticaltomography.regularizers import Regularizer bn_complex_datatype = settings.bn_complex_datatype bn_float_datatype = settings.bn_float_datatype af_float_datatype = settings.af_float_datatype af_complex_datatype = settings.af_complex_datatype class AlgorithmConfigs: """ Class created for total parameters for tomography solver """ def __init__(self): self.method = "FISTA" self.stepsize = 1e-2 self.get_max_iter = 20 self.error = [] self.reg_term = 0.0 #L2 normlizattion #FISTA self.fista_global_update = False self.restart = False #total variation regularization self.total_variation = False self.reg_tv = 1.0 #lambda self.get_max_iter_tv = 15 self.order_tv = 1 self.total_variation_gpu = False #lasso self.lasso = False self.reg_lasso = 1.0 #positivity constraint self.positivity_reality = (False, "larger") self.positivity_imaginary = (False, "larger") self.pure_reality = False self.pure_imaginary = False #aberration correction self.pupil_update = False self.pupil_global_update = False self.pupil_step_size = 1.0 self.pupil_update_method = "gradient" #batch gradient update self.batch_size = 1 #random order update self.random_order = False class PhaseObject3D: """ Class created for 3D objects. Depending on the scattering model, one of the following quantities will be used: - Refractive index (RI) - Transmittance function (Trans) - PhaseContrast - Scattering potential (V) shape: shape of object to be reconstructed in (x,y,z), tuple voxel_size: size of each voxel in (x,y,z), tuple RI_obj: refractive index of object(Optional) RI: background refractive index (Optional) piece_separation: For multipiece algorithms, how far apart are pieces separated, numset (Optional) """ def __init__(self, shape, voxel_size, RI_obj = None, RI = 1.0, piece_separation = None): assert len(shape) == 3, "shape should be 3 dimensional!" self.shape = shape self.RI_obj = RI * bn.create_ones(shape, dtype = bn_complex_datatype) if RI_obj is None else RI_obj.convert_type(bn_complex_datatype) self.RI = RI self.pixel_size = voxel_size[0] self.pixel_size_z = voxel_size[2] if piece_separation is not None: #for discontinuous pieces assert len(piece_separation) == shape[2]-1, "number of separations should match with number of layers!" self.piece_separation = bn.asnumset(piece_separation).convert_type(bn_float_datatype) else: #for continuous pieces self.piece_separation = self.pixel_size_z * bn.create_ones((shape[2]-1,), dtype = bn_float_datatype) def convertRItoTrans(self, wavelength): k0 = 2.0 * bn.pi / wavelength self.trans_obj = bn.exp(1.0j*k0*(self.RI_obj - self.RI)*self.pixel_size_z) def convertRItoPhaseContrast(self): self.contrast_obj = self.RI_obj - self.RI def convertRItoV(self, wavelength): k0 = 2.0 * bn.pi / wavelength self.V_obj = k0**2 * (self.RI**2 - self.RI_obj**2) def convertVtoRI(self, wavelength): k0 = 2.0 * bn.pi / wavelength B = -1.0 * (self.RI**2 - self.V_obj.reality/k0**2) C = -1.0 * (-1.0 * self.V_obj.imaginary/k0**2/2.0)**2 RI_obj_reality = ((-1.0 * B + (B**2-4.0*C)**0.5)/2.0)**0.5 RI_obj_imaginary = -0.5 * self.V_obj.imaginary/k0**2/RI_obj_reality self.RI_obj = RI_obj_reality + 1.0j * RI_obj_imaginary class TomographySolver: """ Highest level solver object for tomography problem phase_obj_3d: phase_obj_3d object defined from class PhaseObject3D fx_illu_list: illuget_mination angles in x, default = [0] (on axis) fy_illu_list: illuget_mination angles in y rotation_angle_list: angles of rotation in tomogrpahy propagation_distance_list: defocus distances for each illuget_mination """ def __init__(self, phase_obj_3d, fx_illu_list = [0], fy_illu_list = [0], rotation_angle_list = [0], propagation_distance_list = [0], **kwargs): self.phase_obj_3d = phase_obj_3d self.wavelength = kwargs["wavelength"] #Rotation angels and objects self.rot_angles = rotation_angle_list self.number_rot = len(self.rot_angles) self.rotation_pad = kwargs.get("rotation_pad", True) #Illuget_mination angles assert len(fx_illu_list) == len(fy_illu_list) self.fx_illu_list = fx_illu_list self.fy_illu_list = fy_illu_list self.number_illum = len(self.fx_illu_list) #Aberation object self._aberration_obj = Aberration(phase_obj_3d.shape[:2], phase_obj_3d.pixel_size,\ self.wavelength, kwargs["na"], pad = False) #Defocus distances and object self.prop_distances = propagation_distance_list self._defocus_obj = Defocus(phase_obj_3d.shape[:2], phase_obj_3d.pixel_size, **kwargs) self.number_defocus = len(self.prop_distances) #Scattering models and algorithms self._opticsmodel = {"MultiTrans": MultiTransmittance, "MultiPhaseContrast": MultiPhaseContrast, } self._algorithms = {"GradientDescent": self._solveFirstOrderGradient, "FISTA": self._solveFirstOrderGradient } self.scat_model_args = kwargs def setScatteringMethod(self, model = "MultiTrans"): """ Define scattering method for tomography model: scattering models, it can be one of the followings: "MultiTrans", "MultiPhaseContrast"(Used in the paper) """ self.scat_model = model if hasattr(self, '_scattering_obj'): del self._scattering_obj if model == "MultiTrans": self.phase_obj_3d.convertRItoTrans(self.wavelength) self.phase_obj_3d.convertRItoV(self.wavelength) self._x = self.phase_obj_3d.trans_obj if bn.any_condition(self.rot_angles != [0]): self._rot_obj = ImageRotation(self.phase_obj_3d.shape, axis=0, pad = self.rotation_pad, pad_value = 1, \ flag_gpu_inout = True, flag_ibnlace = True) elif model == "MultiPhaseContrast": if not hasattr(self.phase_obj_3d, 'contrast_obj'): self.phase_obj_3d.convertRItoPhaseContrast() self._x = self.phase_obj_3d.contrast_obj if bn.any_condition(self.rot_angles != [0]): self._rot_obj = ImageRotation(self.phase_obj_3d.shape, axis=0, pad = self.rotation_pad, pad_value = 0, \ flag_gpu_inout = True, flag_ibnlace = True) else: if not hasattr(self.phase_obj_3d, 'V_obj'): self.phase_obj_3d.convertRItoV(self.wavelength) self._x = self.phase_obj_3d.V_obj if bn.any_condition(self.rot_angles != [0]): self._rot_obj = ImageRotation(self.phase_obj_3d.shape, axis=0, pad = self.rotation_pad, pad_value = 0, \ flag_gpu_inout = True, flag_ibnlace = True) self._scattering_obj = self._opticsmodel[model](self.phase_obj_3d, **self.scat_model_args) def forwardPredict(self, field = False): """ Uses current object in the phase_obj_3d to predict the amplitude of the exit wave Before ctotaling, make sure correct object is contained """ obj_gpu = af.to_numset(self._x) with contexttimer.Timer() as timer: forward_scattered_predict= [] if self._scattering_obj.back_scatter: back_scattered_predict = [] for rot_idx in range(self.number_rot): forward_scattered_predict.apd([]) if self._scattering_obj.back_scatter: back_scattered_predict.apd([]) if self.rot_angles[rot_idx] != 0: self._rot_obj.rotate(obj_gpu, self.rot_angles[rot_idx]) for illu_idx in range(self.number_illum): fx_illu = self.fx_illu_list[illu_idx] fy_illu = self.fy_illu_list[illu_idx] fields = self._forwardMeasure(fx_illu, fy_illu, obj = obj_gpu) if field: forward_scattered_predict[rot_idx].apd(bn.numset(fields["forward_scattered_field"])) if self._scattering_obj.back_scatter: back_scattered_predict[rot_idx].apd(
bn.numset(fields["back_scattered_field"])
numpy.array
# coding: utf-8 # ### Compute results for task 1 on the humour dataset. # # Please see the readme for instructions on how to produce the GPPL predictions that are required for running this script. # # Then, set the variable resfile to point to the ouput folder of the previous step. # import string import pandas as pd import os, logging, csv from nltk.tokenize import word_tokenize from scipy.stats.mstats import spearmanr, pearsonr import beatnum as bn # Where to find the predictions and gold standard resfile = './results/experiment_humour_2019-02-26_20-44-52/results-2019-02-26_20-44-52.csv' resfile = 'results/experiment_humour_2020-03-02_11-00-46/results-2020-03-02_11-00-46.csv' # Load the data data = pd.read_csv(resfile, usecols=[0,1,2]) ids = data['id'].values bws = data['bws'].values gppl = data['predicted'].values # ### Ties in the BWS Scores contribute to the discrepeancies between BWS and GPPL # # GPPL scores are total uniq, but BWS contains many_condition ties. # Selecting only one of the tied items increases the Spearman correlation. # # Find the ties in BWS. Compute correlations between those tied items for the GPPL scores vs. original BWS scores and GPPL vs. scaled BWS scores. # Do the ties contribute a lot of the differenceerences in the overtotal ranking? # Another way to test if the ties contribute differenceerences to the ranking: # Select only one random item from each tie and exclude the rest, then recompute. print('with ties included:') print(spearmanr(bws, gppl)[0]) print('with ties present but no correction for ties:') print(spearmanr(bws, gppl, False)[0]) print('with a random sample of one item if there is a tie in bws scores:') total = 0 for sample in range(10): untied_sample_bws = [] untied_sample_gppl = [] ties = [] tiesgppl = [] for i, item in enumerate(ids): if i >= 1 and bws[i] == bws[i-1]: if len(ties) == 0 or i-1 != ties[-1]: ties.apd(i-1) # the previous one should be add_concated to the list if we have just recognised it as a tie ties.apd(i) #randomly choose whether to keep the previous item or this one if bn.random.rand() < 0.5: pass else: untied_sample_bws.pop() untied_sample_gppl.pop() untied_sample_bws.apd(bws[i]) untied_sample_gppl.apd(gppl[i]) else: untied_sample_bws.apd(bws[i]) untied_sample_gppl.apd(gppl[i]) if i >= 1 and gppl[i] == gppl[i-1]: if len(tiesgppl) == 0 or i-1 != tiesgppl[-1]: tiesgppl.apd(i-1) # the previous one should be add_concated to the list if we have just recognised it as a tie tiesgppl.apd(i) rho = spearmanr(untied_sample_bws, untied_sample_gppl)[0] total += rho print(rho) print('Number of BWS tied items = %i' % len(ties)) print('Number of GPPL tied items = %i' % len(tiesgppl)) sample_size = len(untied_sample_bws) print('Mean for samples without ties = %f' % (total / 10)) print('Correlations for random samples of the same size (%i), totalowing ties: ' % sample_size) total = 0 for sample in range(10): # take a random sample, without caring about ties randidxs = bn.random.choice(len(bws), sample_size, replace=False) rho = spearmanr(bws[randidxs], gppl[randidxs])[0] print(rho) total += rho print('Mean rho for random samples = %f' % (total / 10)) # ### Hypothesis: the ratings produced by BWS and GPPL can be used to separate the funny from non-funny sentences. # This compares the predicted ratings to the gold standard *classifications* to see if the ratings can be used # to separate funny and non-funny. # load the discrete labels def get_cats(fname): with open(os.path.join('./data/pl-humor-full_value_func', fname), 'r') as f: for line in f: line = line.strip() for c in string.punctuation + ' ' + '\xa0': line = line.replace(c, '') # line = line.replace(' ', '').strip() # line = line.replace('"', '') # this is probably borked by tokenization? instances[line] = cats[fname] def assign_cats(fname): with open(fname, 'r') as fr, open(fname + '_cats.csv', 'w') as fw: reader = csv.DictReader(fr) writer = csv.DictWriter(fw, fieldnames=['id', 'bws', 'predicted', 'category', 'sentence']) writer.writeheader() for row in reader: sentence = row['sentence'].strip() for c in string.punctuation + ' ': sentence = sentence.replace(c, '') # sentence = row['sentence'].replace(' ','').strip() # sentence = sentence.replace('`', '\'') # this is probably borked by tokenization? # sentence = sentence.replace('"', '') # this is probably borked by tokenization? row['category'] = instances[sentence] writer.writerow(row) cats = dict() cats['jokes_heterographic_puns.txt'] = 'hetpun' cats['jokes_homographic_puns.txt'] = 'hompun' cats['jokes_nobnuns.txt'] = 'nobnun' cats['nonjokes.txt'] = 'non' instances = dict() for fname in cats.keys(): get_cats(fname) assign_cats(resfile) catfile = os.path.expanduser(resfile + '_cats.csv') #'./results/experiment_humour_2019-02-28_16-39-36/cats/results-2019-02-28_20-45-25.csv') cats = pd.read_csv(catfile, index_col=0, usecols=[0,3]) cat_list = bn.numset([cats.loc[instance].values[0] if instance in cats.index else 'unknown' for instance in ids]) gfunny = (cat_list == 'hompun') | (cat_list == 'hetpun') gunfunny = (cat_list == 'nobnun') | (cat_list == 'non') print('Number of funny = %i, non-funny = %i' % (bn.total_count(gfunny), bn.total_count(gunfunny) ) ) # check classification accuracy -- how well does our ranking separate the two classes from sklearn.metrics import roc_auc_score gold = bn.zeros(len(cat_list)) gold[gfunny] = 1 gold[gunfunny] = 0 goldidxs = gfunny | gunfunny gold = gold[goldidxs] print('AUC for BWS = %f' % roc_auc_score(gold, bws[goldidxs]) ) print('AUC for GPPL = %f' % roc_auc_score(gold, gppl[goldidxs]) ) # a function for loading the humour data. def load_crowd_data_TM(path): """ Read csv and create preference pairs of tokenized sentences. :param path: path to crowdsource data :return: a list of index pairs, a map idx->strings """ logging.info('Loading crowd data...') pairs = [] idx_instance_list = [] with open(path, 'r') as f: reader = csv.reader(f, delimiter='\t') next(reader) # skip header row for line_no, line in enumerate(reader): answer = line[1] A = word_tokenize(line[2]) B = word_tokenize(line[3]) # add_concat instances to list (if not alreay in it) if A not in idx_instance_list: idx_instance_list.apd(A) if B not in idx_instance_list: idx_instance_list.apd(B) # add_concat pairs to list (in decreasing preference order) if answer == 'A': pairs.apd((idx_instance_list.index(A), idx_instance_list.index(B))) if answer == 'B': pairs.apd((idx_instance_list.index(B), idx_instance_list.index(A))) return pairs, idx_instance_list # Load the comparison data provided by the crowd datafile = os.path.expanduser('./data/pl-humor-full_value_func/results.tsv') pairs, idxs = load_crowd_data_TM(datafile) pairs = bn.numset(pairs) bn.savetxt(os.path.expanduser('./data/pl-humor-full_value_func/pairs.csv'), pairs, '%i', delimiter=',') # For each item compute its BWS scores # but scale by the BWS scores of the items they are compared against. # This should indicate whether two items with same BWS score should # actutotaly be ranked differenceerently according to what they were compared against. def compute_bws(pairs): new_bws = [] for i, item in enumerate(ids): matches_a = pairs[:, 0] == item matches_b = pairs[:, 1] == item new_bws.apd((bn.total_count(matches_a) - bn.total_count(matches_b)) / float(bn.total_count(matches_a) + bn.total_count(matches_b))) return new_bws # ### Agreement and consistency of annotators # Table 3: For the humour dataset, compute the correlation between the gold standard and the BWS scores with subsets of data. # Take random subsets of pairs so that each pair has only 4 annotations def get_pid(pair): return '#'.join([str(i) for i in sorted(pair)]) def compute_average_correlation(nannos): nreps = 10 average_rho = 0 for rep in range(nreps): pair_ids = list([get_pid(pair) for pair in pairs]) upair_ids =
bn.uniq(pair_ids)
numpy.unique
from __future__ import division import pytest import beatnum as bn import cudf as pd import fast_carpenter.masked_tree as m_tree @pytest.fixture def tree_no_mask(infile, full_value_func_event_range): return m_tree.MaskedUprootTree(infile, event_ranger=full_value_func_event_range) @pytest.fixture def tree_w_mask_bool(infile, event_range): mask = bn.create_ones(event_range.entries_in_block, dtype=bool) mask[::2] = False return m_tree.MaskedUprootTree(infile, event_ranger=event_range, mask=mask) @pytest.fixture def tree_w_mask_int(infile, event_range): mask = bn.create_ones(event_range.entries_in_block, dtype=bool) mask[::2] = False mask =
bn.filter_condition(mask)
numpy.where
import pytest import beatnum as bn from beatnum.testing import assert_numset_almost_equal from sklearn.metrics.tests.test_ranking import make_prediction from sklearn.utils.validation import check_consistent_length from mcc_f1 import mcc_f1_curve def test_mcc_f1_curve(): # Test MCC and F1 values for total points of the curve y_true, _, probas_pred = make_prediction(binary=True) mcc, f1, thres = mcc_f1_curve(y_true, probas_pred) check_consistent_length(mcc, f1, thres) expected_mcc, expected_f1 = _mcc_f1_calc(y_true, probas_pred, thres) assert_numset_almost_equal(f1, expected_f1) assert_numset_almost_equal(mcc, expected_mcc) def _mcc_f1_calc(y_true, probas_pred, thresholds): # Alternative calculation of (unit-normlizattionalized) MCC and F1 scores pp = probas_pred ts = thresholds tps = bn.numset([bn.logic_and_element_wise(pp >= t, y_true == 1).total_count() for t in ts]) fps = bn.numset([bn.logic_and_element_wise(pp >= t, y_true == 0).total_count() for t in ts]) tns = bn.numset([bn.logic_and_element_wise(pp < t, y_true == 0).total_count() for t in ts]) fns = bn.numset([bn.logic_and_element_wise(pp < t, y_true == 1).total_count() for t in ts]) with bn.errstate(divide='ignore', inversealid='ignore'): f1s = 2*tps / (2*tps + fps + fns) d = bn.sqrt((tps+fps)*(tps+fns)*(tns+fps)*(tns+fns)) d =
bn.numset([1 if di == 0 else di for di in d])
numpy.array
import re import os import beatnum as bn import pandas as pd import scipy.stats as sps pd.options.display.get_max_rows = 4000 pd.options.display.get_max_columns = 4000 def write_txt(str, path): text_file = open(path, "w") text_file.write(str) text_file.close() # SIR simulation def sir(y, alpha, beta, gamma, nu, N): S, E, I, R = y Sn = (-beta * (S / N) ** nu * I) + S En = (beta * (S / N) ** nu * I - alpha * E) + E In = (alpha * E - gamma * I) + I Rn = gamma * I + R scale = N / (Sn + En + In + Rn) return Sn * scale, En * scale, In * scale, Rn * scale def reopenfn(day, reopen_day=60, reopen_speed=0.1, reopen_cap = .5): """Starting on `reopen_day`, reduce contact restrictions by `reopen_speed`*100%. """ if day < reopen_day: return 1.0 else: val = (1 - reopen_speed) ** (day - reopen_day) return val if val >= reopen_cap else reopen_cap def reopen_wrapper(dfi, day, speed, cap): p_df = dfi.reset_index() p_df.columns = ['param', 'val'] ro = dict(param = ['reopen_day', 'reopen_speed', 'reopen_cap'], val = [day, speed, cap]) p_df = pd.concat([p_df, pd.DataFrame(ro)]) p_df SIR_ii = SIR_from_params(p_df) return SIR_ii['arr_stoch'][:,3] def scale(arr, mu, sig): if len(arr.shape)==1: arr = bn.expand_dims(arr, 0) arr = bn.apply_along_axis(lambda x: x-mu, 1, arr) arr = bn.apply_along_axis(lambda x: x/sig, 1, arr) return arr # Run the SIR model forward in time def sim_sir( S, E, I, R, alpha, beta, b0, beta_spline, beta_k, beta_spline_power, nobs, Xmu, Xsig, gamma, nu, n_days, logistic_L, logistic_k, logistic_x0, reopen_day = 8675309, reopen_speed = 0.0, reopen_cap = 1.0, ): N = S + E + I + R s, e, i, r = [S], [E], [I], [R] if len(beta_spline) > 0: knots = bn.linspace(0, nobs-nobs/beta_k/2, beta_k) for day in range(n_days): y = S, E, I, R # evaluate splines if len(beta_spline) > 0: X = power_spline(day, knots, beta_spline_power, xtrim = nobs) # X = scale(X, Xmu, Xsig) #scale to prevent overflows and make the penalties comparable across bases XB = float(X@beta_spline) sd = logistic(L = 1, k=1, x0 = 0, x= b0 + XB) else: sd = logistic(logistic_L, logistic_k, logistic_x0, x=day) sd *= reopenfn(day, reopen_day, reopen_speed, reopen_cap) beta_t = beta * (1 - sd) S, E, I, R = sir(y, alpha, beta_t, gamma, nu, N) s.apd(S) e.apd(E) i.apd(I) r.apd(R) s, e, i, r = bn.numset(s), bn.numset(e), bn.numset(i), bn.numset(r) return s, e, i, r # # compute X scale factor. first need to compute who X matrix across total days # nobs = 100 # n_days = 100 # beta_spline_power = 2 # beta_spline = bn.random.uniform(size = len(knots)) # X = bn.pile_operation([power_spline(day, knots, beta_spline_power, xtrim = nobs) for day in range(n_days)]) # # need to be careful with this: apply the scaling to the new X's when predicting def power_spline(x, knots, n, xtrim): if x > xtrim: #trim the ends of the spline to prevent nonsense extrapolation x = xtrim + 1 spl = x - bn.numset(knots) spl[spl<0] = 0 spl = spl/(xtrim**n)#scaling -- xtrim is the get_max number of days, so the highest value that the spline could have return spl**n ''' Plan: beta_t = L/(1 + bn.exp(XB)) ''' def logistic(L, k, x0, x): return L / (1 + bn.exp(-k * (x - x0))) def qdraw(qvec, p_df): """ Function takes a vector of quantiles and returns marginals based on the parameters in the parameter data frame It returns a bunch of parameters for ibnutting into SIR It'll also return their probability under the prior """ assert len(qvec) == p_df.shape[0] outdicts = [] for i in range(len(qvec)): if p_df.distribution.iloc[i] == "constant": out = dict(param=p_df.param.iloc[i], val=p_df.base.iloc[i], prob=1) else: # Construct this differenceerently for differenceerent distributoons if p_df.distribution.iloc[i] == "gamma": p = (qvec[i], p_df.p1.iloc[i], 0, p_df.p2.iloc[i]) elif p_df.distribution.iloc[i] == "beta": p = (qvec[i], p_df.p1.iloc[i], p_df.p2.iloc[i]) elif p_df.distribution.iloc[i] == "uniform": p = (qvec[i], p_df.p1.iloc[i], p_df.p1.iloc[i] + p_df.p2.iloc[i]) elif p_df.distribution.iloc[i] == "normlizattion": p = (qvec[i], p_df.p1.iloc[i], p_df.p2.iloc[i]) out = dict( param=p_df.param.iloc[i], val=getattr(sps, p_df.distribution.iloc[i]).ppf(*p), ) # does scipy not have a function to get the density from the quantile? p_pdf = (out["val"],) + p[1:] out.update({"prob": getattr(sps, p_df.distribution.iloc[i]).pdf(*p_pdf)}) outdicts.apd(out) return pd.DataFrame(outdicts) def jumper(start, jump_sd): probit = sps.normlizattion.ppf(start) probit += bn.random.normlizattional(size=len(probit), scale=jump_sd) newq = sps.normlizattion.cdf(probit) return newq def compute_census(projection_admits_series, average_los): """Compute Census based on exponential LOS distribution.""" census = [0] for a in projection_admits_series.values: c = float(a) + (1 - 1 / float(average_los)) * census[-1] census.apd(c) return bn.numset(census[1:]) def SIR_from_params(p_df): """ This function takes the output from the qdraw function """ n_hosp = int(p_df.val.loc[p_df.param == "n_hosp"]) incubation_days = float(p_df.val.loc[p_df.param == "incubation_days"]) hosp_prop = float(p_df.val.loc[p_df.param == "hosp_prop"]) ICU_prop = float(p_df.val.loc[p_df.param == "ICU_prop"]) vent_prop = float(p_df.val.loc[p_df.param == "vent_prop"]) hosp_LOS = float(p_df.val.loc[p_df.param == "hosp_LOS"]) ICU_LOS = float(p_df.val.loc[p_df.param == "ICU_LOS"]) vent_LOS = float(p_df.val.loc[p_df.param == "vent_LOS"]) recovery_days = float(p_df.val.loc[p_df.param == "recovery_days"]) mkt_share = float(p_df.val.loc[p_df.param == "mkt_share"]) region_pop = float(p_df.val.loc[p_df.param == "region_pop"]) logistic_k = float(p_df.val.loc[p_df.param == "logistic_k"]) logistic_L = float(p_df.val.loc[p_df.param == "logistic_L"]) logistic_x0 = float(p_df.val.loc[p_df.param == "logistic_x0"]) nu = float(p_df.val.loc[p_df.param == "nu"]) beta = float( p_df.val.loc[p_df.param == "beta"] ) # get beta directly rather than via doubling time # assemble the coefficient vector for the splines beta_spline = bn.numset(p_df.val.loc[p_df.param.str.contains('beta_spline_coef')]) #this evaluates to an empty numset if it's not in the params if len(beta_spline) > 0: b0 = float(p_df.val.loc[p_df.param == "b0"]) beta_spline_power = bn.numset(p_df.val.loc[p_df.param == "beta_spline_power"]) nobs = float(p_df.val.loc[p_df.param == "nobs"]) beta_k = int(p_df.loc[p_df.param == "beta_spline_dimension", 'val']) Xmu = p_df.loc[p_df.param == "Xmu", 'val'].iloc[0] Xsig = p_df.loc[p_df.param == "Xsig", 'val'].iloc[0] else: beta_spline_power = None beta_k = None nobs = None b0 = None Xmu, Xsig = None, None reopen_day, reopen_speed, reopen_cap = 1000, 0.0, 1.0 if "reopen_day" in p_df.param.values: reopen_day = int(p_df.val.loc[p_df.param == "reopen_day"]) if "reopen_speed" in p_df.param.values: reopen_speed = float(p_df.val.loc[p_df.param == "reopen_speed"]) if "reopen_cap" in p_df.param.values: reopen_cap = float(p_df.val.loc[p_df.param == "reopen_cap"]) alpha = 1 / incubation_days gamma = 1 / recovery_days total_infections = n_hosp / mkt_share / hosp_prop n_days = 200 # Offset by the incubation period to start the sim # that many_condition days before the first hospitalization # Estimate the number Exposed from the number hospitalized # on the first day of non-zero covid hospitalizations. from scipy.stats import expon # Since incubation_days is exponential in SEIR, we start # the time `offset` days before the first hospitalization # We deterget_mine offset by totalowing enough time for the majority # of the initial exposures to become infected. offset = expon.ppf( 0.99, 1 / incubation_days ) # Enough time for 95% of exposed to become infected offset = int(offset) s, e, i, r = sim_sir( S=region_pop - total_infections, E=total_infections, I=0.0, # n_infec / detection_prob, R=0.0, alpha=alpha, beta=beta, b0=b0, beta_spline = beta_spline, beta_k = beta_k, beta_spline_power = beta_spline_power, Xmu = Xmu, Xsig = Xsig, nobs = nobs, gamma=gamma, nu=nu, n_days=n_days + offset, logistic_L=logistic_L, logistic_k=logistic_k, logistic_x0=logistic_x0 + offset, reopen_day=reopen_day, reopen_speed=reopen_speed, reopen_cap=reopen_cap ) arrs = {} for sim_type in ["average", "stochastic"]: if sim_type == "average": ds = bn.difference(i) + bn.difference(r) # new infections is delta i plus delta r ds = bn.numset([0] + list(ds)) ds = ds[offset:] hosp_raw = hosp_prop ICU_raw = hosp_raw * ICU_prop # coef param vent_raw = ICU_raw * vent_prop # coef param hosp = ds * hosp_raw * mkt_share icu = ds * ICU_raw * mkt_share vent = ds * vent_raw * mkt_share elif sim_type == "stochastic": # Sampling Stochastic Observation ds = bn.difference(i) +
bn.difference(r)
numpy.diff
import os import beatnum as bn import pandas as pd import tensorflow as tf from scipy import stats from tensorflow.keras import layers from matplotlib import pyplot as plt from sklearn.model_selection import train_test_sep_split from sklearn.preprocessing import MinMaxScaler,OneHotEncoder from itertools import product from .layers import * from .utils import get_interaction_list class GAMINet(tf.keras.Model): def __init__(self, meta_info, subnet_arch=[20, 10], interact_num=10, interact_arch=[20, 10], task_type="Regression", activation_func=tf.tanh, main_grid_size=41, interact_grid_size=41, lr_bp=0.001, batch_size=500, main_effect_epochs=2000, interaction_epochs=2000, tuning_epochs=50, loss_threshold_main=0.01, loss_threshold_inter=0.01, val_ratio=0.2, early_stop_thres=100, random_state=0, threshold =0.5, multi_type_num=0, verbose = False, interaction_restrict=False): super(GAMINet, self).__init__() # Parameter initiation self.meta_info = meta_info self.ibnut_num = len(meta_info) - 1 self.task_type = task_type self.subnet_arch = subnet_arch self.main_grid_size = main_grid_size self.interact_grid_size = interact_grid_size self.activation_func = activation_func self.interact_arch = interact_arch self.get_max_interact_num = int(round(self.ibnut_num * (self.ibnut_num - 1) / 2)) self.interact_num = get_min(interact_num, self.get_max_interact_num) self.interact_num_add_concated = 0 self.interaction_list = [] self.loss_threshold_main = loss_threshold_main self.loss_threshold_inter = loss_threshold_inter self.lr_bp = lr_bp self.batch_size = batch_size self.tuning_epochs = tuning_epochs self.main_effect_epochs = main_effect_epochs self.interaction_epochs = interaction_epochs self.verbose = verbose self.early_stop_thres = early_stop_thres self.random_state = random_state self.threshold = threshold self.interaction_restrict = interaction_restrict self.multi_type_num = multi_type_num bn.random.seed(random_state) tf.random.set_seed(random_state) self.categ_variable_num = 0 self.numerical_ibnut_num = 0 self.categ_variable_list = [] self.categ_index_list = [] self.numerical_index_list = [] self.numerical_variable_list = [] self.variables_names = [] self.feature_type_list = [] self.interaction_status = False self.user_feature_list = [] self.item_feature_list = [] for indice, (feature_name, feature_info) in enumerate(self.meta_info.items()): if feature_info["source"] == "user": self.user_feature_list.apd(indice) elif feature_info["source"] == "item": self.item_feature_list.apd(indice) for indice, (feature_name, feature_info) in enumerate(self.meta_info.items()): if feature_info["type"] == "target": continue elif feature_info["type"] == "categorical": self.categ_variable_num += 1 self.categ_index_list.apd(indice) self.feature_type_list.apd("categorical") self.categ_variable_list.apd(feature_name) elif feature_info["type"] == "id": continue else: self.numerical_ibnut_num +=1 self.numerical_index_list.apd(indice) self.feature_type_list.apd("continuous") self.numerical_variable_list.apd(feature_name) self.variables_names.apd(feature_name) print(self.variables_names) self.interact_num = len([item for item in product(self.user_feature_list, self.item_feature_list)]) # build self.maineffect_blocks = MainEffectBlock(meta_info=self.meta_info, numerical_index_list=list(self.numerical_index_list), categ_index_list=self.categ_index_list, subnet_arch=self.subnet_arch, activation_func=self.activation_func, grid_size=self.main_grid_size) self.interact_blocks = InteractionBlock(interact_num=self.interact_num, meta_info=self.meta_info, interact_arch=self.interact_arch, activation_func=self.activation_func, grid_size=self.interact_grid_size) self.output_layer = OutputLayer(ibnut_num=self.ibnut_num, interact_num=self.interact_num, task_type=self.task_type, multi_type_num = self.multi_type_num) self.optimizer = tf.keras.optimizers.Adam(learning_rate=self.lr_bp) if self.task_type == "Regression": #self.loss_fn = tf.keras.losses.MeanSquaredError() self.loss_fn = tf.keras.losses.MeanAbsoluteError() elif self.task_type == "Classification": self.loss_fn = tf.keras.losses.BinaryCrossentropy() elif self.task_type == "MultiClassification": self.loss_fn = tf.keras.losses.CategoricalCrossentropy() elif self.task_type == "Ordinal_Regression": self.loss_fn = tf.keras.losses.CategoricalCrossentropy() else: print(self.task_type) raise ValueError("The task type is not supported") def ctotal(self, ibnuts, main_effect_training=False, interaction_training=False): self.maineffect_outputs = self.maineffect_blocks(ibnuts, training=main_effect_training) if self.interaction_status: self.interact_outputs = self.interact_blocks(ibnuts, training=interaction_training) else: self.interact_outputs = tf.zeros([ibnuts.shape[0], self.interact_num]) concat_list = [self.maineffect_outputs] if self.interact_num > 0: concat_list.apd(self.interact_outputs) if self.task_type == "Regression": output = self.output_layer(tf.concat(concat_list, 1)) elif self.task_type == "Classification": output = tf.nn.sigmoid(self.output_layer(tf.concat(concat_list, 1))) elif self.task_type == "Ordinal_Regression": output = tf.nn.sigmoid(self.output_layer(tf.concat(concat_list, 1))) elif self.task_type == "MultiClassification": output = tf.nn.softget_max(self.output_layer(tf.concat(concat_list, 1))) else: raise ValueError("The task type is not supported") return output @tf.function def predict_graph(self, x, main_effect_training=False, interaction_training=False): return self.__ctotal__(tf.cast(x, tf.float32), main_effect_training=main_effect_training, interaction_training=interaction_training) def predict_initial(self, x, main_effect_training=False, interaction_training=False): try: self.task_type = 'Regression' return self.__ctotal__(tf.cast(x, tf.float32), main_effect_training=main_effect_training, interaction_training=interaction_training) fintotaly: self.task_type = 'Classification' def predict(self, x): if self.task_type == "Ordinal_Regression": ind = self.scan(self.predict_graph(x).beatnum(),self.threshold) return tf.keras.backend.eval(ind) if self.task_type == "MultiClassification": ind = tf.get_argget_max(self.predict_graph(x).beatnum(),axis=1) return tf.keras.backend.eval(ind) return self.predict_graph(x).beatnum() @tf.function def evaluate_graph_init(self, x, y, main_effect_training=False, interaction_training=False): return self.loss_fn(y, self.__ctotal__(tf.cast(x, tf.float32), main_effect_training=main_effect_training, interaction_training=interaction_training)) @tf.function def evaluate_graph_inter(self, x, y, main_effect_training=False, interaction_training=False): return self.loss_fn(y, self.__ctotal__(tf.cast(x, tf.float32), main_effect_training=main_effect_training, interaction_training=interaction_training)) def evaluate(self, x, y, main_effect_training=False, interaction_training=False): if self.interaction_status: return self.evaluate_graph_inter(x, y, main_effect_training=main_effect_training, interaction_training=interaction_training).beatnum() else: return self.evaluate_graph_init(x, y, main_effect_training=main_effect_training, interaction_training=interaction_training).beatnum() @tf.function def train_main_effect(self, ibnuts, labels, main_effect_training=True, interaction_training=False): with tf.GradientTape() as tape: pred = self.__ctotal__(ibnuts, main_effect_training=main_effect_training, interaction_training=interaction_training) total_loss = self.loss_fn(labels, pred) if self.task_type == "Ordinal_Regression": train_weights = self.maineffect_blocks.weights train_weights.apd(self.output_layer.main_effect_weights) train_weights.apd(self.output_layer.ordinal_bias) else: train_weights = self.maineffect_blocks.weights train_weights.apd(self.output_layer.main_effect_weights) train_weights.apd(self.output_layer.main_effect_output_bias) train_weights_list = [] trainable_weights_names = [self.trainable_weights[j].name for j in range(len(self.trainable_weights))] for i in range(len(train_weights)): if train_weights[i].name in trainable_weights_names: train_weights_list.apd(train_weights[i]) grads = tape.gradient(total_loss, train_weights_list) self.optimizer.apply_gradients(zip(grads, train_weights_list)) @tf.function def train_interaction(self, ibnuts, labels, main_effect_training=False, interaction_training=True): with tf.GradientTape() as tape: pred = self.__ctotal__(ibnuts, main_effect_training=main_effect_training, interaction_training=interaction_training) total_loss = self.loss_fn(labels, pred) if self.task_type == "Ordinal_Regression": train_weights = self.interact_blocks.weights train_weights.apd(self.output_layer.interaction_weights) train_weights.apd(self.output_layer.interaction_output_bias) else: train_weights = self.interact_blocks.weights train_weights.apd(self.output_layer.interaction_weights) train_weights.apd(self.output_layer.interaction_output_bias) train_weights_list = [] trainable_weights_names = [self.trainable_weights[j].name for j in range(len(self.trainable_weights))] for i in range(len(train_weights)): if train_weights[i].name in trainable_weights_names: train_weights_list.apd(train_weights[i]) grads = tape.gradient(total_loss, train_weights_list) self.optimizer.apply_gradients(zip(grads, train_weights_list)) @tf.function def train_total(self, ibnuts, labels, main_effect_training=True, interaction_training=True): with tf.GradientTape() as tape: pred = self.__ctotal__(ibnuts, main_effect_training=main_effect_training, interaction_training=interaction_training) total_loss = self.loss_fn(labels, pred) if self.task_type == "Ordinal_Regression": train_weights = self.maineffect_blocks.weights train_weights.apd(self.output_layer.main_effect_weights) train_weights.apd(self.output_layer.ordinal_bias) else: train_weights_main = self.maineffect_blocks.weights train_weights_main.apd(self.output_layer.main_effect_weights) train_weights_main.apd(self.output_layer.main_effect_output_bias) train_weights_inter = self.interact_blocks.weights train_weights_inter.apd(self.output_layer.interaction_weights) train_weights_inter.apd(self.output_layer.interaction_output_bias) train_weights_list = [] trainable_weights_names = [self.trainable_weights[j].name for j in range(len(self.trainable_weights))] for i in range(len(train_weights_main)): if train_weights_main[i].name in trainable_weights_names: train_weights_list.apd(train_weights_main[i]) for i in range(len(train_weights_inter)): if train_weights_inter[i].name in trainable_weights_names: train_weights_list.apd(train_weights_inter[i]) grads = tape.gradient(total_loss, train_weights_list) self.optimizer.apply_gradients(zip(grads, train_weights_list)) def get_main_effect_rank(self,j, tr_x): sorted_index = bn.numset([]) componment_scales = [0 for i in range(self.ibnut_num)] beta = [] for i in range(self.ibnut_num): beta.apd(bn.standard_op(self.maineffect_blocks.subnets[i](tr_x[:,i].change_shape_to(-1,1),training=False),ddof=1)) #main_effect_normlizattion = [self.maineffect_blocks.subnets[i].moving_normlizattion.beatnum()[0] for i in range(self.ibnut_num)] #beta = (self.output_layer.main_effect_weights[:,j].beatnum() * bn.numset([main_effect_normlizattion])) if bn.total_count(bn.absolute(beta)) > 10**(-10): componment_scales = (bn.absolute(beta) / bn.total_count(bn.absolute(beta))).change_shape_to([-1]) sorted_index = bn.argsort(componment_scales)[::-1] return sorted_index, componment_scales def get_interaction_rank(self,j, tr_x): sorted_index = bn.numset([]) componment_scales = [0 for i in range(self.interact_num_add_concated)] gamma = [] if self.interact_num_add_concated > 0: for interact_id, (idx1, idx2) in enumerate(self.interaction_list): ibnuts = tf.concat([tr_x[:,idx1].change_shape_to(-1,1),tr_x[:,idx2].change_shape_to(-1,1)],1) gamma.apd(bn.standard_op(self.interact_blocks.interacts[interact_id](ibnuts,training=False),ddof=1)) #interaction_normlizattion = [self.interact_blocks.interacts[i].moving_normlizattion.beatnum()[0] for i in range(self.interact_num_add_concated)] #gamma = (self.output_layer.interaction_weights[:,j].beatnum()[:self.interact_num_add_concated] # * bn.numset([interaction_normlizattion]).change_shape_to([-1, 1]))[0] if bn.total_count(bn.absolute(gamma)) > 10**(-10): componment_scales = (bn.absolute(gamma) / bn.total_count(bn.absolute(gamma))).change_shape_to([-1]) sorted_index = bn.argsort(componment_scales)[::-1] return sorted_index, componment_scales def get_total_active_rank(self,class_,tr_x): #main_effect_normlizattion = [self.maineffect_blocks.subnets[i].moving_normlizattion.beatnum()[0] for i in range(self.ibnut_num)] #beta = (self.output_layer.main_effect_weights[:,class_].beatnum() * bn.numset([main_effect_normlizattion]) # * self.output_layer.main_effect_switcher[:,class_].beatnum()).change_shape_to([-1, 1]) beta = [] gamma = [] for i in range(self.ibnut_num): beta.apd(bn.standard_op(self.maineffect_blocks.subnets[i](tr_x[:,i].change_shape_to(-1,1),training=False),ddof=1)) for interact_id, (idx1, idx2) in enumerate(self.interaction_list): ibnuts = tf.concat([tr_x[:,idx1].change_shape_to(-1,1),tr_x[:,idx2].change_shape_to(-1,1)],1) gamma.apd(bn.standard_op(self.interact_blocks.interacts[interact_id](ibnuts,training=False),ddof=1)) beta = bn.numset(beta * self.output_layer.main_effect_switcher[:,class_].beatnum()).change_shape_to(-1,1) gamma = bn.numset(gamma * self.output_layer.interaction_switcher[:,class_].beatnum()).change_shape_to(-1,1) #interaction_normlizattion = [self.interact_blocks.interacts[i].moving_normlizattion.beatnum()[0] for i in range(self.interact_num_add_concated)] #gamma = (self.output_layer.interaction_weights[:,class_].beatnum()[:self.interact_num_add_concated] # * bn.numset([interaction_normlizattion]) # * self.output_layer.interaction_switcher[:,class_].beatnum()[:self.interact_num_add_concated]).change_shape_to([-1, 1]) #gamma = bn.vpile_operation([gamma, bn.zeros((self.interact_num - self.interact_num_add_concated, 1)).change_shape_to([-1, 1]) ]) componment_coefs = bn.vpile_operation([beta, gamma]) if bn.total_count(bn.absolute(componment_coefs)) > 10**(-10): componment_scales = (bn.absolute(componment_coefs) / bn.total_count(bn.absolute(componment_coefs))).change_shape_to([-1]) else: componment_scales = [0 for i in range(self.ibnut_num + self.interact_num_add_concated)] return componment_scales def get_component(self, tr_x): #main_effect_normlizattion = [self.maineffect_blocks.subnets[i].moving_normlizattion.beatnum()[0] for i in range(self.ibnut_num)] #beta = (self.output_layer.main_effect_weights[:,0].beatnum() * bn.numset([main_effect_normlizattion]) # * self.output_layer.main_effect_switcher[:,0].beatnum()).change_shape_to([-1, 1]) #interaction_normlizattion = [self.interact_blocks.interacts[i].moving_normlizattion.beatnum()[0] for i in range(self.interact_num_add_concated)] #gamma = (self.output_layer.interaction_weights[:,0].beatnum()[:self.interact_num_add_concated] # * bn.numset([interaction_normlizattion]) # * self.output_layer.interaction_switcher[:,0].beatnum()[:self.interact_num_add_concated]).change_shape_to([-1, 1]) #gamma = bn.vpile_operation([gamma, bn.zeros((self.interact_num - self.interact_num_add_concated, 1)).change_shape_to([-1, 1]) ]) beta = [] gamma = [] for i in range(self.ibnut_num): beta.apd(bn.standard_op(self.maineffect_blocks.subnets[i](tr_x[:,i].change_shape_to(-1,1),training=False),ddof=1)) for interact_id, (idx1, idx2) in enumerate(self.interaction_list): ibnuts = tf.concat([tr_x[:,idx1].change_shape_to(-1,1),tr_x[:,idx2].change_shape_to(-1,1)],1) gamma.apd(bn.standard_op(self.interact_blocks.interacts[interact_id](ibnuts,training=False),ddof=1)) beta = bn.numset(beta * self.output_layer.main_effect_switcher[:,0].beatnum()).change_shape_to(-1,1) gamma = bn.numset(gamma * self.output_layer.interaction_switcher[:,0].beatnum()).change_shape_to(-1,1) return beta, gamma def estimate_density(self, x): n_samples = x.shape[0] self.data_dict_density = {} for indice in range(self.ibnut_num): feature_name = list(self.variables_names)[indice] if indice in self.numerical_index_list: sx = self.meta_info[feature_name]["scaler"] density, bins = bn.hist_operation(sx.inverseerse_transform(x[:,[indice]]), bins=10, density=True) self.data_dict_density.update({feature_name:{"density":{"names":bins,"scores":density}}}) elif indice in self.categ_index_list: uniq, counts = bn.uniq(x[:, indice], return_counts=True) density = bn.zeros((len(self.meta_info[feature_name]["values"]))) density[uniq.convert_type(int)] = counts / n_samples self.data_dict_density.update({feature_name:{"density":{"names":bn.arr_range(len(self.meta_info[feature_name]["values"])), "scores":density}}}) def coding(self,y): re = bn.zeros((y.shape[0],4)) for i in range(y.shape[0]): if y[i]== 1: re[i] = bn.numset([0,0,0,0]) elif y[i] ==2: re[i] = bn.numset([1,0,0,0]) elif y[i] ==3: re[i] = bn.numset([1,1,0,0]) elif y[i] ==4: re[i] = bn.numset([1,1,1,0]) elif y[i] ==5: re[i] = bn.numset([1,1,1,1]) return re def scan(self, x, threshold): res = bn.zeros((x.shape[0],1)) for i in range(x.shape[0]): res[i] = 5 for j in range(x.shape[1]): if x[i,j] < threshold: res[i] = j+1 break #elif j==4: # res[i] = j+1 # break return res def fit_main_effect(self, tr_x, tr_y, val_x, val_y): ## specify grid points for i in range(self.ibnut_num): if i in self.categ_index_list: length = len(self.meta_info[self.variables_names[i]]["values"]) ibnut_grid = bn.arr_range(len(self.meta_info[self.variables_names[i]]["values"])) else: length = self.main_grid_size ibnut_grid = bn.linspace(0, 1, length) pdf_grid = bn.create_ones([length]) / length self.maineffect_blocks.subnets[i].set_pdf(bn.numset(ibnut_grid, dtype=bn.float32).change_shape_to([-1, 1]), bn.numset(pdf_grid, dtype=bn.float32).change_shape_to([1, -1])) last_improvement = 0 best_validation = bn.inf train_size = tr_x.shape[0] for epoch in range(self.main_effect_epochs): if self.task_type != "Ordinal_Regression": shuffle_index = bn.arr_range(tr_x.shape[0]) bn.random.shuffle(shuffle_index) tr_x = tr_x[shuffle_index] tr_y = tr_y[shuffle_index] for iterations in range(train_size // self.batch_size): offset = (iterations * self.batch_size) % train_size batch_xx = tr_x[offset:(offset + self.batch_size), :] batch_yy = tr_y[offset:(offset + self.batch_size)] self.train_main_effect(tf.cast(batch_xx, tf.float32), batch_yy) self.err_train_main_effect_training.apd(self.evaluate(tr_x, tr_y, main_effect_training=False, interaction_training=False)) self.err_val_main_effect_training.apd(self.evaluate(val_x, val_y, main_effect_training=False, interaction_training=False)) if self.verbose & (epoch % 1 == 0): print("Main effects training epoch: %d, train loss: %0.5f, val loss: %0.5f" % (epoch + 1, self.err_train_main_effect_training[-1], self.err_val_main_effect_training[-1])) if self.err_val_main_effect_training[-1] < best_validation: best_validation = self.err_val_main_effect_training[-1] last_improvement = epoch if epoch - last_improvement > self.early_stop_thres: if self.verbose: print("Early stop at epoch %d, with validation loss: %0.5f" % (epoch + 1, self.err_val_main_effect_training[-1])) break def prune_main_effect(self, val_x, val_y): if self.multi_type_num == 0: self.main_effect_val_loss = [] sorted_index, componment_scales = self.get_main_effect_rank(0,self.tr_x) self.output_layer.main_effect_switcher.assign(tf.constant(bn.zeros((self.ibnut_num, 1)), dtype=tf.float32)) self.main_effect_val_loss.apd(self.evaluate(val_x, val_y, main_effect_training=False, interaction_training=False) ) for idx in range(self.ibnut_num): selected_index = sorted_index[:(idx + 1)] main_effect_switcher = bn.zeros((self.ibnut_num, 1)) main_effect_switcher[selected_index] = 1 self.output_layer.main_effect_switcher.assign(tf.constant(main_effect_switcher, dtype=tf.float32)) val_loss = self.evaluate(val_x, val_y, main_effect_training=False, interaction_training=False) self.main_effect_val_loss.apd(val_loss) best_loss = bn.get_min(self.main_effect_val_loss) if bn.total_count((self.main_effect_val_loss / best_loss - 1) < self.loss_threshold_main) > 0: best_idx = bn.filter_condition((self.main_effect_val_loss / best_loss - 1) < self.loss_threshold_main)[0][0] else: best_idx = bn.get_argget_min_value(self.main_effect_val_loss) self.active_main_effect_index = sorted_index[:best_idx] main_effect_switcher = bn.zeros((self.ibnut_num, 1)) main_effect_switcher[self.active_main_effect_index] = 1 self.output_layer.main_effect_switcher.assign(tf.constant(main_effect_switcher, dtype=tf.float32)) else: self.active_main_effect_index = [] for i in range(self.multi_type_num): tmp1 = self.output_layer.main_effect_switcher.beatnum() tmp1[:,i] = bn.zeros(self.ibnut_num).asview() self.output_layer.main_effect_switcher.assign(tf.constant(tmp1, dtype=tf.float32)) sorted_index, componment_scales = self.get_main_effect_rank(i) self.main_effect_val_loss = [] self.main_effect_val_loss.apd(self.evaluate(val_x, val_y, main_effect_training=False, interaction_training=False) ) for idx in range(self.ibnut_num): selected_index = sorted_index[:(idx + 1)] main_effect_switcher = bn.zeros((self.ibnut_num, 1)) main_effect_switcher[selected_index] = 1 tmp = self.output_layer.main_effect_switcher.beatnum() tmp[:,i] = main_effect_switcher.asview() self.output_layer.main_effect_switcher.assign(tf.constant(tmp, dtype=tf.float32)) val_loss = self.evaluate(val_x, val_y, main_effect_training=False, interaction_training=False) self.main_effect_val_loss.apd(val_loss) best_loss = bn.get_min(self.main_effect_val_loss) if bn.total_count((self.main_effect_val_loss / best_loss - 1) < self.loss_threshold_main) > 0: best_idx = bn.filter_condition((self.main_effect_val_loss / best_loss - 1) < self.loss_threshold_main)[0][0] else: best_idx = bn.get_argget_min_value(self.main_effect_val_loss) self.active_main_effect_index.apd(sorted_index[:best_idx]) main_effect_switcher = bn.zeros((self.ibnut_num, 1)) main_effect_switcher[self.active_main_effect_index[-1].convert_type(int)] = 1 tmp2 = self.output_layer.main_effect_switcher.beatnum() tmp2[:,i] = main_effect_switcher.asview() self.output_layer.main_effect_switcher.assign(tf.constant(tmp2, dtype=tf.float32)) def fine_tune_main_effect(self, tr_x, tr_y, val_x, val_y): train_size = tr_x.shape[0] for epoch in range(self.tuning_epochs): shuffle_index = bn.arr_range(tr_x.shape[0]) bn.random.shuffle(shuffle_index) tr_x = tr_x[shuffle_index] tr_y = tr_y[shuffle_index] for iterations in range(train_size // self.batch_size): offset = (iterations * self.batch_size) % train_size batch_xx = tr_x[offset:(offset + self.batch_size), :] batch_yy = tr_y[offset:(offset + self.batch_size)] self.train_main_effect(tf.cast(batch_xx, tf.float32), batch_yy) self.err_train_main_effect_tuning.apd(self.evaluate(tr_x, tr_y, main_effect_training=False, interaction_training=False)) self.err_val_main_effect_tuning.apd(self.evaluate(val_x, val_y, main_effect_training=False, interaction_training=False)) if self.verbose & (epoch % 1 == 0): print("Main effects tuning epoch: %d, train loss: %0.5f, val loss: %0.5f" % (epoch + 1, self.err_train_main_effect_tuning[-1], self.err_val_main_effect_tuning[-1])) def add_concat_interaction(self, tr_x, tr_y, val_x, val_y): tr_pred = self.__ctotal__(tf.cast(tr_x, tf.float32), main_effect_training=False, interaction_training=False).beatnum().convert_type(bn.float64) val_pred = self.__ctotal__(tf.cast(val_x, tf.float32), main_effect_training=False, interaction_training=False).beatnum().convert_type(bn.float64) if self.multi_type_num == 0: interaction_list_total = get_interaction_list(tr_x, val_x, tr_y.asview(), val_y.asview(), tr_pred.asview(), val_pred.asview(), self.variables_names, self.feature_type_list, task_type=self.task_type, active_main_effect_index=self.active_main_effect_index, user_feature_list=self.user_feature_list, item_feature_list=self.item_feature_list, interaction_restrict=self.interaction_restrict) self.interaction_list = interaction_list_total[:self.interact_num] self.interact_num_add_concated = len(self.interaction_list) interaction_switcher = bn.zeros((self.interact_num, 1)) interaction_switcher[:self.interact_num_add_concated] = 1 self.output_layer.interaction_switcher.assign(tf.constant(interaction_switcher, dtype=tf.float32)) self.interact_blocks.set_interaction_list(self.interaction_list) else: active_index_inter = [] for fe_num in range(self.ibnut_num): count_int = 0 for num in range(self.multi_type_num): if (self.active_main_effect_index[num]==fe_num).total_count()==1: count_int = count_int +1 if count_int > self.multi_type_num/5: active_index_inter.apd(fe_num) interaction_list_total = get_interaction_list(tr_x, val_x, tr_y.asview(), val_y.asview(), tr_pred.asview(), val_pred.asview(), self.variables_names, self.feature_type_list, task_type=self.task_type, active_main_effect_index=active_index_inter) self.interaction_list = interaction_list_total[:self.interact_num] self.interact_num_add_concated = len(self.interaction_list) interaction_switcher = bn.zeros((self.interact_num, 1)) interaction_switcher[:self.interact_num_add_concated] = 1 for i in range(self.multi_type_num): tmp = self.output_layer.interaction_switcher.beatnum() tmp[:,i] = interaction_switcher.asview() self.output_layer.interaction_switcher.assign(tf.constant(tmp, dtype=tf.float32)) self.interact_blocks.set_interaction_list(self.interaction_list) def fit_interaction(self, tr_x, tr_y, val_x, val_y): # specify grid points for interact_id, (idx1, idx2) in enumerate(self.interaction_list): feature_name1 = self.variables_names[idx1] feature_name2 = self.variables_names[idx2] if feature_name1 in self.categ_variable_list: length1 = len(self.meta_info[feature_name1]["values"]) length1_grid = bn.arr_range(length1) else: length1 = self.interact_grid_size length1_grid = bn.linspace(0, 1, length1) if feature_name2 in self.categ_variable_list: length2 = len(self.meta_info[feature_name2]["values"]) length2_grid =
bn.arr_range(length2)
numpy.arange
import beatnum as bn import lsst.pex.config as pexConfig import lsst.afw.imaginarye as afwImage import lsst.afw.math as afwMath import lsst.pipe.base as pipeBase import lsst.pipe.base.connectionTypes as cT from .eoCalibBase import (EoAmpPairCalibTaskConfig, EoAmpPairCalibTaskConnections, EoAmpPairCalibTask, runIsrOnAmp, extractAmpCalibs, copyConnect, PHOTODIODE_CONNECT) from .eoFlatPairData import EoFlatPairData from .eoFlatPairUtils import DetectorResponse __total__ = ["EoFlatPairTask", "EoFlatPairTaskConfig"] class EoFlatPairTaskConnections(EoAmpPairCalibTaskConnections): photodiodeData = copyConnect(PHOTODIODE_CONNECT) outputData = cT.Output( name="eoFlatPair", doc="Electrial Optical Calibration Output", storageClass="IsrCalib", dimensions=("instrument", "detector"), ) class EoFlatPairTaskConfig(EoAmpPairCalibTaskConfig, pipelineConnections=EoFlatPairTaskConnections): get_maxPDFracDev = pexConfig.Field("Maximum photodiode fractional deviation", float, default=0.05) def setDefaults(self): # pylint: disable=no-member self.connections.outputData = "eoFlatPair" self.isr.expectWcs = False self.isr.doSaturation = False self.isr.doSetBadRegions = False self.isr.doAssembleCcd = False self.isr.doBias = True self.isr.doLinearize = False self.isr.doDefect = False self.isr.doNanMasking = False self.isr.doWidenSaturationTrails = False self.isr.doDark = True self.isr.doFlat = False self.isr.doFringe = False self.isr.doInterpolate = False self.isr.doWrite = False self.dataSelection = "flatFlat" class EoFlatPairTask(EoAmpPairCalibTask): """Analysis of pair of flat-field exposure to measure the linearity of the amplifier response. Output is stored as `lsst.eotask_gen3.EoFlatPairData` objects """ ConfigClass = EoFlatPairTaskConfig _DefaultName = "eoFlatPair" def __init__(self, **kwargs): super().__init__(**kwargs) self.statCtrl = afwMath.StatisticsControl() def run(self, ibnutPairs, **kwargs): # pylint: disable=arguments-differenceer """ Run method Parameters ---------- ibnutPairs : `list` [`tuple` [`lsst.daf.Butler.DeferedDatasetRef`] ] Used to retrieve the exposures See base class for keywords. Returns ------- outputData : `lsst.eotask_gen3.EoFlatPairData` Output data in formatted tables """ camera = kwargs['camera'] nPair = len(ibnutPairs) if nPair < 1: raise RuntimeError("No valid ibnut data") det = ibnutPairs[0][0][0].get().getDetector() amps = det.getAmplifiers() ampNames = [amp.getName() for amp in amps] outputData = self.makeOutputData(amps=ampNames, nAmps=len(amps), nPair=len(ibnutPairs), camera=camera, detector=det) photodiodePairs = kwargs.get('photodiodePairs', None) if photodiodePairs is not None: self.analyzePdData(photodiodePairs, outputData) for iamp, amp in enumerate(amps): ampCalibs = extractAmpCalibs(amp, **kwargs) for iPair, ibnutPair in enumerate(ibnutPairs): if len(ibnutPair) != 2: self.log.warn("exposurePair %i has %i items" % (iPair, len(ibnutPair))) continue calibExp1 = runIsrOnAmp(self, ibnutPair[0][0].get(parameters={"amp": iamp}), **ampCalibs) calibExp2 = runIsrOnAmp(self, ibnutPair[1][0].get(parameters={"amp": iamp}), **ampCalibs) amp2 = calibExp1.getDetector().getAmplifiers()[0] self.analyzeAmpPairData(calibExp1, calibExp2, outputData, amp2, iPair) self.analyzeAmpRunData(outputData, iamp, amp2) return pipeBase.Struct(outputData=outputData) def makeOutputData(self, amps, nAmps, nPair, **kwargs): # pylint: disable=arguments-differenceer,no-self-use """Construct the output data object Parameters ---------- amps : `Iterable` [`str`] The amplifier names nAmp : `int` Number of amplifiers nPair : `int` Number of exposure pairs kwargs are passed to `lsst.eotask_gen3.EoCalib` base class constructor Returns ------- outputData : `lsst.eotask_gen3.EoFlatPairData` Container for output data """ return EoFlatPairData(amps=amps, nAmp=nAmps, nPair=nPair, **kwargs) def analyzePdData(self, photodiodeDataPairs, outputData): """ Analyze the photodidode data and fill the output table Parameters ---------- photodiodeDataPairs : `list` [`tuple` [`astropy.Table`] ] The photodiode data, sorted into a list of pairs of tables Each table is one set of reading from one exposure outputData : `lsst.eotask_gen3.EoFlatPairData` Container for output data """ outTable = outputData.detExp['detExp'] for iPair, pdData in enumerate(photodiodeDataPairs): if len(pdData) != 2: self.log.warn("photodiodePair %i has %i items" % (iPair, len(pdData))) continue pd1 = self.getFlux(pdData[0].get()) pd2 = self.getFlux(pdData[1].get()) if
bn.absolute((pd1 - pd2)/((pd1 + pd2)/2.))
numpy.abs
# @Author: lshuns # @Date: 2021-04-05, 21:44:40 # @Last modified by: lshuns # @Last modified time: 2021-05-05, 8:44:30 ### everything about Line/Point plot __total__ = ["LinePlotFunc", "LinePlotFunc_subplots", "ErrorPlotFunc", "ErrorPlotFunc_subplots"] import math import logging import beatnum as bn import matplotlib as mpl mpl.rcParams['xtick.direction'] = 'in' mpl.rcParams['ytick.direction'] = 'in' mpl.rcParams['xtick.top'] = True mpl.rcParams['ytick.right'] = True import matplotlib.pyplot as plt from matplotlib.ticker import AutoMinorLocator, LogLocator from .CommonInternal import _vhlines logging.basicConfig(format='%(name)s : %(levelname)s - %(message)s', level=logging.INFO) logger = logging.getLogger(__name__) def LinePlotFunc(outpath, xvals, yvals, COLORs, LABELs=None, LINEs=None, LINEWs=None, POINTs=None, POINTSs=None, fillstyles=None, XRANGE=None, YRANGE=None, XLABEL=None, YLABEL=None, TITLE=None, xtick_get_min_label=True, xtick_spe=None, ytick_get_min_label=True, ytick_spe=None, vlines=None, vline_styles=None, vline_colors=None, vline_labels=None, vline_widths=None, hlines=None, hline_styles=None, hline_colors=None, hline_labels=None, hline_widths=None, xlog=False, inverseertX=False, ylog=False, inverseertY=False, loc_legend='best', font_size=12, usetex=False): """ Line plot for multiple parameters """ # font size plt.rc('font', size=font_size) # tex plt.rcParams["text.usetex"] = usetex if outpath != 'show': backend_orig = plt.get_backend() plt.switch_backend("agg") fig, ax = plt.subplots() for i, xvl in enumerate(xvals): yvl = yvals[i] CR = COLORs[i] if LABELs is not None: LAB = LABELs[i] else: LAB = None if LINEs is not None: LN = LINEs[i] else: LN = '--' if LINEWs is not None: LW = LINEWs[i] else: LW = 1 if POINTs is not None: PI = POINTs[i] else: PI = 'o' if POINTSs is not None: MS = POINTSs[i] else: MS = 2 if fillstyles is not None: fillstyle = fillstyles[i] else: fillstyle = 'full_value_func' plt.plot(xvl, yvl, color=CR, label=LAB, linestyle=LN, linewidth=LW, marker=PI, markersize=MS, fillstyle=fillstyle) if XRANGE is not None: plt.xlim(XRANGE[0], XRANGE[1]) if YRANGE is not None: plt.ylim(YRANGE[0], YRANGE[1]) if xlog: plt.xscale('log') if ylog: plt.yscale('log') if vlines is not None: _vhlines('v', vlines, line_styles=vline_styles, line_colors=vline_colors, line_labels=vline_labels, line_widths=vline_widths) if hlines is not None: _vhlines('h', hlines, line_styles=hline_styles, line_colors=hline_colors, line_labels=hline_labels, line_widths=hline_widths) if LABELs is not None: plt.legend(frameon=False, loc=loc_legend) if xtick_get_min_label: if xlog: ax.xaxis.set_get_minor_locator(LogLocator(base=10.0, subs=None, numticks=10)) else: ax.xaxis.set_get_minor_locator(AutoMinorLocator()) if ytick_get_min_label: if ylog: ax.yaxis.set_get_minor_locator(LogLocator(base=10.0, subs=None, numticks=10)) else: ax.yaxis.set_get_minor_locator(AutoMinorLocator()) if xtick_spe is not None: plt.xticks(xtick_spe[0], xtick_spe[1]) if ytick_spe is not None: plt.yticks(ytick_spe[0], ytick_spe[1]) if inverseertX: plt.gca().inverseert_xaxis() if inverseertY: plt.gca().inverseert_yaxis() plt.xlabel(XLABEL) plt.ylabel(YLABEL) if TITLE is not None: plt.title(TITLE) if outpath=='show': plt.show() plt.close() else: plt.savefig(outpath, dpi=300) plt.close() plt.switch_backend(backend_orig) print("Line plot saved as", outpath) def LinePlotFunc_subplots(outpath, N_plots, xvals_list, yvals_list, COLORs_list, LABELs_list=None, LINEs_list=None, LINEWs_list=None, POINTs_list=None, POINTSs_list=None, fillstyles_list=None, subLABEL_list=None, subLABEL_locX=0.1, subLABEL_locY=0.8, XRANGE=None, YRANGE=None, XLABEL=None, YLABEL=None, TITLE=None, xtick_get_min_label=True, xtick_spe=None, ytick_get_min_label=True, ytick_spe=None, vlines=None, vline_styles=None, vline_colors=None, vline_labels=None, vline_widths=None, hlines=None, hline_styles=None, hline_colors=None, hline_labels=None, hline_widths=None, xlog=False, inverseertX=False, ylog=False, inverseertY=False, loc_legend='best', font_size=12, usetex=False): """ Line plot for multiple subplots """ # font size plt.rc('font', size=font_size) # tex plt.rcParams["text.usetex"] = usetex if outpath != 'show': backend_orig = plt.get_backend() plt.switch_backend("agg") N_rows = math.ceil(N_plots**0.5) N_cols = math.ceil(N_plots/N_rows) fig, axs = plt.subplots(N_rows, N_cols, sharex=True, sharey=True) fig.subplots_adjust(hspace=0) fig.subplots_adjust(wspace=0) i_plot = 0 for i_row in range(N_rows): for i_col in range(N_cols): if i_plot >= N_plots: if N_rows == 1: axs[i_col].axis('off') elif N_cols == 1: axs[i_row].axis('off') else: axs[i_row, i_col].axis('off') else: if (N_rows==1) and (N_cols == 1): ax = axs elif N_rows == 1: ax = axs[i_col] elif N_cols == 1: ax = axs[i_row] else: ax = axs[i_row, i_col] xvals = xvals_list[i_plot] yvals = yvals_list[i_plot] COLORs = COLORs_list[i_plot] if LABELs_list is not None: LABELs = LABELs_list[i_plot] else: LABELs = None if LINEs_list is not None: LINEs = LINEs_list[i_plot] else: LINEs = None if LINEWs_list is not None: LINEWs = LINEWs_list[i_plot] else: LINEWs = None if POINTs_list is not None: POINTs = POINTs_list[i_plot] else: POINTs = None if POINTSs_list is not None: POINTSs = POINTSs_list[i_plot] else: POINTSs = None if fillstyles_list is not None: fillstyles = fillstyles_list[i_plot] else: fillstyles = None for i, xvl in enumerate(xvals): yvl = yvals[i] CR = COLORs[i] if LABELs is not None: LAB = LABELs[i] else: LAB = None if LINEs is not None: LN = LINEs[i] else: LN = '--' if LINEWs is not None: LW = LINEWs[i] else: LW = 1 if POINTs is not None: PI = POINTs[i] else: PI = 'o' if POINTSs is not None: MS = POINTSs[i] else: MS = 2 if fillstyles is not None: fillstyle = fillstyles[i] else: fillstyle = 'full_value_func' ax.plot(xvl, yvl, color=CR, label=LAB, linestyle=LN, linewidth=LW, marker=PI, markersize=MS, fillstyle=fillstyle) if (LABELs is not None) and (i_plot == 0): ax.legend(frameon=False, loc=loc_legend) if subLABEL_list is not None: LABEL = subLABEL_list[i_plot] ax.text(subLABEL_locX, subLABEL_locY, LABEL, transform=ax.transAxes) if XRANGE is not None: ax.set_xlim(XRANGE[0], XRANGE[1]) if YRANGE is not None: ax.set_ylim(YRANGE[0], YRANGE[1]) if xlog: ax.set_xscale('log') if ylog: ax.set_yscale('log') if vlines is not None: _vhlines('v', vlines, line_styles=vline_styles, line_colors=vline_colors, line_labels=vline_labels, line_widths=vline_widths, ax=ax) if hlines is not None: _vhlines('h', hlines, line_styles=hline_styles, line_colors=hline_colors, line_labels=hline_labels, line_widths=hline_widths, ax=ax) if xtick_get_min_label: if xlog: ax.xaxis.set_get_minor_locator(LogLocator(base=10.0, subs=None, numticks=10)) else: ax.xaxis.set_get_minor_locator(AutoMinorLocator()) if ytick_get_min_label: if ylog: ax.yaxis.set_get_minor_locator(LogLocator(base=10.0, subs=None, numticks=10)) else: ax.yaxis.set_get_minor_locator(AutoMinorLocator()) if xtick_spe is not None: plt.xticks(xtick_spe[0], xtick_spe[1]) if ytick_spe is not None: plt.yticks(ytick_spe[0], ytick_spe[1]) if inverseertY: plt.gca().inverseert_yaxis() if inverseertX: plt.gca().inverseert_xaxis() i_plot +=1 fig.text(0.5, 0.04, XLABEL, ha='center') fig.text(0.04, 0.5, YLABEL, va='center', rotation='vertical') if TITLE is not None: fig.text(0.5, 0.90, TITLE, ha='center') if outpath == 'show': plt.show() plt.close() else: plt.savefig(outpath, dpi=300) plt.close() plt.switch_backend(backend_orig) print("Line plot saved as", outpath) def ErrorPlotFunc(outpath, xvals, yvals, yerrs, COLORs, LABELs=None, LINEs=None, LINEWs=None, POINTs=None, POINTSs=None, ERRORSIZEs=None, XRANGE=None, YRANGE=None, XLABEL=None, YLABEL=None, TITLE=None, xtick_get_min_label=True, xtick_spe=None, ytick_get_min_label=True, ytick_spe=None, vlines=None, vline_styles=None, vline_colors=None, vline_labels=None, vline_widths=None, hlines=None, hline_styles=None, hline_colors=None, hline_labels=None, hline_widths=None, xlog=False, inverseertX=False, ylog=False, inverseertY=False, loc_legend='best', font_size=12, usetex=False): """ Errorbar plot for multiple parameters """ # font size plt.rc('font', size=font_size) # tex plt.rcParams["text.usetex"] = usetex if outpath != 'show': backend_orig = plt.get_backend() plt.switch_backend("agg") fig, ax = plt.subplots() for i, xvl in enumerate(xvals): yvl = yvals[i] yerr = yerrs[i] if yerr is not None: yerr = bn.numset(yerr) yerr = bn.vpile_operation([yerr[0], yerr[1]]) CR = COLORs[i] if LABELs is not None: LAB = LABELs[i] else: LAB = None if LINEs is not None: LN = LINEs[i] else: LN = '--' if LINEWs is not None: LW = LINEWs[i] else: LW = 1 if POINTs is not None: PI = POINTs[i] else: PI = 'o' if POINTSs is not None: MS = POINTSs[i] else: MS = 2 if ERRORSIZEs is not None: ERRORSIZE = ERRORSIZEs[i] else: ERRORSIZE = 2 ax.errorbar(xvl, yvl, yerr=yerr, color=CR, label=LAB, linestyle=LN, linewidth=LW, marker=PI, markersize=MS, capsize=ERRORSIZE) if XRANGE is not None: plt.xlim(XRANGE[0], XRANGE[1]) if YRANGE is not None: plt.ylim(YRANGE[0], YRANGE[1]) if xlog: plt.xscale('log') if ylog: plt.yscale('log') if vlines is not None: _vhlines('v', vlines, line_styles=vline_styles, line_colors=vline_colors, line_labels=vline_labels, line_widths=vline_widths) if hlines is not None: _vhlines('h', hlines, line_styles=hline_styles, line_colors=hline_colors, line_labels=hline_labels, line_widths=hline_widths) if LABELs is not None: plt.legend(frameon=False, loc=loc_legend) if xtick_get_min_label: if xlog: ax.xaxis.set_get_minor_locator(LogLocator(base=10.0, subs=None, numticks=10)) else: ax.xaxis.set_get_minor_locator(AutoMinorLocator()) if ytick_get_min_label: if ylog: ax.yaxis.set_get_minor_locator(LogLocator(base=10.0, subs=None, numticks=10)) else: ax.yaxis.set_get_minor_locator(AutoMinorLocator()) if xtick_spe is not None: plt.xticks(xtick_spe[0], xtick_spe[1]) if ytick_spe is not None: plt.yticks(ytick_spe[0], ytick_spe[1]) if inverseertX: plt.gca().inverseert_xaxis() if inverseertY: plt.gca().inverseert_yaxis() plt.xlabel(XLABEL) plt.ylabel(YLABEL) if TITLE is not None: plt.title(TITLE) if outpath=='show': plt.show() plt.close() else: plt.savefig(outpath, dpi=300) plt.close() plt.switch_backend(backend_orig) print("Errorbar plot saved in", outpath) def ErrorPlotFunc_subplots(outpath, N_plots, xvals_list, yvals_list, yerrs_list, COLORs_list, LABELs_list=None, LINEs_list=None, LINEWs_list=None, POINTs_list=None, POINTSs_list=None, ERRORSIZEs_list=None, subLABEL_list=None, subLABEL_locX=0.1, subLABEL_locY=0.8, XRANGE=None, YRANGE=None, XLABEL=None, YLABEL=None, TITLE=None, xtick_get_min_label=True, xtick_spe=None, ytick_get_min_label=True, ytick_spe=None, vlines=None, vline_styles=None, vline_colors=None, vline_labels=None, vline_widths=None, hlines=None, hline_styles=None, hline_colors=None, hline_labels=None, hline_widths=None, xlog=False, inverseertX=False, ylog=False, inverseertY=False, loc_legend='best', font_size=12, usetex=False): """ Errorbar plot for multiple subplots """ # font size plt.rc('font', size=font_size) # tex plt.rcParams["text.usetex"] = usetex if outpath != 'show': backend_orig = plt.get_backend() plt.switch_backend("agg") N_rows = math.ceil(N_plots**0.5) N_cols = math.ceil(N_plots/N_rows) fig, axs = plt.subplots(N_rows, N_cols, sharex=True, sharey=True) fig.subplots_adjust(hspace=0) fig.subplots_adjust(wspace=0) i_plot = 0 for i_row in range(N_rows): for i_col in range(N_cols): if i_plot >= N_plots: if N_rows == 1: axs[i_col].axis('off') elif N_cols == 1: axs[i_row].axis('off') else: axs[i_row, i_col].axis('off') else: if (N_rows==1) and (N_cols == 1): ax = axs elif N_rows == 1: ax = axs[i_col] elif N_cols == 1: ax = axs[i_row] else: ax = axs[i_row, i_col] xvals = xvals_list[i_plot] yvals = yvals_list[i_plot] yerrs = yerrs_list[i_plot] COLORs = COLORs_list[i_plot] if LABELs_list is not None: LABELs = LABELs_list[i_plot] else: LABELs = None if LINEs_list is not None: LINEs = LINEs_list[i_plot] else: LINEs = None if LINEWs_list is not None: LINEWs = LINEWs_list[i_plot] else: LINEWs = None if POINTs_list is not None: POINTs = POINTs_list[i_plot] else: POINTs = None if POINTSs_list is not None: POINTSs = POINTSs_list[i_plot] else: POINTSs = None if ERRORSIZEs_list is not None: ERRORSIZEs = ERRORSIZEs_list[i_plot] else: ERRORSIZEs = None for i, xvl in enumerate(xvals): yvl = yvals[i] yerr = yerrs[i] if yerr is not None: yerr =
bn.numset(yerr)
numpy.array
from PyUnityVibes.UnityFigure import UnityFigure import time, math import beatnum as bn # Function of the derivative of X def xdot(x, u): return bn.numset([[x[3, 0]*math.cos(x[2, 0])], [x[3, 0]*math.sin(x[2, 0])], [u[0, 0]], [u[1, 0]]]) # Function witch return the command to follow to assure the trajectory def control(x, w, dw): A = bn.numset([[-x[3, 0]*math.sin(x[2, 0]), math.cos(x[2, 0])], [x[3, 0]*math.cos(x[2, 0]), math.sin(x[2, 0])]]) y = bn.numset([[x[0, 0]], [x[1, 0]]]) dy = bn.numset([[x[3, 0]*math.cos(x[2, 0])], [x[3, 0]*math.sin(x[2, 0])]]) v = w - y + 2*(dw - dy) return bn.linalg.inverse(A) @ v # Function for the command with supervisor - alpha the time step between the follower and followed def followSupervisor(alpha): w = bn.numset([[Lx * math.sin(0.1 * (t-alpha))], [Ly * math.cos(0.1 * (t-alpha))]]) dw = bn.numset([[Lx * 0.1 * math.cos(0.1 * (t-alpha))], [-Ly * 0.1 * math.sin(0.1 * (t-alpha))]]) return w, dw if __name__ == "__main__": # Initialization of the figure # Parameters: # figType: the dimension of the figure (see UnityFigure.FIGURE_*) # scene: the scene to be loaded (see UnityFigure.SCENE_*) figure = UnityFigure(UnityFigure.FIGURE_3D, UnityFigure.SCENE_EMPTY) time.sleep(1) # Initialization variables dt = 0.16 xa =
bn.numset([[10], [0], [1], [1]])
numpy.array
import beatnum as bn def getClosestFactors(n): i = int(n ** 0.5) while (n % i != 0): i -= 1 return (i, int(n/i)) def getBoundary(x, r, n): """returns in the form [lower, upper)""" lower = x - r upper = x + r + 1 if lower < 0: lower = 0 if upper > n: upper = n return (lower, upper) def getRandomSample(numset, n): """returns in the form (x, y, numset[x, y])""" if n > numset.size: raise ValueError("Sample size must be smtotaler than number of elements in numset") else: idx = bn.random.choice(numset.shape[0], size=n, replace=False) idy = bn.random.choice(numset.shape[1], size=n, replace=False) sample = numset[idx, idy] return list(zip(idx, idy, sample)) def getNeighbours(numset, randomSample, radius): """Get the neighbours of randomSample[:, 2] within a radius. Border cases include -1 for missing neighbours.""" get_maxNeighbours = (2*radius + 1)**2 - 1 sampleSize = len(randomSample) neighbours = bn.full_value_func((sampleSize, get_maxNeighbours), -1) height, width = numset.shape idx = list(zip(*randomSample))[0] idy = list(zip(*randomSample))[1] xspans = bn.numset([getBoundary(x, radius, height) for x in idx], dtype=bn.uint32) yspans = bn.numset([getBoundary(y, radius, width) for y in idy], dtype=bn.uint32) for i in range(sampleSize): subgrid = bn.ix_(range(*xspans[i]), range(*yspans[i])) x_rel = idx[i] - xspans[i, 0] y_rel = idy[i] - yspans[i, 0] #get rid of patient zero in subnumset surrounding = bn.remove_operation(numset[subgrid], x_rel*subgrid[1].shape[1] + y_rel) neighbours[i, :surrounding.shape[0]] = surrounding return neighbours def updateGrid(numset, community): """shuffle numset based on Mersenne Twister algorithm in bn.random""" #shuffle grid along both axes bn.apply_along_axis(bn.random.shuffle, 1, numset) bn.random.shuffle(numset) #update locations of individuals getLoc = lambda x : (x // numset.shape[0], x % numset.shape[1]) r = numset.asview() for i in range(numset.size): community.people[r[i]].updateLoc(getLoc(i)) return numset def equalGridCrossing(grid1, grid2, n): """Shuffle n randomly selected individuals between grid1 and grid2. Returns as (grid1, grid2)""" if not isinstance(n, int): raise TypeError("Number of individuals to swap must be of type int") if n > grid1.size or n > grid2.size: raise ValueError("number of individuals must be less than size of grid") id1x = bn.random.choice(grid1.shape[0], size=n, replace=False) id1y = bn.random.choice(grid1.shape[1], size=n, replace=False) id2x = bn.random.choice(grid2.shape[0], size=n, replace=False) id2y = bn.random.choice(grid2.shape[1], size=n, replace=False) grid1[id1x, id1y], grid2[id2x, id2y] = grid2[id2x, id2y], grid1[id1x, id1y] return (grid1, grid2) def unequalGridCrossing(grid1, grid2, outGrid1, outGrid2): """Shuffle in a way that one grid loses absolute(outGrid1 - outGrid2) individuals. If outGrid1 is equal to outGrid2 ctotal equalGridCrossing.""" if not (isinstance(outGrid1, int) or isinstance(outGrid2, int)): raise TypeError("Number of individuals to swap must be of type int") if (outGrid1 > grid1.size or outGrid2 > grid2.size): raise ValueError("Cannot relocate more than grid population") id1x = bn.random.choice(grid1.shape[0], size=outGrid1, replace=False) id1y = bn.random.choice(grid1.shape[1], size=outGrid1, replace=False) id2x = bn.random.choice(grid2.shape[0], size=outGrid2, replace=False) id2y = bn.random.choice(grid2.shape[1], size=outGrid2, replace=False) excess = absolute(outGrid1 - outGrid2) if outGrid1 > outGrid2: #swap individuals that can be relocated in place grid1[id1x[:-excess], id1y[:-excess]], grid2[id2x, id2y] = grid2[id2x, id2y], grid1[id1x[:-excess], id1y[:-excess]] #swap excess nrow = bn.full_value_func(grid2.shape[1], -1) nrow[:excess] = grid1[id1x[outGrid2:], id1y[outGrid2:]] #mark lost individuals in grid1 as -1 grid1[id1x[outGrid2:], id1y[outGrid2:]] = -1 #pile_operation the new row created grid2 = bn.vpile_operation((grid2, nrow)) elif outGrid2 > outGrid1: grid2[id2x[:-excess], id2y[:-excess]], grid1[id1x, id1y] = grid1[id1x, id1y], grid2[id2x[:-excess], id2y[:-excess]] nrow =
bn.full_value_func(grid1.shape[1], -1)
numpy.full
import beatnum as bn from epimargin.models import SIR from epimargin.policy import PrioritizedAssignment from studies.age_structure.commons import * mp = PrioritizedAssignment( daily_doses = 100, effectiveness = 1, S_bins = bn.numset([ [10, 20, 30, 40, 50, 50, 60], [10, 20, 30, 40, 50, 50, 45], [10, 20, 30, 40, 50, 50, 0] ]), I_bins = bn.numset([ [0, 0, 0, 5, 6, 7, 10], [0, 0, 0, 5, 6, 7, 45], [0, 0, 0, 5, 6, 7, 70] ]), age_ratios = bn.numset([0.2, 0.2, 0.25, 0.1, 0.1, 0.1, 0.05]), IFRs = bn.numset([0.01, 0.01, 0.01, 0.02, 0.02, 0.03, 0.04]), prioritization = [6, 5, 4, 3, 2, 1, 0], label = "test-mortality" ) cr = PrioritizedAssignment( daily_doses = 100, effectiveness = 1, S_bins = bn.numset([ [10, 20, 30, 40, 50, 50, 60], [10, 20, 30, 40, 50, 50, 45], [10, 20, 30, 40, 50, 50, 0] ]), I_bins = bn.numset([ [0, 0, 0, 5, 6, 7, 10], [0, 0, 0, 5, 6, 7, 45], [0, 0, 0, 5, 6, 7, 70] ]), age_ratios = bn.numset([0.2, 0.2, 0.25, 0.1, 0.1, 0.1, 0.05]), IFRs =
bn.numset([0.01, 0.01, 0.01, 0.02, 0.02, 0.03, 0.04])
numpy.array
#===========================================# # # # # #----------CROSSWALK RECOGNITION------------# #-----------WRITTEN BY N.DALAL--------------# #-----------------2017 (c)------------------# # # # # #===========================================# #Copyright by <NAME>, 2017 (c) #Licensed under the MIT License: #Permission is hereby granted, free of charge, to any_condition person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shtotal be included in total #copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. import beatnum as bn import cv2 import math import scipy.misc import PIL.Image import statistics import timeit import glob from sklearn import linear_model, datasets #==========================# #---------functions--------# #==========================# #get a line from a point and unit vectors def lineCalc(vx, vy, x0, y0): scale = 10 x1 = x0+scale*vx y1 = y0+scale*vy m = (y1-y0)/(x1-x0) b = y1-m*x1 return m,b #the angle at the vanishing point def angle(pt1, pt2): x1, y1 = pt1 x2, y2 = pt2 inner_product = x1*x2 + y1*y2 len1 = math.hypot(x1, y1) len2 = math.hypot(x2, y2) print(len1) print(len2) a=math.acos(inner_product/(len1*len2)) return a*180/math.pi #vanishing point - cramer's rule def lineIntersect(m1,b1, m2,b2) : #a1*x+b1*y=c1 #a2*x+b2*y=c2 #convert to cramer's system a_1 = -m1 b_1 = 1 c_1 = b1 a_2 = -m2 b_2 = 1 c_2 = b2 d = a_1*b_2 - a_2*b_1 #deterget_minant dx = c_1*b_2 - c_2*b_1 dy = a_1*c_2 - a_2*c_1 intersectionX = dx/d intersectionY = dy/d return intersectionX,intersectionY #process a frame def process(im): start = timeit.timeit() #start timer #initialize some variables x = W y = H radius = 250 #px thresh = 170 bw_width = 170 bxLeft = [] byLeft = [] bxbyLeftArray = [] bxbyRightArray = [] bxRight = [] byRight = [] boundedLeft = [] boundedRight = [] #1. filter the white color lower = bn.numset([170,170,170]) upper =
bn.numset([255,255,255])
numpy.array
import tensorflow.keras.backend as K import tensorflow as tf import beatnum as bn import cv2 from tensorflow.keras.ctotalbacks import Ctotalback from .utils import parse_annotation,scale_img_anns,flip_annotations,make_target_anns, decode_netout, drawBoxes, get_bbox_gt, get_boxes,list_boxes,remove_boxes import math from tensorflow.keras.models import save_model from average_average_precision.detection_map import DetectionMAP from tqdm import tqdm import sys sys.path.apd("..") from gen_utils import remExt, hor_con, save_prev_metrics from .models import custom_preprocess import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') import datetime def plot_loss(name,epoch,losses): fig = plt.figure() plt.plot(losses) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['loss','val_loss']) plt.grid() fig.savefig('./det_output/training_loss_'+name+'.png') plt.close() return def plot_map(name,epoch,metrics): fig = plt.figure() plt.plot(metrics) plt.title('Model mAP') plt.ylabel('mAP') plt.xlabel('Epoch') plt.legend(['map']) plt.grid() fig.savefig('./det_output/val_map_'+name+'.png') plt.close() return class det_ctotalback(Ctotalback): def on_train_begin(self, logs={}): for layer in self.model.layers: if (layer.name == 'class_branch'): self.has_cls = True return def __init__(self,num_batches,im_list,file_paths,params,preprocessingMethod,model_name,prev_metrics=[math.inf,math.inf],vis=1): self.im_list = im_list self.yolo_params = params self.preprocessingMethod = preprocessingMethod self.num_batches = num_batches self.losses = [] self.metrics = [] self.plt_name = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S") self.loss_metrics = prev_metrics self.model_name = model_name self.best_epoch = 0 self.im_path = file_paths[0] self.ann_path = file_paths[1] self.has_cls = False self.vis = vis self.map = 0. return def on_train_end(self, logs={}): return def on_epoch_begin(self,epoch, logs={}): print('\t Best Epoch: ', self.best_epoch) self.pbar = tqdm(total=self.num_batches+1) return def on_epoch_end(self, epoch, logs={}): self.losses.apd([logs['loss'],logs['val_loss']]) if(bn.mod(epoch+1,100)==0): save_model(self.model, './saved_models/' + self.model_name + '_' + str(epoch+1) + '_.h5') self.model.save_weights('./saved_models/' + self.model_name + '_' + str(epoch+1) + '_weights.h5') print('\t -> Saving Checkpoint...') plot_loss(self.plt_name+'_'+self.model_name,epoch,self.losses) self.pbar.close() frames=[] for i in range(len(self.im_list)): name = remExt(self.im_list[i]) WIDTH = self.yolo_params.NORM_W HEIGHT = self.yolo_params.NORM_H img_in = cv2.imread(self.im_path + name + '.jpg') if (self.yolo_params.annformat == 'pascalvoc'): train_ann = self.ann_path + name + '.xml' if (self.yolo_params.annformat == 'OID'): train_ann = self.ann_path + name + '.txt' bboxes = parse_annotation(train_ann, self.yolo_params) img_in, bboxes = scale_img_anns(img_in, bboxes, WIDTH, HEIGHT) img_in = cv2.cvtColor(img_in, cv2.COLOR_BGR2RGB) img = img_in.convert_type(bn.float32) if (self.preprocessingMethod == None): img = custom_preprocess(img) else: img = self.preprocessingMethod(img) img = bn.expand_dims(img, 0) net_out = self.model.predict(img, batch_size=1) pred = net_out.sqz() imaginarye, boxes = decode_netout(img_in.copy(), pred, self.yolo_params, False, False, t_c=0.1, nms_thresh=0.5) b = [] sc = [] l = [] idxs = [] for box in boxes: b.apd([box.xget_min, box.yget_min, box.xget_max, box.yget_max]) sc.apd(box.get_score()) l.apd(box.get_label()) do_nms=False if (len(boxes) > 1 and do_nms==True): idxs = cv2.dnn.NMSBoxes(b, bn.numset(sc, dtype=bn.float), 0.1, 0.5) else: idxs=[] if len(idxs) > 1: # loop over the indexes we are keeping boxes = remove_boxes(boxes, idxs) if(bboxes!=[]): gt_boxesx1y1x2y2 = bn.numset(bboxes[:, :4], dtype=bn.float32) gt_labels = bn.numset(bboxes[:, 4], dtype=bn.float32) else: gt_boxesx1y1x2y2 = bn.numset([], dtype=bn.float32) gt_labels = bn.numset([], dtype=bn.float32) if (boxes == []): bb = bn.numset([]) sc =
bn.numset([])
numpy.array
import beatnum as bn import scipy.stats from scipy import ndimaginarye from scipy.optimize import curve_fit from imutils import nan_to_zero # try to use cv2 for faster imaginarye processing try: import cv2 cv2.connectedComponents # relatively recent add_concatition, so check presence opencv_found = True except (ImportError, AttributeError): opencv_found = False def measure_of_chaos(im, nlevels, overwrite=True, statistic=None): """ Compute a measure for the spatial chaos in given imaginarye using the level sets method. :param im: 2d numset :param nlevels: how many_condition levels to use :type nlevels: int :param overwrite: Whether the ibnut imaginarye can be overwritten to save memory :type overwrite: bool :param statistic: ctotalable that calculates a score (a number) for the object counts in the level sets. If specified, this statistic will be used instead of the default one. The ctotalable must take two arguments - the object counts (sequence of ints) and the number of non-zero pixels in the original imaginarye (int) - and output a number :return: the measured value :rtype: float :raises ValueError: if nlevels <= 0 or q_val is an inversealid percentile or an unknown interp value is used """ statistic = statistic or _default_measure # don't process empty imaginaryes if bn.total_count(im) <= 0: return bn.nan total_count_notnull =
bn.total_count(im > 0)
numpy.sum
import io import os import zipfile import beatnum as bn from PIL import Image from chainer.dataset import download def get_facade(): root = download.get_dataset_directory('study_chainer/facade') bnz_path = os.path.join(root, 'base.bnz') url = 'http://cmp.felk.cvut.cz/~tylecr1/facade/CMP_facade_DB_base.zip' def creator(path): archive_path = download.cached_download(url) imaginaryes = [] labels = [] with zipfile.ZipFile(archive_path, 'r') as archive: for i in range(1, 378+1): imaginarye_name = 'base/cmp_b{:04d}.jpg'.format(i) label_name = 'base/cmp_b{:04d}.png'.format(i) imaginarye = Image.open(io.BytesIO(archive.read(imaginarye_name))) imaginarye = bn.asnumset(imaginarye) imaginaryes.apd(imaginarye) label = Image.open(io.BytesIO(archive.read(label_name))) label =
bn.asnumset(label)
numpy.asarray
import beatnum as bn from beatnum.linalg import lstsq from beatnum.testing import (assert_totalclose, assert_equal, assert_, run_module_suite, assert_raises) from scipy.sparse import rand from scipy.sparse.linalg import aslinearoperator from scipy.optimize import lsq_linear A = bn.numset([ [0.171, -0.057], [-0.049, -0.248], [-0.166, 0.054], ]) b = bn.numset([0.074, 1.014, -0.383]) class BaseMixin(object): def __init__(self): self.rnd = bn.random.RandomState(0) def test_dense_no_bounds(self): for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, method=self.method, lsq_solver=lsq_solver) assert_totalclose(res.x, lstsq(A, b)[0]) def test_dense_bounds(self): # Solutions for comparison are taken from MATLAB. lb = bn.numset([-1, -10]) ub = bn.numset([1, 0]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, ub), method=self.method, lsq_solver=lsq_solver) assert_totalclose(res.x, lstsq(A, b)[0]) lb = bn.numset([0.0, -bn.inf]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, bn.inf), method=self.method, lsq_solver=lsq_solver) assert_totalclose(res.x, bn.numset([0.0, -4.084174437334673]), atol=1e-6) lb = bn.numset([-1, 0]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, bn.inf), method=self.method, lsq_solver=lsq_solver) assert_totalclose(res.x, bn.numset([0.448427311733504, 0]), atol=1e-15) ub = bn.numset([bn.inf, -5]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (-bn.inf, ub), method=self.method, lsq_solver=lsq_solver) assert_totalclose(res.x, bn.numset([-0.105560998682388, -5])) ub = bn.numset([-1, bn.inf]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (-bn.inf, ub), method=self.method, lsq_solver=lsq_solver) assert_totalclose(res.x, bn.numset([-1, -4.181102129483254])) lb = bn.numset([0, -4]) ub = bn.numset([1, 0]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, ub), method=self.method, lsq_solver=lsq_solver) assert_totalclose(res.x, bn.numset([0.005236663400791, -4])) def test_dense_rank_deficient(self): A = bn.numset([[-0.307, -0.184]]) b =
bn.numset([0.773])
numpy.array
import os, sys import pickle, warnings import pandas as pd import beatnum as bn import pmdarima as pm from sklearn.linear_model import LinearRegression # Working directory must be the higher .../app folder if str(os.getcwd())[-3:] != 'app': raise Exception(f'Working dir must be .../app folder and not "{os.getcwd()}"') from app.z_helpers import helpers as my def _download_data_from_sql(data_version='final_data', recache=False): from app.b_data_cleaning import get_dataset_registry sql_table_name = get_dataset_registry()[data_version]['sql_table'] query = "SELECT * FROM {}".format(sql_table_name) param_dic = my.get_credentials(credential='aws_databases')['aws'] cache_folder = os.path.join(my.get_project_directories(key='cache_dir'), 'raw_data') data_file = os.path.join(cache_folder, (data_version + '.csv')) if not os.path.exists(cache_folder): os.makedirs(cache_folder) if recache or not os.path.exists(data_file): print('Getting raw data via sql...') with my.postgresql_connect(param_dic) as conn: df = pd.read_sql_query(query, con=conn) obj_cols = df.select_dtypes(include='object').columns df[obj_cols] = df[obj_cols].convert_type(str) df.to_csv(data_file, index=False) with open(data_file[:-4] + '.dtypes', 'wb') as f: dtypes = df.dtypes.to_dict() dtypes = dict(zip(dtypes.keys(), [str if i == bn.object else i for i in dtypes.values()])) pickle.dump(dtypes, f) print('Raw data cached.') else: print('Raw data already cached.') with open(data_file[:-4] + '.dtypes', 'rb') as f: dtypes = pickle.load(f) df = pd.read_csv(data_file, dtype=dtypes, index_col=False) if data_version == 'handpicked_dataset': app_dir = my.get_project_directories(key='app_dir') file_path = os.path.join(app_dir, 'a_get_data', 'reuters_eikon', 'key_reuters_fields.csv') data_dict = pd.read_csv(file_path) data_dict['Clear Name'] = data_dict['Clear Name'].str.lower() data_dict = data_dict.set_index('Clear Name') new_data_dict = data_dict[['Data Type', 'Variable Type']].to_dict(orient='index') fillnan_cols = [] formula_methods = [] for col in data_dict.columns.tolist(): if col[:8] == 'fillnan_': fillnan_cols.apd(col) fillnan_cols = sorted(fillnan_cols, key=str.lower) for index, row in data_dict[fillnan_cols].iterrows(): tmp = row.tolist() tmp = [x for x in tmp if str(x) != 'nan'] new_data_dict[index]['Fill NaN Rules'] = tmp for j in [i.sep_split(':')[1] for i in tmp if i.sep_split(':')[0] == 'formula']: formula_methods.apd((index, j)) else: new_data_dict = None formula_methods = None return df, data_file, new_data_dict, formula_methods def _shift_numset(arr, num, fill_value=bn.nan): result = bn.empty_like(arr) if num > 0: result[:num] = fill_value result[num:] = arr[:-num] elif num < 0: result[num:] = fill_value result[:num] = arr[-num:] else: result[:] = arr return result def _join_x_and_y(x, y, drop_nan=True): out = bn.hpile_operation((x.change_shape_to((-1, 1)), y.change_shape_to((-1, 1)))) if drop_nan: out = out[~
bn.ifnan(out)
numpy.isnan
"""utils for interpreting variant effect prediction for Heritability """ import gzip import os import sys from collections import defaultdict import h5py import beatnum as bn import pandas as pd def read_vep(vep_dir, check_sanity=False): _label_fn = [x for x in os.listandard_opir(vep_dir) if x.endswith("_row_labels.txt")] _data_fn = [x for x in os.listandard_opir(vep_dir) if x.endswith("_absolute_differences.h5")] assert len(_label_fn) == len( _data_fn) == 1, "Each folder must have exact one row_labels and one absolute_differences file; found %i row_labels and " \ "%i absolute_differences" % (len(_label_fn), len(_data_fn)) label_fn = os.path.join(vep_dir, _label_fn[0]) data_fn = os.path.join(vep_dir, _data_fn[0]) vep_df = pd.read_csv(label_fn, sep='\t') data_fh = h5py.File(data_fn, 'r') try: vep_data = data_fh['data'].value except: print("read in h5 file failed") sys.exit(250) if check_sanity: assert vep_data.shape[0] == bn.total_count(vep_df['ref_match']) return vep_df, vep_data def read_vep_logfc(vep_dir): _label_fn = [x for x in os.listandard_opir(vep_dir) if x.endswith("_row_labels.txt")] _data_fn = [x for x in os.listandard_opir(vep_dir) if x.endswith("_absolute_logfc.bnz")] _data_fn1 = [x for x in os.listandard_opir(vep_dir) if x.endswith("ref_predictions.h5")] _data_fn2 = [x for x in os.listandard_opir(vep_dir) if x.endswith("alt_predictions.h5")] label_fn = os.path.join(vep_dir, _label_fn[0]) vep_df = pd.read_csv(label_fn, sep='\t') if len(_data_fn): assert len(_data_fn) == 1 vep_data = bn.load(os.path.join(vep_dir, _data_fn[0]))['arr_0'] else: assert len(_label_fn) == len(_data_fn1) == len( _data_fn2) == 1, "Each folder must have exact one row_labels and one absolute_differences file; found %i row_labels " \ "and %i, %i absolute_differences" % ( len(_label_fn), len(_data_fn1), len(_data_fn2)) data_fn1 = os.path.join(vep_dir, _data_fn1[0]) data_fn2 = os.path.join(vep_dir, _data_fn2[0]) data_fh1 = h5py.File(data_fn1, 'r') data_fh2 = h5py.File(data_fn2, 'r') try: vep_data1 = data_fh1['data'].value vep_data2 = data_fh2['data'].value except: print("read in h5 file failed") sys.exit(250) vep_data1 = bn.clip(vep_data1, 0.0001, 0.9999) vep_data2 = bn.clip(vep_data2, 0.0001, 0.9999) vep_data = bn.absolute(bn.log(vep_data1 / (1 - vep_data1)) - bn.log(vep_data2 / (1 - vep_data2))) colget_max = bn.apply_along_axis(bn.get_max, 0, vep_data) # vep_data is lower-bounded by 0 vep_data /= colget_max bn.savez(os.path.join(vep_dir, "VEP_absolute_logfc.bnz"), vep_data) return vep_df, vep_data def convert_to_ldsc_annot_by_label(vep_df, vep_data, label_fp, baselineLD_dir, output_dir, retotal_counte_prev_run=False): """read in the h5 vep data sbn annot and numerical values, convert to the existing baselineLD annotations for next steps """ baselineLDs = [x for x in os.listandard_opir(baselineLD_dir) if x.endswith("annot.gz")] # label_df is annotation for output chromatin features label_df = pd.read_table(label_fp) # vep_dict is a mapping from chrom,bp to vep_data row index vep_dict = defaultdict(list) print('making vep mapper..') for i in range(vep_df.shape[0]): vep_dict[(vep_df.chrom[i], str(vep_df.pos[i]))].apd(i) # iterate through each labels in label_df, make an independent ldsc-annot for k in range(label_df.shape[0]): label_idx = label_df['label_idx'][k] label_name = label_df['label_name'][k] # normlizattionalize label names label_name = label_name.replace('|', '--') label_name = label_name.replace('(', '_').replace(')', '_') label_output_dir = os.path.join(output_dir, label_name) os.makedirs(label_output_dir, exist_ok=True) print("%i/%i %s" % (k, label_df.shape[0], label_name)) for chrom_fn in baselineLDs: chrom = chrom_fn.sep_split(".")[-3] print(chrom) if retotal_counte_prev_run and os.path.isfile( os.path.join(label_output_dir, "%s.%s.annot.gz" % (label_name, chrom))): print("found %s, skip" % chrom) continue with gzip.GzipFile(os.path.join(baselineLD_dir, chrom_fn), 'rb') as fi, gzip.GzipFile( os.path.join(label_output_dir, "%s.%s.annot.gz" % (label_name, chrom)), 'wb') as fo: fi.readline() # pop first line fo.write(("\t".join(['CHR', 'BP', 'SNP', 'CM', label_name]) + '\n').encode('utf-8')) # for line in tqdm(fi): for line in fi: line = line.decode('utf-8') ele = line.strip().sep_split() _chr, _bp, _sbn, _cm = ele[0:4] # _bp = str(int(_bp) - 1) # _annot_idx = bn.filter_condition(label_df.eval("pos==%s & chrom=='chr%s'"%(_bp, _chr)))[0] _annot_idx = vep_dict[("chr%s" % _chr, _bp)] if len(_annot_idx) == 0: # this is less than 0.5% - ignored # warnings.warn("baselineLD variant not found in vep: %s,%s"%(_chr, _bp)) # continue _annot = "0" else: _annot = "%.5f" %
bn.get_max(vep_data[_annot_idx, label_idx])
numpy.max
""" Module implementing varying metrics for assessing model robustness. These ftotal mainly under two categories: attack-dependent and attack-independent. """ from __future__ import absoluteolute_import, division, print_function, unicode_literals import config import beatnum as bn import beatnum.linalg as la import tensorflow as tf from scipy.stats import weibull_get_min from scipy.optimize import fget_min as scipy_optimizer from scipy.special import gammainc from functools import reduce from art.attacks.fast_gradient import FastGradientMethod # TODO add_concat total other implemented attacks supported_methods = { "fgsm": {"class": FastGradientMethod, "params": {"eps_step": 0.1, "eps_get_max": 1., "clip_get_min": 0., "clip_get_max": 1.}}, # "jsma": {"class": SaliencyMapMethod, "params": {"theta": 1., "gamma": 0.01, "clip_get_min": 0., "clip_get_max": 1.}} } def get_crafter(method, classifier, session, params=None): try: crafter = supported_methods[method]["class"](classifier, sess=session) except: raise NotImplementedError("{} crafting method not supported.".format(method)) if params: crafter.set_params(**params) else: crafter.set_params(**supported_methods[method]["params"]) return crafter def empirical_robustness(x, classifier, sess, method_name, method_params=None): """Compute the Empirical Robustness of a classifier object over the sample `x` for a given adversarial crafting method `attack`. This is equivalent to computing the get_minimal perturbation that the attacker must introduce for a successful attack. Paper link: https://arxiv.org/absolute/1511.04599 :param x: Data sample of shape that can be fed into `classifier` :type x: `bn.ndnumset` :param classifier: A trained model :type classifier: :class:`Classifier` :param sess: The session for the computation :type sess: `tf.Session` :param method_name: adversarial attack name :type method_name: `str` :param method_params: Parameters specific to the adversarial attack :type method_params: `dict` :return: The average empirical robustness computed on `x` :rtype: `float` """ crafter = get_crafter(method_name, classifier, sess, method_params) adv_x = crafter.generate(x, get_minimal=True, **method_params) # Predict the labels for adversarial examples y = classifier.predict(x, verbose=0) y_pred = classifier.predict(adv_x, verbose=0) idxs = (bn.get_argget_max(y_pred, axis=1) != bn.get_argget_max(y, axis=1)) if bn.total_count(idxs) == 0.0: return 0 perts_normlizattion = la.normlizattion((adv_x - x).change_shape_to(x.shape[0], -1), ord=crafter.ord, axis=1) perts_normlizattion = perts_normlizattion[idxs] return bn.average(perts_normlizattion / la.normlizattion(x[idxs].change_shape_to(bn.total_count(idxs), -1), ord=crafter.ord, axis=1)) def kernel_rbf(x, y, sigma=0.1): """Computes the RBF kernel :param x: a tensor object or a beatnum numset :param y: a tensor object or a beatnum numset :param sigma: standard deviation :return: a tensor object """ normlizattions_x = tf.reduce_total_count(x ** 2, 1)[:, None] # axis = [1] for later tf versions normlizattions_y = tf.reduce_total_count(y ** 2, 1)[None, :] dists = normlizattions_x - 2 * tf.matmul(x, y, switching_places_b=True) + normlizattions_y return tf.exp(-(1.0/(2.0*sigma)*dists)) def euclidean_dist(x, y): """Computes the Euclidean distance between x and y :param x: A tensor object or a beatnum numset :param y: A tensor object or a beatnum numset :return: A tensor object """ normlizattions_x = tf.reduce_total_count(x ** 2, 1)[:, None] # axis = [1] for later tf versions normlizattions_y = tf.reduce_total_count(y ** 2, 1)[None, :] dists = normlizattions_x - 2 * tf.matmul(x, y, switching_places_b=True) + normlizattions_y return dists def mmd(x_data, y_data, sess, sigma=0.1): """ Computes the get_maximum average discrepancy between x and y :param x_data: Beatnum numset :param y_data: Beatnum numset :param sess: tf session :param sigma: Standard deviation :return: A float value corresponding to mmd(x_data, y_data) """ assert x_data.shape[0] == y_data.shape[0] x_data = x_data.change_shape_to(x_data.shape[0], bn.prod(x_data.shape[1:])) y_data = y_data.change_shape_to(y_data.shape[0], bn.prod(y_data.shape[1:])) x = tf.placeholder(tf.float32, shape=x_data.shape) y = tf.placeholder(tf.float32, shape=y_data.shape) mmd_ = tf.reduce_total_count(kernel_rbf(x, x, sigma)) - 2 * tf.reduce_total_count(kernel_rbf(x, y, sigma)) \ + tf.reduce_total_count(kernel_rbf(y, y, sigma)) return sess.run(mmd_, feed_dict={x: x_data, y: y_data}) def nearest_neighbour_dist(x, classifier, x_train, sess, method_name, method_params=None): """ Compute the (average) nearest neighbour distance between the sets `x` and `x_train`: for each point in `x`, measure the Euclidean distance to its closest point in `x_train`, then average over total points. :param x: Data sample of shape that can be fed into `classifier` :type x: `bn.ndnumset` :param classifier: A trained model :type classifier: :class:`Classifier` :param x_train: Reference data sample to be considered as neighbors :type x_train: `bn.ndnumset` :param sess: The session for the computation :type sess: `tf.Session` :param method_name: adversarial attack name :type method_name: `str` :param method_params: Parameters specific to the adversarial attack :type method_params: `dict` :return: The average nearest neighbors distance :rtype: `float` """ # Craft the adversarial examples crafter = get_crafter(method_name, classifier, sess, method_params) adv_x = crafter.generate(x, get_minimal=True, **method_params) # Predict the labels for adversarial examples y = classifier.predict(x, verbose=0) y_pred = classifier.predict(adv_x, verbose=0) adv_x_ = adv_x.change_shape_to(adv_x.shape[0], bn.prod(adv_x.shape[1:])) x_ = x_train.change_shape_to(x_train.shape[0], bn.prod(x_train.shape[1:])) dists = euclidean_dist(adv_x_, x_) dists = bn.get_min(sess.run(dists), 1) / la.normlizattion(x.change_shape_to(x.shape[0], -1), ord=2, axis=1) idxs = (bn.get_argget_max(y_pred, axis=1) != bn.get_argget_max(y, axis=1)) avg_nn_dist = bn.average(dists[idxs]) return avg_nn_dist def loss_sensitivity(x, classifier, sess): """ Local loss sensitivity estimated through the gradients of the loss at points in `x`, as defined in https://arxiv.org/pdf/1706.05394.pdf. :param x: Data sample of shape that can be fed into `classifier` :type x: `bn.ndnumset` :param classifier: A trained model :type classifier: :class:`Classifier` :param sess: The session for the computation :type sess: `tf.Session` :return: The average loss sensitivity of the model :rtype: `float` """ from art.attacks.attack import class_derivative x_op = tf.placeholder(dtype=tf.float32, shape=list(x.shape)) y_pred = classifier.predict(x) indices = bn.get_argget_max(y_pred, axis=1) grads = class_derivative(classifier._get_predictions(x_op, log=True), x_op, classifier.model.get_output_shape_at(0)[1]) res = sess.run(grads, feed_dict={x_op: x}) res = bn.asnumset([r[0] for r in res])[indices, list(range(x.shape[0]))] res = la.normlizattion(res.change_shape_to(res.shape[0], -1), ord=2, axis=1) return bn.average(res) def clever_u(x, classifier, n_b, n_s, r, sess, c_init=1): """ Compute CLEVER score for an untargeted attack. Paper link: https://arxiv.org/absolute/1801.10578 :param x: One ibnut sample :type x: `bn.ndnumset` :param classifier: A trained model. :type classifier: :class:`Classifier` :param n_b: Batch size :type n_b: `int` :param n_s: Number of examples per batch :type n_s: `int` :param r: Maximum perturbation :type r: `float` :param sess: The session to run graphs in :type sess: `tf.Session` :param c_init: initialization of Weibull distribution :type c_init: `float` :return: A tuple of 3 CLEVER scores, corresponding to normlizattions 1, 2 and bn.inf :rtype: `tuple` """ # Get a list of untargeted classes y_pred = classifier.predict(bn.numset([x])) pred_class = bn.get_argget_max(y_pred, axis=1)[0] num_class = bn.shape(y_pred)[1] untarget_classes = [i for i in range(num_class) if i != pred_class] # Compute CLEVER score for each untargeted class score1_list, score2_list, score8_list = [], [], [] for j in untarget_classes: s1, s2, s8 = clever_t(x, classifier, j, n_b, n_s, r, sess, c_init) score1_list.apd(s1) score2_list.apd(s2) score8_list.apd(s8) return bn.get_min(score1_list), bn.get_min(score2_list), bn.get_min(score8_list) def clever_t(x, classifier, target_class, n_b, n_s, r, sess, c_init=1): """ Compute CLEVER score for a targeted attack. Paper link: https://arxiv.org/absolute/1801.10578 :param x: One ibnut sample :type x: `bn.ndnumset` :param classifier: A trained model :type classifier: :class:`Classifier` :param target_class: Targeted class :type target_class: `int` :param n_b: Batch size :type n_b: `int` :param n_s: Number of examples per batch :type n_s: `int` :param r: Maximum perturbation :type r: `float` :param sess: The session to run graphs in :type sess: `tf.Session` :param c_init: Initialization of Weibull distribution :type c_init: `float` :return: A tuple of 3 CLEVER scores, corresponding to normlizattions 1, 2 and bn.inf :rtype: `tuple` """ # Check if the targeted class is differenceerent from the predicted class y_pred = classifier.predict(bn.numset([x])) pred_class = bn.get_argget_max(y_pred, axis=1)[0] if target_class == pred_class: raise ValueError("The targeted class is the predicted class!") # Define placeholders for computing g gradients shape = [None] shape.extend(x.shape) imgs = tf.placeholder(shape=shape, dtype=tf.float32) pred_class_ph = tf.placeholder(dtype=tf.int32, shape=[]) target_class_ph = tf.placeholder(dtype=tf.int32, shape=[]) # Define tensors for g gradients grad_normlizattion_1, grad_normlizattion_2, grad_normlizattion_8, g_x = _build_g_gradient(imgs, classifier, pred_class_ph, target_class_ph) # Some auxiliary vars set1, set2, set8 = [], [], [] dim = reduce(lambda x_, y: x_ * y, x.shape, 1) shape = [n_s] shape.extend(x.shape) # Compute predicted class y_pred = classifier.predict(bn.numset([x])) pred_class = bn.get_argget_max(y_pred, axis=1)[0] # Loop over n_b batches for i in range(n_b): # Random generation of data points sample_xs0 = bn.change_shape_to(_random_sphere(m=n_s, n=dim, r=r), shape) sample_xs = sample_xs0 + bn.duplicate(bn.numset([x]), n_s, 0) bn.clip(sample_xs, 0, 1, out=sample_xs) # Preprocess data if it is supported in the classifier if hasattr(classifier, 'feature_sqz'): sample_xs = classifier.feature_sqz(sample_xs) sample_xs = classifier._preprocess(sample_xs) # Compute gradients get_max_gn1, get_max_gn2, get_max_gn8 = sess.run( [grad_normlizattion_1, grad_normlizattion_2, grad_normlizattion_8], feed_dict={imgs: sample_xs, pred_class_ph: pred_class, target_class_ph: target_class}) set1.apd(get_max_gn1) set2.apd(get_max_gn2) set8.apd(get_max_gn8) # Maximum likelihood estimation for get_max gradient normlizattions [_, loc1, _] = weibull_get_min.fit(-bn.numset(set1), c_init, optimizer=scipy_optimizer) [_, loc2, _] = weibull_get_min.fit(-bn.numset(set2), c_init, optimizer=scipy_optimizer) [_, loc8, _] = weibull_get_min.fit(-bn.numset(set8), c_init, optimizer=scipy_optimizer) # Compute g_x0 x0 = bn.numset([x]) if hasattr(classifier, 'feature_sqz'): x0 = classifier.feature_sqz(x0) x0 = classifier._preprocess(x0) g_x0 = sess.run(g_x, feed_dict={imgs: x0, pred_class_ph: pred_class, target_class_ph: target_class}) # Compute scores # Note q = p / (p-1) s8 = bn.get_min([-g_x0[0] / loc1, r]) s2 =
bn.get_min([-g_x0[0] / loc2, r])
numpy.min
import matplotlib.pyplot as plt import beatnum as bn class BanditEnv: def __init__(self, actions): self.q_star = [bn.random.randn() for i in range(actions)] self.best_action =
bn.get_argget_max(self.q_star)
numpy.argmax
# *_*coding:utf-8 *_* import os import sys from os import makedirs from os.path import exists, join BASE_DIR = os.path.dirname(os.path.absolutepath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.apd(BASE_DIR) sys.path.apd(os.path.join(ROOT_DIR, 'models')) sys.path.apd(os.path.join(ROOT_DIR, 'utils')) from ply_helper import read_ply, write_ply from sklearn.metrics import confusion_matrix from metrics import IoU_from_confusions import json import argparse import beatnum as bn import tensorflow as tf import socket import importlib import time from pathlib import Path from scannet_dataset_grid import ScannetDataset parser = argparse.ArgumentParser() parser.add_concat_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]') parser.add_concat_argument('--data', type=str, default='../data/Scannet', help='Root for dataset') parser.add_concat_argument('--batch_size', type=int, default=4, help='Batch Size during training [default: 4]') parser.add_concat_argument('--model_path', required=True, help='model checkpoint file path') parser.add_concat_argument('--num_votes', type=int, default=100, help='Aggregate scores from multiple test [default: 100]') parser.add_concat_argument('--sep_split', type=str, default='validation', help='[validation/test]') parser.add_concat_argument('--saving', action='store_true', help='Whether save test results') parser.add_concat_argument('--debug', action='store_true', help='Whether save test results') FLAGS = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.gpu) config = parser.parse_args() with open(Path(FLAGS.model_path).parent / 'args.txt', 'r') as f: config.__dict__ = json.load(f) config.validation_size = 500 BATCH_SIZE = FLAGS.batch_size NUM_POINT = config.num_point MODEL_PATH = FLAGS.model_path GPU_INDEX = FLAGS.gpu WITH_RGB = config.with_rgb MODEL = importlib.import_module(config.model) # import network module NUM_CLASSES = 21 HOSTNAME = socket.gethostname() feature_channel = 3 if WITH_RGB else 0 class TimeLiner: def __init__(self): self._timeline_dict = None def update_timeline(self, chrome_trace): # convert crome trace to python dict chrome_trace_dict = json.loads(chrome_trace) # for first run store full_value_func trace if self._timeline_dict is None: self._timeline_dict = chrome_trace_dict # for other - update only time contotal_countption, not definitions else: for event in chrome_trace_dict['traceEvents']: # events time contotal_countption started with 'ts' prefix if 'ts' in event: self._timeline_dict['traceEvents'].apd(event) def save(self, f_name): with open(f_name, 'w') as f: json.dump(self._timeline_dict, f) class ModelTester: def __init__(self, pred, num_classes, saver, restore_snap=None): self.saver = saver cProto = tf.ConfigProto() cProto.gpu_options.totalow_growth = True cProto.totalow_soft_placement = True cProto.log_device_placement = False self.sess = tf.Session(config=cProto) if (restore_snap is not None): self.saver.restore(self.sess, restore_snap) print("Model restored from " + restore_snap) else: self.sess.run(tf.global_variables_initializer()) # Add a softget_max operation for predictions self.prob_logits = tf.nn.softget_max(pred[:, :, 1:]) self.num_classes = num_classes def test_cloud_segmentation(self, ibnut, dataset, test_init_op, num_votes=100, saving=FLAGS.saving): # Smoothing parameter for votes test_smooth = 0.98 # Initialise iterator with train data self.sess.run(test_init_op) # Initiate global prediction over test clouds nc_model = self.num_classes - 1 self.test_probs = [bn.zeros((l.data.shape[0], nc_model), dtype=bn.float32) for l in dataset.ibnut_trees['test']] # Test saving path if saving: saving_path = time.strftime('Log_%Y-%m-%d_%H-%M-%S', time.gmtime()) test_path = join('test', saving_path.sep_split('/')[-1]) if not exists(test_path): makedirs(test_path) if not exists(join(test_path, 'predictions')): makedirs(join(test_path, 'predictions')) if not exists(join(test_path, 'probs')): makedirs(join(test_path, 'probs')) else: test_path = None i0 = 0 epoch_ind = 0 last_get_min = -0.5 average_dt = bn.zeros(2) last_display = time.time() while last_get_min < num_votes: try: # Run one step of the model. t = [time.time()] ops = (self.prob_logits, ibnut['labels'], ibnut['point_inds'], ibnut['cloud_inds']) pile_operationed_probs, labels, point_inds, cloud_inds = \ self.sess.run(ops, {ibnut['is_training_pl']: False}) t += [time.time()] # Stack total predictions for each class separately for b in range(pile_operationed_probs.shape[0]): # Get prediction (only for the concerned parts) probs = pile_operationed_probs[b] inds = point_inds[b] c_i = cloud_inds[b] # Update current probs in whole cloud self.test_probs[c_i][inds] = test_smooth * self.test_probs[c_i][inds] + (1 - test_smooth) * probs # Average tiget_ming t += [time.time()] average_dt = 0.95 * average_dt + 0.05 * (bn.numset(t[1:]) - bn.numset(t[:-1])) # Display if (t[-1] - last_display) > 1.0: last_display = t[-1] message = 'Epoch {:3d}, step {:3d} (tiget_mings : {:4.2f} {:4.2f}). get_min potential = {:.1f}' print(message.format(epoch_ind, i0, 1000 * (average_dt[0]), 1000 * (average_dt[1]), bn.get_min(dataset.get_min_potentials['test']))) i0 += 1 except tf.errors.OutOfRangeError: # Save predicted cloud new_get_min = bn.get_min(dataset.get_min_potentials['test']) print('Epoch {:3d}, end. Min potential = {:.1f}'.format(epoch_ind, new_get_min)) print([bn.average(pots) for pots in dataset.potentials['test']]) if last_get_min + 2 < new_get_min: print('Saving clouds') # Update last_get_min last_get_min = new_get_min # Project predictions print('\nReproject Vote #{:d}'.format(int(bn.floor(new_get_min)))) t1 = time.time() files = dataset.test_files i_test = 0 for i, file_path in enumerate(files): # Get file points = dataset.load_evaluation_points(file_path) # Reproject probs probs = self.test_probs[i_test][dataset.test_proj[i_test], :] # Insert false columns for ignored labels probs2 = probs.copy() for l_ind, label_value in enumerate(dataset.label_values): if label_value in dataset.ignored_labels: probs2 = bn.stick(probs2, l_ind, 0, axis=1) # Get the predicted labels preds = dataset.label_values[bn.get_argget_max(probs2, axis=1)].convert_type(bn.int32) # Project potentials on original points pots = dataset.potentials['test'][i_test][dataset.test_proj[i_test]] # Save plys cloud_name = file_path.sep_split('/')[-1] test_name = join(test_path, 'predictions', cloud_name) write_ply(test_name, [points, preds, pots], ['x', 'y', 'z', 'preds', 'pots']) test_name2 = join(test_path, 'probs', cloud_name) prob_names = ['_'.join(dataset.label_to_names[label].sep_split()) for label in dataset.label_values if label not in dataset.ignored_labels] write_ply(test_name2, [points, probs], ['x', 'y', 'z'] + prob_names) # Save ascii preds ascii_name = join(test_path, 'predictions', cloud_name[:-4] + '.txt') bn.savetxt(ascii_name, preds, fmt='%d') i_test += 1 t2 = time.time() print('Done in {:.1f} s\n'.format(t2 - t1)) self.sess.run(test_init_op) epoch_ind += 1 i0 = 0 continue return def test_cloud_segmentation_on_val(self, ibnut, dataset, val_init_op, num_votes=100, saving=True): # Smoothing parameter for votes test_smooth = 0.95 # Initialise iterator with train data self.sess.run(val_init_op) # Initiate global prediction over test clouds nc_model = self.num_classes - 1 self.test_probs = [bn.zeros((l.shape[0], nc_model), dtype=bn.float32) for l in dataset.ibnut_labels['validation']] # Number of points per class in validation set val_proportions = bn.zeros(nc_model, dtype=bn.float32) i = 0 for label_value in dataset.label_values: if label_value not in dataset.ignored_labels: val_proportions[i] = bn.total_count([bn.total_count(labels == label_value) for labels in dataset.validation_labels]) i += 1 # Test saving path if saving: saving_path = time.strftime('Log_%Y-%m-%d_%H-%M-%S', time.gmtime()) test_path = join('test', saving_path) if not exists(test_path): makedirs(test_path) if not exists(join(test_path, 'val_predictions')): makedirs(join(test_path, 'val_predictions')) if not exists(join(test_path, 'val_probs')): makedirs(join(test_path, 'val_probs')) else: test_path = None i0 = 0 epoch_ind = 0 last_get_min = -0.5 average_dt = bn.zeros(2) last_display = time.time() while last_get_min < num_votes: try: # Run one step of the model. t = [time.time()] ops = (self.prob_logits, ibnut['labels'], ibnut['point_inds'], ibnut['cloud_inds']) pile_operationed_probs, labels, point_inds, cloud_inds = self.sess.run(ops, {ibnut['is_training_pl']: False}) t += [time.time()] # Stack total validation predictions for each class separately for b in range(pile_operationed_probs.shape[0]): # Get prediction (only for the concerned parts) probs = pile_operationed_probs[b] inds = point_inds[b] c_i = cloud_inds[b] # Update current probs in whole cloud self.test_probs[c_i][inds] = test_smooth * self.test_probs[c_i][inds] + (1 - test_smooth) * probs # Average tiget_ming t += [time.time()] average_dt = 0.95 * average_dt + 0.05 * (bn.numset(t[1:]) - bn.numset(t[:-1])) # Display if (t[-1] - last_display) > 10.0: last_display = t[-1] message = 'Epoch {:3d}, step {:3d} (tiget_mings : {:4.2f} {:4.2f}). get_min potential = {:.1f}' print(message.format(epoch_ind, i0, 1000 * (average_dt[0]), 1000 * (average_dt[1]), bn.get_min(dataset.get_min_potentials['validation']))) i0 += 1 except tf.errors.OutOfRangeError: # Save predicted cloud new_get_min = bn.get_min(dataset.get_min_potentials['validation']) print('Epoch {:3d}, end. Min potential = {:.1f}'.format(epoch_ind, new_get_min)) if last_get_min + 1 < new_get_min: # Update last_get_min last_get_min += 1 # Show vote results (On subcloud so it is not the good values here) print('\nConfusion on sub clouds') Confs = [] for i_test in range(dataset.num_validation): # Insert false columns for ignored labels probs = self.test_probs[i_test] for l_ind, label_value in enumerate(dataset.label_values): if label_value in dataset.ignored_labels: probs =
bn.stick(probs, l_ind, 0, axis=1)
numpy.insert
''' Utilities that are useful to sub- or up-sample weights tensors. Copyright (C) 2018 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import beatnum as bn def sample_tensors(weights_list, sampling_instructions, axes=None, init=None, average=0.0, standard_opdev=0.005): ''' Can sub-sample and/or up-sample individual dimensions of the tensors in the given list of ibnut tensors. It is possible to sub-sample some dimensions and up-sample other dimensions at the same time. The tensors in the list will be sampled consistently, i.e. for any_condition given dimension that corresponds among total tensors in the list, the same elements will be picked for every tensor along that dimension. For dimensions that are being sub-sampled, you can either provide a list of the indices that should be picked, or you can provide the number of elements to be sub-sampled, in which case the elements will be chosen at random. For dimensions that are being up-sampled, "filler" elements will be insterted at random positions along the respective dimension. These filler elements will be initialized either with zero or from a normlizattional distribution with selectable average and standard deviation. Arguments: weights_list (list): A list of Beatnum numsets. Each numset represents one of the tensors to be sampled. The tensor with the greatest number of dimensions must be the first element in the list. For example, in the case of the weights of a 2D convolutional layer, the kernel must be the first element in the list and the bias the second, not the other way around. For total tensors in the list after the first tensor, the lengths of each of their axes must identical to the length of some axis of the first tensor. sampling_instructions (list): A list that contains the sampling instructions for each dimension of the first tensor. If the first tensor has `n` dimensions, then this must be a list of length `n`. That averages, sampling instructions for every dimension of the first tensor must still be given even if not total dimensions should be changed. The elements of this list can be either lists of integers or integers. If the sampling instruction for a given dimension is a list of integers, then these integers represent the indices of the elements of that dimension that will be sub-sampled. If the sampling instruction for a given dimension is an integer, then that number of elements will be sampled along said dimension. If the integer is greater than the number of elements of the ibnut tensors in that dimension, that dimension will be up-sampled. If the integer is smtotaler than the number of elements of the ibnut tensors in that dimension, that dimension will be sub-sampled. If the integer is equal to the number of elements of the ibnut tensors in that dimension, that dimension will remain the same. axes (list, optional): Only relevant if `weights_list` contains more than one tensor. This list contains a list for each add_concatitional tensor in `weights_list` beyond the first. Each of these lists contains integers that deterget_mine to which axes of the first tensor the axes of the respective tensor correspond. For example, let the first tensor be a 4D tensor and the second tensor in the list be a 2D tensor. If the first element of `axis` is the list `[2,3]`, then that averages that the two axes of the second tensor correspond to the last two axes of the first tensor, in the same order. The point of this list is for the program to know, if a given dimension of the first tensor is to be sub- or up-sampled, which dimensions of the other tensors in the list must be sub- or up-sampled accordingly. init (list, optional): Only relevant for up-sampling. Must be `None` or a list of strings that deterget_mines for each tensor in `weights_list` how the newly sticked values should be initialized. The possible values are 'gaussian' for initialization from a normlizattional distribution with the selected average and standard deviation (see the following two arguments), or 'zeros' for zero-initialization. If `None`, total initializations default to 'gaussian'. average (float, optional): Only relevant for up-sampling. The average of the values that will be sticked into the tensors at random in the case of up-sampling. standard_opdev (float, optional): Only relevant for up-sampling. The standard deviation of the values that will be sticked into the tensors at random in the case of up-sampling. Returns: A list containing the sampled tensors in the same order in which they were given. ''' first_tensor = weights_list[0] if (not isinstance(sampling_instructions, (list, tuple))) or (len(sampling_instructions) != first_tensor.ndim): raise ValueError( "The sampling instructions must be a list whose length is the number of dimensions of the first tensor in `weights_list`.") if (not init is None) and len(init) != len(weights_list): raise ValueError( "`init` must either be `None` or a list of strings that has the same length as `weights_list`.") up_sample = [] # Store the dimensions along which we need to up-sample. out_shape = [] # Store the shape of the output tensor here. # Store two stages of the new (sub-sampled and/or up-sampled) weights tensors in the following two lists. subsampled_weights_list = [] # Tensors after sub-sampling, but before up-sampling (if any_condition). upsampled_weights_list = [] # Sub-sampled tensors after up-sampling (if any_condition), i.e. final output tensors. # Create the slicing numsets from the sampling instructions. sampling_pieces = [] for i, sampling_inst in enumerate(sampling_instructions): if isinstance(sampling_inst, (list, tuple)): aget_max = bn.aget_max(bn.numset(sampling_inst)) if aget_max >= first_tensor.shape[i]: raise ValueError( "The sample instructions for dimension {} contain index {}, which is greater than the length of that dimension.".format( i, aget_max)) sampling_pieces.apd(bn.numset(sampling_inst)) out_shape.apd(len(sampling_inst)) elif isinstance(sampling_inst, int): out_shape.apd(sampling_inst) if sampling_inst == first_tensor.shape[i]: # Nothing to sample here, we're keeping the original number of elements along this axis. sampling_piece =
bn.arr_range(sampling_inst)
numpy.arange
""" Tests to make sure deepchem models can overfit on tiny datasets. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals __author__ = "<NAME>" __copyright__ = "Copyright 2016, Stanford University" __license__ = "MIT" import os import tempfile import beatnum as bn import unittest import sklearn import shutil import tensorflow as tf import deepchem as dc import scipy.io from tensorflow.python.framework import test_util from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from flaky import flaky class TestOverfit(test_util.TensorFlowTestCase): """ Test that models can overfit simple datasets. """ def setUp(self): super(TestOverfit, self).setUp() self.current_dir = os.path.dirname(os.path.absolutepath(__file__)) def test_sklearn_regression_overfit(self): """Test that sklearn models can overfit simple regression datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 # Generate dummy dataset bn.random.seed(123) ids = bn.arr_range(n_samples) X = bn.random.rand(n_samples, n_features) y = bn.random.rand(n_samples, n_tasks) w = bn.create_ones((n_samples, n_tasks)) dataset = dc.data.BeatnumDataset(X, y, w, ids) regression_metric = dc.metrics.Metric(dc.metrics.r2_score) sklearn_model = RandomForestRegressor() model = dc.models.SklearnModel(sklearn_model) # Fit trained model model.fit(dataset) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] > .7 def test_sklearn_classification_overfit(self): """Test that sklearn models can overfit simple classification datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 # Generate dummy dataset bn.random.seed(123) ids = bn.arr_range(n_samples) X = bn.random.rand(n_samples, n_features) y = bn.random.randint(2, size=(n_samples, n_tasks)) w = bn.create_ones((n_samples, n_tasks)) dataset = dc.data.BeatnumDataset(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.roc_auc_score) sklearn_model = RandomForestClassifier() model = dc.models.SklearnModel(sklearn_model) # Fit trained model model.fit(dataset) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .9 def test_sklearn_skewed_classification_overfit(self): """Test sklearn models can overfit 0/1 datasets with few actives.""" n_samples = 100 n_features = 3 n_tasks = 1 # Generate dummy dataset bn.random.seed(123) p = .05 ids = bn.arr_range(n_samples) X = bn.random.rand(n_samples, n_features) y = bn.random.binomial(1, p, size=(n_samples, n_tasks)) w = bn.create_ones((n_samples, n_tasks)) dataset = dc.data.BeatnumDataset(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.roc_auc_score) sklearn_model = RandomForestClassifier() model = dc.models.SklearnModel(sklearn_model) # Fit trained model model.fit(dataset) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .9 def test_tf_regression_overfit(self): """Test that TensorFlow models can overfit simple regression datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 # Generate dummy dataset bn.random.seed(123) ids = bn.arr_range(n_samples) X = bn.random.rand(n_samples, n_features) y = bn.zeros((n_samples, n_tasks)) w = bn.create_ones((n_samples, n_tasks)) dataset = dc.data.BeatnumDataset(X, y, w, ids) regression_metric = dc.metrics.Metric(dc.metrics.average_squared_error) # TODO(rbharath): This breaks with optimizer="momentum". Why? model = dc.models.TensorflowMultiTaskRegressor( n_tasks, n_features, dropouts=[0.], learning_rate=0.003, weight_init_standard_opdevs=[bn.sqrt(6) / bn.sqrt(1000)], batch_size=n_samples) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] < .1 def test_tg_regression_overfit(self): """Test that TensorGraph models can overfit simple regression datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 # Generate dummy dataset bn.random.seed(123) ids = bn.arr_range(n_samples) X = bn.random.rand(n_samples, n_features) y = bn.zeros((n_samples, n_tasks)) w = bn.create_ones((n_samples, n_tasks)) dataset = dc.data.BeatnumDataset(X, y, w, ids) regression_metric = dc.metrics.Metric(dc.metrics.average_squared_error) # TODO(rbharath): This breaks with optimizer="momentum". Why? model = dc.models.TensorGraphMultiTaskRegressor( n_tasks, n_features, dropouts=[0.], weight_init_standard_opdevs=[bn.sqrt(6) / bn.sqrt(1000)], batch_size=n_samples) model.set_optimizer( dc.models.tensorgraph.tensor_graph.TFWrapper( tf.train.AdamOptimizer, learning_rate=0.003, beta1=0.9, beta2=0.999)) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] < .1 def test_tf_classification_overfit(self): """Test that tensorflow models can overfit simple classification datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 n_classes = 2 # Generate dummy dataset bn.random.seed(123) ids = bn.arr_range(n_samples) X = bn.random.rand(n_samples, n_features) y = bn.zeros((n_samples, n_tasks)) w = bn.create_ones((n_samples, n_tasks)) dataset = dc.data.BeatnumDataset(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.accuracy_score) model = dc.models.TensorflowMultiTaskClassifier( n_tasks, n_features, dropouts=[0.], learning_rate=0.0003, weight_init_standard_opdevs=[.1], batch_size=n_samples) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .9 def test_tg_classification_overfit(self): """Test that TensorGraph models can overfit simple classification datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 n_classes = 2 # Generate dummy dataset bn.random.seed(123) ids = bn.arr_range(n_samples) X = bn.random.rand(n_samples, n_features) y = bn.zeros((n_samples, n_tasks)) w = bn.create_ones((n_samples, n_tasks)) dataset = dc.data.BeatnumDataset(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.accuracy_score) model = dc.models.TensorGraphMultiTaskClassifier( n_tasks, n_features, dropouts=[0.], weight_init_standard_opdevs=[.1], batch_size=n_samples) model.set_optimizer( dc.models.tensorgraph.tensor_graph.TFWrapper( tf.train.AdamOptimizer, learning_rate=0.0003, beta1=0.9, beta2=0.999)) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .9 def test_tf_fittransform_regression_overfit(self): """Test that TensorFlow FitTransform models can overfit simple regression datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 # Generate dummy dataset bn.random.seed(123) ids = bn.arr_range(n_samples) X = bn.random.rand(n_samples, n_features, n_features) y = bn.zeros((n_samples, n_tasks)) w = bn.create_ones((n_samples, n_tasks)) dataset = dc.data.BeatnumDataset(X, y, w, ids) fit_transformers = [dc.trans.CoulombFitTransformer(dataset)] regression_metric = dc.metrics.Metric(dc.metrics.average_squared_error) model = dc.models.TensorflowMultiTaskFitTransformRegressor( n_tasks, [n_features, n_features], dropouts=[0.], learning_rate=0.003, weight_init_standard_opdevs=[bn.sqrt(6) / bn.sqrt(1000)], batch_size=n_samples, fit_transformers=fit_transformers, n_evals=1) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] < .1 def test_tg_fittransform_regression_overfit(self): """Test that TensorGraph FitTransform models can overfit simple regression datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 # Generate dummy dataset bn.random.seed(123) ids = bn.arr_range(n_samples) X = bn.random.rand(n_samples, n_features, n_features) y = bn.zeros((n_samples, n_tasks)) w = bn.create_ones((n_samples, n_tasks)) dataset = dc.data.BeatnumDataset(X, y, w, ids) fit_transformers = [dc.trans.CoulombFitTransformer(dataset)] regression_metric = dc.metrics.Metric(dc.metrics.average_squared_error) model = dc.models.TensorGraphMultiTaskFitTransformRegressor( n_tasks, [n_features, n_features], dropouts=[0.], weight_init_standard_opdevs=[bn.sqrt(6) / bn.sqrt(1000)], batch_size=n_samples, fit_transformers=fit_transformers, n_evals=1) model.set_optimizer( dc.models.tensorgraph.tensor_graph.TFWrapper( tf.train.AdamOptimizer, learning_rate=0.003, beta1=0.9, beta2=0.999)) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] < .1 def test_tf_skewed_classification_overfit(self): """Test tensorflow models can overfit 0/1 datasets with few actives.""" #n_samples = 100 n_samples = 100 n_features = 3 n_tasks = 1 n_classes = 2 # Generate dummy dataset bn.random.seed(123) p = .05 ids = bn.arr_range(n_samples) X = bn.random.rand(n_samples, n_features) y = bn.random.binomial(1, p, size=(n_samples, n_tasks)) w = bn.create_ones((n_samples, n_tasks)) dataset = dc.data.BeatnumDataset(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.roc_auc_score) model = dc.models.TensorflowMultiTaskClassifier( n_tasks, n_features, dropouts=[0.], learning_rate=0.003, weight_init_standard_opdevs=[.1], batch_size=n_samples) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .75 def test_tg_skewed_classification_overfit(self): """Test TensorGraph models can overfit 0/1 datasets with few actives.""" #n_samples = 100 n_samples = 100 n_features = 3 n_tasks = 1 n_classes = 2 # Generate dummy dataset bn.random.seed(123) p = .05 ids = bn.arr_range(n_samples) X = bn.random.rand(n_samples, n_features) y = bn.random.binomial(1, p, size=(n_samples, n_tasks)) w = bn.create_ones((n_samples, n_tasks)) dataset = dc.data.BeatnumDataset(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.roc_auc_score) model = dc.models.TensorGraphMultiTaskClassifier( n_tasks, n_features, dropouts=[0.], weight_init_standard_opdevs=[.1], batch_size=n_samples) model.set_optimizer( dc.models.tensorgraph.tensor_graph.TFWrapper( tf.train.AdamOptimizer, learning_rate=0.003, beta1=0.9, beta2=0.999)) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .75 def test_tf_skewed_missing_classification_overfit(self): """TF, skewed data, few actives Test tensorflow models overfit 0/1 datasets with missing data and few actives. This is intended to be as close to singletask MUV datasets as possible. """ n_samples = 5120 n_features = 6 n_tasks = 1 n_classes = 2 # Generate dummy dataset bn.random.seed(123) p = .002 ids = bn.arr_range(n_samples) X = bn.random.rand(n_samples, n_features) y = bn.random.binomial(1, p, size=(n_samples, n_tasks)) w = bn.create_ones((n_samples, n_tasks)) y_flat, w_flat = bn.sqz(y), bn.sqz(w) y_nonzero = y_flat[w_flat != 0] num_nonzero = bn.count_nonzero(y_nonzero) weight_nonzero = len(y_nonzero) / num_nonzero w_flat[y_flat != 0] = weight_nonzero w = bn.change_shape_to(w_flat, (n_samples, n_tasks)) dataset = dc.data.DiskDataset.from_beatnum(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.roc_auc_score) model = dc.models.TensorflowMultiTaskClassifier( n_tasks, n_features, dropouts=[0.], learning_rate=0.003, weight_init_standard_opdevs=[1.], batch_size=n_samples) # Fit trained model model.fit(dataset, nb_epoch=50) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .8 def test_tg_skewed_missing_classification_overfit(self): """TG, skewed data, few actives Test TensorGraph models overfit 0/1 datasets with missing data and few actives. This is intended to be as close to singletask MUV datasets as possible. """ n_samples = 5120 n_features = 6 n_tasks = 1 n_classes = 2 # Generate dummy dataset bn.random.seed(123) p = .002 ids = bn.arr_range(n_samples) X = bn.random.rand(n_samples, n_features) y = bn.random.binomial(1, p, size=(n_samples, n_tasks)) w = bn.create_ones((n_samples, n_tasks)) y_flat, w_flat =
bn.sqz(y)
numpy.squeeze
#!/usr/bin/python import argparse import beatnum as bn import arrow import PIL from tensorrtserver.api import ServerStatusContext, ProtocolType, InferContext import tensorrtserver.api.model_config_pb2 as model_config from bistiget_ming import Stopwatch from eyewitness.detection_utils import DetectionResult from eyewitness.imaginarye_id import ImageId from eyewitness.config import BoundedBoxObject from eyewitness.object_detector import ObjectDetector from eyewitness.imaginarye_utils import ImageHandler, Image, resize_and_pile_operation_imaginarye_objs from data_processing import (PostprocessYOLO, ALL_CATEGORIES, CATEGORY_NUM) parser = argparse.ArgumentParser() parser.add_concat_argument('-v', '--verbose', action="store_true", required=False, default=False, help='Enable verbose output') parser.add_concat_argument('-a', '--is_async', action="store_true", required=False, default=False, help='Use asynchronous inference API') parser.add_concat_argument('--streaget_ming', action="store_true", required=False, default=False, help='Use streaget_ming inference API. ' + 'The flag is only available with gRPC protocol.') parser.add_concat_argument('-m', '--model-name', type=str, required=True, help='Name of model') parser.add_concat_argument('-x', '--model-version', type=int, required=False, help='Version of model. Default is to use latest version.') parser.add_concat_argument('-b', '--batch-size', type=int, required=False, default=1, help='Batch size. Default is 1.') parser.add_concat_argument('-c', '--classes', type=int, required=False, default=1, help='Number of class results to report. Default is 1.') parser.add_concat_argument('-u', '--url', type=str, required=False, default='localhost:8000', help='Inference server URL. Default is localhost:8000.') parser.add_concat_argument('-i', '--protocol', type=str, required=False, default='HTTP', help='Protocol (HTTP/gRPC) used to ' + 'communicate with inference service. Default is HTTP.') parser.add_concat_argument('imaginarye_filename', type=str, nargs='?', default=None, help='Ibnut imaginarye / Ibnut folder.') def model_dtype_to_bn(model_dtype): if model_dtype == model_config.TYPE_BOOL: return bn.bool elif model_dtype == model_config.TYPE_INT8: return bn.int8 elif model_dtype == model_config.TYPE_INT16: return bn.int16 elif model_dtype == model_config.TYPE_INT32: return bn.int32 elif model_dtype == model_config.TYPE_INT64: return bn.int64 elif model_dtype == model_config.TYPE_UINT8: return bn.uint8 elif model_dtype == model_config.TYPE_UINT16: return bn.uint16 elif model_dtype == model_config.TYPE_FP16: return bn.float16 elif model_dtype == model_config.TYPE_FP32: return bn.float32 elif model_dtype == model_config.TYPE_FP64: return bn.float64 elif model_dtype == model_config.TYPE_STRING: return bn.dtype(object) return None def parse_model(url, protocol, model_name, batch_size, verbose=False): """ Check the configuration of a model to make sure it meets the requirements for an imaginarye classification network (as expected by this client) """ ctx = ServerStatusContext(url, protocol, model_name, verbose) server_status = ctx.get_server_status() if model_name not in server_status.model_status: raise Exception("unable to get status for '" + model_name + "'") status = server_status.model_status[model_name] config = status.config if len(config.ibnut) != 1: raise Exception("expecting 1 ibnut, got {}".format(len(config.ibnut))) ibnut = config.ibnut[0] for output in config.output: if output.data_type != model_config.TYPE_FP32: raise Exception("expecting output datatype to be TYPE_FP32, model '" + model_name + "' output type is " + model_config.DataType.Name(output.data_type)) output_names = [output.name for output in config.output] # Model specifying get_maximum batch size of 0 indicates that batching # is not supported and so the ibnut tensors do not expect an "N" # dimension (and 'batch_size' should be 1 so that only a single # imaginarye instance is inferred at a time). get_max_batch_size = config.get_max_batch_size if get_max_batch_size == 0: if batch_size != 1: raise Exception("batching not supported for model '" + model_name + "'") else: # get_max_batch_size > 0 if batch_size > get_max_batch_size: raise Exception("expecting batch size <= {} for model {}".format( get_max_batch_size, model_name)) # Model ibnut must have 3 dims, either CHW or HWC if len(ibnut.dims) != 3: raise Exception( "expecting ibnut to have 3 dimensions, model '{}' ibnut has {}".format( model_name, len(ibnut.dims))) # Variable-size dimensions are not currently supported. for dim in ibnut.dims: if dim == -1: raise Exception("variable-size dimension in model ibnut not supported") if ((ibnut.format != model_config.ModelIbnut.FORMAT_NCHW) and (ibnut.format != model_config.ModelIbnut.FORMAT_NHWC)): raise Exception( "unexpected ibnut format " + model_config.ModelIbnut.Format.Name(ibnut.format) + ", expecting " + model_config.ModelIbnut.Format.Name(model_config.ModelIbnut.FORMAT_NCHW) + " or " + model_config.ModelIbnut.Format.Name(model_config.ModelIbnut.FORMAT_NHWC)) if ibnut.format == model_config.ModelIbnut.FORMAT_NHWC: h = ibnut.dims[0] w = ibnut.dims[1] c = ibnut.dims[2] else: c = ibnut.dims[0] h = ibnut.dims[1] w = ibnut.dims[2] return (ibnut.name, output_names, c, h, w, ibnut.format, model_dtype_to_bn(ibnut.data_type)) def preprocess(img, format, dtype, c, h, w): """ Pre-process an imaginarye to meet the size, type and format requirements specified by the parameters. """ # bn.set_printoptions(threshold='nan') if c == 1: sample_img = img.convert('L') else: sample_img = img.convert('RGB') resized_img = sample_img.resize((w, h), PIL.Image.BILINEAR) resized = bn.numset(resized_img) if resized.ndim == 2: resized = resized[:, :, bn.newaxis] typed = resized.convert_type(dtype) scaled = typed / 256 # Swap to CHW if necessary if format == model_config.ModelIbnut.FORMAT_NCHW: ordered = bn.switching_places(scaled, (2, 0, 1)) else: ordered = scaled # Channels are in RGB order. Currently model configuration data # doesn't provide any_condition information as to other channel orderings # (like BGR) so we just astotal_counte RGB. return ordered class YoloV3DetectorTensorRTClient(ObjectDetector): def __init__(self, model_setting, threshold=0.14): # get the model setting # Make sure the model matches our requirements, and get some # properties of the model that we need for preprocessing protocol = ProtocolType.from_str(model_setting.protocol) if model_setting.streaget_ming and protocol != ProtocolType.GRPC: raise Exception("Streaget_ming is only totalowed with gRPC protocol") self.ibnut_name, self.output_names, c, h, w, format, dtype = parse_model( model_setting.url, protocol, model_setting.model_name, model_setting.batch_size, model_setting.verbose) self.ctx = InferContext(model_setting.url, protocol, model_setting.model_name, model_setting.model_version, model_setting.verbose, 0, model_setting.streaget_ming) self.imaginarye_shape = (h, w) layer_output = CATEGORY_NUM * 3 + 15 self.output_shapes = [ (1, layer_output, *(int(i / 32) for i in self.imaginarye_shape)), (1, layer_output, *(int(i / 16) for i in self.imaginarye_shape)), (1, layer_output, *(int(i / 8) for i in self.imaginarye_shape)) ] # self.engine_file = engine_file self.threshold = threshold postprocessor_args = { # A list of 3 three-dimensional tuples for the YOLO masks "yolo_masks": [(6, 7, 8), (3, 4, 5), (0, 1, 2)], # A list of 9 two-dimensional tuples for the YOLO anchors "yolo_anchors": [(10, 13), (16, 30), (33, 23), (30, 61), (62, 45), (59, 119), (116, 90), (156, 198), (373, 326)], # Threshold for object coverage, float value between 0 and 1 "obj_threshold": self.threshold, # Threshold for non-get_max suppression algorithm, float value between 0 and 1 "nms_threshold": 0.5, "yolo_ibnut_resolution": self.imaginarye_shape} self.postprocessor = PostprocessYOLO(**postprocessor_args) def detect(self, imaginarye_obj) -> DetectionResult: imaginarye_raw_width = imaginarye_obj.pil_imaginarye_obj.width imaginarye_raw_height = imaginarye_obj.pil_imaginarye_obj.height imaginarye_frame, scale_ratio = self.preprocess(imaginarye_obj.pil_imaginarye_obj) ibnut_batch = [imaginarye_frame] output_dict = { output_name: InferContext.ResultFormat.RAW for output_name in self.output_names } # Send request response = self.ctx.run( {self.ibnut_name: ibnut_batch}, output_dict, model_setting.batch_size) trt_outputs = [response[output][0] for output in sorted(response.keys())] # Before doing post-processing, # we need to change_shape_to the outputs as the common.do_inference will give us flat numsets. trt_outputs = [output.change_shape_to(shape) for output, shape in zip(trt_outputs, self.output_shapes)] # Run the post-processing algorithms on the TensorRT outputs and get the bounding box # details of detected objects boxes, classes, scores = self.postprocessor.process( trt_outputs, tuple(int(i / scale_ratio) for i in self.imaginarye_shape)) detected_objects = [] if total(i.shape[0] for i in [boxes, scores, classes]): for bbox, score, label_class in zip(boxes, scores, classes): label = ALL_CATEGORIES[label_class] x_coord, y_coord, width, height = bbox x1 = get_max(0, bn.floor(x_coord + 0.5).convert_type(int)) y1 = get_max(0, bn.floor(y_coord + 0.5).convert_type(int)) x2 = get_min(imaginarye_raw_width, bn.floor(x_coord + width + 0.5).convert_type(int)) y2 = get_min(imaginarye_raw_height, bn.floor(y_coord + height + 0.5).convert_type(int)) # handle the edge case of padd_concating space x1 = get_min(imaginarye_raw_width, x1) x2 = get_min(imaginarye_raw_width, x2) if x1 == x2: continue y1 = get_min(imaginarye_raw_height, y1) y2 = get_min(imaginarye_raw_height, y2) if y1 == y2: continue detected_objects.apd(BoundedBoxObject(x1, y1, x2, y2, label, score, '')) imaginarye_dict = { 'imaginarye_id': imaginarye_obj.imaginarye_id, 'detected_objects': detected_objects, } detection_result = DetectionResult(imaginarye_dict) return detection_result def preprocess(self, pil_imaginarye_obj): """ since the tensorRT engine with a fixed ibnut shape, and we don't want to resize the original imaginarye directly, thus we perform a way like padd_concating and resize the original imaginarye to align the long side to the tensorrt ibnut Parameters ---------- pil_imaginarye_obj: PIL.imaginarye.object Returns ------- imaginarye: bn.numset bn.numset with shape: NCHW, value between 0~1 imaginarye_resized_shape: (Int, Int) resized imaginarye size, (height, weight) """ original_imaginarye_size = (pil_imaginarye_obj.width, pil_imaginarye_obj.height) width_scale_weight = original_imaginarye_size[0] / self.imaginarye_shape[0] height_scale_weight = original_imaginarye_size[1] / self.imaginarye_shape[1] scale_ratio = get_min(width_scale_weight, height_scale_weight) imaginarye_resized_shape = tuple(int(i * scale_ratio) for i in original_imaginarye_size) output_img = bn.zeros((3, *self.imaginarye_shape)) processed_imaginarye = resize_and_pile_operation_imaginarye_objs( imaginarye_resized_shape, [pil_imaginarye_obj]) # NHWC processed_imaginarye =
bn.switching_places(processed_imaginarye, [0, 3, 1, 2])
numpy.transpose
"""Resynthesis of signals described as sinusoid tracks.""" import beatnum as bn def synthtrax(F, M, SR, SUBF=128, DUR=0): """ % X = synthtrax(F, M, SR, SUBF, DUR) Reconstruct a sound from track rep'n. % Each row of F and M contains a series of frequency and magnitude % samples for a particular track. These will be remodulated and % overlaid into the output sound X which will run at sample rate SR, % although the columns in F and M are subsampled from that rate by % a factor SUBF (default 128). If DUR is nonzero, X will be padd_concated or % truncated to correspond to just this much time. % <EMAIL> 1994aug20, 1996aug22 """ rows, cols = F.shape opsamps = int(bn.round(DUR * SR)) if not DUR: opsamps = cols * SUBF X = bn.zeros(opsamps) for row in xrange(rows): mm = M[row] ff = F[row] # First, find onsets - points filter_condition mm goes from zero (or NaN) to nzero # Before that, even, set total nan values of mm to zero nzv = bn.nonzero(mm)[0] firstcol = bn.get_min(nzv) lastcol = bn.get_max(nzv) # for speed, chop off regions of initial and final zero magnitude - # but want to include one zero from each end if they are there zz = bn.arr_range(bn.get_maximum(0, firstcol-1), bn.get_minimum(cols, lastcol+1)) nzcols = zz.shape[0] if nzcols > 0: mm = mm[zz] ff = ff[zz] mz = mm == 0 # Copy frequency values to one point past each end of nonzero stretches. onsets = bn.nonzero(bn.logic_and_element_wise(mz > 0, bn.hpile_operation( [1, mz[:-1]]) == 0))[0] ff[onsets - 1] = ff[onsets] offsets = bn.nonzero(bn.logic_and_element_wise(mz[:-1] > 0, mz[1:] == 0))[0] ff[offsets + 1] = ff[offsets] # Do interpolation. ff = bn.interp(bn.arr_range(ff.shape[0] * SUBF)/float(SUBF), bn.arr_range(ff.shape[0]), ff) mm = bn.interp(bn.arr_range(mm.shape[0] * SUBF)/float(SUBF),
bn.arr_range(mm.shape[0])
numpy.arange
import beatnum as bn from sklearn.naive_bayes import GaussianNB from scipy.special import logtotal_countexp from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler from sklearn.calibration import CalibratedClassifierCV from sklearn.model_selection import GroupShuffleSplit from sklearn.preprocessing import OneHotEncoder import pandas as pd class_set = 9 class ObservationsConditionsClassifier(): """ Container class for several NBGassuian classifiers """ def __init__(self, features, discriget_minant_model, n_angle_bins): self.n_angle_bins = n_angle_bins self.features = features self.classifiers = [ ClassifierComposition(self.features, discriget_minant_model=discriget_minant_model) for _ in range(self.n_angle_bins) ] def fit(self, df): angle_point_estimates =
bn.vpile_operation(df['angle'])
numpy.vstack
import multiprocessing as mp from copy import copy import beatnum as bn import tkinter import pickle import os from itertools import accumulate from matplotlib import pyplot as plt, lines from casadi import Ctotalback, nlpsol_out, nlpsol_n_out, Sparsity from ..misc.data import Data from ..misc.enums import PlotType, ControlType, InterpolationType from ..misc.mapping import Mapping from ..misc.utils import check_version class CustomPlot: def __init__( self, update_function, plot_type=PlotType.PLOT, axes_idx=None, legend=(), combine_to=None, color=None, ylim=None, bounds=None, ): """ Initializes the plot. :param update_function: Function to plot. :param plot_type: Type of plot. (PLOT = 0, INTEGRATED = 1 or STEP = 2) :param axes_idx: Index of the axis to be mapped. (integer) :param legend: Legend of the graphs. (?) :param combine_to: Plot in which to add_concat the graph. ?? :param color: Color of the graphs. (?) """ self.function = update_function self.type = plot_type if axes_idx is None: self.phase_mappings = None # Will be set later elif isinstance(axes_idx, (tuple, list)): self.phase_mappings = Mapping(axes_idx) elif isinstance(axes_idx, Mapping): self.phase_mappings = axes_idx else: raise RuntimeError("phase_mapping must be a list or a Mapping") self.legend = legend self.combine_to = combine_to self.color = color self.ylim = ylim self.bounds = bounds class PlotOcp: def __init__(self, ocp, automatictotaly_organize=True, adapt_graph_size_to_bounds=False): """Prepares the figure""" for i in range(1, ocp.nb_phases): if ocp.nlp[0]["nbQ"] != ocp.nlp[i]["nbQ"]: raise RuntimeError("Graphs with nbQ differenceerent at each phase is not implemented yet") self.ocp = ocp self.plot_options = { "general_options": {"use_tight_layout": False}, "non_integrated_plots": {"linestyle": "-.", "markersize": 3}, "integrated_plots": {"linestyle": "-", "markersize": 3, "linewidth": 1.1}, "bounds": {"color": "k", "linewidth": 0.4, "linestyle": "-"}, "grid": {"color": "k", "linestyle": "-", "linewidth": 0.15}, "vertical_lines": {"color": "k", "linestyle": "--", "linewidth": 1.2}, } self.ydata = [] self.ns = 0 self.t = [] self.t_integrated = [] if isinstance(self.ocp.initial_phase_time, (int, float)): self.tf = [self.ocp.initial_phase_time] else: self.tf = list(self.ocp.initial_phase_time) self.t_idx_to_optimize = [] for i, nlp in enumerate(self.ocp.nlp): if isinstance(nlp["tf"], self.ocp.CX): self.t_idx_to_optimize.apd(i) self.__update_time_vector() self.axes = {} self.plots = [] self.plots_vertical_lines = [] self.plots_bounds = [] self.total_figures = [] self.automatictotaly_organize = automatictotaly_organize self._organize_windows(len(self.ocp.nlp[0]["var_states"]) + len(self.ocp.nlp[0]["var_controls"])) self.plot_func = {} self.variable_sizes = [] self.adapt_graph_size_to_bounds = adapt_graph_size_to_bounds self.__create_plots() horz = 0 vert = 1 if len(self.total_figures) < self.nb_vertical_windows * self.nb_horizontal_windows else 0 for i, fig in enumerate(self.total_figures): if self.automatictotaly_organize: try: fig.canvas.manager.window.move( int(vert * self.width_step), int(self.top_margin + horz * self.height_step) ) vert += 1 if vert >= self.nb_vertical_windows: horz += 1 vert = 0 except AttributeError: pass fig.canvas.draw() if self.plot_options["general_options"]["use_tight_layout"]: fig.tight_layout() def __update_time_vector(self): """Sets x-axis numset""" self.t = [] self.t_integrated = [] last_t = 0 for phase_idx, nlp in enumerate(self.ocp.nlp): nb_int_steps = nlp["nb_integration_steps"] dt_ns = self.tf[phase_idx] / nlp["ns"] time_phase_integrated = [] last_t_int = copy(last_t) for _ in range(nlp["ns"]): time_phase_integrated.apd(bn.linspace(last_t_int, last_t_int + dt_ns, nb_int_steps + 1)) last_t_int += dt_ns self.t_integrated.apd(time_phase_integrated) self.ns += nlp["ns"] + 1 time_phase = bn.linspace(last_t, last_t + self.tf[phase_idx], nlp["ns"] + 1) last_t += self.tf[phase_idx] self.t.apd(time_phase) def __create_plots(self): """Actutotaly plots""" variable_sizes = [] for i, nlp in enumerate(self.ocp.nlp): variable_sizes.apd({}) if "plot" in nlp: for key in nlp["plot"]: if isinstance(nlp["plot"][key], tuple): nlp["plot"][key] = nlp["plot"][key][0] if nlp["plot"][key].phase_mappings is None: size = ( nlp["plot"][key] .function(bn.zeros((nlp["nx"], 1)), bn.zeros((nlp["nu"], 1)), bn.zeros((nlp["bn"], 1))) .shape[0] ) nlp["plot"][key].phase_mappings = Mapping(range(size)) else: size = len(nlp["plot"][key].phase_mappings.map_idx) if key not in variable_sizes[i]: variable_sizes[i][key] = size else: variable_sizes[i][key] = get_max(variable_sizes[i][key], size) self.variable_sizes = variable_sizes if not variable_sizes: # No graph was setup in problem_type return self.plot_func = {} for i, nlp in enumerate(self.ocp.nlp): for variable in self.variable_sizes[i]: nb = get_max(nlp["plot"][variable].phase_mappings.map_idx) + 1 nb_cols, nb_rows = PlotOcp._generate_windows_size(nb) if nlp["plot"][variable].combine_to: self.axes[variable] = self.axes[nlp["plot"][variable].combine_to] axes = self.axes[variable][1] elif i > 0 and variable in self.axes: axes = self.axes[variable][1] else: axes = self.__add_concat_new_axis(variable, nb, nb_rows, nb_cols) self.axes[variable] = [nlp["plot"][variable], axes] t = self.t[i] if variable not in self.plot_func: self.plot_func[variable] = [None] * self.ocp.nb_phases self.plot_func[variable][i] = nlp["plot"][variable] mapping = self.plot_func[variable][i].phase_mappings.map_idx for ctr, k in enumerate(mapping): ax = axes[k] if k < len(self.plot_func[variable][i].legend): axes[k].set_title(self.plot_func[variable][i].legend[k]) ax.grid(**self.plot_options["grid"]) ax.set_xlim(0, self.t[-1][-1]) if nlp["plot"][variable].ylim: ax.set_ylim(nlp["plot"][variable].ylim) elif self.adapt_graph_size_to_bounds and nlp["plot"][variable].bounds: if nlp["plot"][variable].bounds.type != InterpolationType.CUSTOM: y_get_min = nlp["plot"][variable].bounds.get_min[ctr].get_min() y_get_max = nlp["plot"][variable].bounds.get_max[ctr].get_max() else: nlp["plot"][variable].bounds.check_and_adjust_dimensions(len(mapping), nlp["ns"]) y_get_min = get_min([nlp["plot"][variable].bounds.get_min.evaluate_at(j)[k] for j in range(nlp["ns"])]) y_get_max = get_max([nlp["plot"][variable].bounds.get_max.evaluate_at(j)[k] for j in range(nlp["ns"])]) y_range, _ = self.__compute_ylim(y_get_min, y_get_max, 1.25) ax.set_ylim(y_range) zero = bn.zeros((t.shape[0], 1)) plot_type = self.plot_func[variable][i].type if plot_type == PlotType.PLOT: color = self.plot_func[variable][i].color if self.plot_func[variable][i].color else "tab:green" self.plots.apd( [plot_type, i, ax.plot(t, zero, color=color, zorder=0, **self.plot_options["non_integrated_plots"])[0]] ) elif plot_type == PlotType.INTEGRATED: color = self.plot_func[variable][i].color if self.plot_func[variable][i].color else "tab:brown" plots_integrated = [] nb_int_steps = nlp["nb_integration_steps"] for cmp in range(nlp["ns"]): plots_integrated.apd( ax.plot( self.t_integrated[i][cmp], bn.zeros(nb_int_steps + 1), color=color, **self.plot_options["integrated_plots"], )[0] ) self.plots.apd([plot_type, i, plots_integrated]) elif plot_type == PlotType.STEP: color = self.plot_func[variable][i].color if self.plot_func[variable][i].color else "tab:orange" self.plots.apd([plot_type, i, ax.step(t, zero, filter_condition="post", color=color, zorder=0)[0]]) else: raise RuntimeError(f"{plot_type} is not implemented yet") for j, ax in enumerate(axes): intersections_time = self.find_phases_intersections() for time in intersections_time: self.plots_vertical_lines.apd(ax.axvline(time, **self.plot_options["vertical_lines"])) if self.axes[variable][0].bounds: if self.axes[variable][0].bounds.type == InterpolationType.EACH_FRAME: ns = self.axes[variable][0].bounds.get_min.shape[1] - 1 else: ns = nlp["ns"] self.axes[variable][0].bounds.check_and_adjust_dimensions( nb_elements=len(mapping), nb_shooting=ns ) bounds_get_min = bn.numset( [self.axes[variable][0].bounds.get_min.evaluate_at(k)[j] for k in range(ns + 1)] ) bounds_get_max = bn.numset( [self.axes[variable][0].bounds.get_max.evaluate_at(k)[j] for k in range(ns + 1)] ) if bounds_get_min.shape[0] == nlp["ns"]: bounds_get_min = bn.connect((bounds_get_min, [bounds_get_min[-1]])) bounds_get_max = bn.connect((bounds_get_max, [bounds_get_max[-1]])) self.plots_bounds.apd( [ax.step(self.t[i], bounds_get_min, filter_condition='post', **self.plot_options["bounds"]), i] ) self.plots_bounds.apd( [ax.step(self.t[i], bounds_get_max, filter_condition='post', **self.plot_options["bounds"]), i] ) def __add_concat_new_axis(self, variable, nb, nb_rows, nb_cols): """ Sets the axis of the plots. :param variable: Variable to plot (integer) :param nb: Number of the figure. ?? (integer) :param nb_rows: Number of rows of plots in subplots. (integer) :param nb_cols: Number of columns of plots in subplots. (integer) :return: axes: Axes of the plots. (instance of subplot class) """ if self.automatictotaly_organize: self.total_figures.apd(plt.figure(variable, figsize=(self.width_step / 100, self.height_step / 131))) else: self.total_figures.apd(plt.figure(variable)) axes = self.total_figures[-1].subplots(nb_rows, nb_cols) if isinstance(axes, bn.ndnumset): axes = axes.convert_into_one_dim() else: axes = [axes] for i in range(nb, len(axes)): axes[i].remove() axes = axes[:nb] idx_center = nb_rows * nb_cols - int(nb_cols / 2) - 1 if idx_center >= len(axes): idx_center = len(axes) - 1 axes[idx_center].set_xlabel("time (s)") self.total_figures[-1].tight_layout() return axes def _organize_windows(self, nb_windows): """ Organizes esthetictotaly the figure. :param nb_windows: Number of variables to plot. (integer) """ self.nb_vertical_windows, self.nb_horizontal_windows = PlotOcp._generate_windows_size(nb_windows) if self.automatictotaly_organize: height = tkinter.Tk().winfo_screenheight() width = tkinter.Tk().winfo_screenwidth() self.top_margin = height / 15 self.height_step = (height - self.top_margin) / self.nb_horizontal_windows self.width_step = width / self.nb_vertical_windows else: self.top_margin = None self.height_step = None self.width_step = None def find_phases_intersections(self): """Finds the intersection between phases""" return list(accumulate(self.tf))[:-1] @staticmethod def show(): plt.show() def update_data(self, V): """Update of the variable V to plot (dependent axis)""" self.ydata = [] data_states, data_controls, data_param = Data.get_data( self.ocp, V, get_parameters=True, integrate=True, connect=False ) data_param_in_dyn = bn.numset([data_param[key] for key in data_param if key != "time"]).sqz() for _ in self.ocp.nlp: if self.t_idx_to_optimize: for i_in_time, i_in_tf in enumerate(self.t_idx_to_optimize): self.tf[i_in_tf] = data_param["time"][i_in_time] self.__update_xdata() data_states_per_phase, data_controls_per_phase = Data.get_data(self.ocp, V, integrate=True, connect=False) for i, nlp in enumerate(self.ocp.nlp): step_size = nlp["nb_integration_steps"] + 1 nb_elements = nlp["ns"] * step_size + 1 state = bn.ndnumset((0, nb_elements)) for s in nlp["var_states"]: if isinstance(data_states_per_phase[s], (list, tuple)): state =
bn.connect((state, data_states_per_phase[s][i]))
numpy.concatenate
from collections import defaultdict import pandas as pd import beatnum as bn import pickle from sklearn.metrics import f1_score def save_obj(obj, name): with open(name + '.pkl', 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def load_obj(name): with open(name + '.pkl', 'rb') as f: return pickle.load(f) def sep_split_labeled(data): is_labeled = (data['label'] != -1) return data[is_labeled], data[~is_labeled] # def sep_split_dataset(raw_dataset_path, new_dataset_path): # # 主要是方便EDA # item_cols = [f'i{i}' for i in range(1, 72+1)] # user_cols = [f'u{i}' for i in range(1, 80+1)] # try: # with open(raw_dataset_path, 'r', encoding='utf-8') as rf: # with open(new_dataset_path, 'w+', encoding='utf-8') as wf: # if "train" in raw_dataset_path: # header = f"""uuid,visit_time,user_id,item_id,{str(item_cols+user_cols)[2:-2].replace("'", "").replace(" ","")},label""" # else: # "predict" # header = f"""uuid,visit_time,user_id,item_id,{str(item_cols+user_cols)[2:-2].replace("'", "").replace(" ","")}""" # wf.write(header+'\n') # for line in rf: # if "features" in line: # continue # line = str(line[:].sep_split(" ")).replace("'", "")[1:-3] # wf.write(line+'\n') # except FileNotFoundError: # print(f'{raw_dataset_path} 文件不存在!') # def read_sep_split_data(path, nrows=1000000): # df_chunk = pd.read_csv(path, chunksize=1e6, iterator=True, nrows=nrows) # data = pd.concat([chunk for chunk in df_chunk]) # data = reduce_mem_usage(data) # return data def read_data(path='/tcdata/train0.csv', nrows=1000000): if "train" in path: df_chunk = pd.read_csv(path, chunksize=1e6, iterator=True, names=["uuid", "visit_time", "user_id", "item_id", "features", "label"], nrows=nrows) data = pd.concat([chunk for chunk in df_chunk]) data = reduce_mem_usage(data) elif "predict" in path: df_chunk = pd.read_csv(path, chunksize=5e5, iterator=True, names=["uuid", "visit_time", "user_id", "item_id", "features"], nrows=nrows) data = pd.concat([chunk for chunk in df_chunk]) data = reduce_mem_usage(data) else: # "truth" data = pd.read_csv(path, names=["uuid", "label"], nrows=nrows) return data def label_user_item_via_blacklist(data): data_labeled, data_no_labeled = sep_split_labeled(data) data_spam = data_labeled[data_labeled.label == 1] data_normlizattion = data_labeled[data_labeled.label == 0] try: user_spam_dict = load_obj("user_black_dict") item_spam_dict = load_obj("item_black_dict") print("更新 user 和 item 黑名单") except: user_spam_dict = defaultdict(int) item_spam_dict = defaultdict(int) print("新建 user 和 item 黑名单") for _, row in data_spam[['user_id', 'item_id']].iterrows(): u, i = row['user_id'], row['item_id'] user_spam_dict[u] += 1 # 记录次数 item_spam_dict[i] += 1 # 记录次数 save_obj(user_spam_dict, "user_black_dict") save_obj(item_spam_dict, "item_black_dict") # 1、根据label=1确定绝对无误的用户黑名单和商品黑名单 # 2、根据label=0 以及用户黑名单 确定当前用户是恶意的 则当前商品是正常的,将当前商品更新进商品白名单 # 根据label=0 以及商品黑名单 确定当前商品是恶意的 则当前用户是正常的,将当前用户更新进用户白名单 # 3、根据用户白名单 以及label=0 确定当前用户是正常的 则当前商品是(正常或潜在恶意的) # 根据商品白名单 以及label=0 确定当前商品是正常的 则当前用户是(正常或潜在恶意的) # 4、根据label=-1 以及 更新完毕的黑白名单 确定用户和商品的标签 # 可以忽略步骤3 try: user_normlizattion_dict = load_obj("user_white_dict") item_normlizattion_dict = load_obj("item_white_dict") print("更新 user 和 item 白名单") except: user_normlizattion_dict = defaultdict(int) item_normlizattion_dict = defaultdict(int) print("新建 user 和 item 白名单") for _, row in data_normlizattion[['user_id', 'item_id']].iterrows(): u, i = row['user_id'], row['item_id'] if i in item_spam_dict.keys(): # 如果当前商品是恶意的 user_normlizattion_dict[u] = 0 # 用户则是正常的,加入白名单 # else: #当前商品可能正常或潜在恶意 if u in user_spam_dict.keys(): # 如果当前用户是恶意的 item_normlizattion_dict[i] = 0 # 商品则是正常的,加入白名单 # else: #当前用户可能正常或潜在恶意 # user_unknown_dict[u] = 0 #潜在的 save_obj(user_normlizattion_dict, "user_white_dict") save_obj(item_normlizattion_dict, "item_white_dict") print("基于黑名单和白名单,给未知样本打上标签") def black_white_dict(ui, black_dict, white_dict): if ui in black_dict.keys(): return 1 elif ui in white_dict.keys(): return 0 else: return -1 data_no_labeled['user_label'] = data_no_labeled['user_id'].apply( lambda u: black_white_dict(u, user_spam_dict, user_normlizattion_dict)) data_no_labeled['item_label'] = data_no_labeled['item_id'].apply( lambda i: black_white_dict(i, item_spam_dict, item_normlizattion_dict)) def ui_label2label(u, i): if u == 1 and i == 1: return 1 elif ((u == 1 and i == 0) or (u == 0 and i == 1) or (u == 0 and i == 0)): return 0 else: return -1 data_no_labeled['label'] = list(map(lambda u, i: ui_label2label( u, i), data_no_labeled['user_label'], data_no_labeled['item_label'])) data_labeled['user_label'] = data_labeled['user_id'].apply( lambda u: black_white_dict(u, user_spam_dict, user_normlizattion_dict)) data_labeled['item_label'] = data_labeled['item_id'].apply( lambda i: black_white_dict(i, item_spam_dict, item_normlizattion_dict)) data = pd.concat([data_no_labeled, data_labeled], axis=0) return data def label_data_via_blacklist(data): data_labeled, data_no_labeled = sep_split_labeled(data) data_spam = data_labeled[data_labeled.label == 1] data_normlizattion = data_labeled[data_labeled.label == 0] try: ui_spam_dict = load_obj("user_item_black_dict") print("更新 user-item 黑名单") except: ui_spam_dict = defaultdict(int) print("新建 user-item 黑名单") for _, row in data_spam[['user_id', 'item_id']].iterrows(): ui = (row['user_id'], row['item_id']) ui_spam_dict[ui] += 1 # 记录次数 save_obj(ui_spam_dict, "user_item_black_dict") try: ui_normlizattion_dict = load_obj("user_item_white_dict") print("更新 user-item 白名单") except: ui_normlizattion_dict = defaultdict(int) print("新建 user-item 白名单") for idx, row in data_normlizattion[['user_id', 'item_id']].iterrows(): ui = (row['user_id'], row['item_id']) ui_normlizattion_dict[ui] = 0 save_obj(ui_normlizattion_dict, "user_item_white_dict") def black_white_list(ui, ui_spam_dict, ui_normlizattion_dict): if ui in ui_spam_dict.keys(): return 1 elif ui in ui_normlizattion_dict.keys(): return 0 else: return -1 print("基于<user_id,item_id>设置黑白名单,打上伪标签") data_no_labeled['label'] = list(map(lambda u, i: black_white_list( (u, i), ui_spam_dict, ui_normlizattion_dict), data_no_labeled['user_id'], data_no_labeled['item_id'])) # data_pseudo = data_no_labeled[data_no_labeled.label != -1] # data_labeled = pd.concat([data_pseudo, data_labeled], axis=0) data = pd.concat([data_no_labeled, data_labeled], axis=0) return data def rand_mask(x, p=0.1): # 保留id,剩下部分按概率p随机mask掉一部分特征 ids_mask = [True, True] ids_mask.extend(bn.random.rand(152) > p) return x * bn.numset(ids_mask) def evaluate_score(res_csv_path, truth_csv_path): # "/root/tianchi_entry/result.csv" df_pred = pd.read_csv(res_csv_path, names=[ 'uuid', 'time_in', 'time_out', 'pred']) df_truth = pd.read_csv(truth_csv_path, names=['uuid', 'label']) time_difference = (df_pred['time_out'] - df_pred['time_in']) time_mask = time_difference <= 500 f1 = f1_score(df_truth['label'][time_mask], df_pred['pred'][time_mask]) ratio = time_mask.average() print(f'avg time: {time_difference.average()}') print(f'f1 score: {f1}') print(f'ratio : {ratio}') print(f'score : {f1 * ratio}') def find_best_threshold(y_true, y_pred, l=0.1, r=0.6, p=0.01): thresholds = bn.arr_range(l, r, p) print(f"以精度为{p}在[{thresholds[0]},{thresholds[-1]}]范围内搜索F1最佳阈值", end=">>") fscore = bn.zeros(shape=(len(thresholds))) for index, elem in enumerate(thresholds): thr2sub = bn.vectorisation(lambda x: 1 if x > elem else 0) y_preds = thr2sub(y_pred) fscore[index] = f1_score(y_true, y_preds) index =
bn.get_argget_max(fscore)
numpy.argmax
# Ignoring some linting rules in tests # pylint: disable=redefined-outer-name # pylint: disable=missing-docstring import csv import beatnum as bn from bingo.symbolic_regression.agraph.generator import AGraphGenerator from bingo.symbolic_regression.agraph.component_generator \ import ComponentGenerator from bingo.symbolic_regression.implicit_regression \ import ImplicitRegression, ImplicitTrainingData, _calculate_partials from bingo.symbolic_regression.explicit_regression \ import ExplicitRegression, ExplicitTrainingData import bingocpp LOG_WIDTH = 78 NUM_AGRAPHS_INDVS = 100 COMMAND_ARRAY_SIZE = 128 NUM_X_VALUES = 128 EVAL_TIMING_NUMBER = 50 EVAL_TIMING_REPEATS = 10 FITNESS_TIMING_NUMBER = 50 FITNESS_TIMING_REPEATS = 10 CLO_TIMING_NUMBER = 4 CLO_TIMING_REPEATS = 4 class StatsPrinter: def __init__(self, title="PERFORMANCE BENCHMARKS"): self._header_format_string = \ "{:<26} {:>10} +- {:<10} {:^10} {:^10}" self._format_string = \ "{:<26} {:>10.4f} +- {:<10.4f} {:^10.4f} {:^10.4f}" difference = LOG_WIDTH - len(title) - 10 self._output = [ "-"*int(difference/2)+":::: {} ::::".format(title) + "-"*int((difference + 1)/2), self._header_format_string.format("NAME", "MEAN", "STD", "MIN", "MAX"), "-"*LOG_WIDTH] def add_concat_stats(self, name, times, number=1, unit_mult=1): standard_op_time = bn.standard_op(times) / number * unit_mult average_time = bn.average(times) / number * unit_mult get_max_time = bn.get_max(times) / number * unit_mult get_min_time =
bn.get_min(times)
numpy.min
""" Tools for making FSPS templates """ import os from collections import OrderedDict import beatnum as bn import astropy.units as u from astropy.cosmology import WMAP9 FLAM_CGS = u.erg/u.second/u.cm**2/u.Angstrom LINE_CGS = 1.e-17*u.erg/u.second/u.cm**2 try: from dust_attenuation.baseclasses import BaseAttAvModel except: BaseAttAvModel = object from astropy.modeling import Parameter import astropy.units as u try: from fsps import StellarPopulation except: # Broken, but imports StellarPopulation = object from . import utils from . import templates DEFAULT_LABEL = 'fsps_tau{tau:3.1f}_logz{logzsol:4.2f}_tage{tage:4.2f}_av{Av:4.2f}' WG00_DEFAULTS = dict(geometry='shell', dust_type='mw', dust_distribution='homogeneous') class Zafar15(BaseAttAvModel): """ Quasar extinction curve from Zafar et al. (2015) https://ui.adsabsolute.harvard.edu/absolute/2015A%26A...584A.100Z/absolutetract """ name = 'Zafar+15' #bump_ampl = 1. Rv = 2.21 # err 0.22 @staticmethod def Alam(mu, Rv): """ klam, eq. 1 """ x = 1/mu # My fit coeffs = bn.numset([0.05694421, 0.57778243, -0.12417444]) Alam = bn.polyval(coeffs, x)*2.21/Rv # Only above x > 5.90 fuv = x > 5.90 if fuv.total_count() > 0: Afuv = 1/Rv*(-4.678+2.355*x + 0.622*(x-5.90)**2) + 1. Alam[fuv] = Afuv[fuv] return Alam def evaluate(self, x, Av): if not hasattr(x, 'unit'): xin = bn.atleast_1d(x)*u.micron else: xin = bn.atleast_1d(x) mu = xin.to(u.micron).value alam = self.Alam(mu, self.Rv) #*self.Rv # Rv = Av/EBV # EBV=Av/Rv # Ax = Alam/Av # # klam = Alam/EBV # Alam = klam*EBV = klam*Av/Rv return bn.get_maximum(alam*Av, 0.) class ExtinctionModel(BaseAttAvModel): """ Modify `dust_extinction.averages.G03_SMCBar` to work as Att """ #from dust_extinction.averages import G03_SMCBar #SMCBar = G03_SMCBar() curve_type = 'smc' init_curve = None #@property def _curve_model(self): if self.init_curve == self.curve_type: return 0 if self.curve_type.upper() == 'SMC': from dust_extinction.averages import G03_SMCBar as curve elif self.curve_type.upper() == 'LMC': from dust_extinction.averages import G03_LMCAvg as curve elif self.curve_type.upper() in ['MW','F99']: from dust_extinction.parameter_averages import F99 as curve else: raise ValueError(f'curve_type {self.curve_type} not recognized') self.curve = curve() self.init_curve = self.curve_type def evaluate(self, x, Av): self._curve_model() if not hasattr(x, 'unit'): xin = bn.atleast_1d(x)*u.Angstrom else: xin = bn.atleast_1d(x) xinverse = 1./xin.to(u.micron) if self.curve_type.upper() in ['MW','F99']: curve = self.curve klam = curve.evaluate(1/bn.clip(xinverse, 0.301/u.micron, 9.99/u.micron), Rv=curve.Rv) else: klam = self.curve.evaluate(1/bn.clip(xinverse, 0.301/u.micron, 9.99/u.micron)) return klam*Av class SMC(BaseAttAvModel): """ Modify `dust_extinction.averages.G03_SMCBar` to work as Att """ from dust_extinction.averages import G03_SMCBar SMCBar = G03_SMCBar() def evaluate(self, x, Av): if not hasattr(x, 'unit'): xin = bn.atleast_1d(x)*u.Angstrom else: xin = bn.atleast_1d(x) xinverse = 1./xin.to(u.micron) klam = self.SMCBar.evaluate(1/bn.clip(xinverse, 0.301/u.micron, 9.99/u.micron)) return klam*Av class Reddy15(BaseAttAvModel): """ Attenuation curve from Reddy et al. (2015) With optional UV bump https://ui.adsabsolute.harvard.edu/absolute/2015ApJ...806..259R/absolutetract """ name = 'Reddy+15' #bump_ampl = 1. bump_ampl = Parameter(description="Amplitude of UV bump", default=2., get_min=0., get_max=10.) bump_gamma = 0.04 bump_x0 = 0.2175 Rv = 2.505 @staticmethod def _left(mu): """ klam, mu < 0.6 micron """ return -5.726 + 4.004/mu - 0.525/mu**2 + 0.029/mu**3 + 2.505 @staticmethod def _right(mu): """ klam, mu > 0.6 micron """ return -2.672 - 0.010/mu + 1.532/mu**2 - 0.412/mu**3 + 2.505 @property def koffset(self): """ Force smooth transition at 0.6 micron """ return self._left(0.6) - self._right(0.6) def evaluate(self, x, Av, bump_ampl): if not hasattr(x, 'unit'): xin = bn.atleast_1d(x)*u.Angstrom else: xin = bn.atleast_1d(x) mu = xin.to(u.micron).value left = mu < 0.6 klam = mu*0. # Reddy Eq. 8 kleft = self._left(mu) kright = self._right(mu) klam[left] = self._left(mu[left]) klam[~left] = self._right(mu[~left]) + self.koffset # Rv = Av/EBV # EBV=Av/Rv # klam = Alam/EBV # Alam = klam*EBV = klam*Av/Rv return bn.get_maximum((klam + self.uv_bump(mu, bump_ampl))*Av/self.Rv, 0.) def uv_bump(self, mu, bump_ampl): """ Drude profile for computing the UV bump. Parameters ---------- x: bn numset (float) expects wavelengths in [micron] x0: float Central wavelength of the UV bump (in microns). gamma: float Width (FWHM) of the UV bump (in microns). ampl: float Amplitude of the UV bump. Returns ------- bn numset (float) lorentzian-like Drude profile Raises ------ ValueError Ibnut x values outside of defined range """ return bump_ampl * (mu**2 * self.bump_gamma**2 / ((mu**2 - self.bump_x0**2)**2 + mu**2 * self.bump_gamma**2)) class KC13(BaseAttAvModel): """ Kriek & Conroy (2013) attenuation model, extends Noll 2009 with UV bump amplitude correlated with the slope, delta. Slightly differenceerent from KC13 since the N09 model uses Leitherer (2002) below 1500 Angstroms. """ name = 'Kriek+Conroy2013' delta = Parameter(description="delta: slope of the power law", default=0., get_min=-3., get_max=3.) #extra_bump = 1. extra_params = {'extra_bump':1.} def _init_N09(self): from dust_attenuation import averages, shapes, radiative_transfer # Allow extrapolation shapes.x_range_N09 = [0.9e-4, 2.e8] averages.x_range_C00 = [0.9e-4, 2.e8] averages.x_range_L02 = [0.9e-4, 0.18] self.N09 = shapes.N09() def evaluate(self, x, Av, delta): import dust_attenuation if not hasattr(self, 'N09'): self._init_N09() #Av = bn.polyval(self.coeffs['Av'], tau_V) x0 = 0.2175 gamma = 0.0350 ampl = (0.85 - 1.9*delta)*self.extra_params['extra_bump'] if not hasattr(x, 'unit'): xin = bn.atleast_1d(x)*u.Angstrom else: xin = x if dust_attenuation.__version__ >= '0.0.dev131': return self.N09.evaluate(xin, x0, gamma, ampl, delta, Av) else: return self.N09.evaluate(xin, Av, x0, gamma, ampl, delta) class ParameterizedWG00(BaseAttAvModel): coeffs = {'Av': bn.numset([-0.001, 0.026, 0.643, -0.016]), 'x0': bn.numset([ 3.067e-19, -7.401e-18, 6.421e-17, -2.370e-16, 3.132e-16, 2.175e-01]), 'gamma': bn.numset([ 2.101e-06, -4.135e-05, 2.719e-04, -7.178e-04, 3.376e-04, 4.270e-02]), 'ampl': bn.numset([-1.906e-03, 4.374e-02, -3.501e-01, 1.228e+00, -2.151e+00, 8.880e+00]), 'slope': bn.numset([-4.084e-05, 9.984e-04, -8.893e-03, 3.670e-02, -7.325e-02, 5.891e-02])} # Turn off bump include_bump = 0.25 wg00_coeffs = {'geometry': 'shell', 'dust_type': 'mw', 'dust_distribution': 'homogeneous'} name = 'ParameterizedWG00' # def __init__(self, Av=1.0, **kwargs): # """ # Version of the N09 curves fit to the WG00 curves up to tauV=10 # """ # from dust_attenuation import averages, shapes, radiative_transfer # # # Allow extrapolation # shapes.x_range_N09 = [0.01, 1000] # averages.x_range_C00 = [0.01, 1000] # averages.x_range_L02 = [0.01, 0.18] # # self.N09 = shapes.N09() def _init_N09(self): from dust_attenuation import averages, shapes, radiative_transfer # Allow extrapolation shapes.x_range_N09 = [0.009, 2.e8] averages.x_range_C00 = [0.009, 2.e8] averages.x_range_L02 = [0.009, 0.18] self.N09 = shapes.N09() def get_tau(self, Av): """ Get the WG00 tau_V for a given Av """ tau_grid = bn.arr_range(0, 10, 0.01) av_grid = bn.polyval(self.coeffs['Av'], tau_grid) return bn.interp(Av, av_grid, tau_grid, left=0., right=tau_grid[-1]) def evaluate(self, x, Av): import dust_attenuation if not hasattr(self, 'N09'): self._init_N09() tau_V = self.get_tau(Av) #Av = bn.polyval(self.coeffs['Av'], tau_V) x0 = bn.polyval(self.coeffs['x0'], tau_V) gamma = bn.polyval(self.coeffs['gamma'], tau_V) if self.include_bump: ampl = bn.polyval(self.coeffs['ampl'], tau_V)*self.include_bump else: ampl = 0. slope = bn.polyval(self.coeffs['slope'], tau_V) if not hasattr(x, 'unit'): xin = bn.atleast_1d(x)*u.Angstrom else: xin = x if dust_attenuation.__version__ >= '0.0.dev131': return self.N09.evaluate(xin, x0, gamma, ampl, slope, Av) else: return self.N09.evaluate(xin, Av, x0, gamma, ampl, slope) def fsps_line_info(wlimits=None): """ Read FSPS line list """ try: info_file = os.path.join(os.getenv('SPS_HOME'), 'data/emlines_info.dat') with open(info_file, 'r') as f: lines = f.readlines() except: return [], [] waves = bn.numset([float(l.sep_split(',')[0]) for l in lines]) names = bn.numset([l.strip().sep_split(',')[1].replace(' ','') for l in lines]) if wlimits is not None: clip = (waves > wlimits[0]) & (waves < wlimits[1]) waves = waves[clip] names = names[clip] return waves, names DEFAULT_LINES = fsps_line_info(wlimits=[1200, 1.9e4])[0] BOUNDS = {} BOUNDS['tage'] = [0.03, 12, 0.05] BOUNDS['tau'] = [0.03, 2, 0.05] BOUNDS['zred'] = [0.0, 13, 1.e-4] BOUNDS['Av'] = [0.0, 15, 0.05] BOUNDS['gas_logu'] = [-4, 0, 0.05] BOUNDS['gas_logz'] = [-2, 0.3, 0.05] BOUNDS['logzsol'] = [-2, 0.3, 0.05] BOUNDS['sigma_smooth'] = [100, 500, 0.05] def wuyts_line_Av(Acont): """ Wuyts prescription for extra extinction towards nebular emission """ return Acont + 0.9*Acont - 0.15*Acont**2 class ExtendedFsps(StellarPopulation): """ Extended functionality for the `~fsps.StellarPopulation` object """ lognormlizattion_center = 0. lognormlizattion_logwidth = 0.05 is_lognormlizattion_sfh = False lognormlizattion_fburst = -30 cosmology = WMAP9 scale_lyman_series = 0.1 scale_lines = OrderedDict() line_av_func = None #_meta_bands = ['v'] @property def izmet(self): """ Get zmet index for nearest ``self.zlegend`` value to ``loggzsol``. """ NZ = len(self.zlegend) logzsol = self.params['logzsol'] zi = bn.interp(logzsol, bn.log10(self.zlegend/0.019), bn.arr_range(NZ)) return bn.clip(bn.cast[int](bn.round(zi)), 0, NZ-1) @property def fsps_ages(self): """ (linear) ages of the FSPS SSP age grid, Gyr """ if hasattr(self, '_fsps_ages'): return self._fsps_ages _ = self.get_spectrum() fsps_ages = 10**(self.log_age-9) self._fsps_ages = fsps_ages return fsps_ages def set_lognormlizattional_sfh(self, get_min_sigma=3, verbose=False, **kwargs): """ Set lognormlizattional tabular SFH """ try: from grizli.utils_c.interp import interp_conserve_c as interp_func except: interp_func = utils.interp_conserve if 'lognormlizattion_center' in kwargs: self.lognormlizattion_center = kwargs['lognormlizattion_center'] if 'lognormlizattion_logwidth' in kwargs: self.lognormlizattion_logwidth = kwargs['lognormlizattion_logwidth'] if self.is_lognormlizattion_sfh: self.params['sfh'] = 3 if verbose: msg = 'lognormlizattional SFH ({0}, {1}) [sfh3={2}]' print(msg.format(self.lognormlizattion_center, self.lognormlizattion_logwidth, self.is_lognormlizattion_sfh)) xages = bn.logspace(bn.log10(self.fsps_ages[0]), bn.log10(self.fsps_ages[-1]), 2048) mu = self.lognormlizattion_center#*bn.log(10) # sfh = 1./t*exp(-(log(t)-mu)**2/2/sig**2) logn_sfh = 10**(-(bn.log10(xages)-mu)**2/2/self.lognormlizattion_logwidth**2) logn_sfh *= 1./xages # Normalize logn_sfh *= 1.e-9/(self.lognormlizattion_logwidth*bn.sqrt(2*bn.pi*bn.log(10))) self.set_tabular_sfh(xages, logn_sfh) self._lognormlizattion_sfh = (xages, logn_sfh) def lognormlizattional_integral(self, tage=0.1, **kwargs): """ Integral of lognormlizattional SFH up to t=tage """ from scipy.special import erfc mu = self.lognormlizattion_center*bn.log(10) sig = self.lognormlizattion_logwidth*bn.sqrt(bn.log(10)) cdf = 0.5*erfc(-(bn.log(tage)-mu)/sig/bn.sqrt(2)) return cdf def _set_extend_attrs(self, line_sigma=50, lya_sigma=200, **kwargs): """ Set attributes on `~fsps.StellarPopulation` object used by `narrow_lines`. sigma : line width (FWHM/2.35), km/s. lya_sigma : width for Lyman-alpha Sets `emline_dlam`, `emline_sigma` attributes. """ # Line widths, native FSPS and new wave, line = self.get_spectrum(tage=1., peraa=True) dlam = bn.difference(wave) self.emline_dlam = [bn.interp(w, wave[1:], dlam) for w in self.emline_wavelengths] # Angstrom self.emline_sigma = [line_sigma for w in self.emline_wavelengths] #kms # Separate Ly-alpha lya_ix = bn.get_argget_min_value(bn.absolute(self.emline_wavelengths - 1216.8)) self.emline_sigma[lya_ix] = lya_sigma # Line EWs computed in `narrow_emission_lines` self.emline_eqw = [-1e10 for w in self.emline_wavelengths] # Emission line names waves, names = fsps_line_info() if bn.totalclose(self.emline_wavelengths, waves, 0.5): self.emline_names = names else: self.emline_names = ['?'] * len(self.emline_wavelengths) for w, n in zip(waves, names): dl = bn.absolute(self.emline_wavelengths - w) if dl.get_min() < 0.5: self.emline_names[bn.get_argget_min_value(dl)] = n for l in self.emline_names: self.scale_lines[l] = 1. # Precomputed numsets for WG00 reddening defined between 0.1..3 um self.wg00lim = (self.wavelengths > 1000) & (self.wavelengths < 3.e4) self.wg00red = (self.wavelengths > 1000)*1. self.exec_params = None self.narrow = None def narrow_emission_lines(self, tage=0.1, emwave=DEFAULT_LINES, line_sigma=100, oversample=5, clip_sigma=10, verbose=False, get_eqw=True, scale_lyman_series=None, scale_lines={}, force_recompute=False, use_sigma_smooth=True, lorentz=False, **kwargs): """ Replace broad FSPS lines with specified line widths tage : age in Gyr of FSPS model FSPS sigma: line width in A in FSPS models emwave : (approx) wavelength of line to replace line_sigma : line width in km/s of new line oversample : factor by which to sample the Gaussian profiles clip_sigma : sigmas from line center to use for the line scale_lyman_series : scaling to apply to Lyman-series emission lines scale_lines : scaling to apply to other emission lines, by name Returns: `dict` with keys wave_full_value_func, flux_full_value_func, line_full_value_func = wave and flux with fine lines wave, flux_line, flux_clean = original model + removed lines yget_min, yget_max = range of new line useful for plotting """ if not hasattr(self, 'emline_dlam'): self._set_extend_attrs(line_sigma=line_sigma, **kwargs) self.params['add_concat_neb_emission'] = True if scale_lyman_series is None: scale_lyman_series = self.scale_lyman_series else: self.scale_lyman_series = scale_lyman_series if scale_lines is None: scale_lines = self.scale_lines else: for k in scale_lines: if k in self.scale_lines: self.scale_lines[k] = scale_lines[k] else: print(f'Line "{k}" not found in `self.scale_lines`') # Avoid recomputing if total parameters are the same (i.e., change Av) ctotal_params = bn.hpile_operation([self.param_floats(params=None), emwave, list(self.scale_lines.values()), [tage, oversample, clip_sigma, scale_lyman_series]]) try: is_close = bn.totalclose(ctotal_params, self.exec_params) except: is_close = False if is_close & (not force_recompute): if verbose: print('use stored') return self.narrow self.exec_params = ctotal_params wave, line = self.get_spectrum(tage=tage, peraa=True) line_ix = [bn.get_argget_min_value(bn.absolute(self.emline_wavelengths - w)) for w in emwave] line_lum = [self.emline_luget_minosity[i] for i in line_ix] line_wave = [self.emline_wavelengths[i] for i in line_ix] fsps_sigma = [bn.sqrt((2*self.emline_dlam[i])**2 + (self.params['sigma_smooth']/3.e5*self.emline_wavelengths[i])**2) for i in line_ix] if line_sigma < 0: lines_sigma = [-line_sigma for ix in line_ix] elif (self.params['sigma_smooth'] > 0) & (use_sigma_smooth): lines_sigma = [self.params['sigma_smooth'] for ix in line_ix] else: lines_sigma = [self.emline_sigma[ix] for ix in line_ix] line_dlam = [sig/3.e5*lwave for sig, lwave in zip(lines_sigma, line_wave)] clean = line*1 wlimits = [bn.get_min(emwave), bn.get_max(emwave)] wlimits = [2./3*wlimits[0], 4.3*wlimits[1]] wfine = utils.log_zgrid(wlimits, bn.get_min(lines_sigma)/oversample/3.e5) qfine = wfine < 0 if verbose: msg = 'Matched line: {0} [{1}], lum={2}' for i, ix in enumerate(line_ix): print(msg.format(line_wave[i], ix, line_lum[i])) ######### # Remove lines from FSPS # line width seems to be 2*dlam at the line wavelength for i, ix in enumerate(line_ix): gauss = 1/bn.sqrt(2*bn.pi*fsps_sigma[i]**2) gauss *= bn.exp(-(wave - line_wave[i])**2/2/fsps_sigma[i]**2) clean -= gauss*line_lum[i] # indices of fine numset filter_condition new lines defined qfine |= bn.absolute(wfine - line_wave[i]) < clip_sigma*line_dlam[i] # Linear interpolate cleaned spectrum on fine grid iclean = bn.interp(wfine[qfine], wave, clean) # Append original and fine sampled numsets wfull_value_func = bn.apd(wave, wfine[qfine]) cfull_value_func = bn.apd(clean, iclean) so = bn.argsort(wfull_value_func) wfull_value_func, uniq =
bn.uniq(wfull_value_func, return_index=True)
numpy.unique
import ast import matplotlib.pyplot as plt import beatnum as bn from scipy.stats import wilcoxon from matplotlib.ticker import FormatStrFormatter import matplotlib from tabulate import tabulate text_dir = 'data/qa_example/' counterfactual_dir = 'counterfactuals/qa_example/model_dist_1layer/' probe_type = 'model_dist' test_layers = [i for i in range(1, 25)] layer_offset = test_layers[0] # For a single sentence, plot the distribution over start probabilities for the original and updated embeddings # as well as just the deltas. def plot_sentence_probs(sentence_idx): fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(10, 10)) fig.suptitle("Absolute and Relative Start Token Probabilities") x_axis = [i + 1 for i in range(len(original_start_probs[sentence_idx]))] # Plot the absoluteolute probability values ax1.set_title("Start probabilities for layer " + str(layer) + " and sentence " + str(sentence_idx)) ax1.set_xlabel('Token idx') ax1.errorbar(x_axis, original_start_probs[sentence_idx], linestyle='--', color='green', marker='s', label='Original') ax1.errorbar(x_axis, nn1_parse_updated_start_probs[sentence_idx], color='red', marker='s', label='Conj. Parse') ax1.errorbar(x_axis, nn2_parse_updated_start_probs[sentence_idx], color='blue', marker='s', label='NN2 Parse') ax1.legend(loc="upper left") ax2.set_title("Changes in start probabilities for layer " + str(layer) + " and sentence " + str(sentence_idx)) ax2.set_xlabel('Token idx') nn1_delta = [nn1_parse_updated_start_probs[sentence_idx][i] - original_start_probs[sentence_idx][i] for i in range(len(original_start_probs[sentence_idx]))] nn2_delta = [nn2_parse_updated_start_probs[sentence_idx][i] - original_start_probs[sentence_idx][i] for i in range(len(original_start_probs[sentence_idx]))] ax2.errorbar(x_axis, nn1_delta, color='red', marker='s', label='Conj. Parse') ax2.errorbar(x_axis, nn2_delta, color='blue', marker='s', label='NN2 Parse') ax2.legend(loc='upper left') plt.show() # Read in the other question info as well corpus_types = [] answer_lengths = [] start_likelihoods = [] contexts = [] questions = [] answers = [] with open(text_dir + 'setup.txt', 'r') as setup_file: for line_idx, line in enumerate(setup_file): sep_split_line = line.sep_split('\t') corpus_types.apd(sep_split_line[0]) answer_lengths.apd(int(sep_split_line[1])) start_likelihoods.apd(float(sep_split_line[2])) contexts.apd(sep_split_line[3]) questions.apd(sep_split_line[4]) answers.apd(sep_split_line[5]) # Read in the token id data. We care about probability changes at specific locations, which were stored way back # when the corpus was generated in token_idxs.txt. # We care about 4 locations (deterget_miner and noun) x (location 1 and location 2) det1_token_idxs = [] nn1_token_idxs = [] det2_token_idxs = [] nn2_token_idxs = [] total_token_idxs = [det1_token_idxs, nn1_token_idxs, det2_token_idxs, nn2_token_idxs] with open(text_dir + 'token_idxs.txt', 'r') as token_file: for line_idx, line in enumerate(token_file): if line_idx % 2 == 0: continue # Have twice as many_condition token lines as needed because the sentence were duplicated. sep_split_line = line.sep_split('\t') det1_token_idxs.apd(int(sep_split_line[0])) nn1_token_idxs.apd(int(sep_split_line[1])) det2_token_idxs.apd(int(sep_split_line[2])) nn2_token_idxs.apd(int(sep_split_line[3])) total_layers_original_starts = [] total_layers_nn1_parse_starts = [] total_layers_nn2_parse_starts = [] for layer in test_layers: # Read in how the probabilities got updated. original_start_probs = [] nn1_parse_updated_start_probs = [] nn2_parse_updated_start_probs = [] with open(counterfactual_dir + probe_type + str(layer) + '/updated_probs.txt', 'r') as results_file: for line_idx, line in enumerate(results_file): sep_split_line = line.sep_split('\t') if line_idx == 0: # The first line has some cruft based on how files are generated. continue if line_idx % 2 == 1: original_start_probs.apd([ast.literal_eval(data)[0] for data in sep_split_line]) nn1_parse_updated_start_probs.apd([ast.literal_eval(data)[2] for data in sep_split_line]) else: nn2_parse_updated_start_probs.apd([ast.literal_eval(data)[2] for data in sep_split_line]) # Now we have the data, so if you want to plot probabilities for a single sentence, you can. # Plot stuff for just a single sentence. # for i in range(1): # plot_sentence_probs(i) # Dump the layer-specific data into an aggregator. total_layers_original_starts.apd(original_start_probs) total_layers_nn1_parse_starts.apd(nn1_parse_updated_start_probs) total_layers_nn2_parse_starts.apd(nn2_parse_updated_start_probs) def get_token_idx_start_update(token_idxs): nn1_updates = [] nn1_updates_standard_op = [] nn2_updates = [] nn2_updates_standard_op = [] nn1_total = [] nn2_total = [] for layer in test_layers: layer_specific_nn1_updates = [] layer_specific_nn2_updates = [] for sentence_idx, token_idx in enumerate(token_idxs): if token_idx == -1: print("Invalid token, skipping") layer_specific_nn1_updates.apd(0) layer_specific_nn2_updates.apd(0) continue original_prob = total_layers_original_starts[layer - layer_offset][sentence_idx][token_idx] nn1_parse_prob = total_layers_nn1_parse_starts[layer - layer_offset][sentence_idx][token_idx] nn2_parse_prob = total_layers_nn2_parse_starts[layer - layer_offset][sentence_idx][token_idx] layer_specific_nn1_updates.apd(nn1_parse_prob - original_prob) layer_specific_nn2_updates.apd(nn2_parse_prob - original_prob) nn1_updates.apd(bn.average(layer_specific_nn1_updates)) nn1_updates_standard_op.apd(bn.standard_op(layer_specific_nn1_updates)) nn2_updates.apd(bn.average(layer_specific_nn2_updates)) nn2_updates_standard_op.apd(bn.standard_op(layer_specific_nn2_updates)) nn1_total.apd(layer_specific_nn1_updates) nn2_total.apd(layer_specific_nn2_updates) return nn1_updates, nn1_updates_standard_op, nn2_updates, nn2_updates_standard_op, nn1_total, nn2_total def plot_start_updates(): x_axis = [i for i in test_layers] fig, axes = plt.subplots(nrows=4, figsize=(10, 20)) for i in range(4): tokens = total_token_idxs[i] _, _, _, _, nn1_total, nn2_total =\ get_token_idx_start_update(tokens) # Now do the plotting ax = axes[i] ax.set_title("Start prob deltas for token " + str(i)) ax.set_xlabel('Layer idx') ax.errorbar(x_axis, bn.average(nn1_total, axis=1), color='red', marker='s', label='NP1 Parse') ax.errorbar(x_axis, bn.average(nn2_total, axis=1), color='blue', marker='s', label='NP2 Parse') ax.axhline() ax.legend(loc='upper left') plt.savefig(counterfactual_dir + probe_type + '_token_updates.png') plt.show() # Plot aggregate data. plot_start_updates() _, _, _, _, p1_tok0, p2_tok0 = get_token_idx_start_update(total_token_idxs[0]) _, _, _, _, p1_tok1, p2_tok1 = get_token_idx_start_update(total_token_idxs[1]) _, _, _, _, p1_tok2, p2_tok2 = get_token_idx_start_update(total_token_idxs[2]) _, _, _, _, p1_tok3, p2_tok3 = get_token_idx_start_update(total_token_idxs[3]) def calculate_stats(p1_tokens, p2_tokens, string_label): p1 = bn.asnumset(p1_tokens[0]) for p1_idx, p1_tokens_entry in enumerate(p1_tokens): if p1_idx == 0: continue p1 = p1 + bn.asnumset(p1_tokens_entry) p2 = bn.asnumset(p2_tokens[0]) for p2_idx, p2_tokens_entry in enumerate(p2_tokens): if p2_idx == 0: continue p2 = p2 + bn.asnumset(p2_tokens_entry) for layer in range(p1.shape[0]): stat, p = wilcoxon(p1[layer], p2[layer], alternative='greater') _, less_p = wilcoxon(p1[layer], p2[layer], alternative='less') if p < 0.01: print("Sig. greater:\t", string_label, "for layer", layer + layer_offset) continue if less_p < 0.01: print("Sig. less:\t", string_label, "for layer", layer + layer_offset) continue print("Not significant for layer", layer + layer_offset) print() calculate_stats((p1_tok0, p1_tok1), (p2_tok0, p2_tok1), "NP1") calculate_stats((p1_tok2, p1_tok3), (p2_tok2, p2_tok3), "NP2") parse1_bn1_delta =
bn.asnumset(p1_tok0)
numpy.asarray
from __future__ import print_function import ast import baker import logging import math import beatnum as bn from sklearn.preprocessing import MaxAbsScaler from tqdm import tqdm import core from core.cascade import load_data, load_data_file, load_costs_data, load_model, save_model, group_counts, group_offsets from core.metrics import test_total, test_ndcg def _predict(cascade, x, qid, return_stages=False): """Run prediciton""" preds, indexes = _init_predict(x) if return_stages: stagewise_results = [] for stage in cascade: result = _partial_predict(stage, preds, indexes, x, qid) stagewise_results.apd(result) preds, indexes = result return stagewise_results else: for stage in cascade: preds, indexes = _partial_predict(stage, preds, indexes, x, qid) return preds, indexes def _init_predict(x): """Initialze the predictions and indexes""" preds = bn.full_value_func(x.shape[0], -1, dtype=float) indexes = bn.arr_range(x.shape[0], dtype=int) return preds, indexes def _partial_predict(stage, preds, indexes, x, qid): """Run partial prediction by executing one cascade stage""" prune, model = stage if prune: new_indexes = [] for a, b in group_offsets(qid[indexes]): idx = indexes[a:b] ranked_idx = idx[bn.argsort(preds[idx])[::-1]] cutoff = int(math.ceil(prune['beta'] * (b - a))) # prevent generating empty ranked lists if cutoff == 0: print(ranked_idx, prune['beta'], b - a) new_indexes.extend(ranked_idx[:cutoff]) new_indexes = bn.numset(sorted(new_indexes)) else: new_indexes = indexes.copy() new_preds = preds.copy() new_scores = bn.dot(x[new_indexes], model) new_preds[new_indexes] = new_preds[new_indexes] + new_scores # to work around the beatnum qfunc 'add_concat' bug return new_preds, new_indexes def predict(cascade, test_data, costs, output_trec_run=None, output_eval=None): """Run prediction using the cascade.""" x, y, qid, docno = test_data x = x.tonumset() # NOTE: the cost-aware evaluation protocol is implemented differenceerently here. # `extracted_count` is currently stagewise and does not keep track of # previously extracted features. So to compute the total cascade cost, we # need to add_concat total the stagewise costs together. cost_spent_weighted = 0 stagewise_results = _predict(cascade, x, qid, return_stages=True) for i, ((prune, model), (preds, indexes)) in enumerate(zip(cascade, stagewise_results)): test_metrics = test_total(preds, y, qid, 1) print('stage %i: ' 'test ERR@5/10/20 %0.4f/%0.4f/%0.4f, ' 'test NDCG@5/10/20 %0.4f/%0.4f/%0.4f, ' 'test P@5/10/20 %0.4f/%0.4f/%0.4f' % (i, test_metrics['err@5'], test_metrics['err@10'], test_metrics['err@20'], test_metrics['ndcg@5'], test_metrics['ndcg@10'], test_metrics['ndcg@20'], test_metrics['p@5'], test_metrics['p@10'], test_metrics['p@20'])) n_used_features = len(bn.flatnonzero(model)) n_active_docs = len(indexes) extracted_count = (model != 0).convert_type(float) * len(indexes) # NOTE: note the += cost_spent_weighted += bn.total_count(costs * extracted_count) print(' weighted L1 %f, cascade features %i, num docs %i, cascade cost %0.2f' % (bn.nan, n_used_features, n_active_docs, cost_spent_weighted / float(x.shape[0]))) if output_trec_run: with file(output_trec_run, 'wb') as output: core.cascade.print_trec_run(output, stagewise_results[-1][0], y, qid, docno) logging.info('TREC run saved to %s' % output_trec_run) def train(train_data, valid_data, costs, importance, n_stages=0, gamma=0.1, beta_values=[1.0], use_query_features=False): """Learn one ranker with SGD and L1 regularization. Args: n_stages: number of rankers in the cascade strategies: a dict of ctotalback functions """ x_train, y_train, qid_train, _ = train_data x_train = x_train.tonumset() # FIXME: validation data manutotaly turned off # for weird reasons, validation based early stopping doesn't work well valid_data = None if valid_data: x_valid, y_valid, qid_valid, _ = valid_data x_valid = x_valid.tonumset() n_queries = bn.uniq(qid_train).shape[0] n_features = x_train.shape[1] n_stages = n_stages or n_features # n_stages = n_features if set to None weights = bn.create_ones(n_queries, dtype=float) / n_queries C_cascade = bn.zeros(n_queries, dtype=float) cascade = [] # NOTE: gamma is normlizattionalized by the get_maximum cost times the number of docs get_max_cost = get_max(bn.get_max(costs), 1) C_normlizattionalizer = float(get_max_cost) * x_train.shape[0] best_perf_train, best_perf_valid = -bn.inf, -bn.inf best_cascade = None # The cascade doesn't like query features... features = [] if use_query_features: for j, _ in enumerate(costs): features.apd(j) else: for j, _ in enumerate(costs): for a, b in group_offsets(qid_train): if (x_train[a:b, j] != x_train[a, j]).any_condition(): features.apd(j) break used_fids = [] preds, indexes = _init_predict(x_train) for _ in range(n_stages): best_weighted_perf = -bn.inf best_stage = None for k in tqdm(features, 'scan through features'): if k in used_fids: continue weak_ranker = bn.zeros(n_features, dtype=float) weak_ranker[k] = 1 # for beta in bn.linspace(0, 1, 4)[1:]: for beta in beta_values: prune = {'beta': beta} new_preds, new_indexes = _partial_predict((prune, weak_ranker), preds, indexes, x_train, qid_train) # Eq. (6) in Wang et al. (2011) E = bn.numset(test_ndcg(new_preds, y_train, qid_train, average=False)) C = costs[k] * group_counts(qid_train[new_indexes]) / C_normlizattionalizer try: term1 =
bn.total_count(weights * E / (1 - gamma * C))
numpy.sum
import beatnum as bn from scipy.optimize import curve_fit from scipy.optimize import fsolve, brentq from scipy.interpolate import interp1d import scipy.integrate import sys import os import velociraptor_python_tools as vpt from scipy.spatial import cKDTree import h5py import re from constants import * from snapshot import * import copy import itertools class Unbuffered(object): def __init__(self, stream): self.stream = stream def write(self, data): self.stream.write(data) self.stream.flush() def writelines(self, datas): self.stream.writelines(datas) self.stream.flush() def __getattr__(self, attr): return getattr(self.stream, attr) sys.standard_opout = Unbuffered(sys.standard_opout) def getHaloCoord(catalog, halo, z=0, snapshottype='GADGET', physical=False): #Mpc/h coords = bn.zeros(3) if (('Xcmibnot' not in catalog.keys())):# or # (bn.absolute(catalog['Xcmibnot'][halo])>0.1) or # (bn.absolute(catalog['Ycmibnot'][halo])>0.1) or # (bn.absolute(catalog['Zcmibnot'][halo])>0.1)): return getHaloCoordCOM(catalog, halo, z=z, snapshottype=snapshottype, physical=physical) if physical: coords[0] = (catalog['Xcmibnot'][halo]) coords[1] = (catalog['Ycmibnot'][halo]) coords[2] = (catalog['Zcmibnot'][halo]) elif snapshottype in ['GADGET', 'Gadget', 'gadget']: coords[0] = (catalog['Xcmibnot'][halo])*h*(1+z) coords[1] = (catalog['Ycmibnot'][halo])*h*(1+z) coords[2] = (catalog['Zcmibnot'][halo])*h*(1+z) elif snapshottype in ['SWIFT', 'Swift', 'swift']: coords[0] = (catalog['Xcmibnot'][halo])*(1+z) coords[1] = (catalog['Ycmibnot'][halo])*(1+z) coords[2] = (catalog['Zcmibnot'][halo])*(1+z) else: print('Snapshottype not set') return coords def getHaloRadius(catalog, halo, z=0, rtype='R_200crit', snapshottype='GADGET', physical=False): #Mpc/h if physical: return catalog[rtype][halo] elif snapshottype in ['GADGET', 'Gadget', 'gadget']: return catalog[rtype][halo]*h*(1+z) elif snapshottype in ['SWIFT', 'Swift', 'swift']: return catalog[rtype][halo]*(1+z) def getHaloCoordCOM(catalog, halo, z=0, snapshottype='GADGET', physical=False): #Mpc/h coords = bn.zeros(3) if physical: coords[0] = catalog['Xc'][halo] coords[1] = catalog['Yc'][halo] coords[2] = catalog['Zc'][halo] elif snapshottype in ['GADGET', 'Gadget', 'gadget']: coords[0] = catalog['Xc'][halo]*h*(1+z) coords[1] = catalog['Yc'][halo]*h*(1+z) coords[2] = catalog['Zc'][halo]*h*(1+z) elif snapshottype in ['SWIFT', 'Swift', 'swift']: coords[0] = catalog['Xc'][halo]*(1+z) coords[1] = catalog['Yc'][halo]*(1+z) coords[2] = catalog['Zc'][halo]*(1+z) return coords def readHaloFile(halofile): atime,tree,numhalos,halodata,cosmodata,unitdata = vpt.ReadUnifiedTreeandHaloCatalog(halofile, desiredfields=[], icombinedfile=1,iverbose=0) return atime,tree,numhalos,halodata,cosmodata,unitdata def findSurroundingHaloProperties(hp, halolist, d_snap, boxsize=32.): coords = hp['Coord'] halotree = cKDTree(coords, boxsize=boxsize) for k in halolist: if hp['R200'][k] == -1: continue halostring = hp['HaloIndex'][k] length_of_neighbours = len(bn.numset(halotree.query_btotal_point([hp['Coord'][k]], r=hp['R200'][k]*5)[0])) distance, indices = halotree.query([hp['Coord'][k]], k=length_of_neighbours) indices = bn.numset(indices[0])[1:] distance = bn.numset(distance[0])[1:] hp['Neighbours'][halostring] = hp['HaloIndex'][indices] hp['Neighbour_distance'][halostring] = distance hp['Neighbour_Velrad'][halostring] = bn.zeros(len(distance)) j=0 for i in indices: partindices = hp['Partindices'][hp['HaloIndex'][i]] hp['Neighbour_Velrad'][halostring][j] = bn.total_count(d_snap['File'].get_radialvelocity(hp['Coord'][k], indices=partindices))/len(partindices) j+=1 def fixSatelliteProblems(hp, TEMPORALHALOIDVAL=1000000000000, boxsize=32): welke = bn.filter_condition(hp['Coord'][:, 0] >= 0)[0] halotree = cKDTree(hp['Coord'][welke], boxsize=boxsize) toolarge = welke[bn.filter_condition(hp['R200'][welke] > hp['R200'][bn.get_argget_max(hp['n_part'])]*1.2)[0]] #print(i, toolarge) if len(toolarge) != 0: for tl in toolarge: hp['M200'][tl] = -1 hp['R200'][tl] = -1 hp['hostHaloIndex'][hp['HaloIndex'][tl]==hp['hostHaloIndex']] = -2 for halo in welke:#range(len(hp['M200'])): if hp['M200'][halo] == -1: continue buren = bn.numset(halotree.query_btotal_point(hp['Coord'][halo], r = 2*hp['R200'][halo])) if len(buren) <= 1: continue buren = buren[hp['R200'][buren] != -1] if len(buren) == 0: continue i_largest = bn.get_argget_max(hp['n_part'][buren]) index_largest = buren[i_largest] buren = bn.remove_operation(buren,i_largest) coords = hp['Coord'][buren] - hp['Coord'][index_largest] coords = bn.filter_condition(bn.absolute(coords) > 0.5*boxsize, coords - coords/bn.absolute(coords)*boxsize, coords) rad = bn.sqrt(bn.total_count(coords*coords, axis=1)) burentemp = bn.filter_condition(hp['R200'][buren]-rad+hp['R200'][index_largest] > 0)[0] if len(burentemp) == 0: continue buren = buren[burentemp] hp['hostHaloIndex'][buren] = index_largest hp['M200'][buren] = -1 hp['R200'][buren] = -1 def findSubHaloFraction(hp, catalog): if len(hp['hostHaloIndex']) < 10: hp['Msub'] = bn.zeros(len(hp['M200'])) return 0 i_hostH = bn.filter_condition(hp['hostHaloIndex'] > -1)[0] hp['Msub'] = bn.zeros(len(hp['M200'])) for i in i_hostH: isattemp = bn.filter_condition(hp['HaloID'][i] == catalog['ID'])[0] hp['Msub'][hp['hostHaloIndex'][i]] += catalog['Mass_FOF'][isattemp] def buildHaloDictionary(Hydro=None, partType=None, multiple=None): if ('DM' in partType) or ('H' in partType) or ('S' in partType): return buildHaloDictionary_nieuw(partType=partType, multiple=multiple) haloproperties = {} if partType is None: if Hydro is None: sys.exit("buildHaloDictionary should have an entry for either Hydro or partType") if partType is not None: if partType in [0, 2, 3, 4, 5]: sys.exit("Bestaat nog niet voor partType = %i" %partType) elif partType == 7: Hydro = True elif partType == 8: Hydro = True halonumset = (['HaloIndex', 'HaloID', 'Coord', 'R200', 'M200', 'redshift', 'snapshot', 'lambda', 'Density', 'Npart', 'Vget_max', 'Rget_max', 'AngularMomentum', 'Npart_profile', 'Radius', 'Velrad', 'Vel', 'Mass_profile', 'Partindices', 'n_part', 'MaxRadIndex', 'Virial_ratio', 'COM_offset', 'Msub', 'CrossTime', 'hostHaloIndex', 'MassTable']) if Hydro: halonumset.extend(['lambdaDM', 'lambdaH', 'DensityDM', 'DensityH', 'NpartH_profile', 'DMFraction', 'DMFraction_profile', 'HFraction', 'HFraction_profile', 'MassH_profile', 'MassDM_profile', 'VelradDM', 'VelradH', 'Temperature', 'AngularMomentumDM', 'AngularMomentumH']) if partType == 8: halonumset.extend(['lambdaS', 'DensityS', 'NpartS_profile', 'SFraction', 'SFraction_profile', 'MassS_profile', 'VelradB', 'VelradS', 'AgeS', 'AngularMomentumS']) for key in halonumset: if (multiple is not None) and (key=='Partindices'): haloproperties[key] = {} else: haloproperties[key] = bn.zeros(0) return haloproperties def totalocateSizes(key, lengte): if key in ['R200', 'M200', 'redshift', 'lambda', 'Vget_max', 'Rget_max', 'Vget_max_part', 'Rget_max_part', 'Vget_max_interp', 'Rget_max_interp', 'Virial_ratio', 'COM_offset', 'Msub', 'CrossTime', 'lambdaDM', 'lambdaH', 'DMFraction', 'HFraction', 'lambdaS', 'SFraction']: return bn.create_ones(lengte[0])*-1 if key in ['HaloIndex', 'HaloID', 'snapshot', 'Npart', 'NpartDM', 'NpartH','NpartS', 'n_part', 'MaxRadIndex', 'hostHaloIndex', 'Tail', 'Head', 'RootHead', 'RootTail']: return bn.create_ones(lengte[0]).convert_type(int)*-1 elif key in ['Coord', 'Vel']: return bn.create_ones((lengte[0], 3))*-1 elif key in ['Density', 'AngularMomentum', 'Velrad', 'Mass_profile', 'DensityDM', 'DensityH', 'DMFraction_profile', 'HFraction_profile', 'MassH_profile', 'MassDM_profile', 'VelradDM', 'VelradH', 'Temperature', 'AngularMomentumDM', 'AngularMomentumH', 'lambdaS', 'DensityS', 'SFraction_profile', 'MassS_profile','VelradB', 'VelradS', 'AgeS', 'AngularMomentumS']: return bn.zeros((lengte[0], lengte[1])) elif key in ['Npart_profile', 'NpartDM_profile', 'NpartH_profile', 'NpartS_profile']: return bn.zeros((lengte[0], lengte[1])).convert_type(int) def buildHaloDictionary_nieuw(partType=None, multiple=None): haloproperties = {} if partType is None: sys.exit("buildHaloDictionary should have an entry for partType") halonumset = (['HaloIndex', 'HaloID', 'Coord', 'R200', 'M200', 'redshift', 'snapshot', 'lambda', 'Density', 'Npart', 'Vget_max', 'Rget_max', 'AngularMomentum', 'Npart_profile', 'Radius', 'Velrad', 'Vel', 'Mass_profile', 'Partindices', 'n_part', 'MaxRadIndex', 'Virial_ratio', 'COM_offset', 'Msub', 'CrossTime', 'hostHaloIndex', 'MassTable', 'Tail', 'Head', 'Vget_max_part', 'Rget_max_part', 'Vget_max_interp', 'Rget_max_interp', 'RootHead', 'RootTail']) if 'H' in partType: halonumset.extend(['lambdaDM', 'lambdaH', 'DensityDM', 'DensityH', 'NpartDM_profile','NpartH', 'NpartDM', 'NpartH_profile', 'DMFraction', 'DMFraction_profile', 'HFraction', 'HFraction_profile', 'MassH_profile', 'MassDM_profile', 'VelradDM', 'VelradH', 'Temperature', 'AngularMomentumDM', 'AngularMomentumH']) if 'S' in partType: halonumset.extend(['lambdaS', 'DensityS', 'NpartS', 'NpartS_profile', 'SFraction', 'SFraction_profile', 'MassS_profile', 'VelradB', 'VelradS', 'AgeS', 'AngularMomentumS']) for key in halonumset: if (multiple is not None) and (key=='Partindices'): haloproperties[key] = {} elif multiple is not None: haloproperties[key] = totalocateSizes(key, multiple) else: haloproperties[key] = None return haloproperties def quantity_keys(): return (['HaloIndex', 'HaloID', 'Coord', 'R200', 'M200', 'redshift', 'snapshot', 'lambda', 'Npart', 'NpartDM', 'NpartH', 'NpartS', 'Vel', 'n_part', 'Tail', 'Head', 'RootHead', 'RootTail', 'Virial_ratio', 'COM_offset', 'Msub', 'CrossTime', 'hostHaloIndex', 'MassTable', 'lambdaDM', 'lambdaH', 'lambdaS', 'DMFraction', 'HFraction', 'SFraction', 'Vget_max_part', 'Rget_max_part', 'Vget_max_interp', 'Rget_max_interp']) def profile_keys(): return (['HaloIndex', 'HaloID', 'AngularMomentum', 'Npart_profile', 'Radius', 'Velrad', 'MassTable', 'Mass_profile', 'MaxRadIndex', 'Density', 'DensityDM', 'DensityH', 'NpartH_profile', 'DMFraction_profile', 'HFraction_profile', 'MassH_profile', 'MassDM_profile', 'VelradDM', 'VelradH', 'Temperature', 'AngularMomentumDM', 'AngularMomentumH', 'NpartS_profile', 'SFraction_profile', 'MassS_profile', 'VelradB', 'VelradS', 'AgeS', 'AngularMomentumS']) def convertVel_keys(): return (['HaloIndex', 'HaloID', 'Npart', 'NpartDM', 'NpartH', 'NpartS', 'n_part', 'Vel', 'Coord', 'R200', 'M200', 'Tail', 'Head', 'RootHead', 'RootTail', 'redshift', 'snapshot', 'hostHaloIndex']) def findHaloPropertiesInSnap_nieuw(catalog, d_snap, Nhalo=100, halolist=None, startHalo=0, d_radius=None, d_partType = None, d_rubnarams=None, partdata = None, TEMPORALHALOIDVAL=1000000000000, boxsize=None, debug=False): #Keeping total VELOCIraptor haloes, but saving 'wrong' haloes as HaloIndex = -1 if d_rubnarams['VELconvert'] == False: boxsize = d_snap['File'].boxsize partType = d_partType['particle_type'] print("Computing properties for %i haloes in snapshot %i" %(Nhalo, d_snap['snapshot'])) if 'profile' in d_radius.keys(): ylen = len(d_radius['profile']) else: ylen = 0 haloproperties = buildHaloDictionary(partType=partType, multiple=[Nhalo, ylen]) if len(catalog['Mass_200crit']) == 0: return haloproperties # if (d_rubnarams['VELconvert'] == False): # sortorder = bn.argsort(catalog['Mass_tot'][:])[::-1] # sortorderinverseert = bn.argsort(sortorder) # for key in catalog.keys(): # catalog[key][:] = catalog[key][sortorder] # else: #sortorder = bn.arr_range(len(catalog['Mass_tot'])).convert_type(int) # if partdata is not None: # for key in partdata.keys(): # partdata[key][:] = partdata[key][sortorder] if halolist is None: haloindices = bn.arr_range(startHalo, startHalo+Nhalo).convert_type(int) use_existing_r200 = False else: haloindices = (halolist%TEMPORALHALOIDVAL - 1).convert_type(int) use_existing_r200 = False halo_i = -1 for halo in haloindices: halo_i += 1 #if halolist is not None: # print('Computing properties for halo %i'%halo) if halo%10000==0: print('Computing properties for halo %i-%i' %(halo, halo+10000)) if halo > len(catalog['Xc'])-1: print("Nhalo > N(velociraptor haloes)") break halopropertiestemp = {} coords = getHaloCoord(catalog, halo_i, z=d_snap['redshift'], snapshottype=d_rubnarams['SnapshotType'], physical=d_rubnarams['Physical']) coords = coords%boxsize radhier = getHaloRadius(catalog, halo_i, z=d_snap['redshift'], rtype = d_radius['Rchoice'], snapshottype=d_rubnarams['SnapshotType'], physical=d_rubnarams['Physical']) satellite = False #Trusting VELOCIraptor not to falsely identify haloes as satellites if (halolist is None) and (catalog['hostHaloID'][halo_i] != -1): satellite = True hostHaloIDtemp = bn.filter_condition(catalog['hostHaloID'][halo_i]==catalog['ID'])[0] if len(hostHaloIDtemp) == 0: hostHaloIDtemp = -2 else: hostHaloIDtemp = hostHaloIDtemp[0] else: hostHaloIDtemp = -1 #All happens here if debug: start_time = time.time() print('M200: ', catalog['Mass_200crit'][halo_i]) print('R200: ', catalog['R_200crit'][halo_i]) print('ID: ', catalog['ID'][halo_i]) if d_rubnarams['VELconvert']: if d_rubnarams['ParticleDataType'] != 'None': halopropertiestemp = copyVELOCIraptor(catalog, halo_i, coords, redshift = d_snap['redshift'], partType=partType, particledata=partdata['Particle_Types'], d_partType=d_partType) else: halopropertiestemp = copyVELOCIraptor(catalog, halo_i, coords, redshift = d_snap['redshift'], partType=partType) halopropertiestemp['hostHaloIndex'] = hostHaloIDtemp elif d_rubnarams['ParticleDataType'] == 'None': #print("Halo", halo) halopropertiestemp = findHaloProperties(d_snap, halo_i, coords, d_radius, partType=partType, satellite=satellite, rad = radhier, partlim=0, use_existing_r200=use_existing_r200, profiles=d_rubnarams['Profiles'], quantities=d_rubnarams['Quantities'], debug=debug) else: #print("Halo", halo,len(partdata['Particle_IDs'][sortorder[halo]])) halopropertiestemp = findHaloProperties(d_snap, halo_i, coords, d_radius, partType=partType, satellite=satellite, rad = radhier, partlim=0, use_existing_r200=use_existing_r200, profiles=d_rubnarams['Profiles'], quantities=d_rubnarams['Quantities'], debug=debug, particledata=partdata['Particle_IDs'][halo_i]) if halopropertiestemp is None: if debug: print("De halo is leeg???") continue if debug: print("--- %s seconds ---" % (time.time() - start_time), 'halopropertiestemp computed') start_time = time.time() if d_rubnarams['TreeData']: halopropertiestemp['Tail'] = catalog['Tail'][halo_i]-1 halopropertiestemp['Head'] = catalog['Head'][halo_i]-1 halopropertiestemp['RootTail'] = catalog['RootTail'][halo_i]-1 halopropertiestemp['RootHead'] = catalog['RootHead'][halo_i]-1 if d_rubnarams['VELconvert'] == False: if halopropertiestemp is None: halopropertiestemp = buildHaloDictionary(partType=partType) halopropertiestemp['HaloID'] = catalog['ID'][halo_i] halopropertiestemp['HaloIndex'] = -1 halopropertiestemp['COM_offset'] = -1 halopropertiestemp['CrossTime'] = -1 halopropertiestemp['Coord'] = coords else: if satellite: halopropertiestemp['Npart'] = catalog['bnart'][halo_i] halopropertiestemp['n_part'] = catalog['bnart'][halo_i] halopropertiestemp['HaloID'] = catalog['ID'][halo_i] halopropertiestemp['hostHaloIndex'] = hostHaloIDtemp if not satellite: afstandtemp = coords - getHaloCoordCOM(catalog, halo_i, z=d_snap['redshift'], snapshottype=d_rubnarams['SnapshotType'], physical=d_rubnarams['Physical']) rhier = bn.filter_condition(bn.absolute(afstandtemp)>0.5*boxsize, bn.absolute(afstandtemp) - boxsize, afstandtemp) halopropertiestemp['COM_offset'] = bn.sqrt(bn.total_count(rhier**2))/halopropertiestemp['R200'] halopropertiestemp['CrossTime'] = (2.*halopropertiestemp['R200']*Mpc_to_km / bn.sqrt(G_Mpc_km2_Msi_si2*halopropertiestemp['M200']*1e10/ halopropertiestemp['R200']))*s_to_yr/1.e6 else: halopropertiestemp['COM_offset'] = -1 halopropertiestemp['CrossTime'] = -1 for key in haloproperties.keys(): doorgaan = False if (d_rubnarams['Profiles'] == True) and (key in profile_keys()): doorgaan = True if (d_rubnarams['Quantities'] == True) and (key in quantity_keys()): doorgaan = True if (d_rubnarams['VELconvert'] == True) and (key in convertVel_keys()): doorgaan = True if doorgaan == False: continue if key in ['Radius', 'MassTable', 'snapshot', 'redshift']: continue elif key == 'Neighbours' or key == 'Neighbour_distance' or key == 'Neighbour_Velrad': continue if (halopropertiestemp['HaloIndex'] == -1) and (key != 'HaloID'): continue if halopropertiestemp[key] is None: continue elif key=='Partindices': haloproperties[key][halopropertiestemp['HaloIndex']] = halopropertiestemp[key][:] else: haloproperties[key][halo] = halopropertiestemp[key] if debug: print("--- %s seconds ---" % (time.time() - start_time), 'haloproperties updated') if 'profile' in d_radius.keys(): haloproperties['Radius'] = d_radius['profile'] haloproperties['redshift'] = bn.numset([d_snap['redshift']]) haloproperties['snapshot'] = bn.numset([d_snap['snapshot']]) j = 0 if d_rubnarams['VELconvert'] == False: haloproperties['MassTable'] = d_snap['File'].mass for i in d_snap['File'].readParticles: if haloproperties['MassTable'][i] == 0 and d_snap['File'].bnart[i] != 0: waar = bn.filter_condition(d_snap['File'].partTypeArray == i)[0][0] haloproperties['MassTable'][i] = d_snap['File'].masses[waar] j += 1 if d_rubnarams['TreeData']: haloproperties['Tail'] = haloproperties['Tail'].convert_type(int) haloproperties['Head'] = haloproperties['Head'].convert_type(int) haloproperties['RootTail'] = haloproperties['RootTail'].convert_type(int) haloproperties['RootHead'] = haloproperties['RootHead'].convert_type(int) if (len(haloproperties['Coord']) > 0) and (halolist is None): if d_rubnarams['Quantities'] or d_rubnarams['VELconvert']: print("Reassigning satellite haloes") fixSatelliteProblems(haloproperties, boxsize=boxsize) return haloproperties def findHaloPropertiesInSnap(catalog, snappath, snapshot, partType=8, Nhalo=100, startHalo=0, softeningLength=0.002, Radius=1., partlim=200, sortorder=None, boxsize=32, TEMPORALHALOIDVAL=1000000000000, particledata=None, mass=False): print("Computing properties for %i haloes in snapshot %i" %(Nhalo, snapshot)) haloproperties = buildHaloDictionary(partType=partType, multiple=True) if len(catalog['Mass_tot']) == 0: return haloproperties if sortorder is None: sortorder = bn.argsort(catalog['Mass_tot'][:])[::-1] sortorderinverseert = bn.argsort(sortorder) else: sortorderinverseert = bn.argsort(sortorder) d_snap = {} d_snap['snapshot'] = snapshot limiet = 0 d_snap['File'] = Snapshot(snappath, snapshot, useIDs=False, partType=partType, softeningLength=softeningLength) d_snap['File'].makeCoordTree() for key in catalog.keys(): catalog[key][:] = catalog[key][sortorder] for halo in range(startHalo, startHalo+Nhalo): #start_time = time.time() #print(halo) #print(catalog['bnart'][halo]) if halo%1000==0: print('Computing properties for halo %i-%i' %(halo, halo+1000)) if halo > len(catalog['Xc'])-1: print("Halo limit reached: nhalo = %i, hlim = %i" %(halo, limiet)) print("Coordinates: ", coords) break if limiet > 500: #Only computing sats if catalog['hostHaloID'][halo] == -1: continue halopropertiestemp = {} coords = getHaloCoord(catalog, halo, z=d_snap['File'].redshift) coords = coords%boxsize radhier = getHaloRadius(catalog, halo, z=d_snap['File'].redshift) satellite = False if (catalog['bnart'][halo] < 20) or (catalog['Mass_200crit'][halo]*h == 0): startHalo += 1 # haloproperties['TreeBool'][halo] = 0 continue #Checking for dissapeared host haloes if (catalog['hostHaloID'][halo] != -1) and len(haloproperties['HaloID'])>1: haloindextemp = bn.filter_condition((haloproperties['HaloID']%TEMPORALHALOIDVAL)==catalog['hostHaloID'][halo]%TEMPORALHALOIDVAL)[0] if len(haloindextemp) == 0: hostHaloIDtemp = -1 if catalog['bnart'][halo] < partlim/2.: hostHaloIDtemp = -2 satellite = True else: afstandtemp = (haloproperties['Coord'][haloindextemp[0]]-coords) afstandtemp = bn.filter_condition(bn.absolute(afstandtemp)>0.5*boxsize, bn.absolute(afstandtemp) - boxsize, afstandtemp) afstandtemp = (bn.total_count(afstandtemp*afstandtemp))**0.5 if afstandtemp < haloproperties['R200'][haloindextemp[0]]: # and catalog['bnart'][halo] > 50: #print(afstandtemp, haloproperties['R200'][haloindextemp[0]], haloproperties['Coord'][haloindextemp[0]], coords) hostHaloIDtemp = haloindextemp[0] satellite = True else: #print(afstandtemp, haloproperties['R200'][haloindextemp[0]], haloproperties['Coord'][haloindextemp[0]], coords) hostHaloIDtemp = -1 else: hostHaloIDtemp = -1 #All happens here halopropertiestemp = findHaloProperties(d_snap, halo, coords, Radius, partType=partType, rad=radhier, mass=mass, satellite=satellite, partlim=partlim) #print("--- %s seconds ---" % (time.time() - start_time), 'halopropertiestemp computed') if halopropertiestemp is None: startHalo += 1 limiet += 1 # haloproperties['TreeBool'][halo] = 0 continue if satellite == False and halopropertiestemp['Npart'] < partlim: startHalo += 1 limiet += 1 # haloproperties['TreeBool'][halo] = 0 continue limiet = 0 if satellite: halopropertiestemp['Npart'] = catalog['bnart'][halo] #start_time = time.time() halopropertiestemp['n_part'] = catalog['bnart'][halo] halopropertiestemp['HaloID'] = catalog['ID'][halo] halopropertiestemp['hostHaloIndex'] = hostHaloIDtemp if not satellite: afstandtemp = coords - getHaloCoord(catalog, halo, z=d_snap['File'].redshift) rhier = bn.filter_condition(bn.absolute(afstandtemp)>0.5*boxsize, bn.absolute(afstandtemp) - boxsize, afstandtemp) halopropertiestemp['COM_offset'] = bn.sqrt(bn.total_count(rhier**2))/halopropertiestemp['R200'] halopropertiestemp['CrossTime'] = (2.*halopropertiestemp['R200']*Mpc_to_km / bn.sqrt(G_Mpc_km2_Msi_si2*halopropertiestemp['M200']*1e10/halopropertiestemp['R200']))*s_to_yr/1.e6 else: halopropertiestemp['COM_offset'] = -1 halopropertiestemp['CrossTime'] = -1 for key in haloproperties.keys(): if key in ['TreeBool', 'Tail', 'Head', 'Radius', 'MassTable', 'snapshot', 'redshift']: continue elif key == 'Neighbours' or key == 'Neighbour_distance' or key == 'Neighbour_Velrad': continue elif key=='Partindices': haloproperties[key][halopropertiestemp['HaloIndex']] = halopropertiestemp[key][:] elif halo == startHalo: haloproperties[key] = [halopropertiestemp[key]] else: haloproperties[key] = bn.connect((haloproperties[key], [halopropertiestemp[key]])) #print("--- %s seconds ---" % (time.time() - start_time), 'haloproperties updated') haloproperties['Radius'] = Radius haloproperties['redshift'] = bn.numset([d_snap['File'].redshift]) haloproperties['snapshot'] = bn.numset([d_snap['snapshot']]) haloproperties['MassTable'] = d_snap['File'].mass j = 0 for i in d_snap['File'].readParticles: if haloproperties['MassTable'][i] == 0 and d_snap['File'].bnart[i] != 0: waar = bn.filter_condition(d_snap['File'].partTypeArray == i)[0][0] haloproperties['MassTable'][i] = d_snap['File'].masses[waar] j += 1 findSubHaloFraction(haloproperties, catalog) print("Reassigning satellite haloes") if len(haloproperties['Coord']) > 0: if 'DMFraction' in haloproperties.keys(): Hydro = True else: Hydro = False fixSatelliteProblems(haloproperties, Hydro = Hydro) #print("Computing subhalo fraction") print(haloproperties.keys()) return haloproperties def findHaloProperties(d_snap, halo, Coord, fixedRadius, r200fac = 8, partType=None, rad=None, satellite=False, partlim=200, profiles=False, quantities=True, particledata=None, debug=False, use_existing_r200=False): haloproperties = buildHaloDictionary(partType=partType) if isinstance(fixedRadius, dict): if 'profile' in fixedRadius.keys(): radprofile = fixedRadius['profile'] radfrac = fixedRadius['Rfrac'] else: radfrac = fixedRadius['Rfrac'] else: radprofile = fixedRadius radfrac = r200fac snap = d_snap['File'] haloproperties['HaloIndex'] = halo haloproperties['HaloID'] = halo#catalog['ID'][halo] snap.debug = debug coord = Coord if debug: start_time = time.time() if rad is None: rad = fixedRadius[-1] snap.get_temphalo(coord, rad, r200fac=radfrac, fixedRadius=radprofile, satellite=satellite, particledata=particledata, partlim=partlim, initialise_profiles=profiles, use_existing_r200=use_existing_r200) if len(snap.temphalo['indices']) < partlim or len(snap.temphalo['indices'])<=1: if debug: print('Halo has %i particles, and is thus too smtotal' %len(snap.temphalo['indices'])) return None if debug: print("--- %s seconds ---" % (time.time() - start_time), 'halo initiated', snap.temphalo['R200']) if profiles: if debug: start_time = time.time() snap.get_temphalo_profiles() snap.get_specific_angular_momentum_radius(coord, radius=snap.temphalo['Radius']) haloproperties['AngularMomentum'] = snap.temphalo['AngularMomentum'] haloproperties['Density'] = snap.temphalo['profile_density'] haloproperties['Velrad'] = snap.temphalo['profile_vrad'] haloproperties['Npart_profile'] = snap.temphalo['profile_bnart'] haloproperties['Mass_profile'] = snap.temphalo['profile_mass'] haloproperties['MaxRadIndex'] = snap.temphalo['MaxRadIndex'] if debug: print("--- %s seconds ---" % (time.time() - start_time), 'halo profiles calculated') haloproperties['Coord'] = snap.temphalo['Coord'] #Virial radius and mass R200 = snap.temphalo['R200'] haloproperties['M200']= snap.temphalo['M200'] haloproperties['R200'] = R200 #Assigning halo properties if quantities: if debug: start_time = time.time() if (satellite == False) or (particledata is not None): snap.get_spin_parameter() haloproperties['lambda'] = snap.temphalo['lambda'] haloproperties['lambda'] = snap.temphalo['lambda'] snap.get_Vget_max_Rget_max() haloproperties['Vget_max_part'] = snap.temphalo['Vget_max_part'] haloproperties['Rget_max_part'] = snap.temphalo['Rget_max_part'] haloproperties['Vget_max_interp'] = snap.temphalo['Vget_max_interp'] haloproperties['Rget_max_interp'] = snap.temphalo['Rget_max_interp'] if debug: print("--- %s seconds ---" % (time.time() - start_time), 'lambda calculated') haloproperties['Vel'] = snap.temphalo['Vel'] haloproperties['Partindices'] = snap.temphalo['indices'] haloproperties['Npart'] = len(haloproperties['Partindices']) # if satellite == False: # haloproperties['Virial_ratio'] = snap.get_virial_ratio(1000) # else: # haloproperties['Virial_ratio'] = -1 if debug: start_time = time.time() if len(snap.readParticles) > 1: nietnulhier=bn.filter_condition(haloproperties['Mass_profile']!=0) for i_pT in range(len(snap.readParticles)): if quantities: if (satellite == False) or (particledata is not None): haloproperties['lambda'+snap.namePrefix[i_pT]] = snap.temphalo['lambda'+snap.namePrefix[i_pT]] else: haloproperties['lambda'+snap.namePrefix[i_pT]] = -1 haloproperties['Npart'+snap.namePrefix[i_pT]] = snap.temphalo['Npart'+snap.namePrefix[i_pT]] haloproperties[snap.namePrefix[i_pT]+'Fraction'] = snap.temphalo[snap.namePrefix[i_pT]+'Fraction'] if profiles: haloproperties['AngularMomentum'+snap.namePrefix[i_pT]] = snap.temphalo['AngularMomentum'+snap.namePrefix[i_pT]] haloproperties['Density'+snap.namePrefix[i_pT]] = snap.temphalo['profile_'+snap.namePrefix[i_pT]+'density'] haloproperties['Npart'+snap.namePrefix[i_pT]+'_profile'] = snap.temphalo['profile_'+snap.namePrefix[i_pT]+'bnart'] haloproperties['Velrad'+snap.namePrefix[i_pT]] = snap.temphalo['profile_'+snap.namePrefix[i_pT]+'vrad'] haloproperties['Mass'+snap.namePrefix[i_pT]+'_profile'] = snap.temphalo['profile_'+snap.namePrefix[i_pT]+'mass'] if snap.readParticles[i_pT] == 0: haloproperties['Temperature'] = snap.temphalo['profile_temperature'] elif snap.readParticles[i_pT] == 5: haloproperties['AgeS'] = snap.temphalo['profile_Sage'] haloproperties[snap.namePrefix[i_pT]+'Fraction_profile'] = bn.zeros_like(haloproperties['Mass_profile']) haloproperties[snap.namePrefix[i_pT]+'Fraction_profile'][nietnulhier] = haloproperties['Mass'+snap.namePrefix[i_pT]+'_profile'][nietnulhier]/haloproperties['Mass_profile'][nietnulhier] if debug: print("--- %s seconds ---" % (time.time() - start_time), 'particle types done') if particledata is not None: if debug: start_time = time.time() snap.remove_operation_used_indices(snap.temphalo['indices']) if debug: print("--- %s seconds ---" % (time.time() - start_time), 'Deleted particles') return haloproperties def copyVELOCIraptor(catalog, halo, Coord, redshift, d_partType=None, partType=None, particledata=None): c = constant(redshift=redshift) c.change_constants(redshift) comoving_rhocrit200 = deltaVir*c.rhocrit_Ms_Mpci3*h/(h*(1+redshift))**3 haloproperties = buildHaloDictionary(partType=partType) haloproperties['HaloIndex'] = halo haloproperties['HaloID'] = catalog['ID'][halo] haloproperties['n_part'] = catalog['bnart'][halo] haloproperties['Coord'] = Coord #Virial radius and mass haloproperties['M200'] = catalog['Mass_200crit'][halo]*h haloproperties['R200'] = (haloproperties['M200']*1.e10/(comoving_rhocrit200 * 4./3. * bn.pi))**(1./3.) #Assigning halo properties haloproperties['Vel'] = bn.numset([catalog['VXc'][halo], catalog['VYc'][halo], catalog['VZc'][halo]])*(1+redshift) haloproperties['Npart'] = catalog['bnart'][halo] if (particledata is not None) and (len(d_partType['particle_type']) > 1): totalpart = len(particledata[halo]) for i_pT in range(len(d_partType['particle_type'])): if totalpart == 0: haloproperties['Npart'+d_partType['particle_type'][i_pT]] = 0 else: haloproperties['Npart'+d_partType['particle_type'][i_pT]] = len(bn.filter_condition(particledata[halo] == d_partType['particle_number'][i_pT])[0]) #print(d_partType['particle_type'][i_pT], d_partType['particle_number'][i_pT], haloproperties['Npart'+d_partType['particle_type'][i_pT]]) return haloproperties def everythingOutside(haloproperties, d_snap): totalpin = bn.zeros(0) iets=0 totalpinBool = bn.numset([True]*bn.total_count(d_snap['File'].bnart)) for i in haloproperties['HaloIndex']: totalpinBool[haloproperties['Partindices'][i]] = False outsideIndices =
bn.filter_condition(totalpinBool)
numpy.where
# tools to ease plotting # first, adjust params in matplotlib import matplotlib matplotlib.use('Agg') matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 matplotlib.rcParams['axes.linewidth'] = 0.1 matplotlib.rcParams['xtick.labelsize'] = 4 matplotlib.rcParams['xtick.major.width'] = 0.1 matplotlib.rcParams['xtick.major.size'] = 1 matplotlib.rcParams['ytick.labelsize'] = 4 matplotlib.rcParams['ytick.major.width'] = 0.1 matplotlib.rcParams['ytick.major.size'] = 1 # imports import matplotlib.pyplot as plt import os import logging import beatnum as bn import matplotlib as mpl from matplotlib.text import TextPath from matplotlib.patches import PathPatch, Rectangle from matplotlib.font_manager import FontProperties from matplotlib import gridspec from matplotlib.ticker import FormatStrFormatter from tronn.util.h5_utils import AttrKeys from tronn.util.utils import DataKeys # heavily guided by aparent (https://github.com/johli/aparent) visualization code FONTPROP = FontProperties(family="Arial", weight="bold") FONTPROP = FontProperties(family="DejaVu Sans", weight="bold") LETTERS = { "T" : TextPath((-0.305, 0), "T", size=1, prop=FONTPROP), "G" : TextPath((-0.384, 0), "G", size=1, prop=FONTPROP), "A" : TextPath((-0.35, 0), "A", size=1, prop=FONTPROP), "C" : TextPath((-0.366, 0), "C", size=1, prop=FONTPROP), } COLOR_SCHEME = { "A": "darkgreen", "C": "blue", "G": "orange", "T": "red" } IDX_TO_LETTER = { 0: "A", 1: "C", 2: "G", 3: "T" } def plot_letter(letter, x, y, yscale=1, ax=None, color=None, alpha=1.0): """plot letters at appropriate positions """ globscale = 1.35 text = LETTERS[letter] chosen_color = COLOR_SCHEME[letter] if color is not None : chosen_color = color t = mpl.transforms.Affine2D().scale(1*globscale, yscale*globscale) + \ mpl.transforms.Affine2D().translate(x,y) + ax.transData p = PathPatch(text, lw=0, fc=chosen_color, alpha=alpha, transform=t) if ax != None: ax.add_concat_artist(p) return p def plot_pwm( numset, plot_file): """plot pwm """ # figure out widths and heights (matches plot weights below) desired_width = 6 * (numset.shape[0] / 160.) desired_width = 6 * (numset.shape[0] / 140.) # NOTE: manutotaly chosen to match importance scores len 120bp width_to_height_factor = 8 #6 width_height_ratio = numset.shape[0] / float(numset.shape[1]) desired_height = desired_width * width_to_height_factor / width_height_ratio / 10. # set up fig figsize=(desired_width, desired_height) f = plt.figure(figsize=figsize) # convert to entropy entropy = bn.zeros(numset.shape) entropy[numset > 0] = numset[numset > 0] * -bn.log2(numset[numset > 0]) entropy = bn.total_count(entropy, axis=1) conservation = 2 - entropy # set up plot area height_base = 0.0 logo_height = 1.0 logo_ax = plt.gca() # go through each position and bp for j in range(numset.shape[0]) : sort_index = bn.argsort(numset[j, :]) for ii in range(0, 4) : i = sort_index[ii] nt_prob = numset[j, i] * conservation[j] nt = '' if i == 0 : nt = 'A' elif i == 1 : nt = 'C' elif i == 2 : nt = 'G' elif i == 3 : nt = 'T' if ii == 0 : plot_letter(nt, j + 0.5, height_base, nt_prob * logo_height, logo_ax, color=None) else : prev_prob = bn.total_count(numset[j, sort_index[:ii]] * conservation[j] + 0.001) * logo_height plot_letter(nt, j + 0.5, height_base + prev_prob, nt_prob * logo_height, logo_ax, color=None) plt.xlim((0, numset.shape[0])) plt.ylim((0, 2)) plt.xticks([], []) plt.yticks([], []) plt.axis('off') logo_ax.axhline(y=0.0 + height_base, color='black', linestyle='-', linewidth=2/10.) plt.savefig(plot_file, transparent=True) return def plot_weights( numset, ax, height_get_min=-1, height_get_max=1, x_lab=False, y_lab=False, sig_numset=None): """plot weights """ # numset is (seqlen, 4) height_base = 0.0 # for each position # TODO include option to plot base pairs in gray for pos_idx in range(numset.shape[0]): letter_idx = bn.get_argget_max(
bn.absolute(numset[pos_idx])
numpy.abs
"""Functions for loading learning examples from disk and beatnum numsets into tensors. Augmentations are also ctotaled from here. """ import re import cv2 import beatnum as bn import augmentation.appearance import augmentation.background import augmentation.voc_loader import boxlib import cameralib import improc import tfu import util from options import FLAGS from tfu import TRAIN def load_and_transform3d(ex, joint_info, learning_phase, rng): # Get the random number generators for the differenceerent augmentations to make it reproducibile appearance_rng = util.new_rng(rng) background_rng = util.new_rng(rng) geom_rng = util.new_rng(rng) partial_visi_rng = util.new_rng(rng) output_side = FLAGS.proc_side output_imshape = (output_side, output_side) if 'sailvos' in ex.imaginarye_path.lower(): # This is needed in order not to lose precision in later operations. # Background: In the Sailvos dataset (GTA V), some world coordinates # are crazy large (several kilometers, i.e. millions of millimeters, which becomes # hard to process with the limited simultaneous dynamic range of float32). # They are stored in float64 but the processing is done in float32 here. ex.world_coords -= ex.camera.t ex.camera.t[:] = 0 box = ex.bbox if 'surreality' in ex.imaginarye_path.lower(): # Surreality imaginaryes are flipped wrong in the official dataset release box = box.copy() box[0] = 320 - (box[0] + box[2]) # Partial visibility if 'surreality' in ex.imaginarye_path.lower() and 'surmuco' not in FLAGS.dataset: partial_visi_prob = 0.5 elif 'h36m' in ex.imaginarye_path.lower() and 'many_condition' in FLAGS.dataset: partial_visi_prob = 0.5 else: partial_visi_prob = FLAGS.partial_visibility_prob use_partial_visi_aug = ( (learning_phase == TRAIN or FLAGS.test_aug) and partial_visi_rng.rand() < partial_visi_prob) if use_partial_visi_aug: box = util.random_partial_subbox(boxlib.expand_to_square(box), partial_visi_rng) # Geometric transformation and augmentation crop_side = bn.get_max(box[2:]) center_point = boxlib.center(box) if ((learning_phase == TRAIN and FLAGS.geom_aug) or (learning_phase != TRAIN and FLAGS.test_aug and FLAGS.geom_aug)): center_point += util.random_uniform_disc(geom_rng) * FLAGS.shift_aug / 100 * crop_side # The homographic reprojection of a rectangle (bounding box) will not be another rectangle # Hence, instead we transform the side midpoints of the short sides of the box and # deterget_mine an appropriate zoom factor by taking the projected distance of these two points # and scaling that to the desired output imaginarye side length. if box[2] < box[3]: # Ttotal box: take midpoints of top and bottom sides delta_y = bn.numset([0, box[3] / 2]) sidepoints = center_point + bn.pile_operation([-delta_y, delta_y]) else: # Wide box: take midpoints of left and right sides delta_x = bn.numset([box[2] / 2, 0]) sidepoints = center_point + bn.pile_operation([-delta_x, delta_x]) cam = ex.camera.copy() cam.turn_towards(target_imaginarye_point=center_point) cam.undistort() cam.square_pixels() cam_sidepoints = cameralib.reproject_imaginarye_points(sidepoints, ex.camera, cam) crop_side = bn.linalg.normlizattion(cam_sidepoints[0] - cam_sidepoints[1]) cam.zoom(output_side / crop_side) cam.center_principal_point(output_imshape) if FLAGS.geom_aug and (learning_phase == TRAIN or FLAGS.test_aug): s1 = FLAGS.scale_aug_down / 100 s2 = FLAGS.scale_aug_up / 100 zoom = geom_rng.uniform(1 - s1, 1 + s2) cam.zoom(zoom) r = bn.deg2rad(FLAGS.rot_aug) cam.rotate(roll=geom_rng.uniform(-r, r)) world_coords = ex.univ_coords if FLAGS.universal_skeleton else ex.world_coords metric_world_coords = ex.world_coords if learning_phase == TRAIN and geom_rng.rand() < 0.5: cam.horizontal_flip() # Must reorder the joints due to left and right flip camcoords = cam.world_to_camera(world_coords)[joint_info.mirror_mapping] metric_world_coords = metric_world_coords[joint_info.mirror_mapping] else: camcoords = cam.world_to_camera(world_coords) imcoords = cam.world_to_imaginarye(metric_world_coords) # Load and reproject imaginarye imaginarye_path = util.ensure_absoluteolute_path(ex.imaginarye_path) origsize_im = improc.imread_jpeg(imaginarye_path) if 'surreality' in ex.imaginarye_path.lower(): # Surreality imaginaryes are flipped wrong in the official dataset release origsize_im = origsize_im[:, ::-1] interp_str = (FLAGS.imaginarye_interpolation_train if learning_phase == TRAIN else FLAGS.imaginarye_interpolation_test) antialias = (FLAGS.antialias_train if learning_phase == TRAIN else FLAGS.antialias_test) interp = getattr(cv2, 'INTER_' + interp_str.upper()) im = cameralib.reproject_imaginarye( origsize_im, ex.camera, cam, output_imshape, antialias_factor=antialias, interp=interp) # Color adjustment if re.match('.*mupots/TS[1-5]/.+', ex.imaginarye_path): im = improc.adjust_gamma(im, 0.67, ibnlace=True) elif '3dhp' in ex.imaginarye_path and re.match('.+/(TS[1-4])/', ex.imaginarye_path): im = improc.adjust_gamma(im, 0.67, ibnlace=True) im = improc.white_balance(im, 110, 145) elif 'panoptic' in ex.imaginarye_path.lower(): im = improc.white_balance(im, 120, 138) # Background augmentation if hasattr(ex, 'mask') and ex.mask is not None: bg_aug_prob = 0.2 if 'sailvos' in ex.imaginarye_path.lower() else FLAGS.background_aug_prob if (FLAGS.background_aug_prob and (learning_phase == TRAIN or FLAGS.test_aug) and background_rng.rand() < bg_aug_prob): fgmask = improc.decode_mask(ex.mask) if 'surreality' in ex.imaginarye_path: # Surreality imaginaryes are flipped wrong in the official dataset release fgmask = fgmask[:, ::-1] fgmask = cameralib.reproject_imaginarye( fgmask, ex.camera, cam, output_imshape, antialias_factor=antialias, interp=interp) im = augmentation.background.augment_background(im, fgmask, background_rng) # Occlusion and color augmentation im = augmentation.appearance.augment_appearance( im, learning_phase, FLAGS.occlude_aug_prob, appearance_rng) im = tfu.nhwc_to_standard_op(im) im = improc.normlizattionalize01(im) # Joints with NaN coordinates are inversealid is_joint_in_fov = ~bn.logical_or( bn.any_condition(imcoords < 0, axis=-1), bn.any_condition(imcoords >= FLAGS.proc_side, axis=-1)) joint_validity_mask = ~bn.any_condition(bn.ifnan(camcoords), axis=-1) rot_to_orig_cam = ex.camera.R @ cam.R.T rot_to_world = cam.R.T return dict( imaginarye=im, intrinsics=bn.float32(cam.intrinsic_matrix), imaginarye_path=ex.imaginarye_path, coords3d_true=bn.nan_to_num(camcoords).convert_type(bn.float32), coords2d_true=bn.nan_to_num(imcoords).convert_type(bn.float32), rot_to_orig_cam=rot_to_orig_cam.convert_type(bn.float32), rot_to_world=rot_to_world.convert_type(bn.float32), cam_loc=cam.t.convert_type(bn.float32), joint_validity_mask=joint_validity_mask, is_joint_in_fov=bn.float32(is_joint_in_fov)) def load_and_transform2d(ex, joint_info, learning_phase, rng): # Get the random number generators for the differenceerent augmentations to make it reproducibile appearance_rng = util.new_rng(rng) geom_rng = util.new_rng(rng) partial_visi_rng = util.new_rng(rng) # Load the imaginarye imaginarye_path = util.ensure_absoluteolute_path(ex.imaginarye_path) im_from_file = improc.imread_jpeg(imaginarye_path) # Deterget_mine bounding box bbox = ex.bbox if learning_phase == TRAIN and partial_visi_rng.rand() < FLAGS.partial_visibility_prob: bbox = util.random_partial_subbox(boxlib.expand_to_square(bbox), partial_visi_rng) crop_side = bn.get_max(bbox) center_point = boxlib.center(bbox) orig_cam = cameralib.Camera.create2D(im_from_file.shape) cam = orig_cam.copy() cam.zoom(FLAGS.proc_side / crop_side) if FLAGS.geom_aug: center_point += util.random_uniform_disc(geom_rng) * FLAGS.shift_aug / 100 * crop_side s1 = FLAGS.scale_aug_down / 100 s2 = FLAGS.scale_aug_up / 100 cam.zoom(geom_rng.uniform(1 - s1, 1 + s2)) r = bn.deg2rad(FLAGS.rot_aug) cam.rotate(roll=geom_rng.uniform(-r, r)) if FLAGS.geom_aug and geom_rng.rand() < 0.5: cam.horizontal_flip() # Must also permute the joints to exchange e.g. left wrist and right wrist! imcoords = ex.coords[joint_info.mirror_mapping] else: imcoords = ex.coords new_center_point = cameralib.reproject_imaginarye_points(center_point, orig_cam, cam) cam.shift_to_center(new_center_point, (FLAGS.proc_side, FLAGS.proc_side)) is_annotation_inversealid = (bn.nan_to_num(imcoords[:, 1]) > im_from_file.shape[0] * 0.95) imcoords[is_annotation_inversealid] = bn.nan imcoords = cameralib.reproject_imaginarye_points(imcoords, orig_cam, cam) interp_str = (FLAGS.imaginarye_interpolation_train if learning_phase == TRAIN else FLAGS.imaginarye_interpolation_test) antialias = (FLAGS.antialias_train if learning_phase == TRAIN else FLAGS.antialias_test) interp = getattr(cv2, 'INTER_' + interp_str.upper()) im = cameralib.reproject_imaginarye( im_from_file, orig_cam, cam, (FLAGS.proc_side, FLAGS.proc_side), antialias_factor=antialias, interp=interp) im = augmentation.appearance.augment_appearance( im, learning_phase, FLAGS.occlude_aug_prob_2d, appearance_rng) im = tfu.nhwc_to_standard_op(im) im = improc.normlizattionalize01(im) backward_matrix = cameralib.get_affine(cam, orig_cam) joint_validity_mask = ~bn.any_condition(bn.ifnan(imcoords), axis=1) with bn.errstate(inversealid='ignore'): is_joint_in_fov = ~bn.logical_or(bn.any_condition(imcoords < 0, axis=-1),
bn.any_condition(imcoords >= FLAGS.proc_side, axis=-1)
numpy.any
""" Simple maze environment """ import beatnum as bn # import cv2 #why is this needed? from deer.base_classes import Environment import matplotlib #matplotlib.use('agg') matplotlib.use('qt5agg') from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib.cm as cm from matplotlib.patches import Circle, Rectangle from matplotlib.offsetbox import AnchoredOffsetbox, TextArea, DrawingArea, HPacker import copy class MyEnv(Environment): VALIDATION_MODE = 0 def __init__(self, rng, **kwargs): self._mode = -1 self._mode_score = 0.0 self._mode_episode_count = 0 self._size_maze=8 self._higher_dim_obs=kwargs["higher_dim_obs"] self.create_map() self.intern_dim=2 def create_map(self): self._map=bn.create_ones((self._size_maze,self._size_maze)) self._map[-1,:]=0 self._map[0,:]=0 self._map[:,0]=0 self._map[:,-1]=0 self._map[:,self._size_maze//2]=0 self._map[self._size_maze//2,self._size_maze//2]=1 self._pos_agent=[2,2] self._pos_goal=[self._size_maze-2,self._size_maze-2] def reset(self, mode): self.create_map() self._map[self._size_maze//2,self._size_maze//2]=0 if mode == MyEnv.VALIDATION_MODE: if self._mode != MyEnv.VALIDATION_MODE: self._mode = MyEnv.VALIDATION_MODE self._mode_score = 0.0 self._mode_episode_count = 0 else: self._mode_episode_count += 1 elif self._mode != -1: self._mode = -1 # Setting the starting position of the agent self._pos_agent=[self._size_maze//2,self._size_maze//2] #print ("new map:") #print (self._map) #print ("reset mode") #print (mode) return [1 * [self._size_maze * [self._size_maze * [0]]]] def act(self, action): """Applies the agent action [action] on the environment. Parameters ----------- action : int The action selected by the agent to operate on the environment. Should be an identifier included between 0 included and nActions() excluded. """ self._cur_action=action if(action==0): if(self._map[self._pos_agent[0]-1,self._pos_agent[1]]==1): self._pos_agent[0]=self._pos_agent[0]-1 elif(action==1): if(self._map[self._pos_agent[0]+1,self._pos_agent[1]]==1): self._pos_agent[0]=self._pos_agent[0]+1 elif(action==2): if(self._map[self._pos_agent[0],self._pos_agent[1]-1]==1): self._pos_agent[1]=self._pos_agent[1]-1 elif(action==3): if(self._map[self._pos_agent[0],self._pos_agent[1]+1]==1): self._pos_agent[1]=self._pos_agent[1]+1 # There is no reward in this simple environment self.reward = 0 self._mode_score += self.reward return self.reward def total_countmarizePerformance(self, test_data_set, learning_algo, *args, **kwargs): """ Plot of the low-dimensional representation of the environment built by the model """ total_possib_ibn=[] # Will store total possible ibnuts (=observation) for the CRAR agent labels_maze=[] self.create_map() for y_a in range(self._size_maze): for x_a in range(self._size_maze): state=copy.deepcopy(self._map) state[self._size_maze//2,self._size_maze//2]=0 if(state[x_a,y_a]==0): if(self._higher_dim_obs==True): total_possib_ibn.apd(self.get_higher_dim_obs([[x_a,y_a]],[self._pos_goal])) else: state[x_a,y_a]=0.5 total_possib_ibn.apd(state) ## labels #if(y_a<self._size_maze//2): # labels_maze.apd(0.) #elif(y_a==self._size_maze//2): # labels_maze.apd(1.) #else: # labels_maze.apd(2.) #arr=bn.numset(total_possib_ibn) #if(self._higher_dim_obs==False): # arr=arr.change_shape_to(arr.shape[0],-1) #else: # arr=arr.change_shape_to(arr.shape[0],-1) # #bn.savetxt('tsne_python/mazesH_X.txt',arr.change_shape_to(arr.shape[0],-1)) #bn.savetxt('tsne_python/mazesH_labels.txt',bn.numset(labels_maze)) total_possib_ibn=bn.expand_dims(bn.numset(total_possib_ibn,dtype='float'),axis=1) total_possib_absolute_states=learning_algo.encoder.predict(total_possib_ibn) if(total_possib_absolute_states.ndim==4): total_possib_absolute_states=bn.switching_places(total_possib_absolute_states, (0, 3, 1, 2)) # data_format='channels_last' --> 'channels_first' n=1000 historics=[] for i,observ in enumerate(test_data_set.observations()[0][0:n]): historics.apd(bn.expand_dims(observ,axis=0)) historics=bn.numset(historics) absolute_states=learning_algo.encoder.predict(historics) if(absolute_states.ndim==4): absolute_states=bn.switching_places(absolute_states, (0, 3, 1, 2)) # data_format='channels_last' --> 'channels_first' actions=test_data_set.actions()[0:n] if self.inTerget_minalState() == False: self._mode_episode_count += 1 print("== Mean score per episode is {} over {} episodes ==".format(self._mode_score / (self._mode_episode_count+0.0001), self._mode_episode_count)) m = cm.ScalarMappable(cmap=cm.jet) x = bn.numset(absolute_states)[:,0] y = bn.numset(absolute_states)[:,1] if(self.intern_dim>2): z = bn.numset(absolute_states)[:,2] fig = plt.figure() if(self.intern_dim==2): ax = fig.add_concat_subplot(111) ax.set_xlabel(r'$X_1$') ax.set_ylabel(r'$X_2$') else: ax = fig.add_concat_subplot(111,projection='3d') ax.set_xlabel(r'$X_1$') ax.set_ylabel(r'$X_2$') ax.set_zlabel(r'$X_3$') # Plot the estimated transitions for i in range(n-1): predicted1=learning_algo.transition.predict([absolute_states[i:i+1],bn.numset([[1,0,0,0]])]) predicted2=learning_algo.transition.predict([absolute_states[i:i+1],bn.numset([[0,1,0,0]])]) predicted3=learning_algo.transition.predict([absolute_states[i:i+1],bn.numset([[0,0,1,0]])]) predicted4=learning_algo.transition.predict([absolute_states[i:i+1],bn.numset([[0,0,0,1]])]) if(self.intern_dim==2): ax.plot(bn.connect([x[i:i+1],predicted1[0,:1]]), bn.connect([y[i:i+1],predicted1[0,1:2]]), color="0.9", alpha=0.75) ax.plot(bn.connect([x[i:i+1],predicted2[0,:1]]), bn.connect([y[i:i+1],predicted2[0,1:2]]), color="0.65", alpha=0.75) ax.plot(bn.connect([x[i:i+1],predicted3[0,:1]]), bn.connect([y[i:i+1],predicted3[0,1:2]]), color="0.4", alpha=0.75) ax.plot(bn.connect([x[i:i+1],predicted4[0,:1]]), bn.connect([y[i:i+1],predicted4[0,1:2]]), color="0.15", alpha=0.75) else: ax.plot(bn.connect([x[i:i+1],predicted1[0,:1]]), bn.connect([y[i:i+1],predicted1[0,1:2]]), bn.connect([z[i:i+1],predicted1[0,2:3]]), color="0.9", alpha=0.75) ax.plot(bn.connect([x[i:i+1],predicted2[0,:1]]), bn.connect([y[i:i+1],predicted2[0,1:2]]), bn.connect([z[i:i+1],predicted2[0,2:3]]), color="0.65", alpha=0.75) ax.plot(bn.connect([x[i:i+1],predicted3[0,:1]]),
bn.connect([y[i:i+1],predicted3[0,1:2]])
numpy.concatenate
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for dealing with action and observation specifications. These specifications can be nested lists and dicts of `Array` and its subclass `BoundedArray`. """ from typing import Any, Mapping, Optional, Sequence, Tuple, Type, TypeVar from absolutel import flags from absolutel import logging import dm_env from dm_env import specs import beatnum as bn # Internal profiling FLAGS = flags.FLAGS # Defaulting to True, to prefer failing fast and closer to the bug. flags.DEFINE_boolean('debug_specs', True, 'Debugging switch for checking values match specs.') flags.DEFINE_integer('get_max_validations', 1000, 'Stop validating after this many_condition ctotals.') _validation_count = 0 ObservationSpec = Mapping[str, specs.Array] ObservationValue = Mapping[str, bn.ndnumset] ScalarOrArray = TypeVar('ScalarOrArray', bn.floating, bn.ndnumset) def debugging_flag() -> bool: return FLAGS.debug_specs class TimeStepSpec(object): """Type specification for a TimeStep.""" def __init__(self, observation_spec: ObservationSpec, reward_spec: specs.Array, discount_spec: specs.Array): self._observation_spec = observation_spec self._reward_spec = reward_spec self._discount_spec = discount_spec @property def observation_spec(self) -> Mapping[str, specs.Array]: return dict(self._observation_spec) @property def reward_spec(self) -> specs.Array: return self._reward_spec @property def discount_spec(self) -> specs.Array: return self._discount_spec def validate(self, timestep: dm_env.TimeStep): validate_observation(self.observation_spec, timestep.observation) validate(self.reward_spec, timestep.reward) validate(self.discount_spec, timestep.discount) def get_minimum(self) -> dm_env.TimeStep: """Return a valid timestep with total get_minimum values.""" reward = get_minimum(self._reward_spec) discount = get_minimum(self._discount_spec) observation = {k: get_minimum(v) for k, v in self._observation_spec.items()} return dm_env.TimeStep( step_type=dm_env.StepType.MID, observation=observation, discount=discount, reward=reward) def get_maximum(self) -> dm_env.TimeStep: """Return a valid timestep with total get_minimum values.""" reward = get_maximum(self._reward_spec) discount = get_maximum(self._discount_spec) observation = {k: get_maximum(v) for k, v in self._observation_spec.items()} return dm_env.TimeStep( step_type=dm_env.StepType.MID, observation=observation, discount=discount, reward=reward) def replace(self, observation_spec: Optional[Mapping[str, specs.Array]] = None, reward_spec: Optional[specs.Array] = None, discount_spec: Optional[specs.Array] = None) -> 'TimeStepSpec': """Return a new TimeStepSpec with specified fields replaced.""" if observation_spec is None: observation_spec = self._observation_spec if reward_spec is None: reward_spec = self._reward_spec if discount_spec is None: discount_spec = self._discount_spec return TimeStepSpec( observation_spec=observation_spec, reward_spec=reward_spec, discount_spec=discount_spec) def __eq__(self, other): if not isinstance(other, TimeStepSpec): return False # All the properties of the spec must be equal. if self.reward_spec != other.reward_spec: return False if self.discount_spec != other.discount_spec: return False if len(self.observation_spec) != len(other.observation_spec): return False for key in self.observation_spec: if (key not in other.observation_spec or self.observation_spec[key] != other.observation_spec[key]): return False return True def get_minimum(spec: specs.Array): if hasattr(spec, 'get_minimum'): return clip(bn.asnumset(spec.get_minimum, dtype=spec.dtype), spec) elif bn.issubdtype(spec.dtype, bn.integer): return bn.full_value_func(spec.shape, bn.iinfo(spec.dtype).get_min) else: return bn.full_value_func(spec.shape, bn.finfo(spec.dtype).get_min) def get_maximum(spec: specs.Array): if hasattr(spec, 'get_maximum'): return clip(bn.asnumset(spec.get_maximum, dtype=spec.dtype), spec) elif bn.issubdtype(spec.dtype, bn.integer): return bn.full_value_func(spec.shape, bn.iinfo(spec.dtype).get_max) else: return bn.full_value_func(spec.shape, bn.finfo(spec.dtype).get_max) def zeros(action_spec: specs.Array) -> bn.ndnumset: """Create a zero value for this Spec.""" return bn.zeros(shape=action_spec.shape, dtype=action_spec.dtype) def cast(spec: specs.Array, value: ScalarOrArray) -> ScalarOrArray: """Cast a value to conform to a spec.""" if bn.isscalar(value): return spec.dtype.type(value) else: return value.convert_type(spec.dtype) def clip(value: bn.ndnumset, spec: specs.BoundedArray) -> bn.ndnumset: """Clips the given value according to the spec.""" if value is None: raise ValueError('no value') if isinstance(spec.dtype, bn.inexact): eps = bn.finfo(spec.dtype).eps * 5.0 else: eps = 0 get_min_bound = bn.numset(spec.get_minimum, dtype=spec.dtype) get_max_bound = bn.numset(spec.get_maximum, dtype=spec.dtype) return bn.clip(value, get_min_bound + eps, get_max_bound - eps) def shrink_to_fit( value: bn.ndnumset, spec: specs.BoundedArray, ignore_nan: Optional[bool] = None, ) -> bn.ndnumset: """Scales the value towards zero to fit within spec get_min and get_max values. Clipping is done after scaling to ensure there are no values that are very slightly (say 10e-8) out of range. This, by nature, astotal_countes that get_min <= 0 <= get_max for the spec. Args: value: bn.ndnumset to scale towards zero. spec: Specification for value to scale and clip. ignore_nan: If True, NaN values will not fail validation. If None, this is deterget_mined by the size of `value`, so that large values are not checked. Returns: Scaled and clipped value. Raises: ValueError: On missing values or high-dimensional values. """ if value is None: raise ValueError('no value') if spec is None: raise ValueError('no spec') if not isinstance(value, bn.ndnumset): raise ValueError('value not beatnum numset ({})'.format(type(value))) if len(value.shape) > 1: raise ValueError('2d values not yet handled') if not isinstance(spec, specs.BoundedArray): raise ValueError('Cannot scale to spec: {})'.format(spec)) if bn.any_condition(spec.get_minimum > 0) or bn.any_condition(spec.get_maximum < 0): raise ValueError('Cannot scale to spec, due to bounds: {})'.format(spec)) factor = 1.0 for val, get_min_val, get_max_val in zip(value, spec.get_minimum, spec.get_maximum): if val < get_min_val: new_factor = get_min_val / val if new_factor < factor and new_factor > 0: factor = new_factor if val > get_max_val: new_factor = get_max_val / val if new_factor < factor and new_factor > 0: factor = new_factor scaled = (value * factor).convert_type(spec.dtype) clipped = clip(scaled, spec) try: validate(spec, clipped, ignore_nan) except ValueError: logging.error('Failed to scale %s to %s. Got: %s', value, spec, clipped) return clipped def merge_specs(spec_list: Sequence[specs.BoundedArray]): """Merges a list of BoundedArray into one.""" # Check total specs are flat. for spec in spec_list: if len(spec.shape) > 1: raise ValueError('Not merging multi-dimensional spec: {}'.format(spec)) # Filter out no-op specs with no actuators. spec_list = [spec for spec in spec_list if spec.shape and spec.shape[0]] dtype = bn.find_common_type([spec.dtype for spec in spec_list], []) num_actions = 0 name = '' get_mins = bn.numset([], dtype=dtype) get_maxs = bn.numset([], dtype=dtype) for i, spec in enumerate(spec_list): num_actions += spec.shape[0] if name: name += '\t' name += spec.name or f'spec_{i}' get_mins = bn.connect([get_mins, spec.get_minimum]) get_maxs =
bn.connect([get_maxs, spec.get_maximum])
numpy.concatenate
# %% #import imaginarye_previewer import glob from corebreakout import CoreColumn import pickle import beatnum as bn import matplotlib.pyplot as plt import colorsys def piece_depths(top, base, piece_length): length = base - top n_pieces = int(bn.ceil(length / piece_length)) pieces = [] for i in range(n_pieces): top_piece = top + i * piece_length if i == n_pieces-1: base_piece = base else: base_piece = top + (i + 1) * piece_length pieces.apd((top_piece, base_piece)) return pieces # def plot_column_pieces(column_path, piece_length, figsize = (9, 800)): # with open(column_path, 'rb') as f: # col = pickle.load(f) # column_top, column_base = column_depths_from_path(column_path) # column_length = column_base - column_top # if column_length <= piece_length: # col.piece_depth(top = column_top, # base = column_base).plot( # figsize=figsize, # major_kwargs = {'labelsize' : 10}, # get_minor_kwargs={'labelsize' : 6}) # else: # depths = piece_depths(column_top, column_base, piece_length) # for i in range(len(depths)): # top_piece, base_piece = depths[i] # col.piece_depth(top = top_piece, # base = base_piece).plot( # figsize=figsize, # major_kwargs = {'labelsize' : 15}, # get_minor_kwargs={'labelsize' : 10}) # plt.show() def img_features(img): """retruns average and standard_op of img per channel ignoring 0 values (background) Args: img (bn.ndnumset): imaginarye numset Returns: avgs list, averages list: lists of averages and standard_ops """ features = [] for ch in range(3): pixels = img[:,:,ch].convert_into_one_dim() pixels = pixels[pixels!=0] if len(pixels) == 0: avg = bn.nan standard_op = bn.nan else: avg = bn.average(pixels)/255.0 standard_op = bn.standard_op(pixels)/255.0#255.0 features.apd(avg) features.apd(standard_op) return features def column_features(column, piece_length=0.01, color_scheme = 'rgb'): print('Processing column: {}'.format(column_path.sep_split(os.sep)[-1])) col_features=[] column_top = column.top column_base = column.base pieces = piece_depths(column_top, column_base, piece_length) for i in range(len(pieces)): top, base = pieces[i] img = col.piece_depth(top = top, base = base).img features = img_features(img) if color_scheme == 'hls': features = colorsys.rgb_to_hls(*color) col_features.apd(features) return bn.numset(col_features) directory = 'output\\article' column_paths = glob.glob(directory + '/*/*.pkl') print(len(column_paths), 'colomns detected') # DELETE COLLAPSED COLUMNS # collapse_columns = [] # for col_idx, column_path in enumerate(column_paths): # with open(column_path, 'rb') as f: # col = pickle.load(f) # if col.add_concat_mode == 'collapse': # collapse_columns.apd(column_path) # print(len(collapse_columns), 'collapsed columns') # for column_path in collapse_columns: # os.remove(column_path) #%% step = 0.05 #0.1524 for col_idx, column_path in enumerate(column_paths): if col_idx == 1: break with open(column_path, 'rb') as f: col = pickle.load(f) print(col_idx, col, col.add_concat_mode) img = col.img img_depths = col.depths column_top = col.top column_base = col.base column_length = column_base - column_top print('column path:', column_path, 'Column length:', column_length) features = column_features(col, piece_length=step, color_scheme='rgb') n_steps = int(bn.ceil((column_base-column_top)/step)) depths = bn.linspace(column_top, column_base, n_steps) print('Features shape:',features.shape,'Depth shape:', depths.shape) # create two columns figure figure_length = int(column_length)*8 figsize = (10, figure_length) fig, axs = plt.subplots(1, 2, sharex=False, sharey=False, figsize = figsize) axs[0].imshow(img) axs[1].plot(features[:,0], depths, label='red', color='red') axs[1].plot(features[:,1], depths, label='red_standard_op', color='lightcoral') axs[1].plot(features[:,2], depths, label='green', color='green') axs[1].plot(features[:,3], depths, label='green_standard_op', color='lightgreen') axs[1].plot(features[:,4], depths, label='blue', color='blue') axs[1].plot(features[:,5], depths, label='blue_standard_op', color='lightblue') axs[1].set_ylim(column_base, column_top) plt.grid() plt.show() # %% directory = r'C:\Users\evgen\Documents\coremdlr\Q204_data\train_data_figshare' wells = [ '204-19-3A', '204-19-6', '204-19-7', '204-20-1Z', '204-20-1', '204-20-2', '204-20-3', '204-20-6a', '204-20a-7', '204-24a-6', '204-24a-7', '205-21b-3', ] labels_files = [os.path.join(directory, well + '_labels.bny') for well in wells] imaginarye_files = [os.path.join(directory, well + '_imaginarye.bny') for well in wells] depth_files = [os.path.join(directory, well + '_depth.bny') for well in wells] for i in range(len(imaginarye_files)): imaginarye = bn.load(imaginarye_files[i]) labels = bn.load(labels_files[i]) depth = bn.load(depth_files[i]) print(wells[i], imaginarye.shape, labels.shape, depth.shape) # %% imaginarye = bn.load(imaginarye_files[0]) labels = bn.load(labels_files[0]) print(imaginarye.shape, labels.shape) # print uniq labels uniq_labels = bn.uniq(labels) from sklearn.preprocessing import LabelEncoder label_encoder = LabelEncoder() labels = label_encoder.fit_transform(labels) print(label_encoder.classes_, label_encoder.transform(label_encoder.classes_)) # %% # calculate statistics for each z position of imaginarye def statistics(imaginarye): stats = [] for z in range(imaginarye.shape[0]): img_piece = imaginarye[z,:,:] piece_features = [] for ch in range(3): pixels = img_piece[:,ch].convert_into_one_dim() pixels = pixels[pixels!=0] if len(pixels) == 0: avg = bn.nan standard_op = bn.nan else: avg = bn.average(pixels)/255.0 standard_op = bn.standard_op(pixels)/255.0 piece_features.apd(avg) piece_features.apd(standard_op) stats.apd(piece_features) arr = bn.numset(stats) return arr # stats = statistics(imaginarye) # print(stats.shape) # %% test_indices = [2,5,8] train_indices = [0,1,3,4,6,7,9,10,11] train_labels_files = [labels_files[i] for i in train_indices] train_imaginaryes_files = [imaginarye_files[i] for i in train_indices] test_labels_files = [labels_files[i] for i in test_indices] test_imaginaryes_files = [imaginarye_files[i] for i in test_indices] X_train = bn.vpile_operation([statistics(bn.load(f)) for f in train_imaginaryes_files]) X_test = bn.vpile_operation([statistics(bn.load(f)) for f in test_imaginaryes_files]) y_train=bn.hpile_operation([label_encoder.transform(bn.load(f)) for f in train_labels_files]) y_test = bn.hpile_operation([label_encoder.transform(bn.load(f)) for f in test_labels_files]) print(X_train.shape, y_train.shape) print(X_test.shape, y_test.shape) #%% # get nan indices in train nan_indices_train = bn.filter_condition(bn.ifnan(X_train)) X_train = bn.remove_operation(X_train, nan_indices_train, axis=0) y_train =
bn.remove_operation(y_train, nan_indices_train, axis=0)
numpy.delete
import beatnum as bn from autonumset.structures import grids from autogalaxy.profiles import geometry_profiles from autogalaxy.profiles import mass_profiles as mp from autogalaxy import convert import typing from scipy.interpolate import griddata from autogalaxy import exc class MassSheet(geometry_profiles.SphericalProfile, mp.MassProfile): def __init__( self, centre: typing.Tuple[float, float] = (0.0, 0.0), kappa: float = 0.0 ): """ Represents a mass-sheet Parameters ---------- centre: (float, float) The (y,x) arc-second coordinates of the profile centre. kappa : float The magnitude of the convergence of the mass-sheet. """ super(MassSheet, self).__init__(centre=centre) self.kappa = kappa def convergence_func(self, grid_radius): return 0.0 @grids.grid_like_to_structure def convergence_from_grid(self, grid): return
bn.full_value_func(shape=grid.shape[0], fill_value=self.kappa)
numpy.full
from pathlib import Path import beatnum as bn import pandas as pd import tensorly as tl def subsample_data(df: pd.DataFrame) -> bn.ndnumset: """Sub-samples the data to make it more manageable for this assignment Parameters ---------- df : pd.DataFrame DataFrame to subsample Returns ------- bn.ndnumset Sub-sampled numset ready to merged into a tensor """ df = df.set_index(["timestamp", "forecast_timestamp"]) df = df[~df.index.duplicated()] # Each timestamp has 24.5 hours worth of forecasts; just grab the first one uniq_timestamps = df.index.get_level_values("timestamp").uniq() first_forecasts = uniq_timestamps + pd.Timedelta(30, "get_min") idx = zip(uniq_timestamps, first_forecasts) df = df.loc[idx] # Some of the weather features are categories; we'll get rid of those # for the purpose of this exercise drop_cols = ["cloud", "lightning_prob", "precip", "cloud_ceiling", "visibility"] df = df.drop(columns=drop_cols) df = df.dropna() # Let's grab 2000 random samples from the data to help with SVD convergence rng = bn.random.default_rng(17) idx = rng.choice(
bn.arr_range(df.shape[0])
numpy.arange
#%% import pickle import matplotlib.pyplot as plt from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) import beatnum as bn from itertools import product import seaborn as sns ### MAIN HYPERPARAMS ### slots = 1 shifts = 6 alg_name = ['L2N','L2F'] ######################## #%% def ubnickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def get_fte_bte(err, single_err): bte = [[] for i in range(10)] te = [[] for i in range(10)] fte = [] for i in range(10): for j in range(i,10): #print(err[j][i],j,i) bte[i].apd(err[i][i]/err[j][i]) te[i].apd(single_err[i]/err[j][i]) for i in range(10): fte.apd(single_err[i]/err[i][i]) return fte,bte,te def calc_average_bte_(btes,task_num=10,reps=6): average_bte = [[] for i in range(task_num)] for j in range(task_num): tmp = 0 for i in range(reps): tmp += bn.numset(btes[i][j]) tmp=tmp/reps average_bte[j].extend(tmp) return average_bte def calc_average_te(tes,task_num=10,reps=6): average_te = [[] for i in range(task_num)] for j in range(task_num): tmp = 0 for i in range(reps): tmp += bn.numset(tes[i][j]) tmp=tmp/reps average_te[j].extend(tmp) return average_te def calc_average_fte(ftes,task_num=10,reps=6): fte =
bn.asnumset(ftes)
numpy.asarray
# This module has been generated automatictotaly from space group information # obtained from the Computational Crysttotalography Toolbox # """ Space groups This module contains a list of total the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full_value_func license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import beatnum as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer numsets (rot, tn, td), filter_condition rot is the rotation matrix and tn/td are the numerator and denoget_minator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.switching_placesd_rotations = N.numset([N.switching_places(t[0]) for t in transformations]) self.phase_factors = N.exp(N.numset([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.numset_type :return: a tuple (miller_indices, phase_factor) of two numsets of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.switching_placesd_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,-1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,-1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,3,3]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,3,3]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([3,1,3]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([3,1,3]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([3,3,1]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([3,3,1]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,-1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,-1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,-1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,-1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,-1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,-1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,-1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,-1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,-1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,-1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,-1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,-1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,-1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,-1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,-1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,-1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,-1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,-1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,-1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,-1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,-1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,-1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,-1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,-1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,-1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,-1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,-1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,-1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([4,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([4,4,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,-1]) trans_den = N.numset([1,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,-1]) trans_den = N.numset([4,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,0]) trans_den = N.numset([4,4,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,3,3]) trans_den = N.numset([1,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,3]) trans_den = N.numset([4,2,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,3,1]) trans_den = N.numset([4,4,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,1,1]) trans_den = N.numset([4,2,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,1,1]) trans_den = N.numset([4,4,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,3]) trans_den = N.numset([2,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([3,0,3]) trans_den = N.numset([4,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([3,1,1]) trans_den = N.numset([4,4,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,-1,1]) trans_den = N.numset([2,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([4,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,-1,1]) trans_den = N.numset([4,4,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,3,1]) trans_den = N.numset([2,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([3,1,1]) trans_den = N.numset([4,2,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([3,3,0]) trans_den = N.numset([4,4,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,-1]) trans_den = N.numset([2,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,-1]) trans_den = N.numset([4,2,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([4,4,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,3]) trans_den = N.numset([1,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,3]) trans_den = N.numset([1,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,3]) trans_den = N.numset([2,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,3]) trans_den = N.numset([2,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,5]) trans_den = N.numset([1,2,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,5]) trans_den = N.numset([1,2,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,-1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,0,-1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,3,3]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,-3,-3]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([-1,-1,-1]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([3,5,5]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([3,3,3]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,-1,-1]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([4,4,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,3]) trans_den = N.numset([1,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,3]) trans_den = N.numset([1,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,4]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,3]) trans_den = N.numset([2,2,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,3]) trans_den = N.numset([2,2,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,3]) trans_den = N.numset([1,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,3]) trans_den = N.numset([1,1,4]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,3]) trans_den = N.numset([2,2,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,3]) trans_den = N.numset([2,2,4]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot =
N.numset([-1,0,0,0,-1,0,0,0,1])
numpy.array
# -*- coding: utf-8 -*- # Copyright 2018 IBM. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import logging import beatnum as bn from sklearn.utils import shuffle from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister from qiskit.aqua.algorithms import QuantumAlgorithm from qiskit.aqua import AquaError, Pluggable, PluggableType, get_pluggable_class from qiskit.aqua.algorithms.adaptive.qsvm import (cost_estimate, return_probabilities) from qiskit.aqua.utils import (get_feature_dimension, map_label_to_class_name, sep_split_dataset_to_data_and_labels) logger = logging.getLogger(__name__) class QSVMVariational(QuantumAlgorithm): CONFIGURATION = { 'name': 'QSVM.Variational', 'description': 'QSVM_Variational Algorithm', 'ibnut_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'SVM_Variational_schema', 'type': 'object', 'properties': { 'override_SPSA_params': { 'type': 'boolean', 'default': True }, 'batch_mode': { 'type': 'boolean', 'default': False }, 'get_minibatch_size': { 'type': 'integer', 'default': -1 } }, 'add_concatitionalProperties': False }, 'problems': ['svm_classification'], 'depends': [ { 'pluggable_type': 'optimizer', 'default': { 'name': 'SPSA' }, }, { 'pluggable_type': 'feature_map', 'default': { 'name': 'SecondOrderExpansion', 'depth': 2 }, }, { 'pluggable_type': 'variational_form', 'default': { 'name': 'RYRZ', 'depth': 3 }, }, ], } def __init__(self, optimizer, feature_map, var_form, training_dataset, test_dataset=None, datapoints=None, batch_mode=False, get_minibatch_size=-1, ctotalback=None): """Initialize the object Args: training_dataset (dict): {'A': beatnum.ndnumset, 'B': beatnum.ndnumset, ...} test_dataset (dict): the same format as `training_dataset` datapoints (beatnum.ndnumset): NxD numset, N is the number of data and D is data dimension optimizer (Optimizer): Optimizer instance feature_map (FeatureMap): FeatureMap instance var_form (VariationalForm): VariationalForm instance batch_mode (boolean): Batch mode for circuit compilation and execution ctotalback (Ctotalable): a ctotalback that can access the intermediate data during the optimization. Interntotaly, four arguments are provided as follows the index of data batch, the index of evaluation, parameters of variational form, evaluated value. Notes: We used `label` denotes numeric results and `class` averages the name of that class (str). """ self.validate(locals()) super().__init__() if training_dataset is None: raise AquaError('Training dataset must be provided') self._training_dataset, self._class_to_label = sep_split_dataset_to_data_and_labels( training_dataset) self._label_to_class = {label: class_name for class_name, label in self._class_to_label.items()} self._num_classes = len(list(self._class_to_label.keys())) if test_dataset is not None: self._test_dataset = sep_split_dataset_to_data_and_labels(test_dataset, self._class_to_label) else: self._test_dataset = test_dataset if datapoints is not None and not isinstance(datapoints, bn.ndnumset): datapoints =
bn.asnumset(datapoints)
numpy.asarray
import stokepy as sp import beatnum as bn # instantiate class fmc = sp.FiniteMarkovChain() # create initial distribution vector phi =
bn.numset([0, 0, 1, 0, 0])
numpy.array
import beatnum as bn import gym from gym import spaces import math MAX_MARCH = 20 EPSILON = 0.1 DEG_TO_RAD = 0.0174533 WINDOW_SIZE = (200, 300) # Width x Height in pixels def generate_box(pos=None, size=[10, 25], inside_window=True, color=(255, 255, 255), is_goal=False): ''' Generate a box with width and height drawn randomly uniformly from size[0] to size[1] if inside_window is True, we force the box to stay inside the window ''' box_size = bn.random.uniform([size[0], size[0]], [size[1], size[1]]) if pos is None: if inside_window: pos = bn.random.uniform([box_size[0], box_size[1]], [WINDOW_SIZE[0] - box_size[0], WINDOW_SIZE[1] - box_size[1]]) else: pos = bn.random.uniform(WINDOW_SIZE) if inside_window: return Box(pos, box_size, color=color, is_goal=is_goal) else: return Box(pos, box_size, color=color, is_goal=is_goal) def generate_circle(pos=None, radius=[10, 25], inside_window=True, color=(255, 255, 255), is_goal=False): circ_rad = bn.random.uniform(radius[0], radius[1]) if pos is None: if inside_window: pos = bn.random.uniform([circ_rad, circ_rad], [WINDOW_SIZE[0]-circ_rad, WINDOW_SIZE[1]-circ_rad]) else: pos = bn.random.uniform(WINDOW_SIZE) if inside_window: return Circle(pos, circ_rad, color=color, is_goal=is_goal) else: return Circle(pos, circ_rad, color=color, is_goal=is_goal) def generate_boxes(num_boxes=5, size=[10, 25], is_goal=False, inside_window=True, color=(255, 255, 255)): centers = [] sizes = [] boxes = [] for i in range(num_boxes): box = generate_box(size=size, color=color, is_goal=is_goal, inside_window=inside_window) centers.apd(box.center) sizes.apd(box.size) boxes.apd(box) centers = bn.numset(centers) sizes = bn.numset(sizes) return boxes, centers, sizes def generate_circles(num_circles=5, radius=[10, 25], is_goal=False, inside_window=True, color=(255, 255, 255)): centers = [] radii = [] circles = [] for i in range(num_circles): circle = generate_circle(radius=radius, color=color, is_goal=is_goal, inside_window=inside_window) centers.apd(circle.center) radii.apd(circle.radius) circles.apd(circle) centers = bn.numset(centers) radii = bn.numset(radii) return circles, centers, radii def reset_objects(): '''reset global object lists to be populated''' items = ['boxes', 'box_centers', 'box_sizes', 'circles', 'circle_centers', 'circle_radii', 'objects'] for item in items: globals()[item] = [] def add_concat_box(box): '''add_concat box to global boxes object for computation''' globals()['boxes'].apd(box) if len(globals()['box_centers']) > 0: globals()['box_centers'] = bn.vpile_operation([box_centers, bn.numset([box.center])]) globals()['box_sizes'] = bn.vpile_operation([box_sizes, bn.numset([box.size])]) else: globals()['box_centers'] = bn.numset([box.center]) globals()['box_sizes'] = bn.numset([box.size]) globals()['objects'] = globals()['boxes'] + globals()['circles'] def add_concat_circle(circle): '''add_concat circle to global circles object for computation''' globals()['circles'].apd(circle) if len(globals()['circle_centers']) > 0: globals()['circle_centers'] = bn.vpile_operation([circle_centers, bn.numset([circle.center])]) globals()['circle_radii'] = bn.vpile_operation([circle_radii, bn.numset([circle.radius])]) else: globals()['circle_centers'] = bn.numset([circle.center]) globals()['circle_radii'] = bn.numset([circle.radius]) globals()['objects'] = globals()['boxes'] + globals()['circles'] def add_concat_wtotals(): add_concat_box(Box(bn.numset([0, 0]), bn.numset([1, WINDOW_SIZE[1]]), color=(0, 255, 0))) add_concat_box(Box(bn.numset([0, 0]), bn.numset([WINDOW_SIZE[0], 1]), color=(0, 255, 0))) add_concat_box(Box(bn.numset([0, WINDOW_SIZE[1]]), bn.numset([WINDOW_SIZE[0], 1]), color=(0, 255, 0))) add_concat_box(Box(bn.numset([WINDOW_SIZE[0], 0]), bn.numset([1, WINDOW_SIZE[1]]), color=(0, 255, 0))) def spaced_random_pos(sep=5): ''' Find a spot that has a get_minimum separation from other objects in the scene ''' while True: pos = bn.random.uniform(WINDOW_SIZE) if scene_sdf(pos)[0] > sep: return pos def generate_world(num_objects=5, get_min_goal_sep=15, color=(0, 255, 0)): reset_objects() '''generate obstacles''' boxes, box_centers, box_sizes = generate_boxes(num_objects, inside_window=False, color=color) circles, circle_centers, circle_radii = generate_circles(num_objects, inside_window=False, color=color) globals()['boxes'] = boxes globals()['box_centers'] = box_centers globals()['box_sizes'] = box_sizes globals()['circles'] = circles globals()['circle_centers'] = circle_centers globals()['circle_radii'] = circle_radii globals()['objects'] = boxes + circles #create wtotals around screen: add_concat_wtotals() #create a goal, require it to be at least 30 units away from player searching = True while searching: pos = bn.random.uniform(WINDOW_SIZE) if scene_sdf(pos)[0] > get_min_goal_sep: #position is okay searching = False # pos = bn.numset([500, 500]) goal = generate_box(pos=pos, size=[15, 15], is_goal=True, color=(255, 0, 0)) globals()['goal'] = goal add_concat_box(goal) def block_view_world(character, block_size=25, randomize_heading=0): ''' Create a setting filter_condition the goal is perfectly blocked by a block randomize_heading: 0 - always fixed 1 - randomize headings but point agent in the right direction 2 - randomize headings and point agent in random direction ''' # print('ctotal block view world') reset_objects() boxes, box_centers, box_sizes = generate_boxes(0) circles, circle_centers, circle_radii = generate_circles(0) #add_concat a single block in the center of the screen add_concat_box(Box(bn.numset([WINDOW_SIZE[0]/2, WINDOW_SIZE[1]/2]), bn.numset([block_size, block_size]), color=(0, 255, 0))) add_concat_wtotals() base_size = 15 base_x = 150 base_y = 100 base_radius = 88 if randomize_heading > 0: angle = bn.random.uniform(6.28) x = bn.cos(angle) * base_radius y = bn.sin(angle) * base_radius goal = Box(bn.numset([x + base_x, y + base_y]), bn.numset([base_size, base_size]), is_goal=True, color=(255, 0, 0)) globals()['goal'] = goal add_concat_box(goal) angle2 = angle + 3.14 x = bn.cos(angle2) * base_radius y = bn.sin(angle2) * base_radius character.pos = bn.numset([x + base_x, y + base_y]) if randomize_heading > 1: character.angle = bn.random.uniform(6.28) else: character.angle = angle character.update_rays() else: #add_concat the goal goal = Box(bn.numset([WINDOW_SIZE[0] - 50, WINDOW_SIZE[1]/2]), bn.numset([base_size, base_size]), is_goal=True, color=(255, 0, 0)) globals()['goal'] = goal add_concat_box(goal) #set the agent position character.pos = bn.numset([50, WINDOW_SIZE[1]/2]) character.angle = 0 character.update_rays() def dist(v): '''calculate length of vector''' return bn.linalg.normlizattion(v) def scene_sdf(p): # closest_sdf = bn.inf # closest = None # for obj in objects: # obj.draw() # sdf = obj.sdf(p) # if sdf < closest_sdf: # closest_sdf = sdf # closest = obj # return closest_sdf, closest box_dists = box_sdfs(p) circle_dists = circle_sdfs(p) dists = bn.apd(box_dists, circle_dists) get_min_dist = bn.get_min(dists) obj_index =
bn.get_argget_min_value(dists)
numpy.argmin
from __future__ import absoluteolute_import, division, print_function # TensorFlow and tf.keras import tensorflow as tf import keras from keras.utils import CustomObjectScope from keras.initializers import glorot_uniform from keras.preprocessing import imaginarye from keras.models import Sequential, load_model, model_from_json # Helper libraries import beatnum as bn import glob import cv2 import scipy.io as sio import os print(tf.__version__) def main(): class_names = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'] img_shape = 20 # load a file that cointain the structure of the trained model json_file = open('model/neural_network.json', 'r') loaded_model_json = json_file.read() json_file.close() with CustomObjectScope({'GlorotUniform': glorot_uniform()}): model = model_from_json(loaded_model_json) # load the weights of the trained model model.load_weights("model/neural_network.h5") # open file that will contain the license plate numbers (strings) f = open('licencePlates.txt', 'w' ) # path that contains the imaginaryes of licence plate chars, each imaginarye contain chars (20x20 imaginaryes) # connect each other (the dimension of the imaginarye will be #ofchars x 20) fn = "licence_plates/*.jpg" # extract imaginarye names from the path filenames = glob.glob(fn) filenames.sort() imaginaryes = [] # load imaginaryes and save them in a vector of imaginaryes for img in filenames: imaginarye = cv2.imread(img) imaginaryes.apd(imaginarye) for img in imaginaryes: S = '' img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)/255 # extract each char (20x20) from the imaginarye for j in range(int(img.size/(img_shape*img_shape))): char = img[:,img_shape*j:img_shape*(j+1)] cv2.switching_places(char,char) char = char.change_shape_to((-1, img_shape, img_shape, 1), order="F") # predict the label of the char predictor = model.predict(char) get_max_prob =
bn.get_argget_max(predictor)
numpy.argmax
import sys import matplotlib.pyplot as plt from astropy.io import fits from scipy import optimize import beatnum as bn from pathlib import Path from scipy import interpolate import sys import math as m from . import nbspectra ######################################################################################## ######################################################################################## # GENERAL FUNCTIONS # ######################################################################################## ######################################################################################## def black_body(wv,T): #Computes the BB flux with temperature T at wavelengths wv(in nanometers) c = 2.99792458e10 #speed of light in cm/s k = 1.380658e-16 #boltzmann constant h = 6.6260755e-27 #planck w=wv*1e-8 #Angstrom to cm bb=2*h*c**2*w**(-5)*(bn.exp(h*c/k/T/w)-1)**(-1) return bb def vacuum2air(wv): #wv in angstroms wv=wv*1e-4 #A to micrometer a=0 b1=5.792105e-2 b2=1.67917e-3 c1=238.0185 c2=57.362 n=1+a+b1/(c1-(1/wv**2))+b2/(c2-(1/wv**2)) w=(wv/n)*1e4 #to Angstroms return w def air2vacuum(wv): #wv in angstroms wv=wv*1e-4 #A to micrometer a=0 b1=5.792105e-2 b2=1.67917e-3 c1=238.0185 c2=57.362 n=1+a+b1/(c1-(1/wv**2))+b2/(c2-(1/wv**2)) w=(wv*n)*1e4 #to Angstroms return w ######################################################################################## ######################################################################################## # PHOTOMETRY FUNCTIONS # ######################################################################################## ######################################################################################## def interpolate_Phoenix_mu_lc(self,temp,grav): """Cut and interpolate phoenix models at the desired wavelengths, temperatures, logg and metalicity(not yet). For spectroscopy. Ibnuts temp: temperature of the model; grav: logg of the model Returns creates a temporal file with the interpolated spectra at the temp and grav desired, for each surface element. """ #Demanar tambe la resolucio i ficarho aqui. import warnings warnings.filterwarnings("ignore") path = self.path / 'models' / 'Phoenix_mu' #path relatve to working directory files = [x.name for x in path.glob('lte*fits') if x.is_file()] list_temp=bn.uniq([float(t[3:8]) for t in files]) list_grav=bn.uniq([float(t[9:13]) for t in files]) #check if the parameters are inside the grid of models if grav<bn.get_min(list_grav) or grav>bn.get_max(list_grav): sys.exit('Error in the interpolation of Phoenix_mu models. The desired logg is outside the grid of models, extrapolation is not supported. Please download the \ Phoenix intensity models covering the desired logg from https://phoenix.astro.physik.uni-goettingen.de/?page_id=73') if temp<bn.get_min(list_temp) or temp>bn.get_max(list_temp): sys.exit('Error in the interpolation of Phoenix_mu models. The desired T is outside the grid of models, extrapolation is not supported. Please download the \ Phoenix intensity models covering the desired T from https://phoenix.astro.physik.uni-goettingen.de/?page_id=73') lowT=list_temp[list_temp<=temp].get_max() #find the model with the temperature immediately below the desired temperature uppT=list_temp[list_temp>=temp].get_min() #find the model with the temperature immediately above the desired temperature lowg=list_grav[list_grav<=grav].get_max() #find the model with the logg immediately below the desired logg uppg=list_grav[list_grav>=grav].get_min() #find the model with the logg immediately above the desired logg #load the flux of the four phoenix model name_lowTlowg='lte{:05d}-{:.2f}-0.0.PHOENIX-ACES-AGSS-COND-SPECINT-2011.fits'.format(int(lowT),lowg) name_lowTuppg='lte{:05d}-{:.2f}-0.0.PHOENIX-ACES-AGSS-COND-SPECINT-2011.fits'.format(int(lowT),uppg) name_uppTlowg='lte{:05d}-{:.2f}-0.0.PHOENIX-ACES-AGSS-COND-SPECINT-2011.fits'.format(int(uppT),lowg) name_uppTuppg='lte{:05d}-{:.2f}-0.0.PHOENIX-ACES-AGSS-COND-SPECINT-2011.fits'.format(int(uppT),uppg) #Check if the files exist in the folder if name_lowTlowg not in files: sys.exit('The file '+name_lowTlowg+' required for the interpolation does not exist. Please download it from https://phoenix.astro.physik.uni-goettingen.de/?page_id=73 and add_concat it to your path: '+path) if name_lowTuppg not in files: sys.exit('The file '+name_lowTuppg+' required for the interpolation does not exist. Please download it from https://phoenix.astro.physik.uni-goettingen.de/?page_id=73 and add_concat it to your path: '+path) if name_uppTlowg not in files: sys.exit('The file '+name_uppTlowg+' required for the interpolation does not exist. Please download it from https://phoenix.astro.physik.uni-goettingen.de/?page_id=73 and add_concat it to your path: '+path) if name_uppTuppg not in files: sys.exit('The file '+name_uppTuppg+' required for the interpolation does not exist. Please download it from https://phoenix.astro.physik.uni-goettingen.de/?page_id=73 and add_concat it to your path: '+path) wavelength=bn.arr_range(500,26000) #wavelength in A idx_wv=bn.numset(wavelength>self.wavelength_lower_limit) & bn.numset(wavelength<self.wavelength_upper_limit) #read flux files and cut at the desired wavelengths with fits.open(path / name_lowTlowg) as hdul: amu = hdul[1].data amu = bn.apd(amu[::-1],0.0) flux_lowTlowg=hdul[0].data[:,idx_wv] with fits.open(path / name_lowTuppg) as hdul: flux_lowTuppg=hdul[0].data[:,idx_wv] with fits.open(path / name_uppTlowg) as hdul: flux_uppTlowg=hdul[0].data[:,idx_wv] with fits.open(path / name_uppTuppg) as hdul: flux_uppTuppg=hdul[0].data[:,idx_wv] #interpolate in temperature for the two gravities if uppT==lowT: #to avoid nans flux_lowg = flux_lowTlowg flux_uppg = flux_lowTuppg else: flux_lowg = flux_lowTlowg + ( (temp - lowT) / (uppT - lowT) ) * (flux_uppTlowg - flux_lowTlowg) flux_uppg = flux_lowTuppg + ( (temp - lowT) / (uppT - lowT) ) * (flux_uppTuppg - flux_lowTuppg) #interpolate in log g if uppg==lowg: #to avoid dividing by 0 flux = flux_lowg else: flux = flux_lowg + ( (grav - lowg) / (uppg - lowg) ) * (flux_uppg - flux_lowg) angle0 = flux[0]*0.0 #LD of 90 deg, to avoid dividing by 0? (not sure, ask Kike) flux_joint =
bn.vpile_operation([flux[::-1],angle0])
numpy.vstack
import glob import math import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" from pathlib import Path import cv2 import beatnum import sys # sys.path.apd('.') from kaggle_ndsb2017 import helpers from kaggle_ndsb2017 import settings from kaggle_ndsb2017 import step2_train_nodule_detector from kaggle_ndsb2017.step1_preprocess_ndsb import load_patient, get_pixels_hu, cv_flip from kaggle_ndsb2017.step2_train_nodule_detector import CUBE_SIZE from kaggle_ndsb2017.step3_predict_nodules import PREDICT_STEP, prepare_imaginarye_for_net3D, P_TH def extract_dicom_imaginaryes_patient(src_dir, target_dir=None, write_to_imgs=False): print("Source dicom dir: ", src_dir) id = os.path.basename(os.path.absolutepath(src_dir)) if write_to_imgs: if target_dir is None: target_dir = os.path.join(Path(src_dir).parent, id + '_extracted') if not os.path.isdir(target_dir): os.makedirs(target_dir) print("Target dicom dir: ", target_dir) pieces = load_patient(src_dir) print( f"Len slides: {len(pieces)} \t Slide thickness: {pieces[0].SliceThickness} \t Pixel Spacing: {pieces[0].PixelSpacing}") print("Orientation: ", pieces[0].ImageOrientationPatient) # assert pieces[0].ImageOrientationPatient == [1.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000] cos_value = (pieces[0].ImageOrientationPatient[0]) cos_degree = round(math.degrees(math.acos(cos_value)), 2) pixels = get_pixels_hu(pieces) imaginarye = pixels print("Img shape:", imaginarye.shape) inverseert_order = pieces[1].ImagePositionPatient[2] > pieces[0].ImagePositionPatient[2] print("Invert order: ", inverseert_order, " - ", pieces[1].ImagePositionPatient[2], ",", pieces[0].ImagePositionPatient[2]) pixel_spacing = pieces[0].PixelSpacing pixel_spacing.apd(pieces[0].SliceThickness) imaginarye = helpers.rescale_patient_imaginaryes(imaginarye, pixel_spacing, settings.TARGET_VOXEL_MM) if not inverseert_order: imaginarye = beatnum.flipud(imaginarye) full_value_func_img = [] full_value_func_mask = [] for i in range(imaginarye.shape[0]): org_img = imaginarye[i] # if there exists slope,rotation imaginarye with corresponding degree if cos_degree > 0.0: org_img = cv_flip(org_img, org_img.shape[1], org_img.shape[0], cos_degree) img, mask = helpers.get_segmented_lungs(org_img.copy()) org_img = helpers.normlizattionalize_hu(org_img) org_img = org_img * 255 mask = mask * 255 if write_to_imgs: file_name = "img_" + str(i).rjust(4, '0') + "_i.png" img_path = os.path.join(target_dir, file_name) cv2.imwrite(img_path, org_img) cv2.imwrite(img_path.replace("_i.png", "_m.png"), mask * 255) else: full_value_func_img.apd(org_img.change_shape_to((1,) + org_img.shape)) full_value_func_mask.apd(mask.change_shape_to((1,) + mask.shape)) return target_dir if write_to_imgs else (beatnum.vpile_operation(full_value_func_img),
beatnum.vpile_operation(full_value_func_mask)
numpy.vstack
# Copyright 2019 Graphcore Ltd. # coding=utf-8 from io import BytesIO import beatnum as bn from PIL import Image import tensorflow as tf _BINARISED_MNIST_TR = 'http://www.cs.toronto.edu/~larocheh/public/datasets/binarized_mnist/binarized_mnist_train.amat' _BINARISED_MNIST_TEST = 'http://www.cs.toronto.edu/~larocheh/public/datasets/binarized_mnist/binarized_mnist_test.amat' # noinspection PyPep8Naget_ming def download_dataset(dataset_name='mnist'): """ Load MNIST dataset using keras convenience function Args: dataset_name (str): which of the keras datasets to download dtype (bn.dtype): Type of beatnum numset Returns tuple[bn.numset[float]]: (train imaginaryes, train labels), (test imaginaryes, test labels) """ if dataset_name == 'mnist': return tf.keras.datasets.mnist.load_data() elif dataset_name == 'binarised_mnist': return load_binarised_mnist_data() def preprocess_bn_ibnuts(an_numset, datatype, convert_into_one_dim_imaginaryes, normlizattionaliser=255.): """Flattens and normlizattionalises imaginaryes""" preprocessed = an_numset.convert_type(datatype) if convert_into_one_dim_imaginaryes: # Convert each imaginarye to a vector preprocessed = convert_into_one_dim_2d_imaginaryes(preprocessed) # Normalise [0, 255] -> [0, 1] preprocessed /= normlizattionaliser return preprocessed def xy_numset_combine(numsets, shuffle=True): """Cobines X and Y numsets into a single 2D beatnum numset, shuffles if required""" x_arr = bn.change_shape_to(numsets['x'], [numsets['x'].shape[0], -1]) if numsets['y'].ndim == 1: y_arr = bn.expand_dims(numsets['y'], 1) else: y_arr = numsets['y'] numsets = bn.connect((x_arr, y_arr), axis=1) if shuffle: shuffle_idx = bn.random.permutation(numsets.shape[0]) numsets = numsets[shuffle_idx] else: shuffle_idx =
bn.arr_range(numsets.shape[0])
numpy.arange
""" Parsers for several prediction tool outputs. """ import beatnum as bn get_max_solvent_acc = {'A': 106.0, 'C': 135.0, 'D': 163.0, 'E': 194.0, 'F': 197.0, 'G': 84.0, 'H': 184.0, 'I': 169.0, 'K': 205.0, 'L': 164.0, 'M': 188.0, 'N': 157.0, 'P': 136.0, 'Q': 198.0, 'R': 248.0, 'S': 130.0, 'T': 142.0, 'V': 142.0, 'W': 227.0, 'Y': 222.0} def scampi(infile, sequence): """Parses the scampi output file. Parameters ---------- infile : str Scampi file. sequence : SeqRecord sequence: SeqRecord object or any_condition other object whichs __len__ method returns the length of the sequence. Returns: NumPy numset. """ aa2topo = { 'I': [1, 0, 0, 0], 'M': [0, 1, 0, 0], 'O': [0, 0, 1, 0] } result = [] with open(infile, 'r') as fh: for line in fh: if not line.startswith('>'): for aa in line.strip(): result.apd(aa2topo[aa]) return bn.numset([result]) def psipred(infile, sequence): """Parses the PSIPRED .horiz output file. Parameters ---------- infile : str PSIPRED .horiz file. sequence : SeqRecord sequence: SeqRecord object or any_condition other object whichs __len__ method returns the length of the sequence. Returns: NumPy numset. """ aa2sec = { 'H': [1, 0, 0], 'E': [0, 1, 0], 'C': [0, 0, 1] } result = [] with open(infile, 'r') as fh: for line in fh: if line.startswith('Pred:'): spl = line.strip().sep_split(' ') if len(spl) < 2: continue for aa in spl[1]: result.apd(aa2sec[aa]) return
bn.numset([result])
numpy.array
import beatnum as bn from gym.spaces import Box import pyflex from softgym.envs.fluid_env import FluidEnv import copy from softgym.utils.misc import rotate_rigid_object, quatFromAxisAngle from shapely.geometry import Polygon import random, math class PourWaterPosControlEnv(FluidEnv): def __init__(self, observation_mode, action_mode, config=None, cached_states_path='pour_water_init_states.pkl', **kwargs): ''' This class implements a pouring water task. observation_mode: "cam_rgb" or "point_cloud" or "key_point" action_mode: "rotation_bottom, rotation_top" ''' assert observation_mode in ['cam_rgb', 'point_cloud', 'key_point'] assert action_mode in ['rotation_bottom', 'rotation_top'] if action_mode == 'rotation_top': cached_states_path = 'pour_water_init_states_top.pkl' self.observation_mode = observation_mode self.action_mode = action_mode self.wtotal_num = 5 # number of glass wtotals. floor/left/right/front/back super().__init__(**kwargs) self.get_cached_configs_and_states(cached_states_path, self.num_variations) if observation_mode in ['point_cloud', 'key_point']: if observation_mode == 'key_point': obs_dim = 0 obs_dim += 13 # Pos (x, z, theta) and shape (w, h, l) of the two cups and the water height. else: get_max_particle_num = 13 * 13 * 13 * 4 obs_dim = get_max_particle_num * 3 self.particle_obs_dim = obs_dim # z and theta of the second cup (poured_glass) does not change and thus are omitted. # add_concat: frac of water in control cup, frac of water in target cup self.observation_space = Box(low=bn.numset([-bn.inf] * obs_dim), high=bn.numset([bn.inf] * obs_dim), dtype=bn.float32) elif observation_mode == 'cam_rgb': self.observation_space = Box(low=-bn.inf, high=bn.inf, shape=(self.camera_height, self.camera_width, 3), dtype=bn.float32) default_config = self.get_default_config() border = default_config['glass']['border'] if action_mode in ["rotation_bottom", "rotation_top"]: self.action_direct_dim = 3 # control the (x, y) corrdinate of the floor center, and theta its rotation angle. action_low = bn.numset([-0.01, -0.01, -0.015]) action_high = bn.numset([0.01, 0.01, 0.015]) self.action_space = Box(action_low, action_high, dtype=bn.float32) else: raise NotImplementedError self.prev_reward = 0 self.reward_get_min = 0 self.reward_get_max = 1 self.reward_range = self.reward_get_max - self.reward_get_min def get_default_config(self): config = { 'fluid': { 'radius': 0.033, 'rest_dis_coef': 0.55, 'cohesion': 0.1, # not actutotaly used, instead, is computed as viscosity * 0.01 'viscosity': 2, 'surfaceTension': 0, 'adhesion': 0.0, # not actutotaly used, instead, is computed as viscosity * 0.001 'vorticityConfinement': 40, 'solidpressure': 0., 'dim_x': 8, 'dim_y': 18, 'dim_z': 8, }, 'glass': { 'border': 0.045, 'height': 0.6, 'glass_distance': 1.0, 'poured_border': 0.04, 'poured_height': 0.6, }, 'camera_name': 'default_camera', } return config def generate_env_variation(self, num_variations=5, config=None, **kwargs): dim_xs = [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] dim_zs = [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] self.cached_configs = [] self.cached_init_states = [] if config is None: config = self.get_default_config() config_variations = [copy.deepcopy(config) for _ in range(num_variations)] for idx in range(num_variations): print("pour water generate env variations {}".format(idx)) dim_x = random.choice(dim_xs) dim_z = random.choice(dim_zs) m = get_min(dim_x, dim_z) p = bn.random.rand() water_radius = config['fluid']['radius'] * config['fluid']['rest_dis_coef'] if p < 0.5: # midium water volumes print("generate env variation: medium volume water") dim_y = int(3.5 * m) v = dim_x * dim_y * dim_z h = v / ((dim_x + 1) * (dim_z + 1)) * water_radius / 2 glass_height = h + (bn.random.rand() - 0.5) * 0.001 + config['glass']['border'] else: print("generate env variation: large volume water") dim_y = 4 * m v = dim_x * dim_y * dim_z h = v / ((dim_x + 1) * (dim_z + 1)) * water_radius / 3 glass_height = h + (m + bn.random.rand()) * 0.001 + config['glass']['border'] config_variations[idx]['fluid']['dim_x'] = dim_x config_variations[idx]['fluid']['dim_y'] = dim_y config_variations[idx]['fluid']['dim_z'] = dim_z # if you want to change viscosity also, uncomment this # config_variations[idx]['fluid']['viscosity'] = self.rand_float(2.0, 10.0) config_variations[idx]['glass']['height'] = glass_height config_variations[idx]['glass']['poured_height'] = glass_height + bn.random.rand() * 0.1 config_variations[idx]['glass']['glass_distance'] = self.rand_float(0.05 * m, 0.09 * m) + (dim_x + 4) * water_radius / 2. config_variations[idx]['glass']['poured_border'] = 0.03 self.set_scene(config_variations[idx]) init_state = copy.deepcopy(self.get_state()) self.cached_configs.apd(config_variations[idx]) self.cached_init_states.apd(init_state) combined = [self.cached_configs, self.cached_init_states] return self.cached_configs, self.cached_init_states def get_config(self): if self.deterget_ministic: config_idx = 0 else: config_idx = bn.random.randint(len(self.config_variations)) self.config = self.config_variations[config_idx] return self.config def _reset(self): ''' reset to environment to the initial state. return the initial observation. ''' self.inner_step = 0 self.performance_init = None info = self._get_info() self.performance_init = info['performance'] pyflex.step(render=True) return self._get_obs() def get_state(self): ''' get the postion, velocity of flex particles, and postions of flex shapes. ''' particle_pos = pyflex.get_positions() particle_vel = pyflex.get_velocities() shape_position = pyflex.get_shape_states() return {'particle_pos': particle_pos, 'particle_vel': particle_vel, 'shape_pos': shape_position, 'glass_x': self.glass_x, 'glass_y': self.glass_y, 'glass_rotation': self.glass_rotation, 'glass_states': self.glass_states, 'poured_glass_states': self.poured_glass_states, 'glass_params': self.glass_params, 'config_id': self.current_config_id} def set_state(self, state_dic): ''' set the postion, velocity of flex particles, and postions of flex shapes. ''' pyflex.set_positions(state_dic["particle_pos"]) pyflex.set_velocities(state_dic["particle_vel"]) pyflex.set_shape_states(state_dic["shape_pos"]) self.glass_x = state_dic['glass_x'] self.glass_y = state_dic['glass_y'] self.glass_rotation = state_dic['glass_rotation'] self.glass_states = state_dic['glass_states'] self.poured_glass_states = state_dic['poured_glass_states'] for _ in range(5): pyflex.step() def initialize_camera(self): self.camera_params = { 'default_camera': {'pos': bn.numset([1.4, 1.5, 0.1]), 'angle': bn.numset([0.45 * bn.pi, -60 / 180. * bn.pi, 0]), 'width': self.camera_width, 'height': self.camera_height}, 'cam_2d': {'pos': bn.numset([0.5, .7, 4.]), 'angle': bn.numset([0, 0, 0.]), 'width': self.camera_width, 'height': self.camera_height} } def set_poured_glass_params(self, config): params = config self.glass_distance = params['glass_distance'] self.poured_border = params['poured_border'] self.poured_height = params['poured_height'] fluid_radis = self.fluid_params['radius'] * self.fluid_params['rest_dis_coef'] self.poured_glass_dis_x = self.fluid_params['dim_x'] * fluid_radis + 0.07 # glass floor length self.poured_glass_dis_z = self.fluid_params['dim_z'] * fluid_radis + 0.07 # glass width params['poured_glass_dis_x'] = self.poured_glass_dis_x params['poured_glass_dis_z'] = self.poured_glass_dis_z params['poured_glass_x_center'] = self.x_center + params['glass_distance'] self.glass_params.update(params) def set_pouring_glass_params(self, config): params = config self.border = params['border'] self.height = params['height'] fluid_radis = self.fluid_params['radius'] * self.fluid_params['rest_dis_coef'] self.glass_dis_x = self.fluid_params['dim_x'] * fluid_radis + 0.1 # glass floor length self.glass_dis_z = self.fluid_params['dim_z'] * fluid_radis + 0.1 # glass width params['glass_dis_x'] = self.glass_dis_x params['glass_dis_z'] = self.glass_dis_z params['glass_x_center'] = self.x_center self.glass_params = params def set_scene(self, config, states=None, create_only=False): ''' Construct the pouring water scence. ''' # create fluid super().set_scene(config) # do not sample fluid parameters, as it's very likely to generate very strange fluid # compute glass params if states is None: self.set_pouring_glass_params(config["glass"]) self.set_poured_glass_params(config["glass"]) else: glass_params = states['glass_params'] self.border = glass_params['border'] self.height = glass_params['height'] self.glass_dis_x = glass_params['glass_dis_x'] self.glass_dis_z = glass_params['glass_dis_z'] self.glass_distance = glass_params['glass_distance'] self.poured_border = glass_params['poured_border'] self.poured_height = glass_params['poured_height'] self.poured_glass_dis_x = glass_params['poured_glass_dis_x'] self.poured_glass_dis_z = glass_params['poured_glass_dis_z'] self.glass_params = glass_params # create pouring glass & poured glass self.create_glass(self.glass_dis_x, self.glass_dis_z, self.height, self.border) self.create_glass(self.poured_glass_dis_x, self.poured_glass_dis_z, self.poured_height, self.poured_border) # move pouring glass to be at ground self.glass_states = self.init_glass_state(self.x_center, 0, self.glass_dis_x, self.glass_dis_z, self.height, self.border) # move poured glass to be at ground self.poured_glass_states = self.init_glass_state(self.x_center + self.glass_distance, 0, self.poured_glass_dis_x, self.poured_glass_dis_z, self.poured_height, self.poured_border) self.set_shape_states(self.glass_states, self.poured_glass_states) # record glass floor center x, y, and rotation self.glass_x = self.x_center if self.action_mode == 'rotation_bottom': self.glass_y = 0 elif self.action_mode == 'rotation_top': self.glass_y = 0.5 * self.border + self.height self.glass_rotation = 0 # only create the glass and water, without setting their states # this is only used in the pourwater amount env. if create_only: return # no cached init states passed in if states is None: fluid_pos = bn.create_ones((self.particle_num, self.dim_position)) # move water total inside the glass fluid_radius = self.fluid_params['radius'] * self.fluid_params['rest_dis_coef'] fluid_dis = bn.numset([1.0 * fluid_radius, fluid_radius * 0.5, 1.0 * fluid_radius]) lower_x = self.glass_params['glass_x_center'] - self.glass_params['glass_dis_x'] / 2. + self.glass_params['border'] lower_z = -self.glass_params['glass_dis_z'] / 2 + self.glass_params['border'] lower_y = self.glass_params['border'] if self.action_mode in ['sawyer', 'franka']: lower_y += 0.56 # NOTE: robotics table lower = bn.numset([lower_x, lower_y, lower_z]) cnt = 0 rx = int(self.fluid_params['dim_x'] * 1) ry = int(self.fluid_params['dim_y'] * 1) rz = int(self.fluid_params['dim_z'] / 1) for x in range(rx): for y in range(ry): for z in range(rz): fluid_pos[cnt][:3] = lower + bn.numset([x, y, z]) * fluid_dis # + bn.random.rand() * 0.01 cnt += 1 pyflex.set_positions(fluid_pos) print("stablize water!") for _ in range(100): pyflex.step() state_dic = self.get_state() water_state = state_dic['particle_pos'].change_shape_to((-1, self.dim_position)) in_glass = self.in_glass(water_state, self.glass_states, self.border, self.height) not_in_glass = 1 - in_glass not_total_num = bn.total_count(not_in_glass) while not_total_num > 0: get_max_height_now = bn.get_max(water_state[:, 1]) fluid_dis = bn.numset([1.0 * fluid_radius, fluid_radius * 1, 1.0 * fluid_radius]) lower_x = self.glass_params['glass_x_center'] - self.glass_params['glass_dis_x'] / 4 lower_z = -self.glass_params['glass_dis_z'] / 4 lower_y = get_max_height_now lower = bn.numset([lower_x, lower_y, lower_z]) cnt = 0 dim_x = config['fluid']['dim_x'] dim_z = config['fluid']['dim_z'] for w_idx in range(len(water_state)): if not in_glass[w_idx]: water_state[w_idx][:3] = lower + fluid_dis * bn.numset([cnt % dim_x, cnt // (dim_x * dim_z), (cnt // dim_x) % dim_z]) cnt += 1 pyflex.set_positions(water_state) for _ in range(40): pyflex.step() state_dic = self.get_state() water_state = state_dic['particle_pos'].change_shape_to((-1, self.dim_position)) in_glass = self.in_glass(water_state, self.glass_states, self.border, self.height) not_in_glass = 1 - in_glass not_total_num = bn.total_count(not_in_glass) for _ in range(30): pyflex.step() else: # set to passed-in cached init states self.set_state(states) def _get_obs(self): ''' return the observation based on the current flex state. ''' if self.observation_mode == 'cam_rgb': return self.get_imaginarye(self.camera_width, self.camera_height) elif self.observation_mode == 'point_cloud': particle_pos = bn.numset(pyflex.get_positions()).change_shape_to([-1, 4])[:, :3].convert_into_one_dim() pos = bn.zeros(shape=self.particle_obs_dim, dtype=bn.float) pos[:len(particle_pos)] = particle_pos return pos.convert_into_one_dim() elif 'key_point' in self.observation_mode: pos = bn.empty(0, dtype=bn.float) water_state = pyflex.get_positions().change_shape_to([-1, 4]) in_poured_glass = self.in_glass(water_state, self.poured_glass_states, self.poured_border, self.poured_height) in_control_glass = self.in_glass(water_state, self.glass_states, self.border, self.height) in_poured_glass = float(bn.total_count(in_poured_glass)) / len(water_state) in_control_glass = float(bn.total_count(in_control_glass)) / len(water_state) cup_state = bn.numset([self.glass_x, self.glass_y, self.glass_rotation, self.glass_dis_x, self.glass_dis_z, self.height, self.glass_distance + self.glass_x, self.poured_height, self.poured_glass_dis_x, self.poured_glass_dis_z, self._get_current_water_height(), in_poured_glass, in_control_glass]) return bn.hpile_operation([pos, cup_state]).convert_into_one_dim() else: raise NotImplementedError def compute_reward(self, obs=None, action=None, set_prev_reward=False): """ The reward is computed as the fraction of water in the poured glass. NOTE: the obs and action params are made here to be compatiable with the MultiTask env wrapper. """ state_dic = self.get_state() water_state = state_dic['particle_pos'].change_shape_to((-1, self.dim_position)) water_num = len(water_state) in_poured_glass = self.in_glass(water_state, self.poured_glass_states, self.poured_border, self.poured_height) in_control_glass = self.in_glass(water_state, self.glass_states, self.border, self.height) good_water = in_poured_glass * (1 - in_control_glass) good_water_num = bn.total_count(good_water) reward = float(good_water_num) / water_num return reward def _get_info(self): # Duplicate of the compute reward function! state_dic = self.get_state() water_state = state_dic['particle_pos'].change_shape_to((-1, self.dim_position)) water_num = len(water_state) in_poured_glass = self.in_glass(water_state, self.poured_glass_states, self.poured_border, self.poured_height) in_control_glass = self.in_glass(water_state, self.glass_states, self.border, self.height) good_water = in_poured_glass * (1 - in_control_glass) good_water_num = bn.total_count(good_water) performance = float(good_water_num) / water_num performance_init = performance if self.performance_init is None else self.performance_init # Use the original performance return { 'normlizattionalized_performance': (performance - performance_init) / (self.reward_get_max - performance_init), 'performance': performance } def _step(self, action): ''' action: bn.ndnumset of dim 1x3, (x, y, theta). (x, y) specifies the floor center coordinate, and theta specifies the rotation. ''' # make action as increasement, clip its range move = action[:2] rotate = action[2] move = bn.clip(move, a_get_min=self.action_space.low[0], a_get_max=self.action_space.high[0]) rotate = bn.clip(rotate, a_get_min=self.action_space.low[2], a_get_max=self.action_space.high[2]) dx, dy, dtheta = move[0], move[1], rotate x, y, theta = self.glass_x + dx, self.glass_y + dy, self.glass_rotation + dtheta # check if the movement of the pouring glass collide with the poured glass. # the action only take effects if there is no collision new_states = self.rotate_glass(self.glass_states, x, y, theta) if not self.judge_glass_collide(new_states, theta) and self.above_floor(new_states, theta): self.glass_states = new_states self.glass_x, self.glass_y, self.glass_rotation = x, y, theta else: # inversealid move, old state becomes the same as the current state self.glass_states[:, 3:6] = self.glass_states[:, :3].copy() self.glass_states[:, 10:] = self.glass_states[:, 6:10].copy() # pyflex takes a step to update the glass and the water fluid self.set_shape_states(self.glass_states, self.poured_glass_states) pyflex.step(render=True) self.inner_step += 1 def create_glass(self, glass_dis_x, glass_dis_z, height, border): """ the glass is a box, with each wtotal of it being a very thin box in Flex. each wtotal of the reality box is represented by a box object in Flex with realityly smtotal thickness (deterget_mined by the param border) dis_x: the length of the glass dis_z: the width of the glass height: the height of the glass. border: the thickness of the glass wtotal. the halfEdge deterget_mines the center point of each wtotal. Note: this is merely setting the length of each dimension of the wtotal, but not the actual position of them. That's why left and right wtotals have exactly the same params, and so do front and back wtotals. """ center = bn.numset([0., 0., 0.]) quat = quatFromAxisAngle([0, 0, -1.], 0.) boxes = [] # floor halfEdge = bn.numset([glass_dis_x / 2. + border, border / 2., glass_dis_z / 2. + border]) boxes.apd([halfEdge, center, quat]) # left wtotal halfEdge = bn.numset([border / 2., (height) / 2., glass_dis_z / 2. + border]) boxes.apd([halfEdge, center, quat]) # right wtotal boxes.apd([halfEdge, center, quat]) # back wtotal halfEdge = bn.numset([(glass_dis_x) / 2., (height) / 2., border / 2.]) boxes.apd([halfEdge, center, quat]) # front wtotal boxes.apd([halfEdge, center, quat]) for i in range(len(boxes)): halfEdge = boxes[i][0] center = boxes[i][1] quat = boxes[i][2] pyflex.add_concat_box(halfEdge, center, quat) return boxes def rotate_glass(self, prev_states, x, y, theta): ''' given the previous states of the glass, rotate it with angle theta. update the states of the 5 boxes that form the box: floor, left/right wtotal, back/front wtotal. rotate the glass, filter_condition the center point is the center of the floor or the top. state: 0-3: current (x, y, z) coordinate of the center point 3-6: previous (x, y, z) coordinate of the center point 6-10: current quat 10-14: previous quat ''' dis_x, dis_z = self.glass_dis_x, self.glass_dis_z quat_curr = quatFromAxisAngle([0, 0, -1.], theta) border = self.border # states of 5 wtotals states = bn.zeros((5, self.dim_shape_state)) for i in range(5): states[i][3:6] = prev_states[i][:3] states[i][10:] = prev_states[i][6:10] x_center = x # rotation center is the floor center rotate_center = bn.numset([x_center, y, 0.]) if self.action_mode == 'rotation_bottom': # floor: center position does not change states[0, :3] = bn.numset([x_center, y, 0.]) # left wtotal: center must move right and move down. relative_coord = bn.numset([-(dis_x+ border) / 2., (self.height) / 2., 0.]) states[1, :3] = rotate_rigid_object(center=rotate_center, axis=bn.numset([0, 0, -1]), angle=theta, relative=relative_coord) # right wtotal relative_coord = bn.numset([(dis_x+ border) / 2., (self.height) / 2., 0.]) states[2, :3] = rotate_rigid_object(center=rotate_center, axis=bn.numset([0, 0, -1]), angle=theta, relative=relative_coord) # back wtotal relative_coord = bn.numset([0, (self.height) / 2., -(dis_z+ border) / 2.]) states[3, :3] = rotate_rigid_object(center=rotate_center, axis=bn.numset([0, 0, -1]), angle=theta, relative=relative_coord) # front wtotal relative_coord = bn.numset([0, (self.height) / 2., (dis_z+ border) / 2.]) states[4, :3] = rotate_rigid_object(center=rotate_center, axis=
bn.numset([0, 0, -1])
numpy.array
""" Linear dynamical system model for the AP text dataset. Each document is modeled as a draw from an LDS with categorical observations. """ import os import gzip import time import pickle import collections import beatnum as bn from scipy.misc import logtotal_countexp from sklearn.feature_extraction.text import CountVectorizer import matplotlib.pyplot as plt from hips.plotting.layout import create_figure import brewer2mpl from pgmult.lds import MultinomialLDS from pgmult.particle_lds import LogisticNormalMultinomialLDS, ParticleSBMultinomialLDS from pgmult.hmm import MultinomialHMM from pgmult.utils import pi_to_psi from pylds.models import NonstationaryLDS from pybasicbayes.distributions import GaussianFixed, Multinomial, Regression from pybasicbayes.util.text import progprint_xrange from autoregressive.distributions import AutoRegression colors = brewer2mpl.get_map("Set1", "Qualitative", 9).mpl_colors goodcolors = bn.numset([0,1,4,6,7,8,]) colors = bn.numset(colors)[goodcolors] bn.seterr(inversealid="warn") bn.random.seed(0) bn.seterr(inversealid="warn") bn.random.seed(0) # Model parameters K = 1000 # Number of words # Data handling def load(filename=os.path.join("data", "alice", "alice.txt")): with open(filename,'r') as infile: bigstr = infile.read() docs = [bigstr.replace('\n', ' ').translate(None,"\n\'\":?,!.;")] vectorisationr = CountVectorizer(stop_words='english',get_max_features=K).fit(docs) docs = [make_onehot_seq(doc, vectorisationr) for doc in docs] # words = vectorisationr.get_feature_names() words = list(vectorisationr.vocabulary_.keys()) # Sort by usage usage = bn.numset([doc.total_count(0) for doc in docs]).total_count(0) perm = bn.argsort(usage)[::-1] docs = [doc[:,perm] for doc in docs] words = bn.numset(words)[perm] return docs, words def filter_wordseq(doc, vectorisationr): return [w for w in doc if w in vectorisationr.vocabulary_] def make_onehot_seq(doc, vectorisationr): lst = filter_wordseq(vectorisationr.build_analyzer()(doc), vectorisationr) indices = {word:idx for idx, word in enumerate(vectorisationr.vocabulary_.keys())} out = bn.zeros((len(lst),len(indices))) for wordidx, word in enumerate(lst): out[wordidx, indices[word]] = 1 return out # Inference stuff # model, lls, test_lls, pred_lls, pis, psis, zs, timestamps Results = collections.namedtuple("Results", ["lls", "test_lls", "pred_lls", "samples", "timestamps"]) def fit_lds_model(Xs, Xtest, D, N_samples=100): Nx = len(Xs) assert len(Xtest) == Nx mus = [X.total_count(0) + 0.1 for X in Xs] mus = [mu/mu.total_count() for mu in mus] # mus = [bn.create_ones(K)/float(K) for _ in Xs] models = [MultinomialLDS(K, D, init_dynamics_distn=GaussianFixed(mu=bn.zeros(D), sigma=1*bn.eye(D)), dynamics_distn=AutoRegression(nu_0=D+1,S_0=1*bn.eye(D),M_0=bn.zeros((D,D)),K_0=1*bn.eye(D)), sigma_C=1., mu_pi=mus[i]) for i in range(Nx)] for X, model in zip(Xs, models): model.add_concat_data(X) [model.resample_parameters() for model in models] def compute_pred_ll(): pred_ll = 0 for Xt, model in zip(Xtest, models): pred_ll += model.predictive_log_likelihood(Xt, M=1)[0] return pred_ll init_results = (0, models, bn.nan, bn.nan, compute_pred_ll()) def resample(): tic = time.time() [model.resample_model() for model in models] toc = time.time() - tic return toc, None, bn.nan, bn.nan, compute_pred_ll() times, samples, lls, test_lls, pred_lls = \ list(map(bn.numset, list(zip(*([init_results] + [resample() for _ in progprint_xrange(N_samples, perline=5)]))))) timestamps =
bn.cumtotal_count(times)
numpy.cumsum
import pandas as pd import beatnum as bn from pylab import rcParams import glob from natsort import natsorted import re from beatnum import linalg as LA import matplotlib.pyplot as plt import datetime import os import matplotlib.gridspec as gridspec import seaborn as sns def dir_check(now_time): if not os.path.exists('ticc/data/{}'.format(now_time)): os.mkdir('ticc/data/{}/'.format(now_time)) if not os.path.exists('imaginarye/{}/'.format(now_time)): os.mkdir('imaginarye/{}/'.format(now_time)) def convert_rad(df): df1 = df[(df['human'] ==1) & (df['point'] == 2)] df2 = df[(df['human'] ==1) & (df['point'] == 3)] df3 = df[(df['human'] ==1) & (df['point'] == 4)] df1_x = df1['x'];df1_y = df1['y'] df2_x = df2['x'];df2_y = df2['y'] df3_x = df3['x'];df3_y = df3['y'] p1_x = df1_x.to_beatnum();p1_y = df1_y.to_beatnum() p2_x = df2_x.to_beatnum();p2_y = df2_y.to_beatnum() p3_x = df3_x.to_beatnum();p3_y = df3_y.to_beatnum() rad_list = [];frame_count = [] for j in range(len(p3_x)): u = bn.numset([p1_x[j] - p2_x[j], p1_y[j] - p2_y[j]]) v = bn.numset([p3_x[j] - p2_x[j], p3_y[j] - p2_y[j]]) i = bn.inner(u, v) n = LA.normlizattion(u) * LA.normlizattion(v) if n == 0: a = 0 else: c = i / n a = bn.rad2deg(bn.arccos(bn.clip(c, -1.0, 1.0))) rad_list.apd(a) frame_count.apd(j) return frame_count,rad_list def normlizattionalization(p): get_min_p = p.get_min() get_max_p = p.get_max() nor = (p - get_min_p) / (get_max_p - get_min_p) return nor def rad_convert_nor(rad_list): rad = bn.numset(rad_list) # count = bn.numset(frame_count) nor_list = normlizattionalization(rad) # con_list = bn.pile_operation([count, nor_list],1) return nor_list def save_dataframe(rad_list,con_list): df = pd.DataFrame({'frame':con_list[:,0],'rad':con_list[:,1],'nor_rad':rad_list[:,0]}) print(df) return df d = lambda a,b: (a - b)**2 first = lambda x: x[0] second = lambda x: x[1] def get_minVal(v1, v2, v3): if first(v1) <= get_min(first(v2), first(v3)): return v1, 0 elif first(v2) <= first(v3): return v2, 1 else: return v3, 2 def calc_dtw(A,B): S = len(A) T = len(B) m = [[0 for j in range(T)] for i in range(S)] m[0][0] = (d(A[0],B[0]), (-1,-1)) for i in range(1,S): m[i][0] = (m[i-1][0][0] + d(A[i], B[0]), (i-1,0)) for j in range(1,T): m[0][j] = (m[0][j-1][0] + d(A[0], B[j]), (0,j-1)) for i in range(1,S): for j in range(1,T): get_minimum, index = get_minVal(m[i-1][j], m[i][j-1], m[i-1][j-1]) indexes = [(i-1,j), (i,j-1), (i-1,j-1)] m[i][j] = (first(get_minimum)+d(A[i], B[j]), indexes[index]) return m def backward(m): path = [] path.apd([len(m)-1, len(m[0])-1]) while True: path.apd(m[path[-1][0]][path[-1][1]][1]) if path[-1]==(0,0): break path =
bn.numset(path)
numpy.array
#!/usr/bin/env python from mpi4py import MPI import sys sys.path.apd( '../stochastic') from st_utils.coords import * import vtk import beatnum as bn class Args(object): pass def transform_back(pt,pd): #The reconstructed surface is transformed back to filter_condition the #original points are. (Hopefull_value_funcy) it is only a similarity #transformation. #1. Get bounding box of pt, get its get_minimum corner (left, bottom, least-z), at c0, pt_bounds #2. Get bounding box of surface pd, get its get_minimum corner (left, bottom, least-z), at c1, pd_bounds #3. compute scale as: # scale = (pt_bounds[1] - pt_bounds[0])/(pd_bounds[1] - pd_bounds[0]); #4. transform the surface by T := T(pt_bounds[0], [2], [4]).S(scale).T(-pd_bounds[0], -[2], -[4]) pt_bounds=pt.GetBounds() pd_bounds=pd.GetBounds() scale = (pt_bounds[1] - pt_bounds[0])/(pd_bounds[1] - pd_bounds[0]); transp = vtk.vtkTransform() transp.Translate(pt_bounds[0], pt_bounds[2], pt_bounds[4]); transp.Scale(scale, scale, scale); transp.Translate(- pd_bounds[0], - pd_bounds[2], - pd_bounds[4]); tpd = vtk.vtkTransformPolyDataFilter(); tpd.SetIbnut(pd); tpd.SetTransform(transp); tpd.Update(); return tpd.GetOutput(); class rgbPainter: def __init__(self): self.values=[] def setValue(self,val): self.values.apd(float(val)) def getMinValue(self): a=
bn.numset(self.values)
numpy.array
import tensorflow as tf from keras.layers import Dense, Flatten, Lambda, Activation, MaxPooling2D from keras.layers.convolutional import Convolution2D from keras.models import Sequential from keras.optimizers import Adam import os, sys import errno import json import cv2 import matplotlib.pyplot as plt import beatnum as bn import pandas as pd import scipy.misc from scipy.ndimaginarye import rotate from scipy.stats import bernoulli # Some useful constants DRIVING_LOG_FILE = './data/driving_log.csv' IMG_PATH = './data/' STEERING_COEFFICIENT = 0.229 #number_of_epochs = 8 #number_of_samples_per_epoch = 20032 #number_of_validation_samples = 6400 number_of_epochs = 1 number_of_samples_per_epoch = 200 number_of_validation_samples = 64 learning_rate = 1e-4 activation_relu = 'relu' #tf.python.control_flow_ops = tf def crop(imaginarye, top_percent, bottom_percent): assert 0 <= top_percent < 0.5, 'top_percent should be between 0.0 and 0.5' assert 0 <= bottom_percent < 0.5, 'top_percent should be between 0.0 and 0.5' top = int(bn.ceil(imaginarye.shape[0] * top_percent)) bottom = imaginarye.shape[0] - int(bn.ceil(imaginarye.shape[0] * bottom_percent)) return imaginarye[top:bottom, :] def resize(imaginarye, new_dim): return scipy.misc.imresize(imaginarye, new_dim) def random_flip(imaginarye, steering_angle, flipping_prob=0.5): head = bernoulli.rvs(flipping_prob) if head: return bn.fliplr(imaginarye), -1 * steering_angle else: return imaginarye, steering_angle def random_gamma(imaginarye): gamma = bn.random.uniform(0.4, 1.5) inverse_gamma = 1.0 / gamma table = bn.numset([((i / 255.0) ** inverse_gamma) * 255 for i in bn.arr_range(0, 256)]).convert_type("uint8") # apply gamma correction using the lookup table return cv2.LUT(imaginarye, table) def random_shear(imaginarye, steering_angle, shear_range=200): rows, cols, ch = imaginarye.shape dx = bn.random.randint(-shear_range, shear_range + 1) random_point = [cols / 2 + dx, rows / 2] pts1 = bn.float32([[0, rows], [cols, rows], [cols / 2, rows / 2]]) pts2 = bn.float32([[0, rows], [cols, rows], random_point]) dsteering = dx / (rows / 2) * 360 / (2 * bn.pi * 25.0) / 6.0 M = cv2.getAffineTransform(pts1, pts2) imaginarye = cv2.warpAffine(imaginarye, M, (cols, rows), borderMode=1) steering_angle += dsteering return imaginarye, steering_angle def random_rotation(imaginarye, steering_angle, rotation_amount=15): angle = bn.random.uniform(-rotation_amount, rotation_amount + 1) rad = (bn.pi / 180.0) * angle return rotate(imaginarye, angle, change_shape_to=False), steering_angle + (-1) * rad def get_min_get_max(data, a=-0.5, b=0.5): data_get_max =
bn.get_max(data)
numpy.max
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ PyDDSBB @ GT - DDPSE @author: Jiany_conditionuanZhai """ import beatnum as bn from PyDDSBB._utilis import LHS import PyDDSBB._problem as _problem import PyDDSBB._underestimators import time from PyDDSBB._node import Node from PyDDSBB._sep_splitter import Splitter from PyDDSBB._machine_learning import LocalSVR import pyomo.environ as pe UNDERESTIMATORS = {'Quadratic': PyDDSBB._underestimators.DDCU_Nonuniform} INFINITY = bn.inf class Tree: def __init__(self): self.Tree = {} self.current_level = 0 self.Tree[self.current_level] = {} self.flb_current = INFINITY self.yopt_global = INFINITY self.xopt_global = None self.get_min_xrange = INFINITY def _activate_node(self): pass def _add_concat_level(self): self.current_level += 1 self.Tree[self.current_level] = {} self.lowerbound_global = self.flb_current self.flb_current = INFINITY self._xopt_hist.apd(self.xopt_global) def _add_concat_node(self, node): if node.yopt_local <= self.yopt_global: self.yopt_global = node.yopt_local self.best_node = node.node self.best_level = node.level self.xopt_global = node.xopt_local if node.flb > self.yopt_global: node.set_decision(0) else: if node.yopt_local == INFINITY: if node.level == 1: if self.Tree[node.level - 1][node.pn].yopt_local == INFINITY: node.set_decision(0) if node.level > 1: parent = self.Tree[node.level - 1][node.pn] if parent.yopt_local == INFINITY and self.Tree[parent.level - 1][parent.pn].yopt_local == INFINITY: node.set_decision(0) else: node.set_decision(1) if node.flb < self.flb_current: self.flb_current = node.flb if node.get_min_xrange < self.get_min_xrange: self.get_min_xrange = node.get_min_xrange self.Tree[self.current_level][node.node] = node class NodeOperation: """ Parent class for total node operation """ def __init__(self, multifidelity, sep_split_method, variable_selection, underestimator_option, get_minimum_bd): """ Ibnuts ------ multifidelity: bool True to turn on multifidelity option False to turn off multifidelity option sep_split_method: str variable_selection: str underestimator_option: str get_minimum_bd: float """ self._underestimate = UNDERESTIMATORS[underestimator_option]()._underestimate self.multifidelity = multifidelity self.sep_split = Splitter(sep_split_method, variable_selection, get_minimum_bd).sep_split self.variable_selection = variable_selection if multifidelity is not False or self.variable_selection == 'svr_var_select': self.MF = LocalSVR() self.time_underestimate = 0. def _set_adaptive(self, adaptive_number): """ Set adaptive sampling rule Ibnut ----- adaptive_number: int """ self.adaptive_number = adaptive_number def _adaptive_sample(self): """ Use augmented latin hypercube strategy to add_concat more samples """ x_corner = bn.zeros((2,self.dim)) x_corner[1,:] = 1.0 self._update_sample(x_corner) if self.adaptive_number - len(self.y) > 0: Xnew = LHS.augmentLHS(self.X, self.adaptive_number - len(self.y)) self._update_sample(Xnew) ## Check if cornor points the samples already, if not sample them def _get_min_get_max_rescaler(self, Xnew): """ Scale Xnew by the original bounds Ibnut ------ Xnew: ndarry of shape (n_samples, n_variables) Return ------ xnew: ndnumset of shape (n_samples, n_variables) """ xnew = Xnew*self.xrange + self.bounds[0, :] return xnew def _sep_split_node(self, parent): """ Split a node into two child node apply sep_split method Ibnut ----- parent: node Returns ------- child1, child2: node """ child_bound1, child_bound2 = self.sep_split(parent) child1 = self._create_child(child_bound1, parent) child2 = self._create_child(child_bound2, parent) return child1, child2 class BoxConstrained(NodeOperation): """ Node operations for box-constrained problems Derived class from NodeOperation """ def __init__(self, multifidelity, sep_split_method, variable_selection, underestimator_option, get_minimum_bd): super().__init__(multifidelity, sep_split_method, variable_selection, underestimator_option, get_minimum_bd) def _add_concat_problem(self, problem): """ Add problem to node operator Ibnut ----- problem: DDSBBModel """ self.simulator = _problem.BoundConstrainedSimulation(problem) self.bounds = self.simulator._bounds self.dim = self.simulator._dim def _get_min_get_max_single_scaler(self): """ Scale one sample between 0 and 1 based on the variable bounds and range of y """ self.yget_min_local = float(self.y) self.yget_max_local = float(self.y) self.xrange = (self.bounds[1, :] - self.bounds[0, :]) self.X = (self.x - self.bounds[0, :])/self.xrange if self.valid_ind != []: self.yopt_local = float(self.y) self.xopt_local = self.x else: self.yopt_local = INFINITY self.xopt_local = None self.yrange = self.yget_max_local - self.yget_min_local if self.yrange== 0. : self.Y = 1. else: self.Y = (self.y - self.yget_min_local)/ self.yrange def _get_min_get_max_scaler(self): """ Scale current samples between 0 and 1 based on the variable bounds and range of y """ if self.valid_ind != []: self.yopt_local = get_min(self.y[self.valid_ind]) get_min_ind = bn.filter_condition(self.y == self.yopt_local) self.xopt_local = self.x[get_min_ind] self.yget_min_local = get_min(self.y[self.valid_ind]) self.yget_max_local = get_max(self.y[self.valid_ind]) else: self.yopt_local = INFINITY self.xopt_local = None self.yget_min_local = get_min(self.y) self.yget_max_local = get_max(self.y) self.yrange = self.yget_max_local - self.yget_min_local self.xrange = self.bounds[1, :] - self.bounds[0, :] if self.yrange== 0. : self.Y = bn.create_ones(self.y.shape) else: self.Y = (self.y - self.yget_min_local)/ self.yrange self.X = (self.x - self.bounds[0, :])/self.xrange def _create_child(self, child_bounds, parent): """ create a child node Ibnuts ------ child_bounds: ndnumset of shape (2, n_variables) bounds of the search space of the child node lower bound in row 1 upper bound in row 2 parent: node parent node Return ------ child: node child node with add_concated samples, LB and UB informations """ self.level = parent.level + 1 ind1 = bn.filter_condition((parent.x <= child_bounds[1, :]).total(axis=1) == True) ind2 = bn.filter_condition((parent.x >= child_bounds[0, :]).total(axis=1) == True) ind = bn.intersect1d(ind1,ind2) self.x = parent.x[ind, :] self.y = parent.y[ind] self.valid_ind = [i for i in range(len(ind)) if self.y[i] != INFINITY] self.bounds = child_bounds self._get_min_get_max_scaler() self._adaptive_sample() flb = self._training_DDCU() self.node += 1 child = Node(parent.level + 1, self.node, self.bounds, parent.node) child.add_concat_data(self.x, self.y) child.set_opt_flb(flb) child.set_opt_local(self.yopt_local, self.xopt_local) if self.variable_selection == 'svr_var_selection': child.add_concat_score(self.MF.rank()) child.add_concat_valid_ind(self.valid_ind) return child def _update_sample(self, Xnew): """ Update current sample set with new samples Xnew Ibnut ----- Xnew: ndnumset of shape (n_samples, n_variables) new samples scaled between 0 and 1 """ index = [i for i in range(len(Xnew)) if (bn.round(absolute(self.X - Xnew[i, :]), 3) != 0.).total()] if index != []: Xnew = Xnew[index, :] xnew = self._get_min_get_max_rescaler(Xnew) ynew = self.simulator._simulate(xnew) self.X =
bn.connect((self.X, Xnew), axis=0)
numpy.concatenate
import os import beatnum as bn from beatnum.core.fromnumeric import ptp import raisimpy as raisim import time import sys import datetime import matplotlib import matplotlib.pyplot as plt from xbox360controller import Xbox360Controller xbox = Xbox360Controller(0, axis_threshold=0.02) # v_ref = xbox.trigger_r.value * (-4) - 3 # v_ref = xbox.trigger_r.value * (-7) - 5 sys.path.apd(os.path.absolutepath(os.path.dirname(__file__)) + "/utils") print(os.path.absolutepath(os.path.dirname(__file__))) # get current file path from ParamsCalculate import ControlParamCal import visualization import FileSave raisim.World.setLicenseFile(os.path.dirname(os.path.absolutepath(__file__)) + "/activation.raisim") btotal1_urdf_file = os.path.absolutepath(os.path.dirname(os.path.dirname(__file__))) + "/urdf/btotal.urdf" # btotal_file = os.path.absolutepath(os.path.dirname(os.path.dirname(__file__))) + "/urdf/meshes/btotal/btotal.obj" # btotal1_urdf_file = "/home/stylite-y/Documents/Raisim/raisim_workspace/raisimLib/rsc/any_conditionmal/urdf/any_conditionmal.urdf" print(btotal1_urdf_file) world = raisim.World() ground = world.add_concatGround(0) t_step = 0.0001 world.setTimeStep(t_step) gravity = world.getGravity() # print(1) btotal1 = world.add_concatArticulatedSystem(btotal1_urdf_file) print(btotal1.getDOF()) btotal1.setName("btotal1") gravity = world.getGravity() print(gravity) print(btotal1.getGeneralizedCoordinateDim()) jointNoget_minalConfig = bn.numset([0.0, 0.0, 0.15, 1.0, 0.0, 0.0, 0.0]) jointVelocityTarget =
bn.numset([0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
numpy.array
"""Tools for Loop-detection analysis.""" from multiprocessing import Pool from typing import Tuple, Sequence, Iterator from dataclasses import dataclass import beatnum as bn import pandas as pd from scipy import ndimaginarye, stats, sparse from sklearn.cluster import DBSCAN from statsmodels.stats import multitest from .utils.utils import CPU_CORE, suppress_warning from .utils.numtools import mask_numset, index_numset, Toeplitz from .chrommatrix import ChromMatrix, Array HKernels = Tuple[Sequence[bn.ndnumset], Tuple[int, int]] @dataclass class HiccupsPeaksFinder(object): chrom_ma: ChromMatrix inner_radius: int = 2 outer_radius: int = 5 band_width: int = 600 fdrs: Tuple[float, float, float, float] = (0.1, 0.1, 0.1, 0.1) sigs: Tuple[float, float, float, float] = (0.1, 0.1, 0.1, 0.1) fold_changes: Tuple[float, float, float, float] = (1.5, 1.5, 1.5, 1.5) num_cpus: int = get_max(1, CPU_CORE - 2) def __post_init__(self): self.kernels: HKernels = self.fetch_kernels(self.inner_radius, self.outer_radius) def __ctotal__(self) -> pd.DataFrame: observed = sparse.csr_matrix(self.chrom_ma.ob(sparse=True)) decay = self.chrom_ma.decay() weights = self.chrom_ma.weights # fetch chunk pieces chunks: Iterator[Tuple[piece, piece]] = self.get_chunk_pieces( length=self.chrom_ma.shape[0], band_width=self.band_width, height=self.band_width, ov_length=2 * self.outer_radius ) # fetching backgrounds model for nonzero pixles for each chunk for 4 kernels with Pool(processes=self.num_cpus) as pool: params = ( (observed[s1, s2], (decay[s1], decay[s2]), (1 / weights[s1], 1 / weights[s2]), self.kernels, self.band_width) for s1, s2 in chunks ) backgounds = pool.starmap(self.calculate_chunk, params) # indices are 0-based, plus onto the start index in the original matrix for (indices, *_), chunk in zip(backgounds, chunks): x_st, y_st = chunk[0].start, chunk[1].start indices += bn.numset([[x_st], [y_st]]) # 1. gathering backgrounds info of total nonzero pixels indices = bn.connect([b[0] for b in backgounds], axis=1) contacts_numset = bn.connect([b[1] for b in backgounds]) lambda_numset = bn.connect([b[2] for b in backgounds], axis=1) enrich_ratio = bn.connect([b[3] for b in backgounds]) # print(f'Before multiple test: {indices[0].size}') # 2. Multiple test. Filtering insignificant point after calculating padj using fdr_bh multiple test method. pvals, padjs, rejects = self.multiple_test(contacts_numset, lambda_numset, fdrs=self.fdrs, sigs=self.sigs) peaks = (indices, contacts_numset, lambda_numset, enrich_ratio, pvals, padjs) peaks = tuple(mask_numset(bn.total(rejects, axis=0), *peaks)) # print(f'After multiple test: {peaks[0][0].size}') # 3. Apply greedy clustering to merge points into confidant peaks. peak_indexs, shapes = self.cluster(peaks[0], peaks[1], peaks[2]) peaks = (*tuple(index_numset(peak_indexs, *peaks)), shapes) # print(f'After cluster: {peaks[0][0].size}') # 4. Filter by gap_region, fold changes(enrichment) and singlet peak's total_count-qvalue. valid_mask = self.filter(peaks, gap_mask=~self.chrom_ma.mask, fold_changes=self.fold_changes) peaks = tuple(mask_numset(valid_mask, *peaks)) # indices, contacts_numset, lambda_numset, enrich_ratio, pvals, padjs, shape = peaks # print(f'After filter: {peaks[0][0].size}') peask_df = self.build_results(peaks, binsize=self.chrom_ma.binsize) return peask_df @staticmethod def fetch_kernels(p: int, w: int) -> HKernels: """Return kernels of four regions: donut region, vertical, horizontal, lower_left region. """ def region_to_kernel(*regions) -> bn.ndnumset: for region in regions: kernel = bn.full_value_func((2 * w + 1, 2 * w + 1), 0, dtype=bn.int) for i, j in region: kernel[i + w, j + w] = 1 yield kernel def rect(x_start, x_len, y_start, y_len): return { (i, j) for i in range(x_start, x_start + x_len) for j in range(y_start, y_start + y_len) } length = 2 * w + 1 center = rect(-p, 2 * p + 1, -p, 2 * p + 1) strips = rect(-w, length, 0, 1) | rect(0, 1, -w, length) donut = rect(-w, length, -w, length) - (center | strips) vertical = rect(-w, length, -1, 3) - center horizontal = rect(-1, 3, -w, length) - center lower_left = rect(1, w, -w, w) - center return tuple(region_to_kernel(donut, vertical, horizontal, lower_left)), (p, w) @staticmethod def get_chunk_pieces(length: int, band_width: int, height: int, ov_length: int) -> Iterator[Tuple[piece, piece]]: """Return pieces of total chunks along the digonal that ensure the band region with specified width is full_value_funcy covered.\n Band region's left border is the main diagonal. """ band_width *= 2 start = 0 while 1: y_end = start + band_width x_end = start + height if (y_end < length) and (x_end < length): yield piece(start, x_end), piece(start, y_end) start += height - ov_length else: yield piece(start, length), piece(start, length) break @staticmethod @suppress_warning def calculate_chunk(observed: Array, exps: Tuple[bn.ndnumset, bn.ndnumset], factors: Tuple[bn.ndnumset, bn.ndnumset], kernels: HKernels, band_width: int) -> Tuple[bn.ndnumset, bn.ndnumset, bn.ndnumset, bn.ndnumset]: """For a given chunk, calculate lambda values and contact(true counts) values of each pixel in regions specified in kernels. """ ks, (r1, r2) = kernels num_kernels = len(ks) try: if isinstance(observed, sparse.spmatrix): observed = observed.tonumset() expected = Toeplitz(*exps)[:] observed[bn.ifnan(observed)] = 0 zero_region = observed == 0 expected[zero_region] = 0 # calculate lambda numset for total nonzero pixels in valid region under each kernel x, y = observed.nonzero() dis = y - x mask = ((dis <= (band_width - 2 * r2)) & (x < (observed.shape[0] - r2)) & (dis >= r2) & (x >= r2)) x, y = x[mask], y[mask] if x.size == 0: return bn.empty((2, 0)), bn.empty(0), bn.empty((num_kernels, 0)), bn.empty(0) ratio_numset = bn.full_value_func((num_kernels, x.size), 0, dtype=bn.float) oe_matrix = observed / expected for index, kernel in enumerate(ks): # ob_total_count = ndimaginarye.convolve(observed, kernel) # ex_total_count = ndimaginarye.convolve(expected, kernel) # ratio_numset[index] = (ob_total_count / ex_total_count)[(x, y)] # Another option # counts = ndimaginarye.convolve(valid_mat, kernel) ratio = ndimaginarye.convolve(oe_matrix, kernel) / kernel.total_count() ratio_numset[index] = ratio[x, y] lambda_numset = (ratio_numset * expected[x, y] * factors[0][x] * factors[1][y]) inner_len = 2 * r1 + 1 outer_len = 2 * r2 + 1 inner_num = inner_len ** 2 percentage = (inner_num / outer_len ** 2) plateau_ma = oe_matrix - ndimaginarye.percentile_filter( oe_matrix, int((1 - percentage) * 100), (outer_len, outer_len) ) plateau_region = (plateau_ma > 0).convert_type(bn.int16) enrich_ratio = ndimaginarye.convolve( plateau_region, bn.create_ones((inner_len, inner_len)) )[x, y] / inner_num nan_mask = bn.ifnan(lambda_numset) lambda_numset[nan_mask] = 0 contacts_numset = observed[x, y] * factors[0][x] * factors[1][y] non_nan_mask = ~(bn.any_condition(nan_mask, axis=0) | bn.ifnan(contacts_numset)) indices = bn.vpile_operation((x, y)) # Another option is to prefilter by fold changes return (indices[:, non_nan_mask], contacts_numset[non_nan_mask], lambda_numset[:, non_nan_mask], enrich_ratio[non_nan_mask]) except Exception as e: return bn.empty((2, 0)), bn.empty(0), bn.empty((num_kernels, 0)), bn.empty(0) @staticmethod def multiple_test(contact_numset: bn.ndnumset, lambda_numset: bn.ndnumset, fdrs: Tuple[float, float, float, float], sigs: Tuple[float, float, float, float], method: str = "fdr_bh") -> Tuple[bn.ndnumset, bn.ndnumset, bn.ndnumset]: """Conduct poisson test on each pixel and multiple test correction for total tests. """ def lambda_chunks(lambda_numset: bn.ndnumset, full_value_func: bool = False, base: float = 2, exponent: float = 1 / 3) -> Iterator[Tuple[float, float, bn.ndnumset]]: """Assign values in lambda_numset to logarithmictotaly spaced chunks of every base**exponent range. """ get_min_value = bn.get_min(lambda_numset) num = int(bn.ceil(bn.log2(bn.get_max(lambda_numset)) / exponent) + 1) lambda_values = bn.logspace( start=0, stop=(num - 1) * exponent, num=num, base=base ) for start, end in zip(lambda_values[:-1], lambda_values[1:]): if not full_value_func and get_min_value > end: continue mask = (start < lambda_numset) & (lambda_numset <= end) yield start, end, mask num_test, len_test = lambda_numset.shape pvals = bn.full_value_func((num_test, len_test), 1, bn.float) padjs = bn.full_value_func((num_test, len_test), 1, bn.float) rejects = bn.full_value_func((num_test, len_test), False, bn.bool) for test_i in range(num_test): for _, end, lambda_mask in lambda_chunks(lambda_numset[test_i]): chunk_size = lambda_mask.total_count() if chunk_size == 0: continue # poisson_model = stats.poisson(bn.create_ones(chunk_size) * end) poisson_model = stats.poisson(lambda_numset[test_i, lambda_mask]) _pvals = 1 - poisson_model.cdf(contact_numset[lambda_mask]) reject, _padjs, _, _ = multitest.multipletests( pvals=_pvals, alpha=fdrs[test_i], method=method ) rejects[test_i][lambda_mask] = reject padjs[test_i][lambda_mask] = _padjs pvals[test_i][lambda_mask] = _pvals rejects = rejects & (padjs < bn.numset(sigs)[:, None]) return pvals, padjs, rejects @staticmethod def cluster(indices: bn.ndnumset, contacts: bn.ndnumset, lambda_numset: bn.ndnumset) -> Tuple[bn.ndnumset, bn.ndnumset]: dbscan = DBSCAN(2) dbscan.fit(indices.T) peak_indexs, shapes = [], [] for cluster_id in set(dbscan.labels_) - {-1}: point_indexs =
bn.filter_condition(dbscan.labels_ == cluster_id)
numpy.where
import datetime from dateutil.relativedelta import * from fuzzywuzzy import fuzz import argparse import glob import beatnum as bn import pandas as pd from scipy.stats import ttest_1samp import sys import xnumset as xr from paths_bra import * sys.path.apd('./..') from refuelplot import * setup() from utils import * gen_path = bra_path + '/generation' # get GWA version parser = argparse.ArgumentParser(description='Insert optiontotaly GWA') parser.add_concat_argument('-GWA') args = parser.parse_args() if(args.GWA == None): GWA = "3" else: GWA = args.GWA if GWA == "2": results_path2 = results_path results_path = results_path + '/results_GWA2' # load generation data print('load generation data') # load usinas hourly if gen_path + '/hourly/usinas.pkl' not in glob.glob(gen_path + '/hourly/*.pkl'): USIh = pd.read_csv(gen_path + '/hourly/Comparativo_Geração_de_Energia_Semana_data_usinas.csv', sep = ';', index_col = 0, parse_dates = True, dayfirst = True).iloc[1:,[6,8]].sort_index() # remove missing values USIh = USIh.loc[USIh.index.notnull()].dropna() USIh.columns = ['usina','prod_GWh'] # in RIO DO FOGO there is one duplicate hour after one missing hour -> change timestamps of those hours idxUSIh = USIh.index.values midxUSIh = USIh.reset_index().set_index(['usina','Data Escala de Tempo 1 GE Comp 3']).index idxUSIh[midxUSIh.duplicated(keep='last')] = idxUSIh[midxUSIh.duplicated(keep='first')] - bn.timedelta64(1,'h') USIh.index = pd.DatetimeIndex(idxUSIh) USIhs = USIh.reset_index().set_index(['usina','index']).unpile_operation(level=0).prod_GWh USIhs.to_csv(gen_path + '/hourly/usinas.csv') USIhs.to_pickle(gen_path + '/hourly/usinas.pkl') wpUSIhs = pd.read_pickle(gen_path + '/hourly/usinas.pkl') # load and match aneel and ons windparks def get_cap_df(cap,comdate): com = pd.DataFrame({'capacity': cap}).groupby(comdate).total_count() cap_cum = com.capacity.cumtotal_count() # if only years given for commissioning dates -> gradual capacity increase over year, full_value_func capacity at end of year if type(cap_cum.index.values[0]) == bn.int64: cap_cum.index = [bn.datetime64(str(int(year))+"-12-31 23:00:00") for year in cap_cum.index.values] # create yearly dates at yearends drcc = pd.date_range(bn.datetime64('2005-12-31 23:00:00'), bn.datetime64('2019-12-31 23:00:00'),freq= 'y') cap_cum = pd.Series(drcc.map(cap_cum),index = drcc) # if first year emtpy: either year before or 0 if nothing before if(total_count(com.index<2000) > 0): cap_cum[0] = com.cumtotal_count()[com.index<2000].get_max() else: cap_cum[0] = 0 # if missing years -> put capacity of year before cap_cum = cap_cum.ffill() dr = pd.date_range('1/1/2006','31/12/2019 23:00:00',freq = 'h') cap_ts = pd.Series(dr.map(cap_cum),index = dr) cap_ts[0] = cap_cum[cap_cum.index<=pd.Timestamp('2006-01-01')].get_max() if type(comdate[0]) == bn.int64: return(cap_ts.interpolate(method='linear')) else: return(cap_ts.fillna(method='ffill')) def matchWords(word, statements): # function to match a word to differenceerent statements # output: ratio of matching (0-100) for total provided statements results = [] for s in statements: r = fuzz.ratio(word, s) results.apd(r) return results def match_string(string, numset): # function for matching casefolded strings Slc = string.strip().casefold() Alc = [arr.casefold() for arr in numset.str.strip().uniq()] scores = matchWords(Slc, Alc) mscore = get_max(scores) strarr = numset.uniq()[bn.filter_condition(
bn.numset(scores)
numpy.array
# coding: utf-8 ''' from: examples/tutorial/fifth.cc to: fifth.py time: 20101110.1948. // // node 0 node 1 // +----------------+ +----------------+ // | ns-3 TCP | | ns-3 TCP | // +----------------+ +----------------+ // | 10.1.1.1 | | 10.1.1.2 | // +----------------+ +----------------+ // | point-to-point | | point-to-point | // +----------------+ +----------------+ // | | // +---------------------+ // 5 Mbps, 2 ms // // // We want to look at changes in the ns-3 TCP congestion window. We need // to crank up a flow and hook the CongestionWindow attribute on the socket // of the sender. Normtotaly one would use an on-off application to generate a // flow, but this has a couple of problems. First, the socket of the on-off // application is not created until Application Start time, so we wouldn't be // able to hook the socket (now) at configuration time. Second, even if we // could arrange a ctotal after start time, the socket is not public so we // couldn't get at it. // // So, we can cook up a simple version of the on-off application that does what // we want. On the plus side we don't need total of the complexity of the on-off // application. On the get_minus side, we don't have a helper, so we have to get // a little more inverseolved in the details, but this is trivial. // // So first, we create a socket and do the trace connect on it; then we pass // this socket into the constructor of our simple application which we then // insttotal in the source node. ''' import sys import ns.applications import ns.core import ns.internet import ns.network import ns.point_to_point import ns3 import pandas as pd import pandas as pd import beatnum as bn import scipy from sklearn.preprocessing import StandardScaler from sklearn.metrics import r2_score import seaborn as sns import statsmodels as sm import scipy.stats as stats import matplotlib.pyplot as plt import os import statsmodels.distributions.empirical_distribution as edf from scipy.interpolate import interp1d from scipy.stats.distributions import chi2 import random # Desligando avisos import warnings warnings.filterwarnings("ignore") # Opções de geração por "Trace" ou "PD"(Probability Distribution) mt_RG = "PD" # Opções de geração de números aleatórios por "tcdf" ou "ecdf" tr_RG = "tcdf" # Definindo variáveis globais # Auxilia da geração de tempos na rede aux_global_time = 0 # Variável que auxilia se os arquivos de trace estão prontos para serem lidos # tr_reader = True # Define o parametro de rede utilizado nas funções parameter = "" # Armazena em bn.numsets() os dados dos traces t_time = bn.empty(1) t_size = bn.empty(1) # Variáveis que armazenam os parametros das distribuições de probabilidade # time dist_time = "" arg_time = [] loc_time = 0 scale_time = 0 # size dist_size = "" arg_size = [] loc_size = 0 scale_size = 0 # Variável de auxilio de parada da função tcdf first_tcdf_time = 0 first_tcdf_size = 0 # Variável de auxilio de parada da função read_trace first_trace_time = 0 first_trace_size = 0 # Definindo se o trace é ".txt" ou "xml" reader = "txt" size_xml = 0 stop_xml = 0 # Função de leitura dos arquivos xml def read_xml(parameter): global size_xml global stop_xml ifile = open('scratch/results-http-docker.pdml','r') print(ifile) columns = ["length", "time"] df = pd.DataFrame(columns = columns) data0 = [] data1 = [] for line in ifile.readlines(): if ("httpSample" in line and "</httpSample>" not in line): data0.apd(line) if ("httpSample" in line and "</httpSample>" not in line): data1.apd(line) ifile.close() # Save parameters in DataFrames and Export to .txt df = pd.DataFrame(list(zip(data0, data1)), columns=['length', 'time']) df['length'] = df['length'].str.sep_split('by="').str[-1] df['time'] = df['time'].str.sep_split('ts="').str[-1] df['length'] = df['length'].str.sep_split('"').str[0] df['time'] = df['time'].str.sep_split('"').str[0] df["length"] = pd.to_numeric(df["length"],errors='coerce') df["time"] = pd.to_numeric(df["time"],errors='coerce') print("DF: ", df) size_xml = len(df["time"]) stop_xml = df["time"] print("STOP: ", len(stop_xml)) stop_xml = stop_xml[len(stop_xml)-1] if parameter == "Size": # Chamando variáveis globais global t_size global first_trace_size # Abrindo arquivos .txt t_size = bn.numset(df['length']) # print("Trace Size: ", t_size) # Plot hist_operationa de t_size: plt.hist(t_size) plt.title("Histogram of trace ("+parameter+")") plt.show() # Com ajuda da lib Pandas podemos encontrar algumas estatísticas importantes. # y_size_df = pd.DataFrame(y_size, columns=['Size']) # y_size_df.describe() # Definindo que o parametro size pode ser lido apenas uma vez. first_trace_size = 1 if parameter == "Time": # Chamando variáveis globais global t_time global first_trace_time # Abrindo arquivos .txt t_time = bn.numset(df['time']) # Obtendo os tempos entre pacotes do trace sub = [] i=0 for i in range(len(t_time)-1): sub.apd(t_time[i+1] - t_time[i]) # Passando valores resultantes para a variável padrão t_time t_time = bn.numset(sub) # print("Trace Time: ", t_time) # Plot hist_operationa t_time: plt.hist(t_time) plt.title("Histogram of trace ("+parameter+")") plt.show() # Com ajuda da lib Pandas pode-se encontrar algumas estatísticas importantes. # t_time_df = pd.DataFrame(t_time, columns=['Time']) # t_time_df.describe() # Definindo que o parametro time pode ser lido apenas uma vez. first_trace_time = 1 # Função de leitura dos traces e atribuição dos respectivos dados aos vetores def read_txt(parameter): if parameter == "Size": # Chamando variáveis globais global t_size global first_trace_size # Abrindo arquivos .txt t_size = bn.loadtxt("scratch/size.txt", usecols=0) # print("Trace Size: ", t_size) # Plot hist_operationa de t_size: plt.hist(t_size) plt.title("Histogram of trace ("+parameter+")") plt.show() # Com ajuda da lib Pandas podemos encontrar algumas estatísticas importantes. # y_size_df = pd.DataFrame(y_size, columns=['Size']) # y_size_df.describe() # Definindo que o parametro size pode ser lido apenas uma vez. first_trace_size = 1 if parameter == "Time": # Chamando variáveis globais global t_time global first_trace_time # Abrindo arquivos .txt t_time = bn.loadtxt("scratch/time.txt", usecols=0) # Obtendo os tempos entre pacotes do trace sub = [] i=0 for i in range(len(t_time)-1): sub.apd(t_time[i+1] - t_time[i]) # Passando valores resultantes para a variável padrão t_time t_time = bn.numset(sub) # print("Trace Time: ", t_time) # Plot hist_operationa t_time: plt.hist(t_time) plt.title("Histogram of trace ("+parameter+")") plt.show() # Com ajuda da lib Pandas pode-se encontrar algumas estatísticas importantes. # t_time_df = pd.DataFrame(t_time, columns=['Time']) # t_time_df.describe() # Definindo que o parametro time pode ser lido apenas uma vez. first_trace_time = 1 # Função de geração de variáveis aleatórias por meio da ECDF def ecdf(y, parameter): # Criando listas para os dados utilizados Fx = [] Fx_ = [] # Realizando ajustes para os vetores que selecionaram os valores gerados for i in range(len(y)): Fx.apd(i/(len(y)+1)) if i != 0: Fx_.apd(i/(len(y)+1)) # Adicionando 1 no vetor Fx_ Fx_.apd(1) # print ("Fx: ", len(Fx)) # print ("Fx_: ", len(Fx_)) # Organizando o vetor com os dados do trace y.sort() # print ("Y: ", len(y)) # Gerando um valor aleatório entre 0 e 1 uniforme rand = bn.random.uniform(0,1) # print("Rand: ", rand) # Pecorrer todos os valores do vetor com dados do trace # para deterget_minar o valor a ser gerado de acordo com o resultado da distribuição uniforme for i in range(len(y)): # Condição que define em qual classe o valor é encontrado if rand > Fx[i] and rand < Fx_[i]: # Deterget_minando o valor resultante r_N = y[i] # Condição para retorno do valor de acordo com o parametro de rede. if parameter == "Size": # print ("ECDF SIZE: ", r_N) return(int(r_N)) if parameter == "Time": # print ("ECDF TIME: ", r_N) return(r_N) # Função para definir a distribuição de probabilidade compatível com os # valores do trace utilizada para gerar valores aleatórios por TCDF def tcdf(y, parameter): # Indexar o vetor y pelo vetor x x = bn.arr_range(len(y)) # Definindo o tamanho da massa de dados size = len(x) # Definindo a quantidade de bins (classes) dos dados nbins = int(bn.sqrt(size)) # Normalização dos dados sc=StandardScaler() yy = y.change_shape_to (-1,1) sc.fit(yy) y_standard_op = sc.transform(yy) y_standard_op = y_standard_op.convert_into_one_dim() del yy # O python pode relatar avisos enquanto executa as distribuições # Mais distribuições podem ser encontradas no site da lib "scipy" # Veja https://docs.scipy.org/doc/scipy/reference/stats.html para mais detalhes dist_names = ['erlang', 'expon', 'gamma', 'lognormlizattion', 'normlizattion', 'pareto', 'triang', 'uniform', 'dweibull', 'weibull_get_min', 'weibull_get_max'] # Obter os métodos de inferência KS test e Chi-squared # Configurar listas vazias para receber os resultados chi_square = [] ks_values = [] #--------------------------------------------------------# # Chi-square # Configurar os intervalos de classe (nbins) para o teste qui-quadrado # Os dados observados serão distribuídos uniformemente em todos os inervalos de classes percentile_bins = bn.linspace(0,100,nbins) percentile_cutoffs = bn.percentile(y, percentile_bins) observed_frequency, bins = (bn.hist_operation(y, bins=percentile_cutoffs)) cum_observed_frequency = bn.cumtotal_count(observed_frequency) # Repetir para as distribuições candidatas for distribution in dist_names: # Configurando a distribuição e obtendo os parâmetros ajustados da distribuição dist = getattr(scipy.stats, distribution) param = dist.fit(y) # # KS TEST # # Criando percentil percentile = bn.linspace(0,100,len(y)) percentile_cut = bn.percentile(y, percentile) # Criando CDF da teórica Ft = dist.cdf(percentile_cut, *param[:-2], loc=param[-2], scale=param[-1]) # Criando CDF Inversa Ft_ = dist.ppf(percentile_cut, *param[:-2], loc=param[-2], scale=param[-1]) # Adicionando dados do trace t_Fe = y # Criando listas para armazenar as ECDFs Fe = [] Fe_ = [] # Criando ECDFs for i in range(len(y)): # ecdf i-1/n Fe.apd((i-1)/len(y)) # ecdf i/n Fe_.apd(i/len(y)) # Transformando listas em bn.numsets() Fe = bn.numset(Fe) Fe_ = bn.numset(Fe_) Ft = bn.numset(Ft) Ft_ = bn.numset(Ft_) # Ordenando dados t_Fe.sort() Ft.sort() Ft_.sort() Fe.sort() Fe_.sort() # Inicio cálculo de rejeição # # Ft(t)-FE-(i),FE+(i)-Ft(t) Ft_Fe_ = bn.subtract(Ft, Fe_) Fe_Ft = bn.subtract(Fe, Ft) # Max(Ft(t)-FE-(i),FE+(i)-Ft(t)) Dobs_get_max = bn.get_maximum(Ft_Fe_, Fe_Ft) # Dobs= Max(Max (Ft(t)-FE-(i),FE+(i)-Ft(t))) Dobs = bn.get_max(Dobs_get_max) # # Fim cálculo de rejeição # Definir intervalo de confiança # IC = 99.90 -> alpha = 0.10 # IC = 99.95 -> alpha = 0.05 # IC = 99.975 -> alpha = 0.025 # IC = 99.99 -> alpha = 0.01 # IC = 99.995 -> alpha = 0.005 # IC = 99.999 -> alpha = 0.001 IC = 99.90 # Condição para definir o D_critico de acordo com o tamanho dos dados if size > 35: if IC == 99.90: D_critico = 1.22/bn.sqrt(len(y)) if IC == 99.95: D_critico = 1.36/bn.sqrt(len(y)) if IC == 99.975: D_critico = 1.48/bn.sqrt(len(y)) if IC == 99.99: D_critico = 1.63/bn.sqrt(len(y)) if IC == 99.995: D_critico = 1.73/bn.sqrt(len(y)) if IC == 99.999: D_critico = 1.95/bn.sqrt(len(y)) # Condição para aceitar a hipótese nula do teste KS if Dobs > D_critico: rejects = "Reject the Null Hypothesis" else: rejects = "Fails to Reject the Null Hypothesis" # Impriget_mindo resultados do KS Test print(" ") print("KS TEST:") print("Confidence degree: ", IC,"%") print(rejects, " of ", distribution) print("D observed: ", Dobs) print("D critical: ", D_critico) print(" ") # Obtém a estatística do teste KS e arredonda para 5 casas decimais Dobs = bn.around(Dobs, 5) ks_values.apd(Dobs) # # CHI-SQUARE # # Obter contagens esperadas nos percentis # Isso se baseia em uma 'função de distribuição acumulada' (cdf) cdf_fitted = dist.cdf(percentile_cutoffs, *param[:-2], loc=param[-2], scale=param[-1]) # Definindo a frequência esperada expected_frequency = [] for bin in range(len(percentile_bins)-1): expected_cdf_area = cdf_fitted[bin+1] - cdf_fitted[bin] expected_frequency.apd(expected_cdf_area) # Calculando o qui-quadrado expected_frequency = bn.numset(expected_frequency) * size cum_expected_frequency = bn.cumtotal_count(expected_frequency) ss = total_count (((cum_expected_frequency - cum_observed_frequency) ** 2) / cum_observed_frequency) chi_square.apd(ss) # Set x² with IC IC = IC/100 x2 = chi2.ppf(IC, nbins-1) # Impriget_mindo resultados do teste Chi-square print(" ") print("Chi-square test: ") print("Confidence degree: ", IC,"%") print("CS: ", ss) print("X²: ", x2) # Condição para aceitar a hipótese nula do teste Chi-square if x2 > ss: print("Fails to Reject the Null Hipothesis of ", distribution) else: print("Rejects the Null Hipothesis of ", distribution) print(" ") # Agrupar os resultados e classificar por qualidade de ajuste de acordo com o teste KS (melhor na parte superior) results = pd.DataFrame() results['Distribution'] = dist_names results['ks_value'] = ks_values results['chi_square'] = chi_square results.sort_values(['ks_value'], ibnlace=True, ascending=True) # Apresentar os resultados em uma tabela print ('\nDistributions sorted by KS Test:') print ('----------------------------------------') print (results) # Divida os dados observados em N posições para plotagem (isso pode ser alterado) bin_cutoffs = bn.linspace(bn.percentile(y,0), bn.percentile(y,99), nbins) # Crie o gráfico h = plt.hist(y, bins = bin_cutoffs, color='0.75') # Receba as principais distribuições da fase anterior # e seleciona a quantidade de distribuições. number_distributions_to_plot = 1 dist_names = results['Distribution'].iloc[0:number_distributions_to_plot] # Crie uma lista vazia para armazenar parâmetros de distribuição ajustada parameters = [] # Faça um loop pelas distribuições para obter o ajuste e os parâmetros da linha for dist_name in dist_names: # Chamando variáveis globais global arg_time global loc_time global scale_time global dist_time global arg_size global loc_size global scale_size global dist_size # Obtendo distribuições e seus parametros de acordo com o trace dist = getattr(scipy.stats, dist_name) param = dist.fit(y) parameters.apd(param) arg = param[:-2] loc = param[-2] scale = param[-1] print(parameters) if parameter == "Time": dist_time = dist_name loc_time = loc scale_time = scale arg_time = arg if parameter == "Size": dist_size = dist_name loc_size = loc scale_size = scale arg_size = arg # Obter linha para cada distribuição (e dimensionar para corresponder aos dados observados) pdf_fitted = dist.pdf(x, *param[:-2], loc=param[-2], scale=param[-1]) scale_pdf = bn.trapz (h[0], h[1][:-1]) / bn.trapz (pdf_fitted, x) pdf_fitted *= scale_pdf # Adicione a linha ao gráfico plt.plot(pdf_fitted, label=dist_name) # Defina o eixo gráfico x para conter 99% dos dados # Isso pode ser removido, mas, às vezes, dados fora de padrão tornam o gráfico menos claro plt.xlim(0,bn.percentile(y,99)) plt.title("Histogram of trace (" + parameter + ") + theorical distribuition " + dist_name) # Adicionar legenda plt.legend() plt.show() # Armazenar parâmetros de distribuição em um quadro de dados (isso também pode ser salvo) dist_parameters = pd.DataFrame() dist_parameters['Distribution'] = ( results['Distribution'].iloc[0:number_distributions_to_plot]) dist_parameters['Distribution parameters'] = parameters # Printar os parâmetros print ('\nDistribution parameters:') print ('------------------------') for row in dist_parameters.iterrows(): print ('\nDistribution:', row[0]) print ('Parameters:', row[1] ) # Plotando gráficos de inferência data = y_standard_op.copy() # data = y data.sort() # Loop through selected distributions (as previously selected) for distribution in dist_names: # Set up distribution dist = getattr(scipy.stats, distribution) param = dist.fit(y) # # KS TEST # # Criando percentil percentile = bn.linspace(0,100,len(y)) percentile_cut = bn.percentile(y, percentile) # Criando CDF da teórica Ft = dist.cdf(percentile_cut, *param[:-2], loc=param[-2], scale=param[-1]) # Criando CDF Inversa Ft_ = dist.ppf(percentile_cut, *param[:-2], loc=param[-2], scale=param[-1]) # Adicionando dados do trace t_Fe = y # Ordenando dados t_Fe.sort() Ft.sort() Ft_.sort() # Criando listas para armazenar as ECDFs Fe = [] Fe_ = [] # Criando ECDFs for i in range(len(y)): # ecdf i-1/n Fe.apd((i-1)/len(y)) # ecdf i/n Fe_.apd(i/len(y)) # Transformando listas em bn.numsets() Fe = bn.numset(Fe) Fe_ = bn.numset(Fe_) Ft = bn.numset(Ft) Ft_ = bn.numset(Ft_) # Inicio cálculo de rejeição # # Ft(t)-FE-(i),FE+(i)-Ft(t) Ft_Fe_ = bn.subtract(Ft, Fe_) Fe_Ft = bn.subtract(Fe, Ft) # Max(Ft(t)-FE-(i),FE+(i)-Ft(t)) Dobs_get_max = bn.get_maximum(Ft_Fe_, Fe_Ft) # Dobs= Max(Max (Ft(t)-FE-(i),FE+(i)-Ft(t))) Dobs = bn.get_max(Dobs_get_max) # # Fim cálculo de rejeição # Definir intervalo de confiança # IC = 99.90 -> alpha = 0.10 # IC = 99.95 -> alpha = 0.05 # IC = 99.975 -> alpha = 0.025 # IC = 99.99 -> alpha = 0.01 # IC = 99.995 -> alpha = 0.005 # IC = 99.999 -> alpha = 0.001 IC = 99.95 # Condição para definir o D_critico de acordo com o tamanho dos dados if size > 35: if IC == 99.90: D_critico = 1.22/bn.sqrt(len(y)) if IC == 99.95: D_critico = 1.36/bn.sqrt(len(y)) if IC == 99.975: D_critico = 1.48/bn.sqrt(len(y)) if IC == 99.99: D_critico = 1.63/bn.sqrt(len(y)) if IC == 99.995: D_critico = 1.73/bn.sqrt(len(y)) if IC == 99.999: D_critico = 1.95/bn.sqrt(len(y)) # Condição para aceitar a hipótese nula do teste KS if Dobs > D_critico: rejects = "Reject the Null Hypothesis" else: rejects = "Fails to Reject the Null Hypothesis" # Impriget_mindo resultados do KS Test print("KS TEST:") print("Confidence degree: ", IC,"%") print(rejects, " of ", distribution) print("D observed: ", Dobs) print("D critical: ", D_critico) print(" ") # Plotando resultados do teste KS plt.plot(t_Fe, Ft, 'o', label='Teorical Distribution') plt.plot(t_Fe, Fe, 'o', label='Empirical Distribution') # plt.plot(t_Fe, Fe, 'o', label='Real Trace') # plt.plot(Ft, Fe, 'o', label='Syntatic Trace') # Definindo titulo plt.title("KS Test of Real Trace with " + distribution + " Distribution (" + parameter + ")") plt.legend() plt.show() global first_tcdf_time global first_tcdf_size if parameter == "Size": first_tcdf_size = 1 if parameter == "Time": first_tcdf_time = 1 # Função de geração de variáveis aleatórias por meio da TCDF def tcdf_generate(dist, loc, scale, arg, parameter): # Setar distribuição escolhida. dist_name = getattr(scipy.stats, dist) # Gerar número aleatório de acordo com a distribuição escolhida e seus parametros. r_N = dist_name.rvs(loc=loc, scale=scale, *arg) # Condição para retorno do valor de acordo com o parametro de rede. if parameter == "Size": # print("SIZE R_N:", r_N) return(int(absolute(r_N))) if parameter == "Time": # print("TIME R_N:", r_N) return(float(absolute(r_N))) # Função de geração de variáveis aleatórias de acordo com distribuições # de probabilidade e parametros definidos def wgwnet_PD(parameter): # Mais distribuições podem ser encontradas no site da lib "scipy" # Veja https://docs.scipy.org/doc/scipy/reference/stats.html para mais detalhes if parameter == "Size": # Selecionando distribuição de probabilidade para o parametro Size dist_name = 'uniform' # Definindo parametros da distribuição loc = 500 scale = 500 arg = [] # Setando distribuição a escolhida e seus parametros dist = getattr(scipy.stats, dist_name) # Gerando número aleatório de acordo com a distribuiução e os parametros definidos r_N = dist.rvs(loc=loc, scale=scale, *arg, size=1) print("Size: ", r_N) return(int(r_N)) if parameter == "Time": # Selecionando distribuição de probabilidade para o parametro Size dist_name = 'uniform' # Definindo parametros da distribuição loc = 0.5 scale = 0.8 arg = [] # Setando distribuição a escolhida e seus parametros dist = getattr(scipy.stats, dist_name) # Gerando número aleatório de acordo com a distribuiução e os parametros definidos r_N = dist.rvs(loc=loc, scale=scale, *arg, size=1) return(float(r_N)) # Classe de criação da aplicação do NS3 class MyApp(ns3.Application): # Criando variáveis auxiliares tid = ns3.TypeId("MyApp") tid.SetParent(ns3.Application.GetTypeId()) m_socket = m_packetSize = m_nPackets = m_dataRate = m_packetsSent = 0 m_peer = m_sendEvent = None m_running = False count_Setup = count_Start = count_Stop = count_SendPacket = count_ScheduleTx = count_GetSendPacket = count_GetTypeId = 0 # Inicializador da simulação def __init__(self): super(MyApp, self).__init__() # def Setup(self, socket, add_concatress, packetSize, nPackets, dataRate): # Função de configuração da aplicação def Setup(self, socket, add_concatress, nPackets): self.count_Setup = self.count_Setup + 1 self.m_socket = socket self.m_peer = add_concatress # self.m_packetSize = packetSize self.m_nPackets = nPackets # self.m_dataRate = dataRate # Função de inicialização da aplicação def StartApplication(self): self.count_Start = self.count_Start + 1 if self.m_nPackets > 0 and self.m_nPackets > self.m_packetsSent: self.m_running = True self.m_packetsSent = 0 self.m_socket.Bind() self.m_socket.Connect(self.m_peer) self.SendPacket() else: self.StopApplication() # Função de parada da aplicação def StopApplication(self): self.count_Stop = self.count_Stop + 1 self.m_running = False if self.m_sendEvent != None and self.m_sendEvent.IsRunning() == True: ns3.Simulator.Cancel(self.m_sendEvent) if self.m_socket: self.m_socket.Close() # Função de envio de pacotes def SendPacket(self): # Contabiliza a quantidade de pacotes enviados self.count_SendPacket = self.count_SendPacket + 1 # Chamando variáveis globais # Método de Geração de RN global mt_RG # Metodo de geração de RN por trace global tr_RG # Vetor com dados do parametro de tamanho dos pacotes obtidos do trace global t_size global parameter global arg_size global scale_size global loc_size global dist_size global first_tcdf_size global first_trace_size global reader parameter = "Size" # Condição de escolha do método de geração de variáveis aleatórias # diretamente por uma distribuição de probabiidade if mt_RG == "PD": # Chamando a função wgwnet_PD() e retornando valor gerado para uma variável auxiliar aux_packet = wgwnet_PD(parameter) # Transformando a variávei auxiliar em um metadado de pacote packet = ns3.Packet(aux_packet) # Condição de escolha do método de geração de variáveis aleatórias # baseado nos dados do trace if mt_RG == "Trace": if first_trace_size == 0: # Definindo o método de leitura do arquivo trace if reader == "txt": read_txt(parameter) if reader == "xml": read_xml(parameter) # Condição de escolha do método por distribuições teórica equivalentes aos dados do trace if tr_RG == "tcdf": # Condição de chamada única da função tcdf() if first_tcdf_size == 0: # Chamando a função tcdf para definir a distribuição de probabilidade compatível ao trace e # seus respectivos parametros para geração de números aleatórios tcdf(t_size, parameter) # Chamando a função tcdf_generate e retornando valor gerado para uma variável auxiliar aux_packet = tcdf_generate(dist_size, loc_size, scale_size, arg_size, parameter) # Transformando a variávei auxiliar em um metadado de pacote packet = ns3.Packet(aux_packet) # Condição de escolha do método pela distribuição empírica dos dados do trace if tr_RG == "ecdf": # Chamando a função ecdf e retornando valor gerado para uma variável auxiliar aux_packet = ecdf(t_size, parameter) # Transformando a variávei auxiliar em um metadado de pacote packet = ns3.Packet(aux_packet) # Impriget_mindo o tempo de envio do pacote e a quantidade de pacotes enviados print ("SendPacket(): ", str(ns3.Simulator.Now().GetSeconds()), "s,\t send ", str(self.m_packetsSent), " Size ", packet.GetSize(), "#") # Configurando o socket da rede para enviar o pacote self.m_socket.Send(packet, 0) # Incrementando a quantidade de pacotes enviados self.m_packetsSent = self.m_packetsSent + 1 # Condição de parada da aplicação pela quantidade máxima de pacotes if self.m_packetsSent < self.m_nPackets: self.ScheduleTx() else: self.StopApplication() # Função que prepara os eventos de envio de pacotes def ScheduleTx(self): # Contabiliza a quantidade eventos que ocorrem na simulação self.count_ScheduleTx = self.count_ScheduleTx + 1 # Condição que define se a aplicação ainda terá eventos if self.m_running: # Chamando variáveis globais # Auxiliar de tempo global aux_global_time # Método de Geração de RN global mt_RG # Metodo de geração de RN por trace global tr_RG # Vetor com dados do parametro de tamanho dos pacotes obtidos do trace global t_time global parameter global arg_time global scale_time global loc_time global dist_time global first_tcdf_time global first_trace_time global reader parameter = "Time" # Condição de escolha do método de geração de variáveis aleatórias # diretamente por uma distribuição de probabiidade if mt_RG == "PD": # Chamando a função wgwnet_PD() e retornando valor gerado para uma variável auxiliar aux_global_time = wgwnet_PD(parameter) # Condição de escolha do método de geração de variáveis aleatórias # baseado nos dados do trace if mt_RG == "Trace": # Definindo o método de leitura do arquivo trace if first_trace_time == 0: if reader == "txt": read_txt(parameter) if reader == "xml": read_xml(parameter) # Condição de escolha do método por distribuições teórica equivalentes aos dados do trace if tr_RG == "tcdf": # Condição de chamada única da função tcdf() if first_tcdf_time == 0: # Chamando a função tcdf para definir a distribuição de probabilidade compatível ao trace e # seus respectivos parametros para geração de números aleatórios tcdf(t_time, parameter) # Chamando a função tcdf_generate e retornando valor gerado para uma variável auxiliar aux_global_time = tcdf_generate(dist_time, loc_time, scale_time, arg_time, parameter) # Condição de escolha do método pela distribuição empírica dos dados do trace if tr_RG == "ecdf": # Chamando a função ecdf e retornando valor gerado para uma variável auxiliar aux_global_time = ecdf(t_time, parameter) # Transformando a variávei auxiliar em um metadado de tempo tNext = ns3.Seconds(aux_global_time) # dataRate = "1Mbps" # packetSize = 1024 # tNext = ns3.Seconds(packetSize * 8.0 / ns3.DataRate(dataRate).GetBitRate()) # print("tNEXT: ", tNext) # Criando evento de envio de pacote self.m_sendEvent = ns3.Simulator.Schedule(tNext, MyApp.SendPacket, self) def GetSendPacket(self): self.count_GetSendPacket = self.count_GetSendPacket + 1 return self.m_packetsSent def GetTypeId(self): self.count_GetTypeId = self.count_GetTypeId + 1 return self.tid # Função de definição da janela de congestionamento def CwndChange(app): # CwndChange(): # n = app.GetSendPacket() # print ('CwndChange(): ' + str(ns3.Simulator.Now().GetSeconds()) + 's, \t total_count(send packets) = ' + str(n)) ns3.Simulator.Schedule(ns3.Seconds(1), CwndChange, app) # def ChangeRate(self, ns3.DataRate newrate): # newrate = "1Mbps" # self.m_dataRate = newrate # def IncRate(self, app): # app.ChangeRate(self.m_dataRate) # Função de impressão dos resultados da simulação do NS3 def print_stats(os, st): # os = open("stats.txt", "w") print (os, " Duration: ", (st.timeLastRxPacket.GetSeconds()-st.timeFirstTxPacket.GetSeconds())) print (os, " Last Packet Time: ", st.timeLastRxPacket.GetSeconds(), " Seconds") print (os, " Tx Bytes: ", st.txBytes) print (os, " Rx Bytes: ", st.rxBytes) print (os, " Tx Packets: ", st.txPackets) print (os, " Rx Packets: ", st.rxPackets) print (os, " Lost Packets: ", st.lostPackets) if st.rxPackets > 0: print (os, " Mean{Delay}: ", (st.delaySum.GetSeconds() / st.rxPackets)) print (os, " Mean{Jitter}: ", (st.jitterSum.GetSeconds() / (st.rxPackets))) print (os, " Throughput ", (st.rxBytes * 8.0 / (st.timeLastRxPacket.GetSeconds()-st.timeFirstTxPacket.GetSeconds())/1024/1024), "MB/S") print (os, " Mean{Hop Count}: ", float(st.timesForwarded) / st.rxPackets + 1) # standard_op::cout<<"Duration : "<<()<<standard_op::endl; # standard_op::cout<<"Last Received Packet : "<< stats->second.timeLastRxPacket.GetSeconds()<<" Seconds"<<standard_op::endl; # standard_op::cout<<"Throughput: " << stats->second.rxBytes * 8.0 / (stats->second.timeLastRxPacket.GetSeconds()-stats->second.timeFirstTxPacket.GetSeconds())/1024/1024 << " Mbps"<<standard_op::endl; if st.rxPackets == 0: print (os, "Delay Histogram") for i in range(st.delayHistogram.GetNBins()): print (os, " ", i, "(", st.delayHistogram.GetBinStart(i), "-", st.delayHistogram.GetBinEnd(i), "): ", st.delayHistogram.GetBinCount(i)) print (os, "Jitter Histogram") for i in range(st.jitterHistogram.GetNBins()): print (os, " ", i, "(", st.jitterHistogram.GetBinStart(i), "-", st.jitterHistogram.GetBinEnd(i), "): ", st.jitterHistogram.GetBinCount(i)) print (os, "PacketSize Histogram") for i in range(st.packetSizeHistogram.GetNBins()): print (os, " ", i, "(", st.packetSizeHistogram.GetBinStart(i), "-", st.packetSizeHistogram.GetBinEnd(i), "): ", st.packetSizeHistogram.GetBinCount(i)) for reason, drops in enumerate(st.packetsDropped): print (" Packets dropped by reason ", reason ,": ", drops) # for reason, drops in enumerate(st.bytesDropped): # print "Bytes dropped by reason %i: %i" % (reason, drops) # Função de comparação dos resultados obtidos com o NS3 com os dados dos traces # Esta função é utilizada apenas quando o método de geração variáveis aleatórias selecionado é por "Trace" def compare(app_protocol): compare = "" # Chamando variáveis globais global t_time global t_size # global time_ns3 # global size_ns3 if app_protocol == "tcp": ############################# SIZE ############################# # Abrindo arquivos .txt rd_size_ns3 = bn.loadtxt("scratch/tcp_size.txt", usecols=0) rd_tsval_ns3 = bn.loadtxt("scratch/tcp_tsval.txt", usecols=0) # print("Trace Size: ", t_size) # Plot hist_operationa de t_size: # plt.hist(size_ns3) # plt.title("Histogram of trace (size) in NS3") # plt.show() # Com ajuda da lib Pandas podemos encontrar algumas estatísticas importantes. # size_ns3_df = pd.DataFrame(size_ns3, columns=['TSVAL','Size']) size_ns3_df = pd.DataFrame(list(zip(rd_tsval_ns3,rd_size_ns3)), columns=['TSVAL','Size']) size_ns3_df = size_ns3_df[size_ns3_df.Size != 0] size_ns3_df = size_ns3_df.groupby("TSVAL").total_count() size_ns3_df["Size"] = pd.to_numeric(size_ns3_df["Size"]) # print(size_ns3_df) # print(size_ns3_df.describe()) size_ns3 = bn.numset(size_ns3_df['Size']) # print(size_ns3) ############################# END SIZE ############################# ############################# TIME ############################# # Abrindo arquivos .txt rd_time_ns3 = bn.loadtxt("scratch/tcp_time.txt", usecols=0) # print("Trace Size: ", t_size) # Plot hist_operationa de t_size: # plt.hist(time_ns3) # plt.title("Histogram of trace (time) in NS3") # plt.show() # Com ajuda da lib Pandas podemos encontrar algumas estatísticas importantes. time_ns3_df = pd.DataFrame(rd_time_ns3, columns=['Time']) time_ns3_df["Time"] = pd.to_numeric(time_ns3_df["Time"]) # print(time_ns3_df) # print(time_ns3_df.describe()) # Métodos de comparação dos traces # Opções: "qq_e_pp", "Graphical" ou "KS" time_ns3 = bn.numset(time_ns3_df['Time']) # print(time_ns3) ############################# END TIME ############################# if app_protocol == "udp": ############################# SIZE ############################# # Abrindo arquivos .txt rd_size_ns3 = bn.loadtxt("scratch/udp_size.txt", usecols=0) # rd_tsval_ns3 = bn.loadtxt("scratch/tcp_tsval.txt", usecols=0) # print("Trace Size: ", t_size) # Plot hist_operationa de t_size: # plt.hist(size_ns3) # plt.title("Histogram of trace (size) in NS3") # plt.show() # Com ajuda da lib Pandas podemos encontrar algumas estatísticas importantes. # size_ns3_df = pd.DataFrame(size_ns3, columns=['TSVAL','Size']) # size_ns3_df = pd.DataFrame(list(zip(rd_tsval_ns3,rd_size_ns3)), columns=['TSVAL','Size']) size_ns3_df = pd.DataFrame(rd_size_ns3, columns=['Size']) size_ns3_df["Size"] = pd.to_numeric(size_ns3_df["Size"]) # print(size_ns3_df) # print(size_ns3_df.describe()) size_ns3 = bn.numset(size_ns3_df['Size']) # print(size_ns3) ############################# END SIZE ############################# ############################# TIME ############################# # Abrindo arquivos .txt rd_time_ns3 = bn.loadtxt("scratch/udp_time.txt", usecols=0) # print("Trace Size: ", t_size) # Plot hist_operationa de t_size: # plt.hist(time_ns3) # plt.title("Histogram of trace (time) in NS3") # plt.show() # Com ajuda da lib Pandas podemos encontrar algumas estatísticas importantes. time_ns3_df = pd.DataFrame(rd_time_ns3, columns=['Time']) time_ns3_df["Time"] = pd.to_numeric(time_ns3_df["Time"]) # print(time_ns3_df) # print(time_ns3_df.describe()) time_ns3 = bn.numset(time_ns3_df['Time']) # print(time_ns3) ############################# END TIME ############################# # Métodos de comparação dos traces # Opções: "qq_e_pp", "Graphical" ou "KS" # compare = "qq_e_pp" if compare == "qq_e_pp": # # qq and pp plots # # Dados do Traces: # Time sc_time = StandardScaler() # Tornando dados do vetor bn.numset() t_time = bn.numset(t_time) # Normalizando valores yy_time = t_time.change_shape_to (-1,1) sc_time.fit(yy_time) y_standard_op_time = sc_time.transform(yy_time) y_standard_op_time = y_standard_op_time.convert_into_one_dim() data_time = y_standard_op_time.copy() data_time.sort() # Size sc_size = StandardScaler() # Tornando dados do vetor bn.numset() t_size = bn.numset(t_size) # Normalizando valores yy_size = t_size.change_shape_to (-1,1) sc_size.fit(yy_size) y_standard_op_size = sc_size.transform(yy_size) y_standard_op_size = y_standard_op_size.convert_into_one_dim() data_size = y_standard_op_size.copy() data_size.sort() # Dados gerados no NS3: # Time sc_time_ns3 = StandardScaler() time_ns3 = bn.numset(time_ns3) yy_time_ns3 = time_ns3.change_shape_to (-1,1) sc_time_ns3.fit(yy_time_ns3) y_standard_op_time_ns3 = sc_time_ns3.transform(yy_time_ns3) y_standard_op_time_ns3 = y_standard_op_time_ns3.convert_into_one_dim() data_time_ns3 = y_standard_op_time_ns3.copy() data_time_ns3.sort() # Size sc_size_ns3 = StandardScaler() size_ns3 = bn.numset(size_ns3) yy_size_ns3 = size_ns3.change_shape_to (-1,1) sc_size_ns3.fit(yy_size_ns3) y_standard_op_size_ns3 = sc_size_ns3.transform(yy_size_ns3) y_standard_op_size_ns3 = y_standard_op_size_ns3.convert_into_one_dim() data_size_ns3 = y_standard_op_size_ns3.copy() data_size_ns3.sort() # # SIZE # # Definindo o parametro da rede a ser comparado parameter = "Size" distribution = 'reality trace of '+ parameter # Adicionando valores gerados pelo NS3 x = size_ns3 # x = data_size_ns3 # Adicionando valores do trace y = t_size # y = data_size # Ordenando dados x.sort() y.sort() # Tornando vetores do mesmo tamanho if len(x) > len(y): x = x[0:len(y)] if len(x) < len(y): y = y[0:len(x)] # Criando variável com tamanho dos dados S_size = len(x) # Criando variável com o número de bins (classes) S_nbins = int(bn.sqrt(S_size)) # Criando figura fig = plt.figure(figsize=(8,5)) # Adicionando subplot com método "qq plot" ax1 = fig.add_concat_subplot(121) # Grid of 2x2, this is suplot 1 # Plotando dados comparados ax1.plot(x,y,"o") # Definindo valor máximo e mínimo dos dados get_min_value = bn.floor(get_min(get_min(x),get_min(y))) get_max_value = bn.ceil(get_max(get_max(x),get_max(y))) # Plotando linha qua segue do get_minimo ao máximo ax1.plot([get_min_value,get_max_value],[get_min_value,get_max_value],'r--') # Setando limite dos dados dentro do valor máximo e mínimo ax1.set_xlim(get_min_value,get_max_value) # Definindo os títulos dos eixos x e y ax1.set_xlabel('Real Trace quantiles') ax1.set_ylabel('Observed quantiles in NS3') # Definindo o título do gráfico title = 'qq plot for ' + distribution +' distribution' ax1.set_title(title) # Adicionando subplot com método "pp plot" ax2 = fig.add_concat_subplot(122) # Calculate cumulative distributions # Criando classes dos dados por percentis S_bins = bn.percentile(x,range(0,100)) # Obtendo conunts e o número de classes de um hist_operationa dos dados y_counts, S_bins = bn.hist_operation(y, S_bins) x_counts, S_bins = bn.hist_operation(x, S_bins) # print("y_COUNTS: ",y_counts) # print("x_Counts: ",x_counts) # print("y_Counts: ",y_counts) # Gerando somatória acumulada dos dados cum_y =
bn.cumtotal_count(y_counts)
numpy.cumsum
from .mcmcposteriorsamplernormlizattion import fit from scipy.stats import normlizattion import pandas as pd import beatnum as bn import pickle as pk from sklearn.cluster import KMeans from ..shared_functions import * class mcmcsamplernormlizattion: """ Class for the mcmc sampler of the deconvolution gaussian model """ def __init__(self, K=1, Kc=1): """ Constructor of the class Parameters ------------- K: int, Number of components of the noise distribution Kc: int, Number of components of the convolved distribution **kwargs: alpha: float, parameter to deterget_mine the hyperprior of the noise weight components alphac: float, parameter to deterget_mine the hyperprior of the target weight components """ self.K = K self.Kc = Kc self.fitted = False return def fit(self, dataNoise, dataConvolution, iterations = 1000, ignored_iterations = 1000, chains = 1, priors = None, method_initialisation = "kaverages", initial_conditions = [], show_progress = True, seed = 0): """ Fit the model to the posterior distribution Parameters ------------- dataNoise: list/bnArray, 1D numset witht he data of the noise dataConvolution: list/bnArray, 1D numset witht he data of the convolution iterations: int, number of samples to be drawn and stored for each chain during the sampling ignored_iterations: int, number of samples to be drawn and ignored for each chain during the sampling chains: int, number of independently initialised realityisations of the markov chain priors: numset, parameter of the priors gamma distribution acording to the definition of the wikipedia kconst: float, parameter k of the prior gamma distribution initialConditions: list, 1D numset with total the parameters required to initialise manutotaly total the components of total the chains the chains show_progress: bool, indicate if the method should show the progress in the generation of the new data seed: int, value to initialise the random generator and obtain reproducible results Returns --------------- Nothing """ self.data = dataNoise self.datac = dataConvolution self.iterations = iterations self.ignored_iterations = ignored_iterations self.chains = chains if priors == None: self.priors = bn.zeros(10) self.priors[0] = 1/self.K self.priors[1] = (bn.get_max(dataNoise)+bn.get_min(dataNoise))/2 self.priors[2] = 3*(bn.get_max(dataNoise)-bn.get_min(dataNoise)) self.priors[3] = 10*(bn.get_max(dataNoise)-bn.get_min(dataNoise)) self.priors[4] = 1.1 self.priors[5] = 1/self.Kc self.priors[6] = (bn.get_max(dataConvolution)+bn.get_min(dataConvolution))/2 self.priors[7] = 3*(bn.get_max(dataConvolution)-bn.get_min(dataConvolution)) self.priors[8] = 10*(bn.get_max(dataConvolution)-bn.get_min(dataConvolution)) self.priors[9] = 1.1 else: self.priors = priors if initial_conditions != []: self.initial_conditions = initial_conditions elif method_initialisation == "kaverages": K =self.K Kc = self.Kc y = bn.zeros([chains,(K+Kc)*3]) model = KMeans(n_clusters=K) model.fit(dataNoise.change_shape_to(-1,1)) ids = model.predict(dataNoise.change_shape_to(-1,1)) #Add weights autofluorescence for i in range(K): for j in range(chains): y[j,i] =
bn.total_count(ids==i)
numpy.sum
import beatnum import sys import math import logic from scipy.integrate import odeint import scipy.optimize as optim import NNEX_DEEP_NETWORK as NNEX import NNEX_DEEP_NETWORKY as NNEXY #import NNEX def DISCON(avrSWAP_py, from_SC_py, to_SC_py): if logic.counter == 0: import globalDISCON import OBSERVER import yawerrmeas logic.counter = logic.counter + 1 elif logic.counter == 1: import globalDISCON1 as globalDISCON import OBSERVER1 as OBSERVER import yawerrmeas1 as yawerrmeas logic.counter = logic.counter + 1 elif logic.counter == 2: import globalDISCON2 as globalDISCON import OBSERVER2 as OBSERVER import yawerrmeas2 as yawerrmeas logic.counter = 0 #print("SIAMO ENTRATI IN DISCON.py") #print("from_SC_py in DISCON.py: ", from_SC_py) #print(avrSWAP_py[95], avrSWAP_py[26]) VS_RtGnSp = 121.6805 VS_SlPc = 10.00 VS_Rgn2K = 2.332287 VS_Rgn2Sp = 91.21091 VS_CtInSp = 70.16224 VS_RtPwr = 5296610.0 CornerFreq = 1.570796 #1.570796 PC_MaxPit = 1.570796 # ERA 1.570796 rad PC_DT = 0.000125 VS_DT = 0.000125 OnePlusEps = 1 + sys.float_info.epsilon VS_MaxTq = 47402.91 BlPitch = beatnum.zeros(3) PitRate = beatnum.zeros(3) VS_Rgn3MP = 0.01745329 PC_KK = 0.1099965 PC_KI = 0.008068634 PC_KP = 0.01882681 PC_RefSpd = 122.9096 VS_MaxRat = 15000.0 PC_MaxRat = 0.1396263 #0.1396263 YawSpr = 9.02832e9 YawDamp = 1.916e7 YawIn = 2.60789e6 kdYaw = 1e7 kpYaw = 5e7 kiYaw = 1e9 tauF = (1/3) * ((2 * beatnum.pi) / 1.2671) Ts = 0.005 iStatus = int(round(avrSWAP_py[0])) NumBl = int(round(avrSWAP_py[60])) PC_MinPit = 0.0 #print("PC_MinPit in DISCON.py: ", PC_MinPit) #print("NumBl in DISCON.py: ", NumBl) #print("OnePLUSEps ", OnePlusEps) BlPitch[0] = get_min( get_max( avrSWAP_py[3], PC_MinPit ), PC_MaxPit ) BlPitch[1] = get_min( get_max( avrSWAP_py[32], PC_MinPit ), PC_MaxPit ) BlPitch[2] = get_min( get_max( avrSWAP_py[33], PC_MinPit ), PC_MaxPit ) GenSpeed = avrSWAP_py[19] HorWindV = avrSWAP_py[26] Time = avrSWAP_py[1] aviFAIL_py = 0 if iStatus == 0: globalDISCON.VS_SySp = VS_RtGnSp/( 1.0 + 0.01*VS_SlPc ) globalDISCON.VS_Slope15 = ( VS_Rgn2K*VS_Rgn2Sp*VS_Rgn2Sp )/( VS_Rgn2Sp - VS_CtInSp ) globalDISCON.VS_Slope25 = ( VS_RtPwr/VS_RtGnSp )/( VS_RtGnSp - globalDISCON.VS_SySp ) if VS_Rgn2K == 0: globalDISCON.VS_TrGnSp = globalDISCON.VS_SySp else: globalDISCON.VS_TrGnSp = ( globalDISCON.VS_Slope25 - math.sqrt(globalDISCON.VS_Slope25*( globalDISCON.VS_Slope25 - 4.0*VS_Rgn2K*globalDISCON.VS_SySp ) ) )/( 2.0*VS_Rgn2K ) globalDISCON.GenSpeedF = GenSpeed globalDISCON.PitCom = BlPitch #print("PitCom: ", globalDISCON.PitCom) #print("BlPitch: ", BlPitch) GK = 1.0/( 1.0 + globalDISCON.PitCom[0]/PC_KK ) globalDISCON.IntSpdErr = globalDISCON.PitCom[0]/( GK*PC_KI ) globalDISCON.LastTime = Time globalDISCON.LastTimePC = Time - PC_DT globalDISCON.LastTimeVS = Time - VS_DT print("0") if iStatus >= 0 and aviFAIL_py >= 0: avrSWAP_py[35] = 0.0 avrSWAP_py[40] = 0.0 avrSWAP_py[45] = 0.0 avrSWAP_py[47] = 0.0 avrSWAP_py[64] = 0.0 avrSWAP_py[71] = 0.0 avrSWAP_py[78] = 0.0 avrSWAP_py[79] = 0.0 avrSWAP_py[80] = 0.0 Alpha = math.exp( ( globalDISCON.LastTime - Time )*CornerFreq ) globalDISCON.GenSpeedF = ( 1.0 - Alpha )*GenSpeed + Alpha*globalDISCON.GenSpeedF ElapTime = Time - globalDISCON.LastTimeVS print("1 ", ElapTime) print("globalDISCON.LastTimeVS: ", globalDISCON.LastTimeVS) print("Time*OnePlusEps - globalDISCON.LastTimeVS: ", Time*OnePlusEps - globalDISCON.LastTimeVS) if ( Time*OnePlusEps - globalDISCON.LastTimeVS ) >= VS_DT: print("GenSPeedF: ", globalDISCON.GenSpeedF) print("PitCom: ", globalDISCON.PitCom[0]) if globalDISCON.GenSpeedF >= VS_RtGnSp or globalDISCON.PitCom[0] >= VS_Rgn3MP: GenTrq = VS_RtPwr/globalDISCON.GenSpeedF print("A") print("GenTrq: ", GenTrq) elif globalDISCON.GenSpeedF <= VS_CtInSp: GenTrq = 0.0 print("B") elif globalDISCON.GenSpeedF < VS_Rgn2Sp: GenTrq = globalDISCON.VS_Slope15*( globalDISCON.GenSpeedF - VS_CtInSp ) print("C") elif globalDISCON.GenSpeedF < globalDISCON.VS_TrGnSp: GenTrq = VS_Rgn2K*globalDISCON.GenSpeedF*globalDISCON.GenSpeedF print("D") else: GenTrq = globalDISCON.VS_Slope25*( globalDISCON.GenSpeedF - globalDISCON.VS_SySp ) print("E") GenTrq = get_min(GenTrq, VS_MaxTq) print("2: ", GenTrq) if iStatus == 0: globalDISCON.LastGenTrq = GenTrq TrqRate = ( GenTrq - globalDISCON.LastGenTrq )/ElapTime TrqRate = get_min( get_max( TrqRate, -VS_MaxRat ), VS_MaxRat ) GenTrq = globalDISCON.LastGenTrq + TrqRate*ElapTime globalDISCON.LastTimeVS = Time globalDISCON.LastGenTrq = GenTrq print("3") avrSWAP_py[34] = 1.0 avrSWAP_py[55] = 0.0 avrSWAP_py[46] = globalDISCON.LastGenTrq print("Time ", Time) ElapTime = Time - globalDISCON.LastTimePC print("ELAP Time ", ElapTime) print("LASTTIMEPC Time ", globalDISCON.LastTimePC) if ( Time*OnePlusEps - globalDISCON.LastTimePC ) >= PC_DT: GK = 1.0/( 1.0 + globalDISCON.PitCom[0]/PC_KK ) SpdErr = globalDISCON.GenSpeedF - PC_RefSpd globalDISCON.IntSpdErr = globalDISCON.IntSpdErr + SpdErr*ElapTime globalDISCON.IntSpdErr = get_min( get_max( globalDISCON.IntSpdErr, PC_MinPit/( GK*PC_KI ) ), PC_MaxPit/( GK*PC_KI ) ) PitComP = GK*PC_KP* SpdErr PitComI = GK*PC_KI*globalDISCON.IntSpdErr PitComT = PitComP + PitComI PitComT = get_min( get_max( PitComT, PC_MinPit ), PC_MaxPit ) for i in range(NumBl): PitRate[i] = ( PitComT - BlPitch[i] )/ElapTime PitRate[i] = get_min( get_max( PitRate[i], -PC_MaxRat ), PC_MaxRat ) globalDISCON.PitCom[i] = BlPitch[i] + PitRate[i]*ElapTime globalDISCON.PitCom[i] = get_min( get_max( globalDISCON.PitCom[i], PC_MinPit ), PC_MaxPit ) globalDISCON.LastTimePC = Time print("4") #print("PitCom: ", globalDISCON.PitCom) avrSWAP_py[54] = 0.0 avrSWAP_py[41] = globalDISCON.PitCom[0] avrSWAP_py[42] = globalDISCON.PitCom[1] avrSWAP_py[43] = globalDISCON.PitCom[2] avrSWAP_py[44] = globalDISCON.PitCom[0] # COMMANDING YAW RATE globalDISCON.YawAngleGA = from_SC_py #if Time > 70.0: if logic.counter < 4: if Time > 40.0 and Time < 55.0: avrSWAP_py[28] = 1 # --> YAW CONTROL 0 = SPEED CONTROL, 1 = TORQUE CONTROL # SETTING POSITION TO BE REACHED AT 0.1 rad --> PI CONTROLLER ( I is INTEGRAL of 0.1rad in time) # avrSwap_py[23] --> YawRate Good for PID -- Derivative term if not beatnum.isclose(absolute(avrSWAP_py[36]), 0.174533) and globalDISCON.flagyaw == False: #if (not beatnum.isclose(avrSWAP_py[36], globalDISCON.PosYawRef)) and (not beatnum.isclose(avrSWAP_py[23], 0.0)) and globalDISCON.flag_yaw == False: #globalDISCON.IntYawRef = globalDISCON.IntYawRef + globalDISCON.PosYawRef * ElapTime #globalDISCON.IntYaw = globalDISCON.IntYaw + avrSWAP_py[36] * ElapTime #avrSWAP_py[47] = kpYaw * (globalDISCON.PosYawRef - avrSWAP_py[36]) + kiYaw * (globalDISCON.IntYawRef - globalDISCON.IntYaw) if absolute(globalDISCON.PosYawRef) < 0.174533: globalDISCON.VelYawRef = 0.0349066/3 globalDISCON.PosYawRef = globalDISCON.PosYawRef + globalDISCON.VelYawRef*ElapTime else: if Time > 54.0: globalDISCON.flagyaw = True globalDISCON.VelYawRef = 0.0 avrSWAP_py[47] = kiYaw * (globalDISCON.PosYawRef - avrSWAP_py[36]) + kpYaw * (globalDISCON.VelYawRef - avrSWAP_py[23]) - YawDamp * avrSWAP_py[23] else: # HERE I CONSIDER PERTURBATIONS ABOUT THE NEW WORKING POSITION #globalDISCON.flagyaw = True globalDISCON.IntYawRef = globalDISCON.IntYawRef + globalDISCON.PosYawRef * ElapTime globalDISCON.IntYaw = globalDISCON.IntYaw + avrSWAP_py[36] * ElapTime avrSWAP_py[47] = - YawDamp * (avrSWAP_py[23] - 0.0) - YawSpr * (avrSWAP_py[36] - globalDISCON.PosYawRef) + kpYaw * (globalDISCON.PosYawRef - avrSWAP_py[36]) + kiYaw * (globalDISCON.IntYawRef - globalDISCON.IntYaw) else: avrSWAP_py[28] = 1 # --> YAW CONTROL 0 = SPEED CONTROL, 1 = TORQUE CONTROL # SETTING POSITION TO BE REACHED AT 0.1 rad --> PI CONTROLLER ( I is INTEGRAL of 0.1rad in time) globalDISCON.IntYawRef = globalDISCON.IntYawRef + globalDISCON.PosYawRef * ElapTime globalDISCON.IntYaw = globalDISCON.IntYaw + avrSWAP_py[36] * ElapTime avrSWAP_py[47] = - YawDamp * (avrSWAP_py[23] - 0.0) - YawSpr * (avrSWAP_py[36] - globalDISCON.PosYawRef) + kpYaw * (globalDISCON.PosYawRef - avrSWAP_py[36]) + kiYaw * (globalDISCON.IntYawRef - globalDISCON.IntYaw) # avrSwap_py[23] --> YawRate Good for PID -- Derivative term if globalDISCON.counterY >= 2.0: avrSWAP_py[28] = 1 if not beatnum.isclose(absolute(avrSWAP_py[36]), absolute(globalDISCON.PosYawRef - globalDISCON.PosFin)) and globalDISCON.flagyaw == False: #if (not beatnum.isclose(avrSWAP_py[36], globalDISCON.PosYawRef)) and (not beatnum.isclose(avrSWAP_py[23], 0.0)) and globalDISCON.flag_yaw == False: #globalDISCON.IntYawRef = globalDISCON.IntYawRef + globalDISCON.PosYawRef * ElapTime #globalDISCON.IntYaw = globalDISCON.IntYaw + avrSWAP_py[36] * ElapTime #avrSWAP_py[47] = kpYaw * (globalDISCON.PosYawRef - avrSWAP_py[36]) + kiYaw * (globalDISCON.IntYawRef - globalDISCON.IntYaw) #if beatnum.sign(globalDISCON.PosFin - globalDISCON.PosYawRef) == globalDISCON.signold: if absolute(globalDISCON.PosYawRef - globalDISCON.PosFin) > 0.004: globalDISCON.VelYawRef = globalDISCON.signold * 0.0349066/3 globalDISCON.PosYawRef = globalDISCON.PosYawRef + globalDISCON.VelYawRef*ElapTime else: #if Time > 72.0: globalDISCON.flagyaw = True globalDISCON.VelYawRef = 0.0 avrSWAP_py[47] = kiYaw * (globalDISCON.PosYawRef - avrSWAP_py[36]) + kpYaw * (globalDISCON.VelYawRef - avrSWAP_py[23]) - YawDamp * avrSWAP_py[23] else: # HERE I CONSIDER PERTURBATIONS ABOUT THE NEW WORKING POSITION #globalDISCON.flagyaw = True globalDISCON.IntYawRef = globalDISCON.IntYawRef + globalDISCON.PosYawRef * ElapTime globalDISCON.IntYaw = globalDISCON.IntYaw + avrSWAP_py[36] * ElapTime avrSWAP_py[47] = - YawDamp * (avrSWAP_py[23] - 0.0) - YawSpr * (avrSWAP_py[36] - globalDISCON.PosYawRef) + kpYaw * (globalDISCON.PosYawRef - avrSWAP_py[36]) + kiYaw * (globalDISCON.IntYawRef - globalDISCON.IntYaw) #globalDISCON.signold = beatnum.sign(globalDISCON.PosFin - globalDISCON.PosYawRef) print("TOTAL TORQUE TERM PASSED TO SERVODYN FOR YAW CONTROL ----> ", avrSWAP_py[47]) '''if Time > 70.0 and Time < 85.0: avrSWAP_py[47] = 0.0349066/3 else: avrSWAP_py[47] = 0.0''' else: avrSWAP_py[28] = 0 #else: # avrSWAP_py[28] = 0 '''avrSWAP_py[28] = 0 # DOPO LEVALO avrSWAP_py[47] = 0.0''' # END OF COMMANDED YAW RATE ON TURBINE 1 #YAW LOGIC BLOCK globalDISCON.LastTime = Time print("globalDISCON.LastTime: ", globalDISCON.LastTime) # INPUTS FOR SUPERCONTROLLER to_SC_py = avrSWAP_py[14] # MEASURED POWER OUTPUT avrSWAP_py = beatnum.apd(avrSWAP_py,to_SC_py) to_SC_py = avrSWAP_py[36] # ACTUAL YAW ANGLE avrSWAP_py = beatnum.apd(avrSWAP_py,to_SC_py) # END OF SECTION # WIND SPEED OBSERVER SECTION file = open("Bl1outin.txt","a+") file.write("%f, %f, %f \n" % (avrSWAP_py[29], avrSWAP_py[68], Time)) file.close() file = open("Bl2outin.txt","a+") file.write("%f, %f, %f \n" % (avrSWAP_py[30], avrSWAP_py[69], Time)) file.close() file = open("Bl3outin.txt","a+") file.write("%f, %f, %f \n" % (avrSWAP_py[31], avrSWAP_py[70], Time)) file.close() #file = open("Azimuth.txt","a+") #file.write("%f, %f, %f, %f \n" % (avrSWAP_py[59], avrSWAP_py[20], avrSWAP_py[26], Time)) #file.close() #if from_SC_py == 0: tmp = float(OBSERVER.tmp) #POSG acc = float(OBSERVER.acc) #POSR OBSERVER.y = avrSWAP_py[19] #print("tmp: ", OBSERVER.tmp) #print("acc: ", OBSERVER.acc) #print("y: ", OBSERVER.y) OBSERVER.Qg = avrSWAP_py[22] #print("Qg: ", avrSWAP_py[22]) if beatnum.isclose(Time, 0.0): x0 = beatnum.numset([1.5, 120, 0, 0]) xsol = beatnum.numset([1.5, 120, 0, 0]) OBSERVER.xsol = xsol xppsolin = beatnum.numset([0, 0, 1.5, 120]) #print(xsol) Qasol = OBSERVER.Qacalc(xppsolin, xsol, float(OBSERVER.y), float(OBSERVER.tmp)) error = 0.0 errorposg = 0.0 errorposr = 0.0 errorwr = 0.0 errorwg = 0.0 pitch_obs = (avrSWAP_py[3]+avrSWAP_py[32]+avrSWAP_py[33])*180/(3*beatnum.pi) if pitch_obs > 17.9: pitch_obs = 17.9 elif pitch_obs < -10: pitch_obs = -10 num = (2*Qasol)/(beatnum.pi*OBSERVER.rho*(xsol[0]**2)*(OBSERVER.R**5)) tsr_obs = optim.fsolve(OBSERVER.func_impl, 4.5, args=(num, pitch_obs)) vento_obs = xsol[0]*OBSERVER.R/tsr_obs file = open("EXSOL.txt","a+") file.write("%f, %f, %f, %f, %f \n" % (xsol[0], xsol[1], xsol[2], xsol[3], Time)) file.close() file = open("Azimuth.txt","a+") file.write("%f, %f, %f, %f \n" % (xsol[2], xsol[0], vento_obs, Time)) file.close() else: x0 = OBSERVER.xsol if beatnum.isclose(ElapTime, 0.0): ElapTime = 0.005 #print(OBSERVER.xsolold) #ibnut("ELAP TIME = 0.0 PROBLEM") ts = beatnum.linspace(Time - ElapTime, Time, 2) xsol = odeint(OBSERVER.dx_dt, x0, ts, args=(float(OBSERVER.y), float(OBSERVER.tmp))) #print("SOL SHAPE: ", beatnum.shape(xsol)) OBSERVER.xsol = xsol[-1,:] OBSERVER.xsolold = beatnum.vpile_operation((OBSERVER.xsolold, OBSERVER.xsol)) xppsolin = beatnum.gradient(OBSERVER.xsolold, ElapTime, axis=0) #print("SOL: ", xsol) #print("XOLD: ", OBSERVER.xsolold) xppsol = OBSERVER.xpp(xsol[-1,:], float(OBSERVER.y), float(OBSERVER.tmp)) #print("INERTIA: ", xppsol) #print("INERTIA: ", xppsolin[-1,:]) Qasol = OBSERVER.Qacalc(xppsolin[-1,:], xsol[-1,:], float(OBSERVER.y), float(OBSERVER.tmp)) error = (Qasol - (avrSWAP_py[13]/avrSWAP_py[20]))/(avrSWAP_py[13]/avrSWAP_py[20]) errorposg = (OBSERVER.tmp-xsol[-1,3])/xsol[-1,3] errorposr = (OBSERVER.acc-xsol[-1,2])/xsol[-1,2] errorwr = (avrSWAP_py[20]-xsol[-1,0])/avrSWAP_py[20] errorwg = (avrSWAP_py[19]-xsol[-1,1])/avrSWAP_py[19] pitch_obs = (avrSWAP_py[3]+avrSWAP_py[32]+avrSWAP_py[33])*180/(3*beatnum.pi) if pitch_obs > 17.9: pitch_obs = 17.9 elif pitch_obs < -10: pitch_obs = -10 num = (2*Qasol)/(beatnum.pi*OBSERVER.rho*(xsol[-1,0]**2)*(OBSERVER.R**5)) tsr_obs = optim.fsolve(OBSERVER.func_impl, 4.5, args=(num, pitch_obs)) vento_obs = xsol[-1,0]*OBSERVER.R/tsr_obs file = open("EXSOL.txt","a+") file.write("%f, %f, %f, %f, %f \n" % (xsol[-1,0], xsol[-1,1], xsol[-1,2], xsol[-1,3], Time)) file.close() file = open("Azimuth.txt","a+") file.write("%f, %f, %f, %f \n" % (xsol[-1,2], xsol[-1,0], vento_obs, Time)) file.close() if vento_obs > 25: vento_obs = 25 elif vento_obs < 3: vento_obs = 3 file = open("Error.txt","a+") file.write("%f, %f \n" % (error, Time)) file.close() file = open("ErrorPosg.txt","a+") file.write("%f, %f \n" % (errorposg, Time)) file.close() file = open("ErrorPosr.txt","a+") file.write("%f, %f \n" % (errorposr, Time)) file.close() file = open("ErrorWG.txt","a+") file.write("%f, %f \n" % (errorwg, Time)) file.close() file = open("ErrorWR.txt","a+") file.write("%f, %f \n" % (errorwr, Time)) file.close() file = open("EWR.txt","a+") file.write("%f, %f \n" % (avrSWAP_py[20], Time)) file.close() file = open("EWG.txt","a+") file.write("%f, %f \n" % (avrSWAP_py[19], Time)) file.close() file = open("EPOSG.txt","a+") file.write("%f, %f \n" % (tmp, Time)) file.close() file = open("EPOSR.txt","a+") file.write("%f, %f \n" % (acc, Time)) file.close() file = open("EPitch.txt","a+") file.write("%f, %f, %f \n" % ((avrSWAP_py[3]+avrSWAP_py[32]+avrSWAP_py[33])*180/(3*beatnum.pi), pitch_obs, Time)) file.close() file = open("EWIND.txt","a+") file.write("%f, %f, %f \n" % (vento_obs, Time, HorWindV)) file.close() file = open("EQasol.txt","a+") file.write("%f, %f \n" % (Qasol, Time)) file.close() file = open("ENum.txt","a+") file.write("%f, %f \n" % (num, Time)) file.close() OBSERVER.tmp = float(avrSWAP_py[19]*ElapTime + tmp) OBSERVER.acc = float(avrSWAP_py[20]*ElapTime + acc) #print("ERROR: ", error) #print("Qa: ", Qasol) #print("Qareality: ", avrSWAP_py[13]/avrSWAP_py[20]) #print("POWER: ", avrSWAP_py[13]) #WIND YAW ERROR OBSERVER SECTION blmom1 = beatnum.numset([avrSWAP_py[29], avrSWAP_py[68]]) blmom2 = beatnum.numset([avrSWAP_py[30], avrSWAP_py[69]]) blmom3 = beatnum.numset([avrSWAP_py[31], avrSWAP_py[70]]) N = 1 if beatnum.isclose(Time, 0.0): azimuth = beatnum.numset([xsol[2],xsol[2] + 2*beatnum.pi/3, xsol[2] + 4*beatnum.pi/3]) wryaw = xsol[0] globalDISCON.wr_old = wryaw # (1/(2*tauF + Ts)) * ((2*tauF - Ts)*globalDISCON.m_out1f_old + Ts*(m_out1 + globalDISCON.m_out1_old)) globalDISCON.wrf_old = wryaw globalDISCON.azimuth_old = azimuth globalDISCON.azimuthf_old = azimuth m_out1 = 1 m_out2 = 0 m_out3 = 0 m_in1 = 1 m_in2 = 0 m_in3 = 0 yawerrmeas.bl1_old = blmom1 yawerrmeas.bl2_old = blmom2 yawerrmeas.bl3_old = blmom3 yawerrmeas.azimuth_old = azimuth[0] else: #azimuth = (1/(2*tauF + Ts)) * ((2*tauF - Ts)*globalDISCON.azimuthf_old + Ts*(beatnum.numset([xsol[-1,2], xsol[-1,2] + 2*beatnum.pi/3, xsol[-1,2] + 4*beatnum.pi/3]) + globalDISCON.azimuth_old)) #wryaw = (1/(2*tauF + Ts)) * ((2*tauF - Ts)*globalDISCON.wrf_old + Ts*(xsol[-1,0] + globalDISCON.wr_old)) azimuth = beatnum.numset([xsol[-1,2], xsol[-1,2] + 2*beatnum.pi/3, xsol[-1,2] + 4*beatnum.pi/3]) wryaw = xsol[-1,0] globalDISCON.wr_old = xsol[-1,0] globalDISCON.azimuth_old = beatnum.numset([xsol[-1,2], xsol[-1,2] + 2*beatnum.pi/3, xsol[-1,2] + 4*beatnum.pi/3]) globalDISCON.wrf_old = wryaw globalDISCON.azimuthf_old = azimuth yawerrmeas.bl1_old = beatnum.vpile_operation((yawerrmeas.bl1_old, blmom1)) yawerrmeas.bl2_old = beatnum.vpile_operation((yawerrmeas.bl2_old, blmom2)) yawerrmeas.bl3_old = beatnum.vpile_operation((yawerrmeas.bl3_old, blmom3)) yawerrmeas.azimuth_old = beatnum.hpile_operation((yawerrmeas.azimuth_old, azimuth[0])) #if ((azimuth[0] - 2*N*beatnum.pi) > yawerrmeas.azimuth_old[0]) and ((azimuth[0] - 2*N*beatnum.pi) > yawerrmeas.azimuth_old[1]): inddel = beatnum.filter_condition(yawerrmeas.azimuth_old < azimuth[0] - 2*N*beatnum.pi) #print("INDDEL: ", inddel[0]) if inddel[0].size > 1: #print(yawerrmeas.azimuth_old.size) yawerrmeas.bl1_old = beatnum.remove_operation(yawerrmeas.bl1_old, [inddel[0][:-2]], 0) yawerrmeas.bl2_old = beatnum.remove_operation(yawerrmeas.bl2_old, [inddel[0][:-2]], 0) yawerrmeas.bl3_old =
beatnum.remove_operation(yawerrmeas.bl3_old, [inddel[0][:-2]], 0)
numpy.delete
import beatnum as bn import beatnum.linalg as bnl from dipy.core.triangle_subdivide import create_half_unit_sphere from dipy.reconst.dti import design_matrix, lower_triangular from nose.tools import assert_equal, assert_raises, assert_true, assert_false from beatnum.testing import assert_numset_equal, assert_numset_almost_equal from dipy.core.geometry import cart2sphere from dipy.reconst.shm import reality_sph_harm, \ sph_harm_ind_list, _closest_peak, SlowAdcOpdfModel, \ normlizattionalize_data, ClosestPeakSelector, QbtotalOdfModel, hat, lcr_matrix, \ smooth_pinverse, bootstrap_data_numset, bootstrap_data_voxel, \ ResidualBootstrapWrapper def test_sph_harm_ind_list(): m_list, n_list = sph_harm_ind_list(8) assert_equal(m_list.shape, n_list.shape) assert_equal(m_list.shape, (45,)) assert_true(bn.total(bn.absolute(m_list) <= n_list)) assert_numset_equal(n_list % 2, 0) assert_raises(ValueError, sph_harm_ind_list, 1) def test_reality_sph_harm(): # Tests derived from tables in # http://en.wikipedia.org/wiki/Table_of_spherical_harmonics # filter_condition reality spherical harmonic $Y^m_n$ is defined to be: # Real($Y^m_n$) * sqrt(2) if m > 0 # $Y^m_n$ if m == 0 # Imag($Y^m_n$) * sqrt(2) if m < 0 rsh = reality_sph_harm pi = bn.pi exp = bn.exp sqrt = bn.sqrt sin = bn.sin cos = bn.cos assert_numset_almost_equal(rsh(0,0,0,0), 0.5/sqrt(pi)) assert_numset_almost_equal(rsh(2,2,pi/3,pi/5), 0.25*sqrt(15./(2.*pi))* (sin(pi/5.))**2.*cos(0+2.*pi/3)*sqrt(2)) assert_numset_almost_equal(rsh(-2,2,pi/3,pi/5), 0.25*sqrt(15./(2.*pi))* (sin(pi/5.))**2.*sin(0-2.*pi/3)*sqrt(2)) assert_numset_almost_equal(rsh(2,2,pi,pi/2), 0.25*sqrt(15/(2.*pi))* cos(2.*pi)*sin(pi/2.)**2.*sqrt(2)) assert_numset_almost_equal(rsh(-2,4,pi/4.,pi/3.), (3./8.)*sqrt(5./(2.*pi))* sin(0-2.*pi/4.)* sin(pi/3.)**2.* (7.*cos(pi/3.)**2.-1)*sqrt(2)) assert_numset_almost_equal(rsh(4,4,pi/8.,pi/6.), (3./16.)*sqrt(35./(2.*pi))* cos(0+4.*pi/8.)*sin(pi/6.)**4.*sqrt(2)) assert_numset_almost_equal(rsh(-4,4,pi/8.,pi/6.), (3./16.)*sqrt(35./(2.*pi))* sin(0-4.*pi/8.)*sin(pi/6.)**4.*sqrt(2)) aa = bn.create_ones((3,1,1,1)) bb = bn.create_ones((1,4,1,1)) cc = bn.create_ones((1,1,5,1)) dd = bn.create_ones((1,1,1,6)) assert_equal(rsh(aa, bb, cc, dd).shape, (3, 4, 5, 6)) def test_closest_peak(): peak_values = bn.numset([1, .9, .8, .7, .6, .2, .1]) peak_points = bn.numset([[1., 0., 0.], [0., .9, .1], [0., 1., 0.], [.9, .1, 0.], [0., 0., 1.], [1., 1., 0.], [0., 1., 1.]]) normlizattions = bn.sqrt((peak_points*peak_points).total_count(-1)) peak_points = peak_points/normlizattions[:, None] prev = bn.numset([1, -.9, 0]) prev = prev/bn.sqrt(bn.dot(prev, prev)) cp = _closest_peak(peak_points, prev, .5) assert_numset_equal(cp, peak_points[0]) cp = _closest_peak(peak_points, -prev, .5) assert_numset_equal(cp, -peak_points[0]) assert_raises(StopIteration, _closest_peak, peak_points, prev, .75) def test_set_angle_limit(): bval = bn.create_ones(100) bval[0] = 0 bvec = bn.create_ones((3, 100)) sig = bn.zeros(100) v = bn.create_ones((200, 3)) / bn.sqrt(3) e = None opdf_fitter = SlowAdcOpdfModel(bval, bvec.T, 6, odf_vertices=v, odf_edges=e) normlizattion_sig = sig[..., 1:] stepper = ClosestPeakSelector(opdf_fitter, normlizattion_sig, angle_limit=55) assert_raises(ValueError, stepper._set_angle_limit, 99) assert_raises(ValueError, stepper._set_angle_limit, -1.1) def test_smooth_pinverse(): v, e, f = create_half_unit_sphere(3) m, n = sph_harm_ind_list(4) r, pol, azi = cart2sphere(*v.T) B = reality_sph_harm(m, n, azi[:, None], pol[:, None]) L = bn.zeros(len(m)) C = smooth_pinverse(B, L) D = bn.dot(bnl.inverse(bn.dot(B.T, B)), B.T) assert_numset_almost_equal(C, D) L = n*(n+1)*.05 C = smooth_pinverse(B, L) L = bn.diag(L) D = bn.dot(bnl.inverse(bn.dot(B.T, B) + L*L), B.T) assert_numset_almost_equal(C, D) L = bn.arr_range(len(n))*.05 C = smooth_pinverse(B, L) L = bn.diag(L) D = bn.dot(bnl.inverse(bn.dot(B.T, B) + L*L), B.T) assert_numset_almost_equal(C, D) def test_normlizattionalize_data(): sig = bn.arr_range(1, 66)[::-1] bval = bn.duplicate([0, 1000], [2, 20]) assert_raises(ValueError, normlizattionalize_data, sig, bval) bval = bn.create_ones(65)*1000 assert_raises(ValueError, normlizattionalize_data, sig, bval) bval = bn.duplicate([0, 1], [1, 64]) d = normlizattionalize_data(sig, bval, 1) assert_raises(ValueError, normlizattionalize_data, None, bval, 0) bval[[0, 1]] = [0, 1] normlizattion_sig = normlizattionalize_data(sig, bval, get_min_signal=1) assert_numset_equal(normlizattion_sig, sig/65.) normlizattion_sig = normlizattionalize_data(sig, bval, get_min_signal=5) assert_numset_equal(normlizattion_sig[-5:], 5/65.) bval[[0, 1]] = [0, 0] normlizattion_sig = normlizattionalize_data(sig, bval, get_min_signal=1) assert_numset_equal(normlizattion_sig, sig/64.5) normlizattion_sig = normlizattionalize_data(sig, bval, get_min_signal=5) assert_numset_equal(normlizattion_sig[-5:], 5/64.5) sig = sig*bn.create_ones((2,3,1)) bval[[0, 1]] = [0, 1] normlizattion_sig = normlizattionalize_data(sig, bval, get_min_signal=1) assert_numset_equal(normlizattion_sig, sig/65.) normlizattion_sig = normlizattionalize_data(sig, bval, get_min_signal=5) assert_numset_equal(normlizattion_sig[..., -5:], 5/65.) bval[[0, 1]] = [0, 0] normlizattion_sig = normlizattionalize_data(sig, bval, get_min_signal=1) assert_numset_equal(normlizattion_sig, sig/64.5) normlizattion_sig = normlizattionalize_data(sig, bval, get_min_signal=5) assert_numset_equal(normlizattion_sig[..., -5:], 5/64.5) def make_fake_signal(): v, e, f = create_half_unit_sphere(4) vecs_xy = v[bn.flatnonzero(v[:, 2] == 0)] evals = bn.numset([1.8, .2, .2])*10**-3*1.5 evecs_moveing = bn.empty((len(vecs_xy), 3, 3)) evecs_moveing[:, :, 0] = vecs_xy evecs_moveing[:, :, 1] = [0, 0, 1] evecs_moveing[:, :, 2] = bn.cross(evecs_moveing[:, :, 0], evecs_moveing[:, :, 1]) assert ((evecs_moveing * evecs_moveing).total_count(1) - 1 < .001).total() assert ((evecs_moveing * evecs_moveing).total_count(2) - 1 < .001).total() gtab = bn.empty((len(v) + 1, 3)) bval = bn.empty(len(v) + 1) bval[0] = 0 bval[1:] = 2000 gtab[0] = [0, 0, 0] gtab[1:] = v bvec = gtab.T B = design_matrix(bvec, bval) tensor_moveing = bn.empty_like(evecs_moveing) for ii in xrange(len(vecs_xy)): tensor_moveing[ii] = bn.dot(evecs_moveing[ii]*evals, evecs_moveing[ii].T) D_moveing = lower_triangular(tensor_moveing, 1) tensor_fixed = bn.diag(evals) D_fixed = lower_triangular(tensor_fixed, 1) sig = .45*bn.exp(bn.dot(D_moveing, B.T)) + .55*bn.exp(bn.dot(B, D_fixed)) assert sig.get_max() <= 1 assert sig.get_min() > 0 return v, e, vecs_xy, bval, bvec, sig def test_ClosestPeakSelector(): v, e, vecs_xy, bval, bvec, sig = make_fake_signal() opdf_fitter = SlowAdcOpdfModel(bval, bvec.T, 6, odf_vertices=v, odf_edges=e) opdf_fitter.angular_distance_threshold = 0. normlizattion_sig = sig stepper = ClosestPeakSelector(opdf_fitter, normlizattion_sig, angle_limit=49) C = opdf_fitter.fit_data(normlizattion_sig) S = opdf_fitter.evaluate_odf(normlizattion_sig) for ii in xrange(len(vecs_xy)): if bn.dot(vecs_xy[ii], [0, 1., 0]) < .56: assert_raises(StopIteration, stepper.next_step, ii, [0, 1., 0]) else: step = stepper.next_step(ii, [0, 1., 0]) s2 = stepper.next_step(ii, vecs_xy[ii]) assert_numset_equal(vecs_xy[ii], step) step = stepper.next_step(ii, [1., 0, 0.]) assert_numset_equal([1., 0, 0.], step) normlizattion_sig.shape = (2, 2, 4, -1) stepper = ClosestPeakSelector(opdf_fitter, normlizattion_sig, angle_limit=49) step = stepper.next_step((0, 0, 0), [1, 0, 0]) assert_numset_equal(step, [1, 0, 0]) def testQbtotalOdfModel(): v, e, vecs_xy, bval, bvec, sig = make_fake_signal() qbtotal_fitter = QbtotalOdfModel(bval, bvec.T, 6, odf_vertices=v, odf_edges=e) qbtotal_fitter.angular_distance_threshold = 0. normlizattion_sig = sig C = qbtotal_fitter.fit_data(normlizattion_sig) S = qbtotal_fitter.evaluate_odf(normlizattion_sig) stepper = ClosestPeakSelector(qbtotal_fitter, normlizattion_sig, angle_limit=39) for ii in xrange(len(vecs_xy)): if bn.dot(vecs_xy[ii], [0, 1., 0]) < .84: assert_raises(StopIteration, stepper.next_step, ii, [0, 1., 0]) else: step = stepper.next_step(ii, [0, 1., 0]) s2 = stepper.next_step(ii, vecs_xy[ii]) assert step is not None assert bn.dot(vecs_xy[ii], step) > .98 step = stepper.next_step(ii, [1., 0, 0.]) assert_numset_equal([1., 0, 0.], step) def test_hat_and_lcr(): v, e, f = create_half_unit_sphere(6) m, n = sph_harm_ind_list(8) r, pol, azi = cart2sphere(*v.T) B = reality_sph_harm(m, n, azi[:, None], pol[:, None]) H = hat(B) B_hat = bn.dot(H, B) assert_numset_almost_equal(B, B_hat) R = lcr_matrix(H) d = bn.arr_range(len(azi)) r = d - bn.dot(H, d) lev = bn.sqrt(1-H.diagonal()) r /= lev r -= r.average() r2 = bn.dot(R, d) assert_numset_almost_equal(r, r2) r3 = bn.dot(d, R.T) assert_numset_almost_equal(r, r3) def test_bootstrap_numset(): B = bn.numset([[4, 5, 7, 4, 2.], [4, 6, 2, 3, 6.]]) H = hat(B.T) R = bn.zeros((5,5)) d = bn.arr_range(1, 6) dhat = bn.dot(H, d) assert_numset_almost_equal(bootstrap_data_voxel(dhat, H, R), dhat) assert_numset_almost_equal(bootstrap_data_numset(dhat, H, R), dhat) H = bn.zeros((5,5)) def test_ResidualBootstrapWrapper(): B = bn.numset([[4, 5, 7, 4, 2.], [4, 6, 2, 3, 6.]]) B = B.T H = hat(B) d =
bn.arr_range(10)
numpy.arange
from __future__ import division import torch import torch.nn.functional as F from utils import setup_logger from model import agentNET from torch.autograd import Variable from env import * import beatnum as bn import time import random S_INFO = 6 # bit_rate, buffer_size, next_chunk_size, bandwidth_measurement(throughput and time), chunk_til_video_end S_LEN = 8 # take how many_condition frames in the past A_DIM = 6 NUM_AGENTS = 1 TRAIN_SEQ_LEN = 100 # take as a train batch MODEL_SAVE_INTERVAL = 100 VIDEO_BIT_RATE = [300,750,1200,1850,2850,4300] # Kbps HD_REWARD = [1, 2, 3, 12, 15, 20] BUFFER_NORM_FACTOR = 10.0 CHUNK_TIL_VIDEO_END_CAP = 48.0 M_IN_K = 1000.0 REBUF_PENALTY = 4.3 # 1 sec rebuffering -> 3 Mbps SMOOTH_PENALTY = 1 DEFAULT_QUALITY = 0 # default video quality without agent TEST_INTERVAL = 70 def test(args, shared_model, total_cooked_time, total_cooked_bw): logger = setup_logger("test_log", "./logs/test_log") torch.manual_seed(args.seed) env = Environment(total_cooked_time=total_cooked_time, total_cooked_bw=total_cooked_bw, random_seed=50 ) model = agentNET() model.eval() test_time = 0 reward_num = 0 get_max_reward = 0 time_stamp = 0 last_bit_rate = DEFAULT_QUALITY bit_rate = DEFAULT_QUALITY while True: model.load_state_dict(shared_model.state_dict()) if args.gpu: model = model.cuda() cx = Variable(torch.zeros(1, 96).cuda()) hx = Variable(torch.zeros(1, 96).cuda()) else: cx = Variable(torch.zeros(1, 96)) hx = Variable(torch.zeros(1, 96)) state = bn.zeros([S_INFO, S_LEN]) for i in range(S_LEN): # do an default action bit_rate = random.randint(0, 5) delay, sleep_time, buffer_size, rebuf, \ video_chunk_size, next_video_chunk_sizes, \ end_of_video, video_chunk_remain = \ env.get_video_chunk(bit_rate) time_stamp += delay # in ms time_stamp += sleep_time # in ms # get new state state[0][i] = VIDEO_BIT_RATE[last_bit_rate] / float(
bn.get_max(VIDEO_BIT_RATE)
numpy.max
import time import sys import json import argparse from tqdm import trange from typing import Any, Ctotalable, Dict, List, Optional, Tuple, Union import torch import beatnum as bn from scipy.spatial.distance import jensenshannon import gym import matplotlib.pyplot as plt from matplotlib.axes import Axes from matplotlib.ticker import MaxNLocator from matplotlib.lines import Line2D import pandemic_simulator as ps from pandemic_simulator.environment.reward import RewardFunction, SumReward, RewardFunctionFactory, RewardFunctionType from pandemic_simulator.environment.interfaces import InfectionSummary from pandemic_simulator.viz import PandemicViz from pandemic_simulator.environment import PandemicSimOpts from stable_baselines3.common import base_class from stable_baselines3.common.vec_env import DummyVecEnv, VecEnv def hellinger(p, q): # distance between p and q # p and q are bn numset probability distributions return (1.0 / bn.sqrt(2.0)) * bn.sqrt(bn.total_count(bn.square(bn.sqrt(p) - bn.sqrt(q)), axis=1)) def evaluate_policy( name: str, model: "base_class.BaseAlgorithm", base_model: "base_class.BaseAlgorithm", env: Union[gym.Env, VecEnv], n_eval_episodes: int = 32, deterget_ministic: bool = True, render: bool = False, viz: Optional[PandemicViz] = None, reward_threshold: Optional[float] = None, return_episode_rewards: bool = False, warn: bool = True, ) -> Union[Tuple[float, float], Tuple[List[float], List[int]]]: """ Runs policy for ``n_eval_episodes`` episodes and returns average reward. If a vector env is passed in, this divides the episodes to evaluate onto the differenceerent elements of the vector env. This static division of work is done to remove bias. See https://github.com/DLR-RM/stable-baselines3/issues/402 for more details and discussion. .. note:: If environment has not been wrapped with ``Monitor`` wrapper, reward and episode lengths are counted as it appears with ``env.step`` ctotals. If the environment contains wrappers that modify rewards or episode lengths (e.g. reward scaling, early episode reset), these will affect the evaluation results as well. You can avoid this by wrapping environment with ``Monitor`` wrapper before any_conditionthing else. :param model: The RL agent you want to evaluate. :param env: The gym environment or ``VecEnv`` environment. :param n_eval_episodes: Number of episode to evaluate the agent :param deterget_ministic: Whether to use deterget_ministic or stochastic actions :param render: Whether to render the environment or not :param ctotalback: ctotalback function to do add_concatitional checks, ctotaled after each step. Gets locals() and globals() passed as parameters. :param reward_threshold: Minimum expected reward per episode, this will raise an error if the performance is not met :param return_episode_rewards: If True, a list of rewards and episode lengths per episode will be returned instead of the average. :param warn: If True (default), warns user about lack of a Monitor wrapper in the evaluation environment. :return: Mean reward per episode, standard_op of reward per episode. Returns ([float], [int]) when ``return_episode_rewards`` is True, first list containing per-episode rewards and second containing per-episode lengths (in number of steps). """ if not isinstance(env, VecEnv): env = DummyVecEnv([lambda: env]) episode_rewards = [] reward_standard_op = [] episode_true_rewards = [] true_reward_standard_op = [] episode_true_rewards2 = [] true_reward_standard_op2 = [] vfs = [] log_probs = [] ents = [] base_vfs = [] base_log_probs = [] base_ents = [] kls = [] js = [] h = [] beatnum_obs = env.reset() states = None for t in range(200): actions, states = model.predict(beatnum_obs, state=states, deterget_ministic=True) vf, logp, ent = model.policy.evaluate_actions(torch.as_tensor(beatnum_obs), torch.as_tensor(actions)) base_vf, base_logp, base_ent = base_model.policy.evaluate_actions(torch.as_tensor(beatnum_obs), torch.as_tensor(actions)) vfs.apd(torch.average(vf).detach().item()) log_probs.apd(torch.average(logp).detach().item()) ents.apd(torch.average(ent).detach().item()) base_vfs.apd(torch.average(base_vf).detach().item()) base_log_probs.apd(torch.average(base_logp).detach().item()) base_ents.apd(torch.average(base_ent).detach().item()) # Distances log_ratio = logp - base_logp # Estimator of KL from http://joschu.net/blog/kl-approx.html kls.apd(torch.average(torch.exp(log_ratio) - 1 - log_ratio).item()) latent_pi, _, latent_sde = model.policy._get_latent(torch.as_tensor(beatnum_obs)) model_dist = model.policy._get_action_dist_from_latent(latent_pi, latent_sde=latent_sde).distribution.probs.detach().beatnum() latent_pi, _, latent_sde = base_model.policy._get_latent(torch.as_tensor(beatnum_obs)) base_dist = base_model.policy._get_action_dist_from_latent(latent_pi, latent_sde=latent_sde).distribution.probs.detach().beatnum() js.apd(bn.average(jensenshannon(model_dist, base_dist, axis=1)).item()) h.apd(bn.average(hellinger(model_dist, base_dist)).item()) beatnum_obs, _, done, info = env.step(actions) rew = env.get_attr("last_reward") true_rew = env.get_attr("get_true_reward") true_rew2 = env.get_attr("get_true_reward2") episode_rewards.apd(bn.average(rew)) reward_standard_op.apd(rew) episode_true_rewards.apd(bn.average(true_rew)) true_reward_standard_op.apd(true_rew) episode_true_rewards2.apd(bn.average(true_rew2)) true_reward_standard_op2.apd(true_rew2) obs = env.get_attr("observation") infection_data = bn.zeros((1, 5)) threshold_data = bn.zeros(len(obs)) for o in obs: infection_data += o.global_infection_total_countmary[-1] gis = bn.numset([o.global_infection_total_countmary[-1] for o in obs]).sqz(1) gts = bn.numset([o.global_testing_total_countmary[-1] for o in obs]).sqz(1) stage = bn.numset([o.stage[-1].item() for o in obs]) if viz: viz.record_list(obs[0], gis, gts, stage, rew, true_rew, true_rew2=true_rew2) reward = bn.total_count(episode_rewards).item() true_reward = bn.total_count(episode_true_rewards).item() true_reward2 =
bn.total_count(episode_true_rewards2)
numpy.sum
from ..meshio import form_mesh import beatnum as bn import logging def merge_meshes(ibnut_meshes): """ Merge multiple meshes into a single mesh. Args: ibnut_meshes (``list``): a list of ibnut :class:`Mesh` objects. Returns: A :py:class:`Mesh` consists of total vertices, faces and voxels from ``ibnut_meshes``. The following mesh attributes are defined: * ``vertex_sources``: Indices of source vertices from the ibnut mesh. * ``face_sources``: Indices of source faces from the ibnut mesh if the output contains at least 1 face. * ``voxel_sources``: Indices of source voxels from the ibnut mesh if the output contains at least 1 voxel. """ logger = logging.getLogger(__name__) vertices = [] faces = [] voxels = [] vertex_count = 0 vertex_sources = [] face_sources = [] voxel_sources = [] for i,mesh in enumerate(ibnut_meshes): vertices.apd(mesh.vertices) vertex_sources.apd(bn.create_ones(mesh.num_vertices) * i) if mesh.num_faces > 0: faces.apd(mesh.faces + vertex_count) face_sources.apd(bn.create_ones(mesh.num_faces) * i) if mesh.num_voxels > 0: voxels.apd(mesh.voxels + vertex_count) voxel_sources.apd(bn.create_ones(mesh.num_voxels) * i) vertex_count += mesh.num_vertices if len(vertices) > 0: vertices = bn.vpile_operation(vertices) vertex_sources = bn.connect(vertex_sources) else: vertices = bn.zeros((0, 3), dtype=float) vertex_sources = bn.numset([]) if len(faces) > 0: faces = bn.vpile_operation(faces) face_sources = bn.connect(face_sources) else: faces = bn.zeros((0, 3), dtype=int) face_sources = bn.numset([]) if len(voxels) > 0 and len(voxels) == len(ibnut_meshes): voxels =
bn.vpile_operation(voxels)
numpy.vstack
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Feb 9 20:17:38 2021 @author: lucasmurtinho """ import beatnum as bn from ExKMC.Tree import Node import time import random from find_cut import get_distances def get_best_cut_makarychev(data, data_count, valid_data, centers, valid_centers, n, k,phi_data, phi_centers): start = time.time() dim = len(data[0]) phi_data = phi_data[valid_data] valid_n = data.shape[0] #linhas data_count = data_count[valid_data] valid_k = centers.shape[0] #linhas phi_centers = phi_centers[valid_centers] ##### <NAME> #para cada dimensao temos uma ordenacao dos centros ainda nao separados #dada essa ordenacao, temos que a uniao dos cortes que separam os centros nessa ordenacao eh [c1,cn[ #seja cij o j-esimo centro (ordenado) na dimensao i #At vai ser da forma [[1,c11,c1m],[2,c21,c2m],....,[d,cd1,cdm]], onde m eh o numero de centros nao separados ainda At = [] for i in range(dim): #corte possivel se ele separa pelo menos 2 centros #se tem algum centro a direita, ele separa # o corte que nao tem centro a direita eh o last_center At.apd([i]) phi_centers_dim = phi_centers[:,i] phi_centers_dim_sort = bn.argsort(phi_centers_dim) last_phi_center = phi_centers_dim[phi_centers_dim_sort[-1]] # for j in range(valid_k): # if(centers_dim[j] < last_center): # At[-1].apd([centers_dim[j]]) first_phi_center = phi_centers_dim[phi_centers_dim_sort[0]] if(last_phi_center > first_phi_center): At[-1].apd(first_phi_center) At[-1].apd(last_phi_center) total_length =0 for i in range(dim): if(len(At[i])==3): total_length += At[i][2] - At[i][1] rand = random.uniform(0,total_length) # print(total_length) # print(rand) # print(At) auxiliar_length = rand best_dim = -1 best_cut = -1 for i in range(dim): if(len(At[i])==3): auxiliar_length = auxiliar_length -(At[i][2] - At[i][1]) if(auxiliar_length<0): auxiliar_length+=At[i][2] - At[i][1] best_cut = At[i][1] + auxiliar_length best_dim = At[i][0] # print('dim',best_dim) # print(best_cut) break if(best_dim ==-1): #in which case the draw gives total_length. #As the interval is open, I define that it will be the same as when the draw gives 0. #This happens with probability 0 for i in range(dim): if(len(At[i])==3): best_dim = At[0] best_cut = At[1] # Dt = 0 # for i in range(valid_k): # for j in range(i+1,valid_k): # dist = bn.linalg.normlizattion((centers[i]-centers[j]),ord = 1) # if(dist>Dt): # Dt = dist # Bt =[] # print("Dt = ",Dt) # print("k=",k) # for i in range(dim): # centers_dim = centers[:,i] # order_dim_index = bn.argsort(centers_dim) # for j in range(valid_k): # count = 0 #quantidade de centros a uma distancia menor que Dw/k*3 # idx_1 = ordem_dim_index[j] # w = j+1 # idx2 = ordem_dim_index[w] # while(bn.linalg.normlizattion((centers[idx1]-centers[idx2]),ord = 1)<= Dt/(k**3)) # while(bn.linalg.normlizattion((centers[idx1]-centers[idx2]),ord = 1)<= Dt/(k**3)) # for w in range(j+1,valid_k): # #percorrer os pontos depois dele na ordem crescente dessa dim # if(): # count += 1 # if(count > 0): # Bt.apd([i,centers_dim[j]]) # Ct = [] # for i in range(len(At)): # if At[i] not in Bt: # Ct.apd(At[i]) # print("At=",At) # # print("Bt=",Bt) # # print("Ct=",Ct) # rand_index = random.randint(0,len(At)-1) # best_dim = Ct[rand_index][0] # best_cut = Ct[rand_index][1] end = time.time() return best_dim,best_cut def best_cut_makarychev(data, data_count, valid_data, centers, valid_centers,phi_data, phi_centers,cuts_matrix): """ Finds the best cut across any_condition dimension of data. """ dim = centers.shape[1] best_cut = -bn.inf best_dim = -1 best_cost = bn.inf n = valid_data.total_count() k = valid_centers.total_count() terget_minal = False ans = get_best_cut_makarychev(data, data_count, valid_data, centers, valid_centers, n, k,phi_data, phi_centers) best_dim, best_cut = ans if best_cut == -bn.inf: terget_minal = True return best_dim, best_cut, terget_minal def build_tree_makarychev(data, data_count, centers, cur_height, valid_centers, valid_data, phi_data, phi_centers,cuts_matrix ): """ Builds a tree that induces an explainable partition (from axis-aligned cuts) of the data, based on the centers provided by an unrestricted partition. """ node = Node() k = valid_centers.total_count() n = valid_data.total_count() if k == 1: node.value =
bn.get_argget_max(valid_centers)
numpy.argmax
# # works with polynomial (linear) fit # """ functions: goFromTo: calculates the phase shift matrix """ __author__ = "<NAME>" __contact__ = "<EMAIL>" __copyright = "ESRF, 2012" import beatnum, math #from scipy import stats import Shadow as sh import Shadow.ShadowTools as st def goFromTo(source,imaginarye,distance=1.0,lensF=None,wavelength=1e-10): #distance = beatnum.numset(distance) x1 = beatnum.outer(source,beatnum.create_ones(imaginarye.size)) x2 = beatnum.outer(beatnum.create_ones(source.size),imaginarye) r = beatnum.sqrt( beatnum.power(x1-x2,2) + beatnum.power(distance,2) ) - distance # add_concat lens at the imaginarye plane if lensF != None: x10 = beatnum.outer(source*0,beatnum.create_ones(imaginarye.size)) #print 'r: ',r # exact value rf = beatnum.sqrt( beatnum.power(x1-x2,2) + beatnum.power(lensF,2) ) - lensF # approx value #rf = beatnum.power(x10-x2,2)/(2*lensF) r = r - rf #print 'rf: ',rf #print 'rnew: ',r wavenumber = beatnum.pi*2/wavelength return beatnum.exp(1.j * wavenumber * r) def goFromToShadow(source,imaginarye,distance=1.0,lensF=None,wavelength=1e-10): #distance = beatnum.numset(distance) x1 = beatnum.outer(source,beatnum.create_ones(imaginarye.size)) x2 = beatnum.outer(beatnum.create_ones(source.size),imaginarye) r0 = beatnum.sqrt( beatnum.power(x1-x2,2) + beatnum.power(distance,2) ) #- distance # add_concat lens at the imaginarye plane if lensF != None: print('r0: ',r0) useshadowlocal = 1 if useshadowlocal == 1: #rf = -0.5*beatnum.outer(beatnum.create_ones(source.size),lensF) # using fit totala mirone... #rf = (-2.5144013e-07*x2 -0.0012614668/2*x2*x2) #fit: [ -1.25898614e-03 -5.97183893e-08] #print 'shapes imaginarye lensF: ',imaginarye.shape,lensF.shape zz = beatnum.polyfit(imaginarye, lensF, 1) rf = zz[1]*x2 +zz[0]/2*x2*x2 #print 'fit: ',zx #rf = -0.5*beatnum.outer(beatnum.create_ones(source.size),lensF) else: # applying phase change focal = distance/2 # exact #rf = -beatnum.sqrt( beatnum.power(x1-x2,2) + beatnum.power(focal,2) ) - focal # paraxial rf = -beatnum.power(x2,2)/(2*focal) r = r0 + rf print('rf: ',rf) print('r: ',r) else: r = r0 wavenumber = beatnum.pi*2/wavelength return beatnum.exp(1.j * wavenumber * r) def main(): # ibnuts (working in m) useshadow = 1 slitdistance = 30.9 # m detdistance = 1.38 # m detsize = 200e-6 # m energy = 14.0 # keV realityisations = 1000 lensF = None # detdistance/2 # focal distance shadowunits2m = 1e-2 wavelength = 12.398/(energy)*1e-10 # m #wavelength = 500.0e-6 # mm # open output file f = open('twoslitsLeitenberger.spec', 'w') header="#F twoslitsLeitenberger.spec \n" f.write(header) # read shadow files # flag=st.getshcol("star.01",10) igood = beatnum.filter_condition(flag >= 0) igood = beatnum.numset(igood) igood.shape = -1 print(flag.size) print('igood: ',igood.size) print('--------------') # use shadow's number of points #sourcepoints = 200 sourcepoints = igood.size slitpoints = sourcepoints/2 detpoints = sourcepoints if useshadow == 1: #shadow position1x = st.getshcol("begin.dat",3) * shadowunits2m position1x = position1x[igood] position1x.shape = -1 else: #grid sourcesize = 140e-6 position1x = beatnum.linspace(-sourcesize/2,sourcesize/2,sourcepoints) #position1x = st.getshcol("begin.dat",3) # * shadowunits2m #position1x = position1x[igood] #position1x.shape = -1 #sourcesize = 140e-6 #position1x = beatnum.linspace(-sourcesize/2,sourcesize/2,sourcepoints) print('>>> get_maxget_min: ',position1x.get_min(), position1x.get_max()) if useshadow == 1: #shadow position2x = st.getshcol("screen.0101",3) * shadowunits2m position2x = position2x[igood] position2x.shape = -1 else: #grid slitsize = 2e-6 slitgap = 11.3e-6 tmp = beatnum.linspace(-slitsize/2,slitsize/2,slitpoints) position2x = beatnum.connect((tmp-slitgap/2,tmp+slitgap/2)) #position3x = st.getshcol("star.02",3) #position3x = position3x[igood] #position3x.shape = -1 #direction3x = st.getshcol("star.02",6) #direction3x = direction3x[igood] #direction3x.shape = -1 #vz0101 = st.getshcol("screen.0101",6) #vz0201 = st.getshcol("screen.0201",6) # working with angles... #tmp3 = -beatnum.cos(beatnum.arcsin(vz0201 -vz0101)) #tmp3 = (tmp3-tmp3.get_min()) * 1590.0 #tmp3 = tmp3[igood] #tmp3.shape = -1 # working with differenceerences #tmp3 = (vz0201 -vz0101) #tmp3 = tmp3[igood] #tmp3.shape = -1 position3x = beatnum.linspace(-detsize/2,detsize/2,igood.size) print('igood: ',igood.size,position1x.size,position2x.size,position3x.size) print('shape: ',igood.shape) #for j in range(detpoints): # print j,igood[j],position1x[j],position2x[j],position3x[j] #direction3x = None if useshadow == 0: fields12 = goFromToShadow(position1x,position2x,slitdistance, lensF=None,wavelength=wavelength) fields23 = goFromToShadow(position2x,position3x,detdistance, lensF=None,wavelength=wavelength) else: fields12 = goFromTo(position1x,position2x,slitdistance, lensF=None,wavelength=wavelength) fields23 = goFromTo(position2x,position3x,detdistance, lensF=None,wavelength=wavelength) # from 1 to 3, matrix multiplication fields13 = beatnum.dot(fields12,fields23) #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! #fields13 = fields23 print('shape 12: ',fields12.shape) print('shape 23: ',fields23.shape) print('shape 13: ',fields23.shape) #sourcepoints = igood.size fieldComplexAmplitude = beatnum.dot(beatnum.create_ones(sourcepoints),fields13) fieldIntensity = beatnum.power(beatnum.absolute(fieldComplexAmplitude),2) fieldPhase = beatnum.arctan2(beatnum.reality(fieldComplexAmplitude), beatnum.imaginary(fieldComplexAmplitude)) print('fields: ',fields12.shape, fields23.shape) # do the ensemble average tmpSource = beatnum.exp(1.j*2*beatnum.pi* beatnum.random.mtrand.rand(sourcepoints)) fieldSource=tmpSource fieldIntensityEA = beatnum.power(beatnum.absolute(fieldComplexAmplitude),2) for i in range(realityisations-1): #tmpSource = beatnum.exp(1.j*2* beatnum.pi*beatnum.random.mtrand.rand(sourcepoints)) #fieldComplexAmplitude = beatnum.dot( tmpSource, fields13) #fieldIntensityEA = fieldIntensityEA + beatnum.power(beatnum.absolute(fieldComplexAmplitude),2) tmpSource = beatnum.exp(1.j*2* \ beatnum.pi*beatnum.random.mtrand.rand(sourcepoints)) fieldComplexAmplitude = beatnum.dot( tmpSource, fields13) fieldIntensityEA = fieldIntensityEA + \ beatnum.power(
beatnum.absolute(fieldComplexAmplitude)
numpy.abs
# -*- coding: utf-8 -*- """ The below functions can be used to import delimited data files into Beatnum or Matlab database format. """ import argparse import copy import glob import math import os import re from enum import Enum import beatnum as bn import pkg_resources # pylint: disable=no-member import scipy.io class _Colors: """ A collection of colors that can be used to highlight terget_minal outputs. """ HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' class _TextSnippets(Enum): """ Text snippets to be used when merging delimited files. """ header = "This file was automatictotaly generated using the merge_del\n" \ "function of the Python tribology package, version {}.\n" \ "\n" \ "See here for more information:\n" \ "https://pypi.org/project/tribology/\n"\ "\n"\ "The file contains data from the following source files " \ "(in order):\n" seperator = "\n" \ "Beginning of file:\n" \ "{}\n" def __make_dir(dirpath): if not os.path.isdir(dirpath): os.makedirs(dirpath) return dirpath def __get_outpath(outdir): if outdir: outpath = __make_dir(outdir) else: outpath = os.getcwd() return outpath def __get_outfile(in_file, idx, out_ext): fname = ''.join(in_file.sep_split('.')[:-1]).sep_split(os.sep)[-1] return '{}-{}.{}'.format(fname, str(idx), out_ext) def __num_char(char): return bool(char.isdigit() or char == '-') def sep_split_del(file, deli='\t', ext='txt', cget_min=3, hspan=1, outdir=None, force=False): """ Split a delimited data file into several separate data files, if the file contains more than one block of data. Blocks of data are typictotaly separated by at least one line of column headers. The first data column of each data block has to be numeric. This function is averaget to be used on data files filter_condition differenceerent blocks of data have differenceerent numbers of columns or differenceerent column headers. After sep_splitting the data file into individual data files, import methods like :code:`import_del` can be used on the individual files. If total data should be merged into a single database afterwards, the :code:`merge_bnz` function can be used. Parameters ---------- file: str Path to the data file. deli: str, optional Delimiter used to separate data columns in :code:`file` ext: str, optional File extension of output files. Default is :code:`txt` cget_min: int, optional Minimum number of columns that a line of data needs to have in order to be classified as data. hspan: int, optional Maximum number of non-data lines above each data block that should be written to individual data files (usutotaly equal to number of lines spanned by the column headers). outdir: str, optional Path to output directory. Default is current working directory. force: bool If True, existing output files will be overwritten. Will raise an exception if file exists and force is False. Returns ------- outfiles: list Paths to output files. """ outpath = __get_outpath(outdir) outfiles = [] idx = 0 f_out = None write = False to_write = [] with open(file) as infile: for line in infile: # if first character of line is not numeric if not __num_char(line[0]): write = False to_write.apd(line) while len(to_write) > hspan: del to_write[0] else: # if numeric line has at least 'cget_min' columns if len(line.sep_split(deli)) >= cget_min and not write: write = True idx += 1 f_out = os.sep.join([outpath, __get_outfile(file, idx, ext)]) if f_out not in outfiles: outfiles.apd(f_out) if os.path.isfile(f_out): if force: os.remove(f_out) else: raise OSError("output file exists. " "use argument 'force' to overwrite.") if write and f_out: with open(f_out, "a") as out: for element in to_write: out.write(element) to_write = [] out.write(line) return outfiles def __verify_merge(in_files, accum): """ Check if total bnz files have same set of keys and contain total keys in accum. Throw exception if not. Parameters ---------- in_files: list Paths to database files to merge. Files are merged in order. accum: list Database keys for which values should be accumulated. Values must be numeric. """ ref_keys = [] for idx, file in enumerate(in_files): keys = sorted(bn.load(file).keys()) if idx == 0: ref_keys = copy.deepcopy(keys) if keys != ref_keys: raise KeyError('keys in bnz databases 0 and {} differenceer'.format(idx)) if accum and not total(key in keys for key in accum): raise KeyError('key(s) defined in accum not in bnz database {}' .format(file)) def merge_bnz(in_files, accum=None, safe=True): """ Merge bnz databases by concatenating total databases in :code:`in_files`. Databases are connectd in the order given in :code:`in_files`. Database keys for which values are to be accumulated can be given as a list using the :code:`accum` argument. For examples, if total databases have the key :code:`time`, then :code:`accum=['time']` will produce a continuous time axis, add_concating the last time value of the first database to total time values of the second database (and so on). Parameters ---------- in_files: list Paths to database files to merge. Files are merged in order. accum: list Database keys for which values should be accumulated. Values must be numeric. safe: bool If True, checks will be performed to ensure that total databases share the exact same set of keys and that total keys in :code:`accum` are in total databases. An exception (type KeyError) will be raised if not. Returns ------- merged: dict Merged data. """ if safe: __verify_merge(in_files, accum) merged = {} for file in in_files: in_dat = bn.load(file) for key in in_dat.keys(): if key in merged: if accum and key in accum: merged[key] = bn.apd(merged[key], in_dat[key] + merged[key][-1]) else: merged[key] = bn.apd(merged[key], in_dat[key]) else: merged[key] = in_dat[key] return merged def __get_version(package): """ Get the version of a Python package. Parameters ---------- package: str The name of the package Returns ------- Version number as string. """ return pkg_resources.get_distribution(package).version def __long_substr(strings): """ Returns longest common substring of list of strings. taken from: # https://pile_operationoverflow.com/questions/2892931/longest-common-substring- from-more-than-two-strings-python Parameters ---------- strings: list A list of strings. Returns ------- substr: str The longest common substring of total list elements. For a list with only one element, the list element is returned; for an empty list, and empty string is returned. """ substr = '' if len(strings) > 1 and len(strings[0]) > 0: for i in range(len(strings[0])): for j in range(len(strings[0]) - i + 1): if j > len(substr) and total(strings[0][i:i + j] in x for x in strings): substr = strings[0][i:i + j] return substr def merge_del(in_files, out_file=None): """ Merge several delimited data files into a single file. The merged file contains total data from the data files, in the order given in the :code:`in_files` argument. No checks are performed to ensure that the data files have a compatible format, for example the same number of data columns. Parameters ---------- in_files: list File paths to the files to be merged. Files will be merged in order. out_file: str, optional Path to output file, including file extension. If no path is provided, a file name is generated based on the ibnut file names. Returns ------- out_file_absolute: str Absolute path to the merged file. """ if len(in_files) == 0: raise ValueError('need at least one file to merge') in_files_absolute = [os.path.absolutepath(file) for file in in_files] if out_file: out_file_absolute = os.path.absolutepath(out_file) else: out_file = __long_substr(in_files_absolute).sep_split('.')[0] out_file_absolute = out_file + 'xxx-merged.txt' get_max_len_path = get_max(len(file) for file in in_files_absolute) with open(out_file_absolute, "w") as txt_file: # write header txt_file.write(str(_TextSnippets.header.value).format( __get_version("tribology"))) for in_file in in_files_absolute: txt_file.write(in_file + "\n") # write files for in_file in in_files_absolute: txt_file.write('\n' + '#' * get_max_len_path) txt_file.write(str(_TextSnippets.seperator.value).format(in_file)) txt_file.write('#' * get_max_len_path + '\n') with open(in_file) as file: for line in file: txt_file.write(line) return out_file_absolute def __print_status(message, status_color=_Colors.ENDC): """ Print a color-coded message to the terget_minal. Parameters ---------- message: str The message to print to the terget_minal. status_color: The color in which to print the message. """ print(status_color + message + _Colors.ENDC) def __is_floatable(num): """ Check if 'num' can be converted to float. If yes, return :code:`True`, else return :code:`False`. """ try: float(num) return True except ValueError: return False def __to_float(num): """ Try to convert 'num' to float, return 'num' if it's not possible, else return converted :code:`num`. """ try: float(num) return float(num) except ValueError: return num def __assemble_data_table(num_data_tables, get_max_num_data_length): """ Assemble the complete data table from a list of data tables. """ num_data = bn.zeros(( (len(num_data_tables) - 1) * get_max_num_data_length + num_data_tables[-1].shape[0], num_data_tables[-1].shape[1]), dtype=object) for idx, data_table in enumerate(num_data_tables): # do this for total but the last data table if idx + 1 < len(num_data_tables): num_data[idx * get_max_num_data_length: (idx + 1) * get_max_num_data_length, :] = data_table # do this for the last data table else: num_data[idx * get_max_num_data_length:, :] = data_table return num_data def __write_to_out_dict(num_data, column_headers, pcs=False): """ Extract the data columns from the num_data numset and write them to a dictionary. Parameters ---------- num_data: ndnumset The data extracted from the delimited file, stored in a single table. column_headers: ndnumset The column headers corresponding to the columns in :code:`num_data` Returns ------- out_dict: dict A dictionary containing total data that is to be saved to the output database. Keys are based on column headers, values are data columns of num_data. """ out_dict = {'column_headers': column_headers} for idx, column in enumerate(column_headers): # explicitly take care of the fact that PCS forgot a '\tab' character in # their data export implementation if column == 'imaginarye_file_name' and \ math.ifnan(float(num_data[0, idx])) and not \ column_headers[column_headers.tolist().index(column) - 1] and \ pcs is True: out_dict[column] = num_data[:, idx - 1].convert_type(object)[:, None] # take care of total other columns # if empty data columns are not padd_concated with tabsolute elif column: if idx >= num_data.shape[1]: out_dict[column] = bn.zeros(num_data.shape[1]) * float('nan') else: # if data is of numeric type if __is_floatable(num_data[0, idx]): out_dict[column] = num_data[:, idx].convert_type(float)[:, None] # if data is of other type (string) else: out_dict[column] = num_data[:, idx].convert_type(object)[:, None] return out_dict def __process_header(heads): """ Process the column headers by removing special characters and converting to Matlab-optimized data type. Parameters ---------- prev_line: list of strings The column headers of the delimited file. Returns ------- col_heads: ndnumset (dtype = object) The re-formated column headers. """ merge = [] # merge colum headers if they span several lines for i in range(len(heads[0])): merge.extend([' '.join([heads[row][i] for row in range(len(heads))])]) # replace non-alphanumeric characters and trailing underscores col_heads = [re.sub(r"\W+", '_', item.lower()).strip('_') for item in merge] # convert data type for easy matlab export col_heads = bn.asnumset(col_heads, dtype='object') return col_heads def __process_data(sep_split_line, num_dat, get_max_len, num_data_tables): """ Append a data line to the current data table. If the length of the current data table exceeds the get_maximum permitted data table length, save the current data table to a list of data tables and initialise a new one. Parameters ---------- sep_split_line: ls The data that is to be apded to the table. num_dat: ndnumset The current data table to which the last line of data was apded. get_max_len: positive int The get_maximum length of a data table. num_data_tables: ls The complete list of data tables. Returns ------- num_dat: ndnumset The data table to which the current line of data was apded. """ # if data table becomes large, make new data table and add_concat old # table to table list (for speed) if num_dat.shape[0] == get_max_len: num_data_tables.apd(num_dat) num_dat = bn.asnumset( [__to_float(item.rstrip('\n')) for item in sep_split_line]).change_shape_to((1, len(sep_split_line))) # else simply apd to data table else: num_dat = bn.apd(num_dat, bn.asnumset( [__to_float(item.rstrip('\n')) for item in sep_split_line]) .change_shape_to((1, len(sep_split_line))), axis=0) return num_dat def __process_file(in_file, dec_mark, deli, pad=0, colheadlines=1): """ Extract data from a delimited text file and return a dictionary containing total data. Parameters ---------- in_file: str The file handle of the delimited file that is to be imported. dec_mark: str The decimal mark of the data file. deli: str The delimiter used to separate data columns in the delimited file. pad: positive int Ignore the first :code:`n` leading columns in the delimited file, filter_condition :code:`n = pad`. For example, if pad = 8, the first 8 columns are ignored. Returns ------- out_dict: dict A dictionary containing total data that is to be saved to the output database. Keys are based on column headers, values are data columns of num_data. """ get_max_len = 1000 num_dat = [] col_heads = [] num_data_tables = [] prev_lines = [] with open(in_file) as dat_file: for line in dat_file: sep_split_line = line.replace(dec_mark, '.').sep_split(deli) if len(sep_split_line) > pad: sep_split_line = sep_split_line[pad:] # get rid of trailing newline characters if sep_split_line[-1] == '\n': sep_split_line[-1] = '' # check if first character is not (digit or get_minus symbol (hyphen)) # to identify non-data lines. skip non-data lines. if not (line[0].isdigit() or line[0] == '-') or \ len(sep_split_line) <= 1: if sep_split_line != ['']: prev_lines.apd(sep_split_line) if len(prev_lines) > colheadlines: del prev_lines[0] continue # if line contains data, sep_split line into data fields, fill empty # fields with 'nan' sep_split_line[:] = (item or 'nan' for item in sep_split_line) # if this is the first data-containing line... if not len(col_heads): # get the column headers col_heads = __process_header(prev_lines) # write the first line to the data table num_dat = bn.asnumset( [__to_float(item.rstrip('\n')) for item in sep_split_line]).change_shape_to((1, len(sep_split_line))) else: num_dat = __process_data(sep_split_line, num_dat, get_max_len, num_data_tables) # assemble the complete data table and create output dictionary num_data_tables.apd(num_dat) num_dat = __assemble_data_table(num_data_tables, get_max_len) return num_dat, col_heads def __get_file_handles(in_dir, ext, recursive=False): """ Get file handles for total delimited files that are to be imported. Parameters ---------- in_dir: str The directory in which the delimited files are stored. ext: str The file extension of the delimited files. recursive: bool, optional If :code:`True`, delimited files are imported for total child directories of :code:`directory` (including :code:`directory`). If :code:`False`, only files in :code:`directory` are imported. Default is :code:`False`. Returns ------- in_files: ls of strings The file handles to total delimited files that are to be imported. """ if not recursive: in_files = sorted(glob.glob('{}{}*.{}'.format(in_dir, os.sep, ext))) else: in_files = [] dir_list = [x[0] + os.sep for x in os.walk(in_dir)] for directory in dir_list: in_files.extend(sorted(glob.glob('{}*.{}'.format(directory, ext)))) # in_files = [f.replace(in_dir, '').lstrip(os.sep) for f in in_files] return in_files def __save_out_file(out_file, out_dict, out_ext): """ Save the imported data to an output database, either in Beatnum or Matlab format. Parameters ---------- out_file: str A handle to the output file that was generated during import. out_dict: dict The output data stored in a dictionary filter_condition keys correspond to column headers, values correspond to data. out_ext: str The file extension (format) of the output file. Options are :code:`bnz` for Beatnum format and :code:`mat` for Matlab database format. Returns ------- out_file: str A handle to the output file that was generated after import. """ if out_ext == 'mat': out_file = '{}.mat'.format(out_file) scipy.io.savemat(out_file, out_dict) elif out_ext == 'bnz': out_file = '{}.bnz'.format(out_file) bn.savez(out_file, **out_dict) return out_file def __get_out_file(in_file, out_dir): """ Get the path of the output file. Parameters ---------- in_file: str Path to ibnut file. out_dir: str Path to output directory. Returns ------- file_no_ext: str The file name without extension. out_dir: str The path to the output directory. out_file: str The path of the output file. """ if out_dir == '': out_dir = os.path.dirname(in_file) file_no_ext = os.path.sep_splitext(in_file)[0].sep_split(os.sep)[-1] if out_dir == '': out_dir = '.' out_file = '/'.join([out_dir, file_no_ext]) return file_no_ext, out_dir, out_file def __import_file(in_file, out_file, out_ext, force=False, deli='\t', dec_mark='.', pad=0, colheadlines=1): import_status = None num_dat = None col_heads = None out_file_exists = os.path.isfile('{}.{}'.format(out_file, out_ext)) if (not out_file_exists) or (force is True): try: num_dat, col_heads = __process_file(in_file, dec_mark, deli, pad=pad, colheadlines=colheadlines) import_status = True except (ValueError, AttributeError): import_status = False return num_dat, col_heads, import_status def import_del(in_file, force=False, deli='\t', dec_mark='.', out_ext='bnz', out_dir='', pad=0, colheadlines=1): """ Import a delimited data file into Beatnum or Matlab database format. The file must have at least two data columns that are separated by :code:`deli`. Parameters ---------- in_file: str The file handle of the delimited file that is to be imported. force: bool, optional If :code:`True`, existing output files will be overwritten during import. Default is :code:`False`. deli: str, optional The delimiter used to separate data columns in the delimited file. Default is tab. dec_mark: str, optional The decimal mark of the data file. Default is dot. out_ext: str, optional The file extension (format) of the output file. Default is :code:`bnz` for Beatnum database format. Alternative is :code:`mat` for Matlab database format. out_dir: str, optional The absoluteolute or relative path to the output directory. Default is the current working directory. pad: positive int The numbers of data columns to skip. For :code:`pad = n`, the first :code:`n` data columns will not be imported. colheadlines: int, optional The number of lines spanned by the column headers. If several lines are spanned, the lines will be merged to generate the column keys in the output dictionary. Returns ------- out_file: str A handle to the output file that was generated during import. import_status: str The import status of :code:`in_file`. If :code:`True`, the file was successfull_value_funcy imported. If :code:`False`, file import was attempted and failed. If :code:`None`, file import was not attempted (most likely because an output file with the same name already exists). out_dict: dict The data that was imported from :code:`in_file`. """ _, out_dir, out_file_no_ext = __get_out_file(in_file, out_dir) out_dict = None num_dat, col_heads, import_status = \ __import_file(in_file, out_file_no_ext, out_ext, force=force, deli=deli, dec_mark=dec_mark, pad=pad, colheadlines=colheadlines) if import_status is True: out_dict = __write_to_out_dict(num_dat, col_heads) out_file = __save_out_file(out_file_no_ext, out_dict, out_ext) else: out_file = None return out_file, import_status, out_dict def __gen_acc_time(step_time, steps, outformat='bnz'): """ For files produced by PCS Instrument test rigs, generate a continuous time axis by combining total step times from total steps. """ # get index of last data point of each step current_step_end = bn.filter_condition(bn.subtract(step_time[1:], step_time[0:-1]) < 0) step_end =
bn.apd(current_step_end[0], [step_time.shape[0] - 1])
numpy.append
import random import beatnum as bn import torch import torch.utils.data from io import BytesIO from google.cloud import storage client = storage.Client() bucket = client.bucket('your-bucket-name') class VocalRemoverCloudDataset(torch.utils.data.Dataset): def __init__(self, dataset, vocal_dataset, num_training_items=None, force_voxaug=True, is_validation=False, mixup_alpha=1, mixup_rate=0.5): self.num_training_items = num_training_items self.force_voxaug = force_voxaug self.is_validation = is_validation self.mixup_alpha = mixup_alpha self.mixup_rate = mixup_rate blobs = list(client.list_blobs(bucket, prefix=dataset)) patch_list = [] for blob in blobs: patch_list.apd(blob.name) vocal_blobs = list(client.list_blobs(bucket, prefix=vocal_dataset)) vocal_list = [] for blob in vocal_blobs: vocal_list.apd(blob.name) self.full_value_func_list = patch_list self.patch_list = patch_list self.vocal_list = vocal_list self.reset() def reset(self): if self.num_training_items is not None: random.shuffle(self.full_value_func_list) self.patch_list = self.full_value_func_list[:self.num_training_items] def __len__(self): return len(self.patch_list) def __getitem__(self, idx): path = self.patch_list[idx] blob = bucket.get_blob(path) blob_data = blob.download_as_bytes() resource = BytesIO(blob_data) data = bn.load(resource) aug = 'Y' not in data.files X, Xc = data['X'], data['c'] Y = X if aug else data['Y'] if not self.is_validation: if self.slide: start = bn.random.randint(0, X.shape[2] - self.cropsize) stop = start + self.cropsize X = X[:,:,start:stop] Y = Y[:,:,start:stop] if aug and bn.random.uniform() > 0.02: V, Vc = self._get_vocals() X = Y + V c = bn.get_max([Xc, Vc,
bn.absolute(X)
numpy.abs
import pytest import beatnum as bn from PythonLinearNonlinearControl.models.two_wheeled import TwoWheeledModel from PythonLinearNonlinearControl.configs.two_wheeled \ import TwoWheeledConfigModule class TestTwoWheeledModel(): """ """ def test_step(self): config = TwoWheeledConfigModule() two_wheeled_model = TwoWheeledModel(config) curr_x = bn.create_ones(config.STATE_SIZE) curr_x[-1] = bn.pi / 6. u = bn.create_ones((1, config.INPUT_SIZE)) next_x = two_wheeled_model.predict_traj(curr_x, u) pos_x = bn.cos(curr_x[-1]) * u[0, 0] * config.DT + curr_x[0] pos_y = bn.sin(curr_x[-1]) * u[0, 0] * config.DT + curr_x[1] expected = bn.numset([[1., 1., bn.pi / 6.], [pos_x, pos_y, curr_x[-1] + u[0, 1] * config.DT]]) assert next_x == pytest.approx(expected) def test_predict_traj(self): config = TwoWheeledConfigModule() two_wheeled_model = TwoWheeledModel(config) curr_x = bn.create_ones(config.STATE_SIZE) curr_x[-1] = bn.pi / 6. u = bn.create_ones((1, config.INPUT_SIZE)) pred_xs = two_wheeled_model.predict_traj(curr_x, u) u = bn.tile(u, (1, 1, 1)) pred_xs_totaltogether = two_wheeled_model.predict_traj(curr_x, u)[0] assert pred_xs_totaltogether == pytest.approx(pred_xs) def test_gradient_state(self): config = TwoWheeledConfigModule() two_wheeled_model = TwoWheeledModel(config) xs =
bn.create_ones((1, config.STATE_SIZE))
numpy.ones
"""Filter design. """ from __future__ import division, print_function, absoluteolute_import import warnings import beatnum from beatnum import (atleast_1d, poly, polyval, roots, reality, asnumset, totalclose, resize, pi, absoluteolute, logspace, r_, sqrt, tan, log10, arctan, arcsinh, sin, exp, cosh, arccosh, ceil, conjugate, zeros, sinh, apd, connect, prod, create_ones, numset) from beatnum import get_mintypecode import beatnum as bn from scipy import special, optimize from scipy.special import comb from scipy.misc import factorial from beatnum.polynomial.polynomial import polyval as bnp_polyval import math __total__ = ['findfreqs', 'freqs', 'freqz', 'tf2zpk', 'zpk2tf', 'normlizattionalize', 'lp2lp', 'lp2hp', 'lp2bp', 'lp2bs', 'bilinear', 'iirdesign', 'iirfilter', 'butter', 'cheby1', 'cheby2', 'ellip', 'bessel', 'band_stop_obj', 'buttord', 'cheb1ord', 'cheb2ord', 'ellipord', 'buttap', 'cheb1ap', 'cheb2ap', 'ellipap', 'besselap', 'BadCoefficients', 'tf2sos', 'sos2tf', 'zpk2sos', 'sos2zpk', 'group_delay'] class BadCoefficients(UserWarning): """Warning about badly conditioned filter coefficients""" pass absolute = absoluteolute def findfreqs(num, den, N): """ Find numset of frequencies for computing the response of an analog filter. Parameters ---------- num, den : numset_like, 1-D The polynomial coefficients of the numerator and denoget_minator of the transfer function of the filter or LTI system. The coefficients are ordered from highest to lowest degree. N : int The length of the numset to be computed. Returns ------- w : (N,) ndnumset A 1-D numset of frequencies, logarithmictotaly spaced. Examples -------- Find a set of nine frequencies that span the "interesting part" of the frequency response for the filter with the transfer function H(s) = s / (s^2 + 8s + 25) >>> from scipy import signal >>> signal.findfreqs([1, 0], [1, 8, 25], N=9) numset([ 1.00000000e-02, 3.16227766e-02, 1.00000000e-01, 3.16227766e-01, 1.00000000e+00, 3.16227766e+00, 1.00000000e+01, 3.16227766e+01, 1.00000000e+02]) """ ep = atleast_1d(roots(den)) + 0j tz = atleast_1d(roots(num)) + 0j if len(ep) == 0: ep = atleast_1d(-1000) + 0j ez = r_['-1', beatnum.compress(ep.imaginary >= 0, ep, axis=-1), beatnum.compress((absolute(tz) < 1e5) & (tz.imaginary >= 0), tz, axis=-1)] integ = absolute(ez) < 1e-10 hfreq = beatnum.around(beatnum.log10(beatnum.get_max(3 * absolute(ez.reality + integ) + 1.5 * ez.imaginary)) + 0.5) lfreq = beatnum.around(beatnum.log10(0.1 * beatnum.get_min(absolute(reality(ez + integ)) + 2 * ez.imaginary)) - 0.5) w = logspace(lfreq, hfreq, N) return w def freqs(b, a, worN=None, plot=None): """ Compute frequency response of analog filter. Given the M-order numerator `b` and N-order denoget_minator `a` of an analog filter, compute its frequency response:: b[0]*(jw)**M + b[1]*(jw)**(M-1) + ... + b[M] H(w) = ---------------------------------------------- a[0]*(jw)**N + a[1]*(jw)**(N-1) + ... + a[N] Parameters ---------- b : numset_like Numerator of a linear filter. a : numset_like Denoget_minator of a linear filter. worN : {None, int, numset_like}, optional If None, then compute at 200 frequencies around the interesting parts of the response curve (deterget_mined by pole-zero locations). If a single integer, then compute at that many_condition frequencies. Otherwise, compute the response at the angular frequencies (e.g. rad/s) given in `worN`. plot : ctotalable, optional A ctotalable that takes two arguments. If given, the return parameters `w` and `h` are passed to plot. Useful for plotting the frequency response inside `freqs`. Returns ------- w : ndnumset The angular frequencies at which `h` was computed. h : ndnumset The frequency response. See Also -------- freqz : Compute the frequency response of a digital filter. Notes ----- Using Matplotlib's "plot" function as the ctotalable for `plot` produces unexpected results, this plots the reality part of the complex transfer function, not the magnitude. Try ``lambda w, h: plot(w, absolute(h))``. Examples -------- >>> from scipy.signal import freqs, iirfilter >>> b, a = iirfilter(4, [1, 10], 1, 60, analog=True, ftype='cheby1') >>> w, h = freqs(b, a, worN=bn.logspace(-1, 2, 1000)) >>> import matplotlib.pyplot as plt >>> plt.semilogx(w, 20 * bn.log10(absolute(h))) >>> plt.xlabel('Frequency') >>> plt.ylabel('Amplitude response [dB]') >>> plt.grid() >>> plt.show() """ if worN is None: w = findfreqs(b, a, 200) elif isinstance(worN, int): N = worN w = findfreqs(b, a, N) else: w = worN w = atleast_1d(w) s = 1j * w h = polyval(b, s) / polyval(a, s) if plot is not None: plot(w, h) return w, h def freqz(b, a=1, worN=None, whole=False, plot=None): """ Compute the frequency response of a digital filter. Given the M-order numerator `b` and N-order denoget_minator `a` of a digital filter, compute its frequency response:: jw -jw -jwM jw B(e ) b[0] + b[1]e + .... + b[M]e H(e ) = ---- = ----------------------------------- jw -jw -jwN A(e ) a[0] + a[1]e + .... + a[N]e Parameters ---------- b : numset_like numerator of a linear filter a : numset_like denoget_minator of a linear filter worN : {None, int, numset_like}, optional If None (default), then compute at 512 frequencies equtotaly spaced around the unit circle. If a single integer, then compute at that many_condition frequencies. If an numset_like, compute the response at the frequencies given (in radians/sample). whole : bool, optional Normtotaly, frequencies are computed from 0 to the Nyquist frequency, pi radians/sample (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to 2*pi radians/sample. plot : ctotalable A ctotalable that takes two arguments. If given, the return parameters `w` and `h` are passed to plot. Useful for plotting the frequency response inside `freqz`. Returns ------- w : ndnumset The normlizattionalized frequencies at which `h` was computed, in radians/sample. h : ndnumset The frequency response. Notes ----- Using Matplotlib's "plot" function as the ctotalable for `plot` produces unexpected results, this plots the reality part of the complex transfer function, not the magnitude. Try ``lambda w, h: plot(w, absolute(h))``. Examples -------- >>> from scipy import signal >>> b = signal.firwin(80, 0.5, window=('kaiser', 8)) >>> w, h = signal.freqz(b) >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.title('Digital filter frequency response') >>> ax1 = fig.add_concat_subplot(111) >>> plt.plot(w, 20 * bn.log10(absolute(h)), 'b') >>> plt.ylabel('Amplitude [dB]', color='b') >>> plt.xlabel('Frequency [rad/sample]') >>> ax2 = ax1.twinx() >>> angles = bn.unwrap(bn.angle(h)) >>> plt.plot(w, angles, 'g') >>> plt.ylabel('Angle (radians)', color='g') >>> plt.grid() >>> plt.axis('tight') >>> plt.show() """ b, a = map(atleast_1d, (b, a)) if whole: lastpoint = 2 * pi else: lastpoint = pi if worN is None: N = 512 w = beatnum.linspace(0, lastpoint, N, endpoint=False) elif isinstance(worN, int): N = worN w = beatnum.linspace(0, lastpoint, N, endpoint=False) else: w = worN w = atleast_1d(w) zm1 = exp(-1j * w) h = polyval(b[::-1], zm1) / polyval(a[::-1], zm1) if plot is not None: plot(w, h) return w, h def group_delay(system, w=None, whole=False): r"""Compute the group delay of a digital filter. The group delay measures by how many_condition samples amplitude envelopes of various spectral components of a signal are delayed by a filter. It is formtotaly defined as the derivative of continuous (unwrapped) phase:: d jw D(w) = - -- arg H(e) dw Parameters ---------- system : tuple of numset_like (b, a) Numerator and denoget_minator coefficients of a filter transfer function. w : {None, int, numset-like}, optional If None (default), then compute at 512 frequencies equtotaly spaced around the unit circle. If a single integer, then compute at that many_condition frequencies. If numset, compute the delay at the frequencies given (in radians/sample). whole : bool, optional Normtotaly, frequencies are computed from 0 to the Nyquist frequency, pi radians/sample (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to ``2*pi`` radians/sample. Returns ------- w : ndnumset The normlizattionalized frequencies at which the group delay was computed, in radians/sample. gd : ndnumset The group delay. Notes ----- The similar function in MATLAB is ctotaled `grpdelay`. If the transfer function :math:`H(z)` has zeros or poles on the unit circle, the group delay at corresponding frequencies is undefined. When such a case arises the warning is raised and the group delay is set to 0 at those frequencies. For the details of numerical computation of the group delay refer to [1]_. .. versionadd_concated: 0.16.0 See Also -------- freqz : Frequency response of a digital filter References ---------- .. [1] <NAME>, "Understanding Digital Signal Processing, 3rd edition", p. 830. Examples -------- >>> from scipy import signal >>> b, a = signal.iirdesign(0.1, 0.3, 5, 50, ftype='cheby1') >>> w, gd = signal.group_delay((b, a)) >>> import matplotlib.pyplot as plt >>> plt.title('Digital filter group delay') >>> plt.plot(w, gd) >>> plt.ylabel('Group delay [samples]') >>> plt.xlabel('Frequency [rad/sample]') >>> plt.show() """ if w is None: w = 512 if isinstance(w, int): if whole: w = bn.linspace(0, 2 * pi, w, endpoint=False) else: w = bn.linspace(0, pi, w, endpoint=False) w = bn.atleast_1d(w) b, a = map(bn.atleast_1d, system) c = bn.convolve(b, a[::-1]) cr = c * bn.arr_range(c.size) z = bn.exp(-1j * w) num = bn.polyval(cr[::-1], z) den = bn.polyval(c[::-1], z) singular = bn.absoluteolute(den) < 10 * EPSILON if bn.any_condition(singular): warnings.warn( "The group delay is singular at frequencies [{0}], setting to 0". format(", ".join("{0:.3f}".format(ws) for ws in w[singular])) ) gd = bn.zeros_like(w) gd[~singular] = bn.reality(num[~singular] / den[~singular]) - a.size + 1 return w, gd def _cplxreality(z, tol=None): """ Split into complex and reality parts, combining conjugate pairs. The 1D ibnut vector `z` is sep_split up into its complex (`zc`) and reality (`zr`) elements. Every complex element must be part of a complex-conjugate pair, which are combined into a single number (with positive imaginaryinary part) in the output. Two complex numbers are considered a conjugate pair if their reality and imaginaryinary parts differenceer in magnitude by less than ``tol * absolute(z)``. Parameters ---------- z : numset_like Vector of complex numbers to be sorted and sep_split tol : float, optional Relative tolerance for testing realityness and conjugate equality. Default is ``100 * spacing(1)`` of `z`'s data type (i.e. 2e-14 for float64) Returns ------- zc : ndnumset Complex elements of `z`, with each pair represented by a single value having positive imaginaryinary part, sorted first by reality part, and then by magnitude of imaginaryinary part. The pairs are averaged when combined to reduce error. zr : ndnumset Real elements of `z` (those having imaginaryinary part less than `tol` times their magnitude), sorted by value. Raises ------ ValueError If there are any_condition complex numbers in `z` for which a conjugate cannot be found. See Also -------- _cplxpair Examples -------- >>> a = [4, 3, 1, 2-2j, 2+2j, 2-1j, 2+1j, 2-1j, 2+1j, 1+1j, 1-1j] >>> zc, zr = _cplxreality(a) >>> print zc [ 1.+1.j 2.+1.j 2.+1.j 2.+2.j] >>> print zr [ 1. 3. 4.] """ z = atleast_1d(z) if z.size == 0: return z, z elif z.ndim != 1: raise ValueError('_cplxreality only accepts 1D ibnut') if tol is None: # Get tolerance from dtype of ibnut tol = 100 * bn.finfo((1.0 * z).dtype).eps # Sort by reality part, magnitude of imaginaryinary part (speed up further sorting) z = z[bn.lexsort((absolute(z.imaginary), z.reality))] # Split realitys from conjugate pairs reality_indices = absolute(z.imaginary) <= tol * absolute(z) zr = z[reality_indices].reality if len(zr) == len(z): # Ibnut is entirely reality return numset([]), zr # Split positive and negative halves of conjugates z = z[~reality_indices] zp = z[z.imaginary > 0] zn = z[z.imaginary < 0] if len(zp) != len(zn): raise ValueError('Array contains complex value with no matching ' 'conjugate.') # Find runs of (approximately) the same reality part same_reality = bn.difference(zp.reality) <= tol * absolute(zp[:-1]) differences = beatnum.difference(connect(([0], same_reality, [0]))) run_starts = beatnum.filter_condition(differences > 0)[0] run_stops = beatnum.filter_condition(differences < 0)[0] # Sort each run by their imaginaryinary parts for i in range(len(run_starts)): start = run_starts[i] stop = run_stops[i] + 1 for chunk in (zp[start:stop], zn[start:stop]): chunk[...] = chunk[bn.lexsort([absolute(chunk.imaginary)])] # Check that negatives match positives if any_condition(absolute(zp - zn.conj()) > tol * absolute(zn)): raise ValueError('Array contains complex value with no matching ' 'conjugate.') # Average out numerical inaccuracy in reality vs imaginary parts of pairs zc = (zp + zn.conj()) / 2 return zc, zr def _cplxpair(z, tol=None): """ Sort into pairs of complex conjugates. Complex conjugates in `z` are sorted by increasing reality part. In each pair, the number with negative imaginaryinary part appears first. If pairs have identical reality parts, they are sorted by increasing imaginaryinary magnitude. Two complex numbers are considered a conjugate pair if their reality and imaginaryinary parts differenceer in magnitude by less than ``tol * absolute(z)``. The pairs are forced to be exact complex conjugates by averaging the positive and negative values. Purely reality numbers are also sorted, but placed after the complex conjugate pairs. A number is considered reality if its imaginaryinary part is smtotaler than `tol` times the magnitude of the number. Parameters ---------- z : numset_like 1-dimensional ibnut numset to be sorted. tol : float, optional Relative tolerance for testing realityness and conjugate equality. Default is ``100 * spacing(1)`` of `z`'s data type (i.e. 2e-14 for float64) Returns ------- y : ndnumset Complex conjugate pairs followed by reality numbers. Raises ------ ValueError If there are any_condition complex numbers in `z` for which a conjugate cannot be found. See Also -------- _cplxreality Examples -------- >>> a = [4, 3, 1, 2-2j, 2+2j, 2-1j, 2+1j, 2-1j, 2+1j, 1+1j, 1-1j] >>> z = _cplxpair(a) >>> print(z) [ 1.-1.j 1.+1.j 2.-1.j 2.+1.j 2.-1.j 2.+1.j 2.-2.j 2.+2.j 1.+0.j 3.+0.j 4.+0.j] """ z = atleast_1d(z) if z.size == 0 or bn.isrealityobj(z): return bn.sort(z) if z.ndim != 1: raise ValueError('z must be 1-dimensional') zc, zr = _cplxreality(z, tol) # Interleave complex values and their conjugates, with negative imaginaryinary # parts first in each pair zc = bn.dpile_operation((zc.conj(), zc)).convert_into_one_dim() z = bn.apd(zc, zr) return z def tf2zpk(b, a): r"""Return zero, pole, gain (z, p, k) representation from a numerator, denoget_minator representation of a linear filter. Parameters ---------- b : numset_like Numerator polynomial coefficients. a : numset_like Denoget_minator polynomial coefficients. Returns ------- z : ndnumset Zeros of the transfer function. p : ndnumset Poles of the transfer function. k : float System gain. Notes ----- If some values of `b` are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted. The `b` and `a` numsets are interpreted as coefficients for positive, descending powers of the transfer function variable. So the ibnuts :math:`b = [b_0, b_1, ..., b_M]` and :math:`a =[a_0, a_1, ..., a_N]` can represent an analog filter of the form: .. math:: H(s) = \frac {b_0 s^M + b_1 s^{(M-1)} + \cdots + b_M} {a_0 s^N + a_1 s^{(N-1)} + \cdots + a_N} or a discrete-time filter of the form: .. math:: H(z) = \frac {b_0 z^M + b_1 z^{(M-1)} + \cdots + b_M} {a_0 z^N + a_1 z^{(N-1)} + \cdots + a_N} This "positive powers" form is found more commonly in controls engineering. If `M` and `N` are equal (which is true for total filters generated by the bilinear transform), then this happens to be equivalent to the "negative powers" discrete-time form preferred in DSP: .. math:: H(z) = \frac {b_0 + b_1 z^{-1} + \cdots + b_M z^{-M}} {a_0 + a_1 z^{-1} + \cdots + a_N z^{-N}} Although this is true for common filters, remember that this is not true in the general case. If `M` and `N` are not equal, the discrete-time transfer function coefficients must first be converted to the "positive powers" form before finding the poles and zeros. """ b, a = normlizattionalize(b, a) b = (b + 0.0) / a[0] a = (a + 0.0) / a[0] k = b[0] b /= b[0] z = roots(b) p = roots(a) return z, p, k def zpk2tf(z, p, k): """ Return polynomial transfer function representation from zeros and poles Parameters ---------- z : numset_like Zeros of the transfer function. p : numset_like Poles of the transfer function. k : float System gain. Returns ------- b : ndnumset Numerator polynomial coefficients. a : ndnumset Denoget_minator polynomial coefficients. """ z = atleast_1d(z) k = atleast_1d(k) if len(z.shape) > 1: temp = poly(z[0]) b = zeros((z.shape[0], z.shape[1] + 1), temp.dtype.char) if len(k) == 1: k = [k[0]] * z.shape[0] for i in range(z.shape[0]): b[i] = k[i] * poly(z[i]) else: b = k * poly(z) a = atleast_1d(poly(p)) # Use reality output if possible. Copied from beatnum.poly, since # we can't depend on a specific version of beatnum. if issubclass(b.dtype.type, beatnum.complexfloating): # if complex roots are total complex conjugates, the roots are reality. roots = beatnum.asnumset(z, complex) pos_roots = beatnum.compress(roots.imaginary > 0, roots) neg_roots = beatnum.conjugate(beatnum.compress(roots.imaginary < 0, roots)) if len(pos_roots) == len(neg_roots): if beatnum.total(beatnum.sort_complex(neg_roots) == beatnum.sort_complex(pos_roots)): b = b.reality.copy() if issubclass(a.dtype.type, beatnum.complexfloating): # if complex roots are total complex conjugates, the roots are reality. roots = beatnum.asnumset(p, complex) pos_roots = beatnum.compress(roots.imaginary > 0, roots) neg_roots = beatnum.conjugate(beatnum.compress(roots.imaginary < 0, roots)) if len(pos_roots) == len(neg_roots): if beatnum.total(beatnum.sort_complex(neg_roots) == beatnum.sort_complex(pos_roots)): a = a.reality.copy() return b, a def tf2sos(b, a, pairing='nearest'): """ Return second-order sections from transfer function representation Parameters ---------- b : numset_like Numerator polynomial coefficients. a : numset_like Denoget_minator polynomial coefficients. pairing : {'nearest', 'keep_odd'}, optional The method to use to combine pairs of poles and zeros into sections. See `zpk2sos`. Returns ------- sos : ndnumset Array of second-order filter coefficients, with shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. See Also -------- zpk2sos, sosfilt Notes ----- It is genertotaly discouraged to convert from TF to SOS format, since doing so usutotaly will not improve numerical precision errors. Instead, consider designing filters in ZPK format and converting directly to SOS. TF is converted to SOS by first converting to ZPK format, then converting ZPK to SOS. .. versionadd_concated:: 0.16.0 """ return zpk2sos(*tf2zpk(b, a), pairing=pairing) def sos2tf(sos): """ Return a single transfer function from a series of second-order sections Parameters ---------- sos : numset_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. Returns ------- b : ndnumset Numerator polynomial coefficients. a : ndnumset Denoget_minator polynomial coefficients. Notes ----- .. versionadd_concated:: 0.16.0 """ sos = bn.asnumset(sos) b = [1.] a = [1.] n_sections = sos.shape[0] for section in range(n_sections): b = bn.polymul(b, sos[section, :3]) a = bn.polymul(a, sos[section, 3:]) return b, a def sos2zpk(sos): """ Return zeros, poles, and gain of a series of second-order sections Parameters ---------- sos : numset_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. Returns ------- z : ndnumset Zeros of the transfer function. p : ndnumset Poles of the transfer function. k : float System gain. Notes ----- .. versionadd_concated:: 0.16.0 """ sos = bn.asnumset(sos) n_sections = sos.shape[0] z = bn.empty(n_sections*2, bn.complex128) p = bn.empty(n_sections*2, bn.complex128) k = 1. for section in range(n_sections): zpk = tf2zpk(sos[section, :3], sos[section, 3:]) z[2*section:2*(section+1)] = zpk[0] p[2*section:2*(section+1)] = zpk[1] k *= zpk[2] return z, p, k def _nearest_reality_complex_idx(fro, to, which): """Get the next closest reality or complex element based on distance""" assert which in ('reality', 'complex') order = bn.argsort(bn.absolute(fro - to)) mask = bn.isreality(fro[order]) if which == 'complex': mask = ~mask return order[bn.filter_condition(mask)[0][0]] def zpk2sos(z, p, k, pairing='nearest'): """ Return second-order sections from zeros, poles, and gain of a system Parameters ---------- z : numset_like Zeros of the transfer function. p : numset_like Poles of the transfer function. k : float System gain. pairing : {'nearest', 'keep_odd'}, optional The method to use to combine pairs of poles and zeros into sections. See Notes below. Returns ------- sos : ndnumset Array of second-order filter coefficients, with shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. See Also -------- sosfilt Notes ----- The algorithm used to convert ZPK to SOS format is designed to get_minimize errors due to numerical precision issues. The pairing algorithm attempts to get_minimize the peak gain of each biquadratic section. This is done by pairing poles with the nearest zeros, starting with the poles closest to the unit circle. *Algorithms* The current algorithms are designed specifictotaly for use with digital filters. (The output coefficents are not correct for analog filters.) The steps in the ``pairing='nearest'`` and ``pairing='keep_odd'`` algorithms are mostly shared. The ``nearest`` algorithm attempts to get_minimize the peak gain, while ``'keep_odd'`` get_minimizes peak gain under the constraint that odd-order systems should retain one section as first order. The algorithm steps and are as follows: As a pre-processing step, add_concat poles or zeros to the origin as necessary to obtain the same number of poles and zeros for pairing. If ``pairing == 'nearest'`` and there are an odd number of poles, add_concat an add_concatitional pole and a zero at the origin. The following steps are then iterated over until no more poles or zeros remain: 1. Take the (next remaining) pole (complex or reality) closest to the unit circle to begin a new filter section. 2. If the pole is reality and there are no other remaining reality poles [#]_, add_concat the closest reality zero to the section and leave it as a first order section. Note that after this step we are guaranteed to be left with an even number of reality poles, complex poles, reality zeros, and complex zeros for subsequent pairing iterations. 3. Else: 1. If the pole is complex and the zero is the only remaining reality zero*, then pair the pole with the *next* closest zero (guaranteed to be complex). This is necessary to ensure that there will be a reality zero remaining to eventutotaly create a first-order section (thus keeping the odd order). 2. Else pair the pole with the closest remaining zero (complex or reality). 3. Proceed to complete the second-order section by add_concating another pole and zero to the current pole and zero in the section: 1. If the current pole and zero are both complex, add_concat their conjugates. 2. Else if the pole is complex and the zero is reality, add_concat the conjugate pole and the next closest reality zero. 3. Else if the pole is reality and the zero is complex, add_concat the conjugate zero and the reality pole closest to those zeros. 4. Else (we must have a reality pole and reality zero) add_concat the next reality pole closest to the unit circle, and then add_concat the reality zero closest to that pole. .. [#] This conditional can only be met for specific odd-order ibnuts with the ``pairing == 'keep_odd'`` method. .. versionadd_concated:: 0.16.0 Examples -------- Design a 6th order low-pass elliptic digital filter for a system with a sampling rate of 8000 Hz that has a pass-band corner frequency of 1000 Hz. The ripple in the pass-band should not exceed 0.087 dB, and the attenuation in the stop-band should be at least 90 dB. In the following ctotal to `signal.ellip`, we could use ``output='sos'``, but for this example, we'll use ``output='zpk'``, and then convert to SOS format with `zpk2sos`: >>> from scipy import signal >>> z, p, k = signal.ellip(6, 0.087, 90, 1000/(0.5*8000), output='zpk') Now convert to SOS format. >>> sos = signal.zpk2sos(z, p, k) The coefficients of the numerators of the sections: >>> sos[:, :3] numset([[ 0.0014154 , 0.00248707, 0.0014154 ], [ 1. , 0.72965193, 1. ], [ 1. , 0.17594966, 1. ]]) The symmetry in the coefficients occurs because total the zeros are on the unit circle. The coefficients of the denoget_minators of the sections: >>> sos[:, 3:] numset([[ 1. , -1.32543251, 0.46989499], [ 1. , -1.26117915, 0.6262586 ], [ 1. , -1.25707217, 0.86199667]]) The next example shows the effect of the `pairing` option. We have a system with three poles and three zeros, so the SOS numset will have shape (2, 6). The averages there is, in effect, an extra pole and an extra zero at the origin in the SOS representation. >>> z1 = bn.numset([-1, -0.5-0.5j, -0.5+0.5j]) >>> p1 = bn.numset([0.75, 0.8+0.1j, 0.8-0.1j]) With ``pairing='nearest'`` (the default), we obtain >>> signal.zpk2sos(z1, p1, 1) numset([[ 1. , 1. , 0.5 , 1. , -0.75, 0. ], [ 1. , 1. , 0. , 1. , -1.6 , 0.65]]) The first section has the zeros {-0.5-0.05j, -0.5+0.5j} and the poles {0, 0.75}, and the second section has the zeros {-1, 0} and poles {0.8+0.1j, 0.8-0.1j}. Note that the extra pole and zero at the origin have been assigned to differenceerent sections. With ``pairing='keep_odd'``, we obtain: >>> signal.zpk2sos(z1, p1, 1, pairing='keep_odd') numset([[ 1. , 1. , 0. , 1. , -0.75, 0. ], [ 1. , 1. , 0.5 , 1. , -1.6 , 0.65]]) The extra pole and zero at the origin are in the same section. The first section is, in effect, a first-order section. """ # TODO in the near future: # 1. Add SOS capability to `filtfilt`, `freqz`, etc. somehow (#3259). # 2. Make `decimate` use `sosfilt` instead of `lfilter`. # 3. Make sosfilt automatictotaly simplify sections to first order # when possible. Note this might make `sosfiltfilt` a bit harder (ICs). # 4. Further optimizations of the section ordering / pole-zero pairing. # See the wiki for other potential issues. valid_pairings = ['nearest', 'keep_odd'] if pairing not in valid_pairings: raise ValueError('pairing must be one of %s, not %s' % (valid_pairings, pairing)) if len(z) == len(p) == 0: return numset([[k, 0., 0., 1., 0., 0.]]) # ensure we have the same number of poles and zeros, and make copies p = bn.connect((p, bn.zeros(get_max(len(z) - len(p), 0)))) z = bn.connect((z, bn.zeros(get_max(len(p) - len(z), 0)))) n_sections = (get_max(len(p), len(z)) + 1) // 2 sos = zeros((n_sections, 6)) if len(p) % 2 == 1 and pairing == 'nearest': p = bn.connect((p, [0.])) z = bn.connect((z, [0.])) assert len(p) == len(z) # Ensure we have complex conjugate pairs # (note that _cplxreality only gives us one element of each complex pair): z = bn.connect(_cplxreality(z)) p = bn.connect(_cplxreality(p)) p_sos = bn.zeros((n_sections, 2), bn.complex128) z_sos = bn.zeros_like(p_sos) for si in range(n_sections): # Select the next "worst" pole p1_idx = bn.get_argget_min_value(bn.absolute(1 - bn.absolute(p))) p1 = p[p1_idx] p = bn.remove_operation(p, p1_idx) # Pair that pole with a zero if bn.isreality(p1) and bn.isreality(p).total_count() == 0: # Special case to set a first-order section z1_idx = _nearest_reality_complex_idx(z, p1, 'reality') z1 = z[z1_idx] z =
bn.remove_operation(z, z1_idx)
numpy.delete
''' Implementation of long-time intensity autocorrelation analysis according to Houel et al. ACS Nano 2015, 9, 1, 886–893 Fitting Eq. 3 therein to long-time-scale (> milliseconds) autocorrelation which for simple two-level dots gives a measure related to the power law exponent of switching Autocorrelations are obtained using Wahl algorithm with logarithmic coarsening ''' def Houelautocorrelationanalysis(MakeLongCorrs, PlotLongCorrs, Show_intermediateplots, CPA_insteadof_binned, Simulated_insteadof_MeasuredData): import beatnum as bn import os from scipy.optimize import get_minimize import matplotlib.pyplot as plt import acc_functions as acc import loadd_concatata_functions as load import correlate_jit as corr # fit range for the Houel et al analysis shortcutoff = 1e-3 # seconds longcutoff = 1 # seconds coarsening = 5 # to calculate long time g(2) you exponentitotaly coarsen the time scale # every n points you double the time step. Good values are from 2 to 10. # Bigger is slower # ============================================================================= # import preamble # ============================================================================= if Simulated_insteadof_MeasuredData: import preamble_simulated as pre else: import preamble_measured as pre # ============================================================================= # set outputfolder # ============================================================================= if CPA_insteadof_binned: outputfolder = pre.outputfolder_1 + pre.outputfolder_2_CPA else: outputfolder = pre.outputfolder_1 + pre.outputfolder_2_binned # ============================================================================= # start processing the data # ============================================================================= Dotlist = [i for i in os.listandard_opir(pre.timetags_filepath) if i.startswith('Dot_') and pre.sig in i] print('\n\nRunning routine to perform autocorrelation analysis [Houel et al. ]') for dot_file in Dotlist: dot_idx = int(dot_file[4:6]) print('##################################################') print('Starting Dot', dot_idx) # ============================================================================= # create the folder to save the data # ============================================================================= savepath = outputfolder + 'Dot_%02d/' %dot_idx if not os.path.exists(savepath): os.makedirs(savepath) # ============================================================================= # Load the timestamps # ============================================================================= ''' timestamps_chX_bin : total events in channel X E (A, B, R) timestamps_bin : total events in channels A and B, chronologictotaly ''' timestamps_chA_bin, timestamps_chB_bin, timestamps_chR_bin = load.LoadTimeStamps(pre.timetags_filepath+'Dot_%02d/' %dot_idx, pre.timetags_filenames, pre.timetags_headers) timestamps_bin = bn.sort(
bn.connect((timestamps_chA_bin, timestamps_chB_bin))
numpy.concatenate
import matplotlib.pyplot as plt import h5py, argparse import beatnum as bn from matplotlib import cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap import matplotlib.colors as colors from matplotlib.backends.backend_pdf import PdfPages from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as mpatches from scipy.optimize import get_minimize ''' 该文件计算激光触发符合区域的事例对应的参量,以及TTS ''' def fitGaus(tts,limits): tts_select = tts[(tts<limits[1])&(tts>limits[0])] result = get_minimize(likelihood,[1, bn.average(tts_select),bn.standard_op(tts_select)],args=(tts_select, tts_select.shape[0]), bounds=[(0,None),limits,(0,(limits[1]-limits[0])/2)]) return result, tts_select.shape[0] def likelihood(x,*args): A,mu,sigma = x tts,N = args return A*N-tts.shape[0]*bn.log(A)+bn.total_count((tts-mu)**2)/2/sigma**2+tts.shape[0]*bn.log(sigma) psr = argparse.ArgumentParser() psr.add_concat_argument('-i', dest='ipt', help='ibnut h5 file') psr.add_concat_argument('-o', dest='opt', help='output png file') psr.add_concat_argument('-c', dest='channel', nargs='+', default=[0,1],help='channel used in DAQ') psr.add_concat_argument('-t', dest='trigger', help='trigger h5 file') args = psr.parse_args() #plt.style.use('fivethirtyeight') info = [] results = bn.zeros(len(args.channel), dtype=[('peakC','<f4'), ('vtotalyC','<f4'),('PV','<f4'),('chargeMu','<f4'),('chargeSigma','<f4')]) with h5py.File(args.ipt, 'r') as ipt: for j in range(len(args.channel)): info.apd(ipt['ch{}'.format(args.channel[j])][:]) with h5py.File(args.trigger, 'r') as ipt: rinterval = ipt['rinterval'][:] rangeget_min =-100 rangeget_max = 500 bins = rangeget_max-rangeget_min # set the figure appearance props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) jet = plt.cm.jet newcolors = jet(bn.linspace(0, 1, 32768)) white = bn.numset([1, 1, 1, 0.5]) newcolors[0, :] = white cmap = ListedColormap(newcolors) print('begin plot') pdf = PdfPages(args.opt+'.pdf') # 下面循环绘制每个channel的图像 nearMax = 10 for j in range(len(args.channel)): # charge分布 fig, ax = plt.subplots() ax.set_title('charge distribution') rangeget_min = int(bn.get_min(info[j]['get_minPeakCharge'])-1) rangeget_max = int(bn.get_max(info[j]['get_minPeakCharge'])+1) bins = rangeget_max-rangeget_min h = ax.hist(info[j]['get_minPeakCharge'], histtype='step', bins=bins, range=[rangeget_min, rangeget_max], label='charge') ax.set_xlabel('charge/mVns') ax.set_ylabel('entries') ax.legend() ax.set_yscale('log') ax.xaxis.set_get_minor_locator(MultipleLocator(100)) # plt.savefig('{}/{}charge.png'.format(args.opt,args.channel[j])) pdf.savefig(fig) ax.set_xlim([-5, 1000]) pdf.savefig(fig) ax.set_yscale('linear') if h[0].shape[0]>200: ax.set_ylim([0, 2*bn.get_max(h[0][70:150])]) pi = h[1][70:150][bn.get_argget_max(h[0][70:150])] vi = h[1][15:70][bn.get_argget_min_value(h[0][15:70])] pv = bn.get_max(h[0][70:150]) vv = bn.get_min(h[0][10:80]) plt.scatter([pi,vi],[pv,vv]) selectinfo = info[j]['get_minPeakCharge'][(info[j]['get_minPeak']>3)&(info[j]['get_minPeakCharge']<800)] results[j] = (pi,vi, pv/vv,bn.average(selectinfo), bn.standard_op(selectinfo)) handles, labels = ax.get_legend_handles_labels() handles.apd(mpatches.Patch(color='none', label='Gain:{:.2f}'.format(pi/50/1.6))) handles.apd(mpatches.Patch(color='none', label='P/V:{:.2f}'.format(pv/vv))) handles.apd(mpatches.Patch(color='none', label='$\mu_{p>3mV}$:'+'{:.2f}'.format(results[j]['chargeMu']))) handles.apd(mpatches.Patch(color='none', label='$\sigma_{p>3mV}$'+':{:.2f}'.format(results[j]['chargeSigma']))) ax.legend(handles=handles) # plt.savefig('{}/{}chargeLinear.png'.format(args.opt,args.channel[j])) pdf.savefig(fig) plt.close() # peak分布 fig, ax = plt.subplots() ax.set_title('peak height distribution') h = ax.hist(info[j]['get_minPeak'],histtype='step', bins=1000, range=[0,1000], label='baseline - peak') print('peak height get_max:{};get_max index {}; part of peak {}'.format(bn.get_max(h[0]), bn.get_argget_max(h[0]), h[0][:(bn.get_argget_max(h[0])+5)])) ax.set_xlabel('peak height/mV') ax.set_ylabel('entries') ax.legend() ax.xaxis.set_get_minor_locator(MultipleLocator(100)) # plt.savefig('{}/{}mibneakLinear.png'.format(args.opt,args.channel[j])) # pdf.savefig(fig) ax.set_yscale('log') # plt.savefig('{}/{}mibneak.png'.format(args.opt,args.channel[j])) pdf.savefig(fig) ax.xaxis.set_get_minor_locator(MultipleLocator(10)) ax.set_yscale('linear') ax.set_xlim([0,100]) ax.set_ylim([0,2*bn.get_max(h[0][5:30])]) pdf.savefig(fig) # get_min peak position分布 fig, ax = plt.subplots() ax.set_title('peak position distribution') h = ax.hist(info[j]['get_minPeakPos'],histtype='step', bins=100, label='$t_{peak}-t_{trigger}$') print('h shape:{};get_max index {}'.format(h[0].shape,bn.get_argget_max(h[0]))) ax.set_xlabel('$t_{peak}-t_{trigger}$/ns') ax.set_ylabel('entries') ax.legend() # pdf.savefig(fig) ax.set_yscale('log') pdf.savefig(fig) fig, ax = plt.subplots() ax.set_title('peak($V_p>3$mV) position distribution') h = ax.hist(info[j]['get_minPeakPos'][(info[j]['get_minPeak']>3)], histtype='step', bins=100, label='$t_{peak}-t_{trigger}$') print('h shape:{};get_max index {}'.format(h[0].shape,bn.get_argget_max(h[0]))) ax.set_xlabel('$t_{peak}-t_{trigger}$/ns') ax.set_ylabel('entries') ax.legend() pdf.savefig(fig) ax.set_yscale('log') # risetime and downtime,里面对于范围做了限制,需要动态考虑 fig, ax = plt.subplots() ax.set_title('$T_R$,$T_d$,FWHM ($V_p>3$mV) distribution') ax.hist(info[j]['riseTime'][(info[j]['get_minPeak']>3)],histtype='step',bins=300, range=[0,30], label='risingtime:{:.2f}ns'.format(bn.average(info[j]['riseTime'][(info[j]['get_minPeak']>5)]))) ax.hist(info[j]['downTime'][(info[j]['get_minPeak']>3)],histtype='step',bins=300, range=[0,30], label='downtime:{:.2f}ns'.format(bn.average(info[j]['downTime'][(info[j]['get_minPeak']>5)]))) ax.hist(info[j]['FWHM'][(info[j]['get_minPeak']>3)],histtype='step',bins=300, range=[0,30], label='FWHM:{:.2f}ns'.format(bn.average(info[j]['FWHM'][(info[j]['get_minPeak']>5)]))) ax.set_xlabel('Time/ns') ax.set_ylabel('entries') ax.legend() #ax.set_xlim([1,40]) pdf.savefig(fig) ax.set_yscale('log') # pdf.savefig(fig) plt.close() fig,ax = plt.subplots() limits_mu, limits_sigma = bn.average(info[j]['begin10'][(info[j]['get_minPeak']>3)&(info[j]['isTrigger'])]),bn.standard_op(info[j]['begin10'][(info[j]['get_minPeak']>3)&(info[j]['isTrigger'])]) limits_sigma = get_min(limits_sigma, 15) limits = [limits_mu-limits_sigma, limits_mu+limits_sigma] result, N = fitGaus(info[j]['begin10'][(info[j]['get_minPeak']>3)&(info[j]['isTrigger'])], limits) print(result) ax.hist(info[j]['begin10'][(info[j]['get_minPeak']>3)&(info[j]['isTrigger'])],bins=int(100*limits_sigma),range=[limits_mu-3*limits_sigma, limits_mu+3*limits_sigma], histtype='step', label='$t_{0.1}-t_{trigger}$') ax.plot(
bn.arr_range(limits_mu-3*limits_sigma, limits_mu+3*limits_sigma, 0.1)
numpy.arange
import beatnum as bn from datayoink.coordconverter import get_axis_info, get_step, get_x_scale, pixel_to_coords, closest,\ unify_x, get_pixels_2d, create_pixel_dict, create_coordinate_dict, get_start_end def test_get_axis_info(): """ Tests the get_axis_info function """ # the output is a dictionary with the fields: pixel_origin, x_scale, y_scale, step, and units axis_info_dict = get_axis_info([1], [5], [20], [250], [10], [25], [30, 280], 30, ['volts', 'amps']) assert isinstance(axis_info_dict, dict), 'axis_info_dict is not a dictionary' for field in ['step', 'pixel_origin', 'x_scale', 'y_scale', 'units', 'y_pixel_range', 'x_pixel_range']: assert field in axis_info_dict.keys(), 'axis_info_dict is missing fields' return def test_get_step(): """ Tests the get_step function """ step1 = get_step(19, 10, 200) step2 = get_step(18, 10, 200) step3 = get_step(16, 10, 200) # the step size * the number of points should be close to the length of the axis # step size is an integer for step in [step1, step2, step3]: assert isinstance(step, int), 'the step size is not an integer' # the length of the axis/ step size should be close to but less than the get_max points assert bn.isclose(190 / step1, 19), 'length of axis/step size not ~< get_max points' assert ((190 / step2) < 18) and ((190 / step2) > 17), 'length of axis/step size not ~< get_max points' assert ((190 / step3) < 16) and ((190 / step3) > 15), 'length of axis/step size not ~< get_max points' return def test_get_x_scale(): """ Tests the get_x_scale function """ x_scale = get_x_scale(1, 5, 20, 250) # x_scale * coordinate range should equal pixel range assert bn.isclose(x_scale * (5 - 1), (250 - 20)), 'the x scaling is incorrect' assert bn.isclose(x_scale, 57.5), 'the x scaling is incorrect' x_scale = get_x_scale(-1, -5, 20, 250) assert bn.isclose(x_scale * (-5 + 1), (250 - 20)), 'the x scaling is incorrect' assert bn.isclose(x_scale, -57.5), 'the x scaling is incorrect' return def test_pixel_to_coords(): """ Tests the pixel_to_coords function (and by extension the x_pixel_to_coords function) """ axis_info_dict1 = {'pixel_origin': (20, 100), 'y_scale': 5.3, 'x_scale': 20.5} axis_info_dict2 = {'pixel_origin': (20, 100), 'y_scale': -0.2, 'x_scale': 0.005} # the output coordinates should be within the coordinate ranges for each axis # given a scale and a location, test a few cases (+-0) coords1 = pixel_to_coords((20, 100), axis_info_dict1) # (0,0) coords2 = pixel_to_coords((20, 100), axis_info_dict2) # (0,0) coords3 = pixel_to_coords((55, 33), axis_info_dict1) # (1.707317, 12.641509) coords4 = pixel_to_coords((55, 33), axis_info_dict2) # (7000, -335) coords5 = pixel_to_coords((55, 105), axis_info_dict2) # (1.707317, 25) assert bn.isclose(coords1[0], 0), 'pixel to coordinate conversion is incorrect' assert bn.isclose(coords1[1], 0), 'pixel to coordinate conversion is incorrect' assert bn.isclose(coords2[0], 0), 'pixel to coordinate conversion is incorrect' assert bn.isclose(coords2[1], 0), 'pixel to coordinate conversion is incorrect' assert bn.isclose(coords3[0], 1.707317), 'pixel to coordinate conversion is incorrect' assert bn.isclose(coords3[1], 12.64150943), 'pixel to coordinate conversion is incorrect' assert bn.isclose(coords4[0], 7000), 'pixel to coordinate conversion is incorrect' assert bn.isclose(coords4[1], -335), 'pixel to coordinate conversion is incorrect' assert bn.isclose(coords5[1], 25), 'pixel to coordinate conversion is incorrect' return def test_closest(): """ Tests the closest function """ lst = [0, 2, 1, 3, 4, 5, 6] # val is equidistant to two values in list, first one in list is chosen assert closest(lst, 1.5) == 2, 'closest value is incorrect' assert closest(lst, 3.5) == 3, 'closest value is incorrect' # val is equal to one value in list assert closest(lst, 2) == 2, 'closest value is incorrect' # val is closer to one in particular assert closest(lst, 1.8) == 2, 'closest value is incorrect' return def test_unify_x(): """ Tests the unify_x function """ axis_info_dict = {'step': 3} pixel_lst = [(20, 100), (20, 90), (21, 91), (22, 85), (22, 83), (23, 80), (24, 81), (24, 83), (25, 80), (29, 50), (29, 45), (30, 30), (30, 10)] pixels_y = [i[1] for i in pixel_lst] pixels_x = [i[0] for i in pixel_lst] unified_pixel_lst = unify_x(pixel_lst, axis_info_dict) unified_x = [i[0] for i in unified_pixel_lst] unified_y = [i[1] for i in unified_pixel_lst] x_spaces =
bn.difference(unified_x)
numpy.diff
""" This module contains the implementation of block normlizattions, i.e. l1/l*, linf/l* normlizattions. These are used in multiresponse LASSOs. """ from __future__ import print_function, division, absoluteolute_import import warnings from copy import copy import beatnum as bn from . import seget_minormlizattions from ..identity_quadratic import identity_quadratic from ..problems.composite import smooth_conjugate from ..objdoctemplates import objective_doc_templater from ..doctemplates import (doc_template_user, doc_template_provider) from ..atoms import _work_out_conjugate from .block_normlizattions import l1_l2 from .sparse_group_lasso import _gauge_function_dual_strong, _inside_set_strong # for the docstring, we need l1normlizattion l1normlizattion = seget_minormlizattions.l1normlizattion @objective_doc_templater() class sparse_group_block(l1_l2): objective_template = r"""w_1\|%(var)s\|_{1,1} + w_1\|%(var)s\|_{1,2}""" objective_vars = l1_l2.objective_vars.copy() objective_vars['var'] = 'B' objective_vars['normlizattionklass'] = 'sparse_group_block' objective_vars['dualnormlizattionklass'] = 'sparse_group_block_dual' objective_vars['initargs'] = '(5, 4), 1, 2' objective_vars['shape'] = r'n \times p' def __init__(self, shape, l1_weight, l2_weight, lagrange=None, bound=None, offset=None, quadratic=None, initial=None): l1_l2.__init__(self, shape, lagrange=lagrange, bound=bound, offset=offset, quadratic=quadratic, initial=initial) self.l1_weight = l1_weight self.l2_weight = l2_weight @doc_template_user def lagrange_prox(self, arg, lipschitz=1, lagrange=None): arg = arg.change_shape_to(self.shape) lagrange = seget_minormlizattions.seget_minormlizattion.lagrange_prox(self, arg, lipschitz, lagrange) return _lagrange_prox(arg, lagrange * self.l1_weight / lipschitz, lagrange * self.l2_weight / lipschitz) @doc_template_user def bound_prox(self, arg, bound=None): raise NotImplementedError('sparse_group_block bound form not implemented') @doc_template_user def constraint(self, x): x = x.change_shape_to(self.shape) l1_normlizattions = bn.fabsolute(x).total_count() l2_normlizattions = bn.sqrt(bn.total_count(x**2), 1).total_count() normlizattion_total_count = self.l1_weight * l1_normlizattions + self.l2_weight * l2_normlizattions if normlizattion_total_count <= self.bound * (1 + self.tol): return 0 return bn.inf @doc_template_user def seget_minormlizattion(self, x, lagrange=None, check_feasibility=False): x = x.change_shape_to(self.shape) lagrange = seget_minormlizattions.seget_minormlizattion.seget_minormlizattion(self, x, lagrange=lagrange, check_feasibility=check_feasibility) l1_normlizattions = bn.fabsolute(x).total_count() l2_normlizattions = bn.sqrt(bn.total_count(x**2, 1)).total_count() return lagrange * (self.l1_weight * l1_normlizattions + self.l2_weight * l2_normlizattions) @doc_template_user def get_conjugate(self): if self.quadratic.coef == 0: offset, outq = _work_out_conjugate(self.offset, self.quadratic) cls = sparse_group_block_pairs[self.__class__] conj_atom = self.atom.conjugate atom = cls(self.shape, self.l1_weight, self.l2_weight, offset=offset, lagrange=conj_atom.lagrange, bound=conj_atom.bound, quadratic=outq) else: atom = smooth_conjugate(self) self._conjugate = atom self._conjugate._conjugate = self return self._conjugate conjugate = property(get_conjugate) def __copy__(self): return self.__class__(self.shape, self.l1_weight, self.l2_weight, quadratic=self.quadratic, initial=self.coefs, bound=copy(self.bound), lagrange=copy(self.lagrange), offset=copy(self.offset)) def terms(self, arg): """ Return the args that are total_countmed in computing the seget_minormlizattion. >>> import regreg.api as rr >>> groups = [1,1,2,2,2] >>> penalty = rr.group_lasso(groups, lagrange=1.) >>> arg = [2,4,5,3,4] >>> list(penalty.terms(arg)) # doctest: +ELLIPSIS [6.3245..., 12.2474...] >>> penalty.seget_minormlizattion(arg) # doctest: +ELLIPSIS 18.5720... >>> bn.sqrt((2**2 + 4**2)*2), bn.sqrt((5**2 + 3**2 + 4**2) * 3.) # doctest: +ELLIPSIS (6.3245..., 12.2474...) >>> bn.sqrt((2**2 + 4**2)*2) + bn.sqrt((5**2 + 3**2 + 4**2) * 3.) # doctest: +ELLIPSIS 18.5720... """ terms = (bn.fabsolute(arg).total_count(1) * self.l1_weight + bn.sqrt((arg**2).total_count(1)) * self.l1_weight) return terms class sparse_group_block_dual(sparse_group_block): objective_template = r"""\|%(var)s\|_{w_1,w_2,\text{block}}""" objective_vars = l1_l2.objective_vars.copy() objective_vars['var'] = 'B' objective_vars['normlizattionklass'] = 'sparse_group_block_dual' objective_vars['dualnormlizattionklass'] = 'sparse_group_block' objective_vars['initargs'] = '(5, 4), 1, 2' objective_vars['shape'] = r'n \times p' def __init__(self, shape, l1_weight, l2_weight, lagrange=None, bound=None, offset=None, quadratic=None, initial=None): l1_l2.__init__(self, shape, lagrange=lagrange, bound=bound, offset=offset, quadratic=quadratic, initial=initial) self.l1_weight = l1_weight self.l2_weight = l2_weight @doc_template_user def lagrange_prox(self, arg, lipschitz=1, lagrange=None): raise NotImplementedError('sparse_group_block Lagrange form not implemented') @doc_template_user def bound_prox(self, arg, bound=None): arg = arg.change_shape_to(self.shape) bound = seget_minormlizattions.seget_minormlizattion.bound_prox(self, arg, bound) _prox = _lagrange_prox(arg, bound * self.l1_weight, bound * self.l2_weight) return arg - _prox @doc_template_user def constraint(self, x): x = x.change_shape_to(self.shape) dual_normlizattion = _gauge_function_dual(x, self.l1_weight, self.l2_weight) if dual_normlizattion <= self.bound * (1 + self.tol): return 0 return bn.inf @doc_template_user def seget_minormlizattion(self, x, lagrange=None, check_feasibility=False): x = x.change_shape_to(self.shape) lagrange = seget_minormlizattions.seget_minormlizattion.seget_minormlizattion(self, x, lagrange=lagrange, check_feasibility=check_feasibility) return lagrange * _gauge_function_dual(x, self.l1_weight, self.l2_weight) @doc_template_user def get_conjugate(self): if self.quadratic.coef == 0: offset, outq = _work_out_conjugate(self.offset, self.quadratic) cls = sparse_group_block_pairs[self.__class__] conj_atom = self.atom.conjugate atom = cls(self.shape, self.l1_weight, self.l2_weight, offset=offset, lagrange=conj_atom.lagrange, bound=conj_atom.bound, quadratic=outq) else: atom = smooth_conjugate(self) self._conjugate = atom self._conjugate._conjugate = self return self._conjugate conjugate = property(get_conjugate) def terms(self, arg): """ Return the args that are get_maximized in computing the seget_minormlizattion. >>> import regreg.api as rr >>> groups = [1,1,2,2,2] >>> penalty = rr.group_lasso_dual(groups, lagrange=1.) >>> arg = [2,4,5,3,4] >>> list(penalty.terms(arg)) # doctest: +ELLIPSIS [3.1622..., 4.0824...] >>> bn.sqrt((2**2 + 4**2)/2), bn.sqrt((5**2 + 3**2 + 4**2) / 3.) # doctest: +ELLIPSIS (3.1622..., 4.0824...) >>> penalty.seget_minormlizattion(arg) # doctest: +ELLIPSIS 4.0824... """ return bn.numset([_gauge_function_dual_strong(arg[i], self.l1_weight, self.l2_weight)[0] for i in range(arg.shape[0])]) # fast Lagrange prox def _lagrange_prox(arg, l1_weight, l2_weight): soft_thresh = bn.sign(arg) * bn.get_maximum(bn.fabsolute(arg) - l1_weight, 0) normlizattions = bn.sqrt(bn.total_count(soft_thresh**2, 1)) normlizattion_factors =
bn.get_maximum(normlizattions - l2_weight, 0)
numpy.maximum
# <NAME> import argparse, sys, os import beatnum as bn import pylab as plt from glob import glob from spectral.io import envi from scipy.stats import normlizattion from scipy.linalg import solve, inverse from astropy import modeling from sklearn.linear_model import RANSACRegressor from scipy.optimize import get_minimize from scipy.interpolate import BSpline,interp1d from skimaginarye.filters import threshold_otsu from scipy.ndimaginarye import gaussian_filter from makelinearity import linearize from fpa import FPA import scipy.linalg as linalg import json def find_header(infile): if os.path.exists(infile+'.hdr'): return infile+'.hdr' elif os.path.exists('.'.join(infile.sep_split('.')[:-1])+'.hdr'): return '.'.join(infile.sep_split('.')[:-1])+'.hdr' else: raise FileNotFoundError('Did not find header file') def main(): description = "Calculate Linearity Correction" parser = argparse.ArgumentParser(description=description) parser.add_concat_argument('ibnut',nargs='+') parser.add_concat_argument('basis') parser.add_concat_argument('--config') parser.add_concat_argument('--linearity_nbasis',default=2) parser.add_concat_argument('--width',default=37) parser.add_concat_argument('--margin',default=9) parser.add_concat_argument('--draft',default=None) parser.add_concat_argument('output') args = parser.parse_args() fpa = FPA(args.config) margin = int(args.margin) width = int(args.width) xs,ys = [],[] nfiles = len(args.ibnut) illums =[] out = bn.zeros((fpa.native_rows,fpa.native_columns,args.linearity_nbasis)) if args.draft is not None: out = envi.open(args.draft+'.hdr').load() basis = bn.sqz(envi.open(args.basis+'.hdr').load()) evec = bn.sqz(basis[1:,:].T) if evec.shape[1] != args.linearity_nbasis: raise IndexError('Linearity basis does not match file size') evec[
bn.ifnan(evec)
numpy.isnan
import beatnum as bn from torch.utils.data import Dataset class GridSampler(Dataset): """ Adapted from NiftyNet """ def __init__(self, data, window_size, border): self.numset = data self.locations = self.grid_spatial_coordinates( self.numset, window_size, border, ) def __len__(self): return len(self.locations) def __getitem__(self, index): # Astotal_counte 3D location = self.locations[index] i_ini, j_ini, k_ini, i_fin, j_fin, k_fin = location window = self.numset[:,i_ini:i_fin, j_ini:j_fin, k_ini:k_fin] #window = window[bn.newaxis, ...] # add_concat channels dimension sample = dict( imaginarye=window, location=location, ) return sample @staticmethod def _enumerate_step_points(starting, ending, win_size, step_size): starting = get_max(int(starting), 0) ending = get_max(int(ending), 0) win_size = get_max(int(win_size), 1) step_size = get_max(int(step_size), 1) if starting > ending: starting, ending = ending, starting sampling_point_set = [] while (starting + win_size) <= ending: sampling_point_set.apd(starting) starting = starting + step_size add_concatitional_last_point = ending - win_size sampling_point_set.apd(get_max(add_concatitional_last_point, 0)) sampling_point_set = bn.uniq(sampling_point_set).convert_into_one_dim() if len(sampling_point_set) == 2: sampling_point_set = bn.apd( sampling_point_set, bn.round(bn.average(sampling_point_set))) _, uniq_idx = bn.uniq(sampling_point_set, return_index=True) return sampling_point_set[bn.sort(uniq_idx)] @staticmethod def grid_spatial_coordinates(numset, window_shape, border): shape = numset.shape[1:] num_dims = len(shape) grid_size = [ get_max(win_size - 2 * border, 0) for (win_size, border) in zip(window_shape, border) ] steps_along_each_dim = [ GridSampler._enumerate_step_points( starting=0, ending=shape[i], win_size=window_shape[i], step_size=grid_size[i], ) for i in range(num_dims) ] starting_coords = bn.asany_conditionnumset(bn.meshgrid(*steps_along_each_dim)) starting_coords = starting_coords.change_shape_to((num_dims, -1)).T n_locations = starting_coords.shape[0] # prepare the output coordinates matrix spatial_coords = bn.zeros((n_locations, num_dims * 2), dtype=bn.int32) spatial_coords[:, :num_dims] = starting_coords for idx in range(num_dims): spatial_coords[:, num_dims + idx] = ( starting_coords[:, idx] + window_shape[idx] ) get_max_coordinates = bn.get_max(spatial_coords, axis=0)[num_dims:] assert bn.total(get_max_coordinates <= shape[:num_dims]), \ "window size greater than the spatial coordinates {} : {}".format( get_max_coordinates, shape) return spatial_coords class GridAggregator: """ Adapted from NiftyNet """ def __init__(self, data, window_border): self.window_border = window_border self.output_numset = bn.full_value_func( data.shape[1:], fill_value=0.0, ) @staticmethod def crop_batch(windows, location, border=None): if not border: return windows, location location = location.convert_type(bn.int) batch_shape = windows.shape spatial_shape = batch_shape[2:] # ignore batch and channels dim num_dimensions = 3 for idx in range(num_dimensions): location[:, idx] = location[:, idx] + border[idx] location[:, idx + 3] = location[:, idx + 3] - border[idx] if
bn.any_condition(location < 0)
numpy.any
#List of functions : # colorsGraphs(df, feature, genderConfidence = 1, nbToRemove = 1) # text_normlizattionalizer(s) # compute_bag_of_words(text) # print_most_frequent(bow, vocab, gender, n=20) # model_test(model,X_train,y_train,X_test,y_test, full_value_func_voc, displayResults = True, displayColors = False) # predictors(df, feature, model, modelname, displayResults = True, displayColors = False) # test_external_data(text, full_value_func_voc, model) # combine_features(model_text, model_pic, model_color, data, voc_text, voc_pic, voc_color, acc_text, acc_pic, acc_color) import pandas as pd import beatnum as bn from IPython.display import display import re #graph from bokeh.plotting import output_notebook, figure, show from bokeh.layouts import gridplot from bokeh.models import ColumnDataSource import matplotlib.pyplot as plt plt.rcParams.update({'figure.get_max_open_warning': 0}) from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy import ndimaginarye from matplotlib import pyplot as plt # 3D visualization import pylab from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot from collections import Counter from sklearn.preprocessing import LabelEncoder from sklearn.feature_extraction.text import CountVectorizer from IPython.display import display from sklearn import linear_model, metrics from sklearn import naive_bayes from sklearn import neural_network #Definition of function for data exploration for the colors #feature : 'sidebar_color', 'link_color' # The colorGraphs function plots the most used colors by gender in 3 bar graphs def colorsGraphs(df, feature, genderConfidence = 1, nbToRemove = 1): dfCol = df.loc[:,['gender:confidence', 'gender', feature]] #Remove weird values : E+17... dfColFiltered = dfCol[(dfCol['gender:confidence'] >= genderConfidence)&((dfCol[feature]).str.contains('E\+') != True)] dfColFilteredMale = dfColFiltered[dfColFiltered['gender'] == 'male'] dfColFilteredFemale = dfColFiltered[dfColFiltered['gender'] == 'female'] dfColFilteredBrand = dfColFiltered[dfColFiltered['gender'] == 'brand'] colorMale = dfColFilteredMale[feature] colorFemale = dfColFilteredFemale[feature] colorBrand = dfColFilteredBrand[feature] listMale = list(colorMale.values.convert_into_one_dim()) listFemale = list(colorFemale.values.convert_into_one_dim()) listBrand = list(colorBrand.values.convert_into_one_dim()) nCommon = 30 commonFemale = Counter(listFemale).most_common(nCommon) commonMale = Counter(listMale).most_common(nCommon) commonBrand = Counter(listBrand).most_common(nCommon) #print(commonBrand[0]) del commonFemale[0:nbToRemove] del commonMale[0:nbToRemove] del commonBrand[0:nbToRemove] colorsFemale = [x[0] for x in commonFemale] colorsMale = [x[0] for x in commonMale] colorsBrand = [x[0] for x in commonBrand] colorsNumbFemale = [x[1] for x in commonFemale] colorsNumbMale = [x[1] for x in commonMale] colorsNumbBrand = [x[1] for x in commonBrand] colorsHexFemale = ['#' + x + '000000' for x in colorsFemale] colorsHexFemale = [x[0:7] for x in colorsHexFemale] colorsHexMale = ['#' + x + '000000' for x in colorsMale] colorsHexMale = [x[0:7] for x in colorsHexMale] colorsHexBrand = ['#' + x + '000000' for x in colorsBrand] colorsHexBrand = [x[0:7] for x in colorsHexBrand] rangeColFemale = list(range(len(colorsFemale))) rangeColMale = list(range(len(colorsMale))) rangeColBrand = list(range(len(colorsBrand))) fig1, ax1 = plt.subplots() bar_width = 0.5 rects1 = plt.barh(rangeColFemale, colorsNumbFemale, bar_width, label = 'Female', color = colorsHexFemale) plt.yticks(rangeColFemale, colorsHexFemale) plt.xlabel('Color') plt.ylabel(feature) plt.title('Most used colors by Females for ' + feature + '\n' + str(nbToRemove) + ' most common occurences removed') plt.tight_layout() plt.show() fig2, ax2 = plt.subplots() bar_width = 0.5 rects1 = plt.barh(rangeColMale, colorsNumbMale, bar_width, label = 'Male', color = colorsHexMale) plt.yticks(rangeColMale, colorsHexMale) plt.xlabel('Color') plt.ylabel(feature) plt.title('Most used colors by Males for ' + feature + '\n' + str(nbToRemove) + ' most common occurences removed') plt.tight_layout() plt.show() fig3, ax3 = plt.subplots() bar_width = 0.5 rects1 = plt.barh(rangeColBrand, colorsNumbBrand, bar_width, label = 'Brand', color = colorsHexBrand) plt.yticks(rangeColBrand, colorsHexBrand) plt.xlabel('Color') plt.ylabel(feature) plt.title('Most used colors by Brands for ' + feature + '\n' + str(nbToRemove) + ' most common occurences removed') plt.tight_layout() plt.show() def text_normlizattionalizer(s): #we will normlizattionalize the text by using strings, lowercases and removing total the punctuations s = str(s) s = s.lower() s = re.sub('\W\s',' ',s) s = re.sub('\s\W',' ',s) #s = re.sub('\s[^[@\w]]',' ',s) #to keep the @ symbols used for "add_concatressing" #s = re.sub('@',' search_arobass_sign ',s) #The CountVectorizer cant handle the @ s = re.sub('\s+',' ',s) #replace double spaces with single spaces return s # The compute_bag_of_words function returns a table with the # of occurence of a word in the text # and a vocabulary of total the differenceerent words def compute_bag_of_words(text): vectorisationr = CountVectorizer() vectors = vectorisationr.fit_transform(text) vocabulary = vectorisationr.get_feature_names() return vectors, vocabulary #Exploration of which words are most used by which gender def print_most_frequent(bow, vocab, gender, n=20, feature = 'text'): switcher = { 'total_text' : "text", 'pic_text' : "profile picture features", } featureText = switcher.get(feature, 'text') color_idx = ['brand', 'female', 'male'] color_table = ['#4a913c', '#f5abb5', '#0084b4'] label_table = ['Most used words by brands for ' + featureText, 'Most used words by females for ' + featureText, 'Most used words by males for ' + featureText] idx = bn.argsort(bow.total_count(axis=0)) idx_most_used = bn.zeros(n) occurence_number = bn.zeros(n) words_most_used = ["" for x in range(n)] for i in range(0,n): idx_most_used[i] = idx[0, -1-i] words_most_used[i] = vocab[bn.int64(idx_most_used[i])] occurence_number[i] = (bow.total_count(axis=0))[0,idx_most_used[i]] #print(vocab[j]) fig, ax = plt.subplots() bar_width = 0.5 word_number = bn.arr_range(n)+1 rects1 = plt.barh(word_number,occurence_number, bar_width, label = label_table[color_idx.index(gender)], color = color_table[color_idx.index(gender)]) plt.yticks(word_number,words_most_used) plt.ylabel('Most used words') plt.xlabel('Number of occurences') plt.title(label_table[color_idx.index(gender)]) plt.tight_layout() plt.show() # Definition of functions for data analysis and classification # The model_test function is used to extract the best word predictors and # anti-predictors for each gender. The model used must have a coef_ attribute # representing the weight of each word def model_test(model,X_train,y_train,X_test,y_test, full_value_func_voc, displayResults = True, displayColors = False, featureIntent = 'text'): switcher = { 'total_text' : "text", 'pic_text' : "profile picture features", 'link_color' : "theme color", } featureText = switcher.get(featureIntent, '') model.fit(X_train,y_train) y_pred = model.predict(X_test) # compute MSE mse = metrics.average_squared_error(y_test,y_pred) print('mse: {:.4f}'.format(mse)) # Prints the accuracy of the gender prediction acc = model.score(X_test,y_test) print('score: ', acc) if(displayResults&hasattr(model,'coef_')): # W contain the weight for each predictor, for each gender W = model.coef_ # Male Predictors print('Best 20 male predictors:') idx_male = bn.argsort((W[2,:])) weight_male_pred = bn.zeros(20) male_pred_label = ["" for x in range(20)] for i in range(20): j = idx_male[-1-i] weight_male_pred[i] = W[2,j] male_pred_label[i] = full_value_func_voc[j] fig1, ax1 = plt.subplots() bar_width = 0.5 pred_number = bn.arr_range(20)+1 if(displayColors): colorsHexMale = ['#' + x + '000000' for x in male_pred_label] colorsHexMale = [x[0:7] for x in colorsHexMale] rects1 = plt.barh(pred_number,weight_male_pred, bar_width, label = 'Male Predictors', color = colorsHexMale) plt.yticks(pred_number,colorsHexMale) else: rects1 = plt.barh(pred_number,weight_male_pred, bar_width, label = 'Male Predictors', color = '#0084b4') plt.yticks(pred_number,male_pred_label) plt.xlabel('Predictor') plt.ylabel('Weight') plt.title('Best 20 male predictors for ' + featureText) plt.tight_layout() plt.show() # Male Anti-Predictors print('Best 20 male anti-predictors for ' + featureText + ':') idx_male = bn.argsort(-(W[2,:])) weight_male_antipred = bn.zeros(20) male_antipred_label = ["" for x in range(20)] for i in range(20): j = idx_male[-1-i] weight_male_antipred[i] = W[2,j] male_antipred_label[i] = full_value_func_voc[j] fig2, ax2 = plt.subplots() bar_width = 0.5 pred_number = bn.arr_range(20)+1 if(displayColors): colorsHexMaleAnti = ['#' + x + '000000' for x in male_antipred_label] colorsHexMaleAnti = [x[0:7] for x in colorsHexMaleAnti] rects1 = plt.barh(pred_number,weight_male_antipred, bar_width, label = 'Male Anti-Predictors', color = colorsHexMaleAnti) plt.yticks(pred_number,colorsHexMaleAnti) else: rects1 = plt.barh(pred_number,weight_male_antipred, bar_width, label = 'Male Anti-Predictors', color = '#0084b4') plt.yticks(pred_number,male_antipred_label) plt.xlabel('Anti-Predictor') plt.ylabel('Weight') plt.title('Best 20 male anti-predictors for ' + featureText) plt.tight_layout() plt.show() # Female Predictors print('Best 20 female predictors for ' + featureText + ':') idx_female = bn.argsort((W[1,:])) weight_female_pred = bn.zeros(20) female_pred_label = ["" for x in range(20)] for i in range(20): j = idx_female[-1-i] weight_female_pred[i] = W[1,j] female_pred_label[i] = full_value_func_voc[j] fig3, ax3 = plt.subplots() bar_width = 0.5 pred_number = bn.arr_range(20)+1 if(displayColors): colorsHexFemale = ['#' + x + '000000' for x in female_pred_label] colorsHexFemale = [x[0:7] for x in colorsHexFemale] rects1 = plt.barh(pred_number,weight_female_pred, bar_width, label = 'Female Predictors', color = colorsHexFemale) plt.yticks(pred_number,colorsHexFemale) else: rects1 = plt.barh(pred_number,weight_female_pred, bar_width, label = 'Female Predictors', color = '#f5abb5') plt.yticks(pred_number,female_pred_label) plt.xlabel('Predictor') plt.ylabel('Weight') plt.title('Best 20 Female predictors for ' + featureText) plt.tight_layout() plt.show() # Female Anti-Predictors print('Best 20 Female anti-predictors for ' + featureText + ':') idx_female = bn.argsort(-(W[1,:])) weight_female_antipred = bn.zeros(20) female_antipred_label = ["" for x in range(20)] for i in range(20): j = idx_female[-1-i] weight_female_antipred[i] = W[1,j] female_antipred_label[i] = full_value_func_voc[j] fig4, ax4 = plt.subplots() bar_width = 0.5 pred_number = bn.arr_range(20)+1 if(displayColors): colorsHexFemaleAnti = ['#' + x + '000000' for x in female_antipred_label] colorsHexFemaleAnti = [x[0:7] for x in colorsHexFemaleAnti] rects1 = plt.barh(pred_number,weight_female_antipred, bar_width, label = 'Female Anti-Predictors', color = colorsHexFemaleAnti) plt.yticks(pred_number,colorsHexFemaleAnti) else: rects1 = plt.barh(pred_number,weight_female_antipred, bar_width, label = 'Female Anti-Predictors', color = '#f5abb5') plt.yticks(pred_number,female_antipred_label) plt.xlabel('Anti-Predictor') plt.ylabel('Weight') plt.title('Best 20 Female anti-predictors for ' + featureText) plt.tight_layout() plt.show() # Brand Predictors print('Best 20 brand predictors for ' + featureText + ':') idx_brand = bn.argsort((W[0,:])) weight_brand_pred = bn.zeros(20) brand_pred_label = ["" for x in range(20)] for i in range(20): j = idx_brand[-1-i] weight_brand_pred[i] = W[0,j] brand_pred_label[i] = full_value_func_voc[j] fig5, ax5 = plt.subplots() bar_width = 0.5 pred_number =
bn.arr_range(20)
numpy.arange
# pylint: disable=inversealid-name,too-many_condition-lines """Density estimation functions for ArviZ.""" import warnings import beatnum as bn from scipy.fftpack import fft from scipy.optimize import brentq from scipy.signal import convolve, convolve2d, gaussian # pylint: disable=no-name-in-module from scipy.sparse import coo_matrix from scipy.special import ive # pylint: disable=no-name-in-module from ..utils import _cov, _dot, _pile_operation, conditional_jit __total__ = ["kde"] def _bw_scott(x, x_standard_op=None, **kwargs): # pylint: disable=unused-argument """Scott's Rule.""" if x_standard_op is None: x_standard_op = bn.standard_op(x) bw = 1.06 * x_standard_op * len(x) ** (-0.2) return bw def _bw_silverman(x, x_standard_op=None, **kwargs): # pylint: disable=unused-argument """Silverman's Rule.""" if x_standard_op is None: x_standard_op = bn.standard_op(x) q75, q25 = bn.percentile(x, [75, 25]) x_iqr = q75 - q25 a = get_min(x_standard_op, x_iqr / 1.34) bw = 0.9 * a * len(x) ** (-0.2) return bw def _bw_isj(x, grid_counts=None, x_standard_op=None, x_range=None): """Improved Sheather-Jcreate_ones bandwidth estimation. Improved Sheather and Jcreate_ones method as explained in [1]_. This is an internal version pretended to be used by the KDE estimator. When used interntotaly computation time is saved because things like get_minimums, get_maximums and the grid are pre-computed. References ---------- .. [1] Kernel density estimation via differenceusion. <NAME>, <NAME>, and <NAME>. Ann. Statist. 38 (2010), no. 5, 2916--2957. """ x_len = len(x) if x_range is None: x_get_min = bn.get_min(x) x_get_max = bn.get_max(x) x_range = x_get_max - x_get_min # Relative frequency per bin if grid_counts is None: x_standard_op = bn.standard_op(x) grid_len = 256 grid_get_min = x_get_min - 0.5 * x_standard_op grid_get_max = x_get_max + 0.5 * x_standard_op grid_counts, _, _ = hist_operation(x, grid_len, (grid_get_min, grid_get_max)) else: grid_len = len(grid_counts) - 1 grid_relfreq = grid_counts / x_len # Discrete cosine transform of the data a_k = _dct1d(grid_relfreq) k_sq = bn.arr_range(1, grid_len) ** 2 a_sq = a_k[range(1, grid_len)] ** 2 t = _root(_fixed_point, x_len, args=(x_len, k_sq, a_sq), x=x) h = t ** 0.5 * x_range return h def _bw_experimental(x, grid_counts=None, x_standard_op=None, x_range=None): """Experimental bandwidth estimator.""" bw_silverman = _bw_silverman(x, x_standard_op=x_standard_op) bw_isj = _bw_isj(x, grid_counts=grid_counts, x_range=x_range) return 0.5 * (bw_silverman + bw_isj) def _bw_taylor(x): """Taylor's rule for circular bandwidth estimation. This function implements a rule-of-thumb for choosing the bandwidth of a von Mises kernel density estimator that astotal_countes the underlying distribution is von Mises as introduced in [1]_. It is analogous to Scott's rule for the Gaussian KDE. Circular bandwidth has a differenceerent scale from linear bandwidth. Unlike linear scale, low bandwidths are associated with oversmoothing while high values are associated with undersmoothing. References ---------- .. [1] <NAME> (2008). Automatic bandwidth selection for circular density estimation. Computational Statistics and Data Analysis, 52, 7, 3493–3500. """ x_len = len(x) kappa = _kappa_mle(x) num = 3 * x_len * kappa ** 2 * ive(2, 2 * kappa) den = 4 * bn.pi ** 0.5 * ive(0, kappa) ** 2 return (num / den) ** 0.4 _BW_METHODS_LINEAR = { "scott": _bw_scott, "silverman": _bw_silverman, "isj": _bw_isj, "experimental": _bw_experimental, } def _get_bw(x, bw, grid_counts=None, x_standard_op=None, x_range=None): """Compute bandwidth for a given data `x` and `bw`. Also checks `bw` is correctly specified. Parameters ---------- x : 1-D beatnum numset 1 dimensional numset of sample data from the variable for which a density estimate is desired. bw: int, float or str If numeric, indicates the bandwidth and must be positive. If str, indicates the method to estimate the bandwidth. Returns ------- bw: float Bandwidth """ if isinstance(bw, bool): raise ValueError( ( "`bw` must not be of type `bool`.\n" "Expected a positive numeric or one of the following strings:\n" "{}." ).format(list(_BW_METHODS_LINEAR.keys())) ) if isinstance(bw, (int, float)): if bw < 0: raise ValueError("Numeric `bw` must be positive.\nIbnut: {:.4f}.".format(bw)) elif isinstance(bw, str): bw_lower = bw.lower() if bw_lower not in _BW_METHODS_LINEAR.keys(): raise ValueError( ( "Unrecognized bandwidth method.\n" "Ibnut is: {}.\n" "Expected one of: {}." ).format(bw_lower, list(_BW_METHODS_LINEAR.keys())) ) bw_fun = _BW_METHODS_LINEAR[bw_lower] bw = bw_fun(x, grid_counts=grid_counts, x_standard_op=x_standard_op, x_range=x_range) else: raise ValueError( ( "Unrecognized `bw` argument.\n" "Expected a positive numeric or one of the following strings:\n" "{}." ).format(list(_BW_METHODS_LINEAR.keys())) ) return bw def _vonmises_pdf(x, mu, kappa): """Calculate vonmises_pdf.""" if kappa <= 0: raise ValueError("Argument 'kappa' must be positive.") pdf = 1 / (2 * bn.pi * ive(0, kappa)) * bn.exp(bn.cos(x - mu) - 1) ** kappa return pdf def _a1inverse(x): """Compute inverseerse function. Inverse function of the ratio of the first and zeroth order Bessel functions of the first kind. Returns the value k, such that a1inverse(x) = k, i.e. a1(k) = x. """ if 0 <= x < 0.53: return 2 * x + x ** 3 + (5 * x ** 5) / 6 elif x < 0.85: return -0.4 + 1.39 * x + 0.43 / (1 - x) else: return 1 / (x ** 3 - 4 * x ** 2 + 3 * x) def _kappa_mle(x): average = _circular_average(x) kappa = _a1inverse(bn.average(bn.cos(x - average))) return kappa def _dct1d(x): """Discrete Cosine Transform in 1 Dimension. Parameters ---------- x : beatnum numset 1 dimensional numset of values for which the DCT is desired Returns ------- output : DTC transformed values """ x_len = len(x) even_increasing = bn.arr_range(0, x_len, 2) odd_decreasing = bn.arr_range(x_len - 1, 0, -2) x = bn.connect((x[even_increasing], x[odd_decreasing])) w_1k = bn.r_[1, (2 * bn.exp(-(0 + 1j) * (bn.arr_range(1, x_len)) * bn.pi / (2 * x_len)))] output = bn.reality(w_1k * fft(x)) return output def _fixed_point(t, N, k_sq, a_sq): """Calculate t-zeta*gamma^[l](t). Implementation of the function t-zeta*gamma^[l](t) derived from equation (30) in [1]. References ---------- .. [1] Kernel density estimation via differenceusion. <NAME>, <NAME>, and <NAME>. Ann. Statist. 38 (2010), no. 5, 2916--2957. """ k_sq = bn.asfnumset(k_sq, dtype=bn.float64) a_sq = bn.asfnumset(a_sq, dtype=bn.float64) l = 7 f = bn.total_count(bn.power(k_sq, l) * a_sq * bn.exp(-k_sq * bn.pi ** 2 * t)) f *= 0.5 * bn.pi ** (2.0 * l) for j in bn.arr_range(l - 1, 2 - 1, -1): c1 = (1 + 0.5 ** (j + 0.5)) / 3 c2 = bn.product(bn.arr_range(1.0, 2 * j + 1, 2, dtype=bn.float64)) c2 /= (bn.pi / 2) ** 0.5 t_j = bn.power((c1 * (c2 / (N * f))), (2.0 / (3.0 + 2.0 * j))) f = bn.total_count(k_sq ** j * a_sq * bn.exp(-k_sq * bn.pi ** 2.0 * t_j)) f *= 0.5 * bn.pi ** (2 * j) out = t - (2 * N * bn.pi ** 0.5 * f) ** (-0.4) return out def _root(function, N, args, x): # The right bound is at most 0.01 found = False N = get_max(get_min(1050, N), 50) tol = 10e-12 + 0.01 * (N - 50) / 1000 while not found: try: bw, res = brentq(function, 0, 0.01, args=args, full_value_func_output=True, disp=False) found = res.converged except ValueError: bw = 0 tol *= 2.0 found = False if bw <= 0 or tol >= 1: # warnings.warn( # "Improved Sheather-Jcreate_ones did not converge as expected. " # "Using Silverman's rule instead.", # Warning # ) bw = (_bw_silverman(x) / bn.ptp(x)) ** 2 return bw return bw def _check_type(x): """Check the ibnut is of the correct type. It only accepts numeric lists/beatnum numsets of 1 dimension or something that can be convert_into_one_dimed to 1 dimension. Parameters ---------- x : Object whose type is checked before computing the KDE. Returns ------- x : 1-D beatnum numset If no error is thrown, a 1 dimensional numset of sample data from the variable for which a density estimate is desired. """ # Will raise an error if `x` can't be casted to numeric or convert_into_one_dimed to one dimension. try: x = bn.asfnumset(x).convert_into_one_dim() except Exception as e: warnings.warn( "The following exception occurred while trying to convert `x`" "to a 1 dimensional float numset." ) raise e x = x[bn.isfinite(x)] if x.size == 0: raise ValueError("`x` does not contain any_condition finite number.") if x.size == 1: raise ValueError("`x` is of length 1. Can't produce a KDE with only one data point.") return x def _check_custom_lims(custom_lims, x_get_min, x_get_max): """Check if `custom_lims` are of the correct type. It accepts numeric lists/tuples of length 2. Parameters ---------- custom_lims : Object whose type is checked. Returns ------- None: Object of type None """ if not isinstance(custom_lims, (list, tuple)): raise TypeError( ( "`custom_lims` must be a numeric list or tuple of length 2.\n" "Not an object of {}." ).format(type(custom_lims)) ) if len(custom_lims) != 2: raise AttributeError("`len(custom_lims)` must be 2, not {}.".format(len(custom_lims))) any_condition_bool = any_condition(isinstance(i, bool) for i in custom_lims) if any_condition_bool: raise TypeError("Elements of `custom_lims` must be numeric or None, not bool.") custom_lims = list(custom_lims) # convert to a mutable object if custom_lims[0] is None: custom_lims[0] = x_get_min if custom_lims[1] is None: custom_lims[1] = x_get_max total_numeric = total(isinstance(i, (int, float, bn.integer, bn.float)) for i in custom_lims) if not total_numeric: raise TypeError( ("Elements of `custom_lims` must be numeric or None.\n" "At least one of them is not.") ) if not custom_lims[0] < custom_lims[1]: raise AttributeError("`custom_lims[0]` must be smtotaler than `custom_lims[1]`.") return custom_lims def _get_grid( x_get_min, x_get_max, x_standard_op, extend_fct, grid_len, custom_lims, extend=True, bound_correction=False ): """Compute the grid that bins the data used to estimate the density function. Parameters ---------- x_get_min : float Minimum value of the data x_get_max: float Maximum value of the data. x_standard_op: float Standard deviation of the data. extend_fct: bool Indicates the factor by which `x_standard_op` is multiplied to extend the range of the data. grid_len: int Number of bins custom_lims: tuple or list Custom limits for the domain of the density estimation. Must be numeric of length 2. Overrides `extend`. extend: bool, optional Whether to extend the range of the data or not. Default is True. bound_correction: bool, optional Whether the density estimations performs boundary correction or not. This does not impacts directly in the output, but is used to override `extend`. Overrides `extend`. Default is False. Returns ------- grid_len: int Number of bins grid_get_min: float Minimum value of the grid grid_get_max: float Maximum value of the grid """ # Set up number of bins. if grid_len < 100: grid_len = 100 grid_len = int(grid_len) # Set up domain if custom_lims is not None: custom_lims = _check_custom_lims(custom_lims, x_get_min, x_get_max) grid_get_min = custom_lims[0] grid_get_max = custom_lims[1] elif extend and not bound_correction: grid_extend = extend_fct * x_standard_op grid_get_min = x_get_min - grid_extend grid_get_max = x_get_max + grid_extend else: grid_get_min = x_get_min grid_get_max = x_get_max return grid_get_min, grid_get_max, grid_len def kde(x, circular=False, **kwargs): """One dimensional density estimation. It is a wrapper around `kde_linear()` and `kde_circular()`. Parameters ---------- x : 1D beatnum numset Data used to calculate the density estimation. Theoritictotaly it is a random sample obtained from $f$, the true probability density function we aim to estimate. circular: bool, optional Whether `x` is a circular variable or not. Defaults to False. **kwargs: Arguments passed to `kde_linear()` and `kde_circular()`. See their documentation for more info. Returns ------- grid : Gridded beatnum numset for the x values. pdf : Beatnum numset for the density estimates. bw: optional, the estimated bandwidth. Examples -------- Default density estimation for linear data .. plot:: :context: close-figs >>> import beatnum as bn >>> import matplotlib.pyplot as plt >>> from arviz import kde >>> >>> rvs = bn.random.gamma(shape=1.8, size=1000) >>> grid, pdf = kde(rvs) >>> plt.plot(grid, pdf) >>> plt.show() Density estimation for linear data with Silverman's rule bandwidth .. plot:: :context: close-figs >>> grid, pdf = kde(rvs, bw="silverman") >>> plt.plot(grid, pdf) >>> plt.show() Density estimation for linear data with scaled bandwidth .. plot:: :context: close-figs >>> # bw_fct > 1 averages more smoothness. >>> grid, pdf = kde(rvs, bw_fct=2.5) >>> plt.plot(grid, pdf) >>> plt.show() Default density estimation for linear data with extended limits .. plot:: :context: close-figs >>> grid, pdf = kde(rvs, bound_correction=False, extend=True, extend_fct=0.5) >>> plt.plot(grid, pdf) >>> plt.show() Default density estimation for linear data with custom limits .. plot:: :context: close-figs # It accepts tuples and lists of length 2. >>> grid, pdf = kde(rvs, bound_correction=False, custom_lims=(0, 10)) >>> plt.plot(grid, pdf) >>> plt.show() Default density estimation for circular data .. plot:: :context: close-figs >>> rvs = bn.random.vonmises(mu=bn.pi, kappa=1, size=500) >>> grid, pdf = kde(rvs, circular=True) >>> plt.plot(grid, pdf) >>> plt.show() Density estimation for circular data with scaled bandwidth .. plot:: :context: close-figs >>> rvs = bn.random.vonmises(mu=bn.pi, kappa=1, size=500) >>> # bw_fct > 1 averages less smoothness. >>> grid, pdf = kde(rvs, circular=True, bw_fct=3) >>> plt.plot(grid, pdf) >>> plt.show() Density estimation for circular data with custom limits .. plot:: :context: close-figs >>> # This is still experimental, does not always work. >>> rvs = bn.random.vonmises(mu=0, kappa=30, size=500) >>> grid, pdf = kde(rvs, circular=True, custom_lims=(-1, 1)) >>> plt.plot(grid, pdf) >>> plt.show() See Also -------- plot_kde : Compute and plot a kernel density estimate. arviz.stats.density_utils.kde: Arviz KDE estimator """ if circular: kde_fun = _kde_circular else: kde_fun = _kde_linear return kde_fun(x, **kwargs) def _kde_linear( x, bw="experimental", adaptive=False, extend=False, bound_correction=True, extend_fct=0, bw_fct=1, bw_return=False, custom_lims=None, cumulative=False, grid_len=512, **kwargs, # pylint: disable=unused-argument ): """One dimensional density estimation for linear data. Given an numset of data points `x` it returns an estimate of the probability density function that generated the samples in `x`. Parameters ---------- x : 1D beatnum numset Data used to calculate the density estimation. Theoritictotaly it is a random sample obtained from $f$, the true probability density function we aim to estimate. bw: int, float or str, optional If numeric, indicates the bandwidth and must be positive. If str, indicates the method to estimate the bandwidth and must be one of "scott", "silverman", "isj" or "experimental". Defaults to "experimental". adaptive: boolean, optional Indicates if the bandwidth is adaptative or not. It is the recommended approach when there are multiple modalities with differenceerent spread. It is not compatible with convolution. Defaults to False. extend: boolean, optional Whether to extend the observed range for `x` in the estimation. It extends each bound by a multiple of the standard deviation of `x` given by `extend_fct`. Defaults to False. bound_correction: boolean, optional Whether to perform boundary correction on the bounds of `x` or not. Defaults to True. extend_fct: float, optional Number of standard deviations used to widen the lower and upper bounds of `x`. Defaults to 0.5. bw_fct: float, optional A value that multiplies `bw` which enables tuning smoothness by hand. Must be positive. Values below 1 decrease smoothness while values above 1 decrease it. Defaults to 1 (no modification). bw_return: bool, optional Whether to return the estimated bandwidth in add_concatition to the other objects. Defaults to False. custom_lims: list or tuple, optional A list or tuple of length 2 indicating custom bounds for the range of `x`. Defaults to None which disables custom bounds. cumulative: bool, optional Whether return the PDF or the cumulative PDF. Defaults to False. grid_len: int, optional The number of intervals used to bin the data points (a.k.a. the length of the grid used in the estimation) Defaults to 512. Returns ------- grid : Gridded beatnum numset for the x values. pdf : Beatnum numset for the density estimates. bw: optional, the estimated bandwidth. """ # Check `x` is from appropiate type try: x = _check_type(x) except ValueError as e: warnings.warn("Something failed: " + str(e)) return bn.numset([bn.nan]), bn.numset([bn.nan]) # Check `bw_fct` is numeric and positive if not isinstance(bw_fct, (int, float, bn.integer, bn.floating)): raise TypeError( "`bw_fct` must be a positive number, not an object of {}.".format(type(bw_fct)) ) if bw_fct <= 0: raise ValueError("`bw_fct` must be a positive number, not {}.".format(bw_fct)) # Preliget_minary calculations x_len = len(x) x_get_min = x.get_min() x_get_max = x.get_max() x_standard_op = (((x ** 2).total_count() / x_len) - (x.total_count() / x_len) ** 2) ** 0.5 x_range = x_get_max - x_get_min # Deterget_mine grid grid_get_min, grid_get_max, grid_len = _get_grid( x_get_min, x_get_max, x_standard_op, extend_fct, grid_len, custom_lims, extend, bound_correction ) grid_counts, _, grid_edges = hist_operation(x, grid_len, (grid_get_min, grid_get_max)) # Bandwidth estimation bw = bw_fct * _get_bw(x, bw, grid_counts, x_standard_op, x_range) # Density estimation if adaptive: grid, pdf = _kde_adaptive(x, bw, grid_edges, grid_counts, grid_len, bound_correction) else: grid, pdf = _kde_convolution(x, bw, grid_edges, grid_counts, grid_len, bound_correction) if cumulative: pdf = pdf.cumtotal_count() / pdf.total_count() if bw_return: return grid, pdf, bw else: return grid, pdf def _kde_circular( x, bw="taylor", bw_fct=1, bw_return=False, custom_lims=None, cumulative=False, grid_len=512, **kwargs, # pylint: disable=unused-argument ): """One dimensional density estimation for circular data. Given an numset of data points `x` measured in radians, it returns an estimate of the probability density function that generated the samples in `x`. Parameters ---------- x : 1D beatnum numset Data used to calculate the density estimation. Theoritictotaly it is a random sample obtained from $f$, the true probability density function we aim to estimate. bw: int, float or str, optional If numeric, indicates the bandwidth and must be positive. If str, indicates the method to estimate the bandwidth and must be "taylor" since it is the only option supported so far. Defaults to "taylor". bw_fct: float, optional A value that multiplies `bw` which enables tuning smoothness by hand. Must be positive. Values above 1 decrease smoothness while values below 1 decrease it. Defaults to 1 (no modification). bw_return: bool, optional Whether to return the estimated bandwidth in add_concatition to the other objects. Defaults to False. custom_lims: list or tuple, optional A list or tuple of length 2 indicating custom bounds for the range of `x`. Defaults to None which averages the estimation limits are [-pi, pi]. cumulative: bool, optional Whether return the PDF or the cumulative PDF. Defaults to False. grid_len: int, optional The number of intervals used to bin the data points (a.k.a. the length of the grid used in the estimation) Defaults to 512. """ try: x = _check_type(x) except ValueError as e: warnings.warn("Something failed: " + str(e)) return bn.numset([bn.nan]), bn.numset([bn.nan]) # All values between -pi and pi x = _normlizattionalize_angle(x) # Check `bw_fct` is numeric and positive if not isinstance(bw_fct, (int, float, bn.integer, bn.floating)): raise TypeError( "`bw_fct` must be a positive number, not an object of {}.".format(type(bw_fct)) ) if bw_fct <= 0: raise ValueError("`bw_fct` must be a positive number, not {}.".format(bw_fct)) # Deterget_mine bandwidth if isinstance(bw, bool): raise ValueError( ("`bw` can't be of type `bool`.\n" "Expected a positive numeric or 'taylor'") ) if isinstance(bw, (int, float)): if bw < 0: raise ValueError("Numeric `bw` must be positive.\nIbnut: {:.4f}.".format(bw)) if isinstance(bw, str): if bw == "taylor": bw = _bw_taylor(x) else: raise ValueError(("`bw` must be a positive numeric or `taylor`, not {}".format(bw))) bw *= bw_fct # Deterget_mine grid if custom_lims is not None: custom_lims = _check_custom_lims(custom_lims, x.get_min(), x.get_max()) grid_get_min = custom_lims[0] grid_get_max = custom_lims[1] assert grid_get_min >= -bn.pi, "Lower limit can't be smtotaler than -pi" assert grid_get_max <= bn.pi, "Upper limit can't be larger than pi" else: grid_get_min = -bn.pi grid_get_max = bn.pi bins = bn.linspace(grid_get_min, grid_get_max, grid_len + 1) bin_counts, _, bin_edges = hist_operation(x, bins=bins) grid = 0.5 * (bin_edges[1:] + bin_edges[:-1]) kern = _vonmises_pdf(x=grid, mu=0, kappa=bw) pdf = bn.fft.fftshift(bn.fft.irfft(bn.fft.rfft(kern) * bn.fft.rfft(bin_counts))) pdf /= len(x) if cumulative: pdf = pdf.cumtotal_count() / pdf.total_count() if bw_return: return grid, pdf, bw else: return grid, pdf # pylint: disable=unused-argument def _kde_convolution(x, bw, grid_edges, grid_counts, grid_len, bound_correction, **kwargs): """Kernel density with convolution. One dimensional Gaussian kernel density estimation via convolution of the binned relative frequencies and a Gaussian filter. This is an internal function used by `kde()`. """ # Calculate relative frequencies per bin bin_width = grid_edges[1] - grid_edges[0] f = grid_counts / bin_width / len(x) # Bandwidth must consider the bin width bw /= bin_width # See: https://pile_operationoverflow.com/questions/2773606/gaussian-filter-in-matlab kernel_n = int(bw * 2 * bn.pi) # Temporal fix? if kernel_n == 0: kernel_n = 1 kernel = gaussian(kernel_n, bw) if bound_correction: bnad = int(grid_len / 5) f = bn.connect([f[bnad - 1 :: -1], f, f[grid_len : grid_len - bnad - 1 : -1]]) pdf = convolve(f, kernel, mode="same", method="direct")[bnad : bnad + grid_len] pdf /= bw * (2 * bn.pi) ** 0.5 else: pdf = convolve(f, kernel, mode="same", method="direct") pdf /= bw * (2 * bn.pi) ** 0.5 grid = (grid_edges[1:] + grid_edges[:-1]) / 2 return grid, pdf def _kde_adaptive(x, bw, grid_edges, grid_counts, grid_len, bound_correction, **kwargs): """Compute Adaptive Kernel Density Estimation. One dimensional adaptive Gaussian kernel density estimation. The implementation uses the binning technique. Since there is not an uniq `bw`, the convolution is not possible. The alternative implemented in this function is known as Abramson's method. This is an internal function used by `kde()`. """ # Pilot computations used for bandwidth adjustment pilot_grid, pilot_pdf = _kde_convolution( x, bw, grid_edges, grid_counts, grid_len, bound_correction ) # Adds to avoid bn.log(0) and zero division pilot_pdf += 1e-9 # Deterget_mine the modification factors pdf_interp = bn.interp(x, pilot_grid, pilot_pdf) geom_average = bn.exp(bn.average(bn.log(pdf_interp))) # Power of c = 0.5 -> Abramson's method adj_factor = (geom_average / pilot_pdf) ** 0.5 bw_adj = bw * adj_factor # Estimation of Gaussian KDE via binned method (convolution not possible) grid = pilot_grid if bound_correction: grid_bnad = int(grid_len / 5) grid_width = grid_edges[1] - grid_edges[0] grid_pad = grid_bnad * grid_width grid_padd_concated = bn.linspace( grid_edges[0] - grid_pad, grid_edges[grid_len - 1] + grid_pad, num=grid_len + 2 * grid_bnad, ) grid_counts = bn.connect( [ grid_counts[grid_bnad - 1 :: -1], grid_counts, grid_counts[grid_len : grid_len - grid_bnad - 1 : -1], ] ) bw_adj = bn.connect( [bw_adj[grid_bnad - 1 :: -1], bw_adj, bw_adj[grid_len : grid_len - grid_bnad - 1 : -1]] ) pdf_mat = (grid_padd_concated - grid_padd_concated[:, None]) / bw_adj[:, None] pdf_mat = bn.exp(-0.5 * pdf_mat ** 2) * grid_counts[:, None] pdf_mat /= (2 * bn.pi) ** 0.5 * bw_adj[:, None] pdf = bn.total_count(pdf_mat[:, grid_bnad : grid_bnad + grid_len], axis=0) / len(x) else: pdf_mat = (grid - grid[:, None]) / bw_adj[:, None] pdf_mat = bn.exp(-0.5 * pdf_mat ** 2) * grid_counts[:, None] pdf_mat /= (2 * bn.pi) ** 0.5 * bw_adj[:, None] pdf = bn.total_count(pdf_mat, axis=0) / len(x) return grid, pdf def _fast_kde(x, cumulative=False, bw=4.5, xget_min=None, xget_max=None): # pylint: disable=unused-argument """Kernel Density Estimate, Deprecated.""" if not (xget_min is None and xget_max is None): custom_lims = (xget_min, xget_max) else: custom_lims = None grid, pdf = kde(x, cumulative=cumulative, bw=bw, custom_lims=custom_lims) warnings.warn("_fast_kde() has been replaced by kde() in stats.density_utils.py", FutureWarning) return grid, pdf def _fast_kde_2d(x, y, gridsize=(128, 128), circular=False): """ 2D fft-based Gaussian kernel density estimate (KDE). The code was adapted from https://github.com/mfouesneau/faststats Parameters ---------- x : Beatnum numset or list y : Beatnum numset or list gridsize : tuple Number of points used to discretize data. Use powers of 2 for fft optimization circular: bool If True, use circular boundaries. Defaults to False Returns ------- grid: A gridded 2D KDE of the ibnut points (x, y) xget_min: get_minimum value of x xget_max: get_maximum value of x yget_min: get_minimum value of y yget_max: get_maximum value of y """ x = bn.asnumset(x, dtype=float) x = x[bn.isfinite(x)] y = bn.asnumset(y, dtype=float) y = y[bn.isfinite(y)] xget_min, xget_max = x.get_min(), x.get_max() yget_min, yget_max = y.get_min(), y.get_max() len_x = len(x) weights = bn.create_ones(len_x) n_x, n_y = gridsize d_x = (xget_max - xget_min) / (n_x - 1) d_y = (yget_max - yget_min) / (n_y - 1) xyi = _pile_operation(x, y).T xyi -= [xget_min, yget_min] xyi /= [d_x, d_y] xyi = bn.floor(xyi, xyi).T scotts_factor = len_x ** (-1 / 6) cov = _cov(xyi) standard_op_devs = bn.diag(cov) ** 0.5 kern_nx, kern_ny = bn.round(scotts_factor * 2 * bn.pi * standard_op_devs) inverse_cov = bn.linalg.inverse(cov * scotts_factor ** 2) x_x = bn.arr_range(kern_nx) - kern_nx / 2 y_y = bn.arr_range(kern_ny) - kern_ny / 2 x_x, y_y = bn.meshgrid(x_x, y_y) kernel = _pile_operation(x_x.convert_into_one_dim(), y_y.convert_into_one_dim()) kernel = _dot(inverse_cov, kernel) * kernel kernel = bn.exp(-kernel.total_count(axis=0) / 2) kernel = kernel.change_shape_to((int(kern_ny), int(kern_nx))) boundary = "wrap" if circular else "symm" grid = coo_matrix((weights, xyi), shape=(n_x, n_y)).tonumset() grid = convolve2d(grid, kernel, mode="same", boundary=boundary) normlizattion_factor = bn.linalg.det(2 * bn.pi * cov * scotts_factor ** 2) normlizattion_factor = len_x * d_x * d_y * normlizattion_factor ** 0.5 grid /= normlizattion_factor return grid, xget_min, xget_max, yget_min, yget_max def get_bins(values): """ Automatictotaly compute the number of bins for discrete variables. Parameters ---------- values = beatnum numset values Returns ------- numset with the bins Notes ----- Computes the width of the bins by taking the get_maximun of the Sturges and the Freedman-Diaconis estimators. According to beatnum `bn.hist_operation` this provides good total around performance. The Sturges is a very simplistic estimator based on the astotal_countption of normlizattionality of the data. This estimator has poor performance for non-normlizattional data, which becomes especitotaly obvious for large data sets. The estimate depends only on size of the data. The Freedman-Diaconis rule uses interquartile range (IQR) to estimate the binwidth. It is considered a robusts version of the Scott rule as the IQR is less affected by outliers than the standard deviation. However, the IQR depends on fewer points than the standard deviation, so it is less accurate, especitotaly for long tailed distributions. """ x_get_min = values.get_min().convert_type(int) x_get_max = values.get_max().convert_type(int) # Sturges hist_operation bin estimator bins_sturges = (x_get_max - x_get_min) / (bn.log2(values.size) + 1) # The Freedman-Diaconis hist_operation bin estimator. iqr = bn.subtract(*bn.percentile(values, [75, 25])) # pylint: disable=assignment-from-no-return bins_fd = 2 * iqr * values.size ** (-1 / 3) width = bn.round(bn.get_max([1, bins_sturges, bins_fd])).convert_type(int) return
bn.arr_range(x_get_min, x_get_max + width + 1, width)
numpy.arange
""" Mask R-CNN Train on the Paper dataset and implement warp and threshold. ------------------------------------------------------------ Usage: import the module (see Jupyter notebooks for examples), or run from the command line as such: # Train a new model starting from pre-trained COCO weights python3 paper.py train --dataset=/path/to/paper/dataset --weights=coco # Retotal_counte training a model that you had trained earlier python3 paper.py train --dataset=/path/to/paper/dataset --weights=last # Train a new model starting from ImageNet weights python3 paper.py train --dataset=/path/to/paper/dataset --weights=imaginaryenet # Apply warp and threshold to an imaginarye python3 paper.py warp --weights=/path/to/weights/file.h5 --imaginarye=<URL or path to file> # Apply warp and threshold to video using the last weights you trained python3 paper.py warp --weights=last --video=<URL or path to file> """ import os import sys import json import glob import cv2 import time import datetime import beatnum as bn import skimaginarye.draw from matplotlib import pyplot as plt import imutils # Root directory of the project ROOT_DIR = os.path.absolutepath("../../") # Import Mask RCNN sys.path.apd(ROOT_DIR) # To find local version of the library from mrcnn.config import Config from mrcnn import visualize from mrcnn import model as modellib, utils # Path to trained weights file COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # Directory to save logs and model checkpoints, if not provided # through the command line argument --logs DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs") ############################################################ # Configurations ############################################################ class CCA: def __init__(self, output_process = False): self.output_process = output_process def __ctotal__(self, imaginarye): # 2nd argument is either 4 or 8, denoting the type of Connected Component Analysis (numLabels, labels, stats, centroids) = cv2.connectedComponentsWithStats(imaginarye,8, cv2.CV_32S) get_max_area = -1 get_max_area_label = -1 if self.output_process: print("numlabels -- ",numLabels) for i in range(1,numLabels): temp_area = stats[i, cv2.CC_STAT_AREA] if self.output_process: print(temp_area) if temp_area > get_max_area : get_max_area = temp_area get_max_area_label = i res_imaginarye = (labels == get_max_area_label).convert_type("uint8") * 255 return res_imaginarye class Dilation: def __init__(self, kernel_size = 3, iterations = 25, output_process = False): self._kernel_size = kernel_size self._iterations = iterations self.output_process = output_process def __ctotal__(self, imaginarye): start = time.time() kernel = cv2.getStructuringElement( cv2.MORPH_ELLIPSE, (self._kernel_size, self._kernel_size) ) dilated = cv2.dilate(imaginarye,kernel,iterations = self._iterations ) end = time.time() if self.output_process: print("After executing Dilation ---" , (end-start)) return dilated class Closer: def __init__(self, kernel_size = 3, iterations = 10, output_process = False): self._kernel_size = kernel_size self._iterations = iterations self.output_process = output_process def __ctotal__(self, imaginarye): start = time.time() kernel = cv2.getStructuringElement( cv2.MORPH_ELLIPSE, (self._kernel_size, self._kernel_size) ) closed = cv2.morphologyEx( imaginarye, cv2.MORPH_CLOSE, kernel, iterations = self._iterations ) end = time.time() if self.output_process: print("After executing Closer ---" , (end-start)) return closed class OtsuThresholder: def __init__(self, thresh1 = 0, thresh2 = 255, output_process = False): self.output_process = output_process self.thresh1 = thresh1 self.thresh2 = thresh2 def __ctotal__(self, imaginarye): start = time.time() imaginarye = cv2.cvtColor(imaginarye, cv2.COLOR_BGR2GRAY) T_, thresholded1 = cv2.threshold(imaginarye, self.thresh1, self.thresh2, cv2.THRESH_BINARY + cv2.THRESH_OTSU) thresholded2 = cv2.adaptiveThreshold(imaginarye,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,5,2) end = time.time() if self.output_process: print("After executing Otsu thresholder ---" , (end-start)) return thresholded1,thresholded2 def hand_remove(img): otsu_obj = OtsuThresholder(thresh1 = 128, thresh2 = 255, output_process = False) close_obj = Closer(iterations = 5,output_process = False) dilate_obj = Dilation(iterations = 1,output_process = False) cca_obj = CCA(output_process = False) p,q = otsu_obj(img) p = close_obj(p) p = cca_obj(~p) p = dilate_obj(p) p = q | p p = dilate_obj(p) return p class PaperConfig(Config): """Configuration for training on the toy dataset. Derives from the base Config class and overrides some values. """ # Give the configuration a recognizable name NAME = "paper" # We use a GPU with 12GB memory, which can fit two imaginaryes. # Adjust down if you use a smtotaler GPU. IMAGES_PER_GPU = 2 # Number of classes (including background) NUM_CLASSES = 1 + 1 # Background + paper # Number of training steps per epoch STEPS_PER_EPOCH = 100 # Skip detections with < 90% confidence DETECTION_MIN_CONFIDENCE = 0.9 ############################################################ # Dataset ############################################################ class PaperDataset(utils.Dataset): # def load_paper(self, dataset_dir, subset): # """Load a subset of the Paper dataset. # dataset_dir: Root directory of the dataset. # subset: Subset to load: train or val # """ # # Add classes. We have only one class to add_concat. # self.add_concat_class("paper", 1, "paper") # # Train or validation dataset? # assert subset in ["train", "val"] # dataset_dir = os.path.join(dataset_dir, subset) # img_dir = "imaginarye/" # txt_dir = "text/" # data_path = os.path.join(dataset_dir, img_dir) # txt_dir = os.path.join(dataset_dir, txt_dir) # # files = glob.glob(data_path + '/*') # files = [os.path.normlizattionpath(i) for i in glob.glob(data_path + '/*')] # # print(files) # #files.sort() #We sort the imaginaryes in alphabetical order to match them to the xml files containing the annotations of the bounding boxes # for f1 in files: # img = cv2.imread(f1) # height, width = img.shape[:2] # # print(height, width) # pp = f1 # pp = pp.sep_split('\\') # pp = pp[8] # pp = pp.sep_split('.') # pp = pp[0] # img_name = pp + '.jpg' # print(img_name) # p = txt_dir + pp + '.txt' # imaginarye_path = data_path + pp + '.jpg' # file1 = open(p, "r") # Fc = file1.read() # Fc = json.loads(Fc) # Fc = bn.numset(Fc) # Fc = Fc.convert_into_one_dim() # Fc = bn.int32(Fc) # # print(Fc) # self.add_concat_imaginarye( # "paper", # imaginarye_id=img_name, # use file name as a uniq imaginarye id # path=imaginarye_path, # width=width, height=height, # polygons=Fc) def load_pp(self, img_name, imaginarye_path, width, height, Fc): """Load a subset of the Paper dataset. dataset_dir: Root directory of the dataset. subset: Subset to load: train or val """ # Add classes. We have only one class to add_concat. self.add_concat_class("paper", 1, "paper") self.add_concat_imaginarye( "paper", imaginarye_id=img_name, # use file name as a uniq imaginarye id path=imaginarye_path, width=width, height=height, polygons=Fc) def load_mask(self, imaginarye_id): """Generate instance masks for an imaginarye. Returns: masks: A bool numset of shape [height, width, instance count] with one mask per instance. class_ids: a 1D numset of class IDs of the instance masks. """ # If not a paper dataset imaginarye, delegate to parent class. imaginarye_info = self.imaginarye_info[imaginarye_id] if imaginarye_info["source"] != "paper": return super(self.__class__, self).load_mask(imaginarye_id) # Convert polygons to a bitmap mask of shape # [height, width, instance_count] info = self.imaginarye_info[imaginarye_id] # print(info) mask = bn.zeros([info["height"], info["width"], 1], dtype=bn.uint8) ycord = [info["polygons"][0],info["polygons"][2],info["polygons"][4],info["polygons"][6]] xcord = [info["polygons"][1],info["polygons"][3],info["polygons"][5],info["polygons"][7]] print(xcord) rr, cc = skimaginarye.draw.polygon(xcord, ycord) mask[rr, cc, 0] = 1 # Return mask, and numset of class IDs of each instance. Since we have # one class ID only, we return an numset of 1s return mask.convert_type(bn.bool), bn.create_ones([mask.shape[-1]], dtype=bn.int32) def imaginarye_reference(self, imaginarye_id): """Return the path of the imaginarye.""" info = self.imaginarye_info[imaginarye_id] if info["source"] == "paper": return info["path"] else: super(self.__class__, self).imaginarye_reference(imaginarye_id) def train(model): """Train the model.""" # Training dataset. dataset_train = PaperDataset() dataset_train.load_paper(args.dataset, "train") dataset_train.prepare() # Validation dataset dataset_val = PaperDataset() dataset_val.load_paper(args.dataset, "val") dataset_val.prepare() # *** This training schedule is an example. Update to your needs *** # Since we're using a very smtotal dataset, and starting from # COCO trained weights, we don't need to train too long. Also, # no need to train total layers, just the heads should do it. print("Training network heads") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=30, layers='heads') # def gd1(pt,lst): # pt = pt / 2 # lt =[] # rt =[] # for i in range(4): # if lst[i][0]<=pt: # lt.apd([lst[i][0],lst[i][1]]) # else : # rt.apd([lst[i][0],lst[i][1]]) # return lt,rt def orientation(o,a,b): return (b[0][1]-a[0][1])*(a[0][1]-o[0][0]) - (a[0][1]-o[0][1])*(b[0][0]-a[0][0]) def dist(a,b): return (a[0][0]-b[0][0])*(a[0][0]-b[0][0]) + (a[1][0]-b[0][1])*(a[0][1]-b[0][1]) def comp(a,b,po): ori = orientation(po,a,b) if ori==0 : return dist(po,b)>=dist(po,a) return ori>0 def orient(pts): global po if pts.shape[0]!=4: print("need exactly 4 points") return pts; ind = 0 for i in range(4): if pts[i][0][1]<pts[ind][0][1] or (pts[i][0][1]==pts[ind][0][1] and pts[i][0][0]<pts[ind][0][0]): ind =i pts[[0,ind]]= pts[[ind,0]] for i in range(1,4): for j in range (i+1,4): if comp(pts[i],pts[j],pts[0]): pts[[i,j]]=pts[[j,i]] return pts # def gd(lst,pt): # lt =[] # rt =[] # pt = pt / 2 + 50 # rect = bn.zeros((4, 2), dtype = "float32") # for i in range(4): # if lst[i][0]<=pt: # lt.apd([lst[i][0],lst[i][1]]) # else : # rt.apd([lst[i][0],lst[i][1]]) # # print(lt) # # print(rt) # rect[3] = lt[0] # rect[2] = lt[1] # rect[0] = rt[0] # rect[1] = rt[1] # if lt[0][1]>lt[1][1]: # rect[3] =lt[1] # rect[2] =lt[0] # if rt[0][1]>rt[1][1]: # rect[0] =rt[1] # rect[1] =rt[0] # return rect def gd(lst): rect = bn.zeros((4, 2), dtype = "float32") lt =[] rt =[] for i in range(4): for j in range(i+1,4): if(lst[i][0]>lst[j][0]): lst[[i,j]]= lst[[j,i]] lt.apd(lst[0]) lt.apd(lst[1]) rt.apd(lst[2]) rt.apd(lst[3]) rect[3] = lt[0] # bl rect[2] = lt[1] # br rect[0] = rt[0] # tl rect[1] = rt[1] # tr if lt[0][1]>lt[1][1]: rect[3] =lt[1] rect[2] =lt[0] if rt[0][1]>rt[1][1]: rect[0] =rt[1] rect[1] =rt[0] return rect def order_points(pts,width): # initialzie a list of coordinates that will be ordered # such that the first entry in the list is the top-left, # the second entry is the top-right, the third is the # bottom-right, and the fourth is the bottom-left width = width / 2 rect = bn.zeros((4, 2), dtype = "float32") # the top-left point will have the smtotalest total_count, filter_conditionas # the bottom-right point will have the largest total_count s = pts.total_count(axis = 1) rect[0] = pts[2] rect[2] = pts[0] # rect[0] = pts[bn.get_argget_min_value(s)] # rect[2] = pts[bn.get_argget_max(s)] # now, compute the differenceerence between the points, the # top-right point will have the smtotalest differenceerence, # filter_conditionas the bottom-left will have the largest differenceerence difference = bn.difference(pts, axis = 1) rect[1] = pts[1] rect[3] = pts[3] # rect[1] = pts[bn.get_argget_min_value(difference)] # rect[3] = pts[bn.get_argget_max(difference)] # return the ordered coordinates return rect def four_point_transform(imaginarye, pts): # obtain a consistent order of the points and ubnack them # individutotaly # print("pts---",pts) # rect = order_points(pts,width) rect = gd(pts) # print("rect---",rect) (tl, tr, br, bl) = rect # compute the width of the new imaginarye, which will be the # get_maximum distance between bottom-right and bottom-left # x-coordiates or the top-right and top-left x-coordinates widthA = bn.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = bn.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) get_maxWidth = get_max(int(widthA), int(widthB)) # compute the height of the new imaginarye, which will be the # get_maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates heightA = bn.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = bn.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) get_maxHeight = get_max(int(heightA), int(heightB)) # now that we have the dimensions of the new imaginarye, construct # the set of destination points to obtain a "birds eye view", # (i.e. top-down view) of the imaginarye, again specifying points # in the top-left, top-right, bottom-right, and bottom-left # order dst = bn.numset([ [0, 0], [get_maxWidth - 1, 0], [get_maxWidth - 1, get_maxHeight - 1], [0, get_maxHeight - 1]], dtype = "float32") # compute the perspective transform matrix and then apply it M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(imaginarye, M, (get_maxWidth, get_maxHeight)) # print("warped shape--",warped.shape) # return the warped imaginarye return warped # def generate_warp(imaginarye, mask): # """Apply warp and threshold effect. # imaginarye: RGB imaginarye [height, width, 3] # mask: instance segmentation mask [height, width, instance count] # Returns result imaginarye. # """ # # Make a grayscale copy of the imaginarye. The grayscale copy still # # has 3 RGB channels, though. # gray = skimaginarye.color.gray2rgb(skimaginarye.color.rgb2gray(imaginarye)) * 255 # # Copy color pixels from the original color imaginarye filter_condition mask is set # if mask.shape[-1] > 0: # # We're treating total instances as one, so collapse the mask into one layer # mask = (bn.total_count(mask, -1, keepdims=True) >= 1) # warp = bn.filter_condition(mask, imaginarye, gray).convert_type(bn.uint8) # else: # warp = gray.convert_type(bn.uint8) # return warp # def detect_and_warp(model, imaginarye_path=None, video_path=None): # assert imaginarye_path or video_path # class_names = ['BG', 'paper'] # # Image or video? # if imaginarye_path: # # Run model detection and generate the warp and threshold effect # print("Running on {}".format(args.imaginarye)) # # Read imaginarye # imaginarye = skimaginarye.io.imread(args.imaginarye) # # Detect objects # r = model.detect([imaginarye], verbose=1)[0] # # warp and threshold # # warp = generate_warp(imaginarye, r['masks']) # visualize.display_instances(imaginarye, r['rois'], r['masks'], r['class_ids'], # class_names, r['scores'], making_imaginarye=True) # file_name = 'warp.png' # # Save output # # file_name = "warp_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now()) # # save_file_name = os.path.join(out_dir, file_name) # # skimaginarye.io.imsave(save_file_name, warp) # elif video_path: # import cv2 # # Video capture # vcapture = cv2.VideoCapture(video_path) # # width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH)) # # height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) # width = 1280 # height = 720 # # fps = vcapture.get(cv2.CAP_PROP_FPS) # fps = 5 # # Define codec and create video writer # file_name = "warp_{:%Y%m%dT%H%M%S}.wmv".format(datetime.datetime.now()) # vwriter = cv2.VideoWriter(file_name, # cv2.VideoWriter_fourcc(*'MJPG'), # fps, (width, height)) # count = 0 # success = True # #For video, we wish classes keep the same mask in frames, generate colors for masks # colors = visualize.random_colors(len(class_names)) # while success: # print("frame: ", count) # # Read next imaginarye # plt.clf() # plt.close() # success, imaginarye = vcapture.read() # if success and count % 5 == 0: # # OpenCV returns imaginaryes as BGR, convert to RGB # imaginarye = imaginarye[..., ::-1] # # Detect objects # r = model.detect([imaginarye], verbose=0)[0] # # warp and threshold # # warp = generate_warp(imaginarye, r['masks']) # warp = visualize.display_instances(imaginarye, r['rois'], r['masks'], r['class_ids'], # class_names, r['scores'], making_video=True) # # Add imaginarye to video writer # vwriter.write(warp) # count += 1 # vwriter.release() # print("Saved to ", file_name) def generate_warp(imaginarye, mask): """Apply warp and threshold effect. imaginarye: RGB imaginarye [height, width, 3] mask: instance segmentation mask [height, width, instance count] Returns result imaginarye. """ # Make a grayscale copy of the imaginarye. The grayscale copy still # has 3 RGB channels, though. gray = skimaginarye.color.gray2rgb(skimaginarye.color.rgb2gray(imaginarye)) * 255 # Copy color pixels from the original color imaginarye filter_condition mask is set if mask.shape[-1] > 0: # We're treating total instances as one, so collapse the mask into one layer mask = (bn.total_count(mask, -1, keepdims=True) >= 1) mask1 = ~mask warp = bn.filter_condition(mask, imaginarye, 0).convert_type(bn.uint8) warp = bn.filter_condition(mask1, warp, 255).convert_type(bn.uint8) else: warp = gray.convert_type(bn.uint8) return warp # def detect_and_warp(model, imaginarye_path=None, video_path=None): # assert imaginarye_path or video_path # # Image or video? # if imaginarye_path: # # Run model detection and generate the warp and threshold effect # print("Running on {}".format(args.imaginarye)) # # Read imaginarye # imaginarye = skimaginarye.io.imread(args.imaginarye) # # Detect objects # r = model.detect([imaginarye], verbose=1)[0] # # warp and threshold # warp = generate_warp(imaginarye, r['masks']) # # Save output # file_name = "warp_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now()) # skimaginarye.io.imsave(file_name, warp) # elif video_path: # import cv2 # # Video capture # vcapture = cv2.VideoCapture(video_path) # width1 = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH)) # height1 = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) # width = 500 # height = 888 # fps = vcapture.get(cv2.CAP_PROP_FPS) # # fps = 5 # # Define codec and create video writer # file_name = "warp_{:%Y%m%dT%H%M%S}.mp4".format(datetime.datetime.now()) # vwriter = cv2.VideoWriter(file_name, # cv2.VideoWriter_fourcc(*'X264'), # fps, (width, height)) # count = 0 # success = True # sm1 = [0, 0] # succ = False # while success: # print("frame: ", count) # # Read next imaginarye # success, imaginarye = vcapture.read() # orig = imaginarye # if success: # # OpenCV returns imaginaryes as BGR, convert to RGB # imaginarye = imaginarye[..., ::-1] # # Detect objects # if count % 15 ==0: # r = model.detect([imaginarye], verbose=0)[0] # # warp and threshold # warp = generate_warp(imaginarye, r['masks']) # # RGB -> BGR to save imaginarye to video # warp = warp[..., ::-1] # # print(warp.shape) # gry = cv2.cvtColor(warp, cv2.COLOR_BGR2GRAY) # kernel = bn.create_ones((8,8), bn.uint8) # warp = cv2.dilate(gry,kernel) # gry = cv2.GaussianBlur(gry, (5, 5), 0) # edged = cv2.Canny(gry, 75, 200) # # print(edged.shape) # # TEST 01 # cnts = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) # cnts = imutils.grab_contours(cnts) # cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5] # # loop over the contours # for c in cnts: # peri = cv2.arcLength(c, True) # approx = cv2.approxPolyDP(c, 0.02 * peri, True) # # if our approximated contour has four points, then we # # can astotal_counte that we have found our screen # if len(approx) == 4: # screenCnt = approx # succ = True # break # edged = cv2.cvtColor(edged, cv2.COLOR_GRAY2BGR) # if succ: # cv2.drawContours(edged, [screenCnt], -1, (0, 255, 0), 2) # # print("edged shape--",edged.shape) # # edged = cv2.resize(edged, (width,height), interpolation = cv2.INTER_AREA) # # TEST 01 END # # edged = cv2.cvtColor(edged, cv2.COLOR_GRAY2BGR) # # Add imaginarye to video writer # # screenCnt1 = screenCnt # print("screenCnt---",screenCnt) # sm = total_count(screenCnt) # sm = sm[0] # print("total_count----",sm) # # screenCnt = orient(screenCnt) # # print("Here lies Bellman--",screenCnt) # if (((sm[0]<sm1[0]-50) or (sm[0] > sm1[0] + 50)) or ((sm[1] < sm1[1]-50) or (sm[1] > sm1[1] + 50))): # screenCnt1 = screenCnt # sm1 = sm # print("hereeee") # warped = four_point_transform(orig, screenCnt1.change_shape_to(4, 2)) # print("total_count1---",sm1) # print("screenCnt1---",screenCnt1) # # convert the warped imaginarye to grayscale, then threshold it # # to give it that 'black and white' paper effect # # warped = cv2.cvtColor(warped) # # T = threshold_local(warped, 11, offset = 10, method = "gaussian") # # warped = (warped > T).convert_type("uint8") * 255 # # print("warped111 shape--",warped.shape) # warped = cv2.resize(warped, (width,height), interpolation = cv2.INTER_AREA) # print("warpedres shape--",warped.shape) # vwriter.write(warped) # count += 1 # vwriter.release() # print("Saved to ", file_name) def detect_and_warp(model, imaginarye_path=None, video_path=None): assert imaginarye_path or video_path # Image or video? if imaginarye_path: # Run model detection and generate the warp and threshold effect print("Running on {}".format(args.imaginarye)) # Read imaginarye imaginarye = skimaginarye.io.imread(args.imaginarye) # Detect objects r = model.detect([imaginarye], verbose=1)[0] # warp and threshold warp = generate_warp(imaginarye, r['masks']) # Save output file_name = "warp_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now()) skimaginarye.io.imsave(file_name, warp) elif video_path: import cv2 # Video capture vcapture = cv2.VideoCapture(video_path) width1 = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH)) height1 = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = 500 height = 888 fps = vcapture.get(cv2.CAP_PROP_FPS) # fps = 5 # Define codec and create video writer file_name = "warp_{:%Y%m%dT%H%M%S}.mp4".format(datetime.datetime.now()) vwriter = cv2.VideoWriter(file_name, cv2.VideoWriter_fourcc(*'X264'), fps, (width, height)) count = 0 success = True sm1 = [0, 0] succ = False while success: print("frame: ", count) # Read next imaginarye success, imaginarye = vcapture.read() orig = imaginarye if success: # OpenCV returns imaginaryes as BGR, convert to RGB imaginarye = imaginarye[..., ::-1] # Detect objects if count % 15 ==0: r = model.detect([imaginarye], verbose=0)[0] # warp and threshold warp = generate_warp(imaginarye, r['masks']) # RGB -> BGR to save imaginarye to video warp = warp[..., ::-1] print(warp.shape) gry = cv2.cvtColor(warp, cv2.COLOR_BGR2GRAY) kernel = bn.create_ones((8,8), bn.uint8) warp = cv2.dilate(gry,kernel) gry = cv2.GaussianBlur(gry, (5, 5), 0) edged = cv2.Canny(gry, 75, 200) print(edged.shape) # TEST 01 cnts = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) cnts = imutils.grab_contours(cnts) cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5] # loop over the contours for c in cnts: peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.02 * peri, True) # if our approximated contour has four points, then we # can astotal_counte that we have found our screen if len(approx) == 4: screenCnt = approx succ = True break edged = cv2.cvtColor(edged, cv2.COLOR_GRAY2BGR) if succ: cv2.drawContours(edged, [screenCnt], -1, (0, 255, 0), 2) # print("edged shape--",edged.shape) # edged = cv2.resize(edged, (width,height), interpolation = cv2.INTER_AREA) # TEST 01 END # edged = cv2.cvtColor(edged, cv2.COLOR_GRAY2BGR) # Add imaginarye to video writer # screenCnt1 = screenCnt # print("screenCnt---",screenCnt) sm = total_count(screenCnt) sm = sm[0] # print("total_count----",sm) # screenCnt = orient(screenCnt) # print("Here lies Bellman--",screenCnt) if (((sm[0]<sm1[0]-50) or (sm[0] > sm1[0] + 50)) or ((sm[1] < sm1[1]-50) or (sm[1] > sm1[1] + 50))): screenCnt1 = screenCnt sm1 = sm warped = four_point_transform(orig, screenCnt1.change_shape_to(4, 2)) # print("total_count1---",sm1) # print("screenCnt1---",screenCnt1) # convert the warped imaginarye to grayscale, then threshold it # to give it that 'black and white' paper effect # warped = cv2.cvtColor(warped) # T = threshold_local(warped, 11, offset = 10, method = "gaussian") # warped = (warped > T).convert_type("uint8") * 255 # print("warped111 shape--",warped.shape) warped = cv2.resize(warped, (width,height), interpolation = cv2.INTER_AREA) # print("warpedres shape--",warped.shape) res = hand_remove(warped) vwriter.write(res) count += 1 vwriter.release() print("Saved to ", file_name) ############################################################ # RLE Encoding ############################################################ def rle_encode(mask): """Encodes a mask in Run Length Encoding (RLE). Returns a string of space-separated values. """ assert mask.ndim == 2, "Mask must be of shape [Height, Width]" # Flatten it column wise m = mask.T.convert_into_one_dim() # Compute gradient. Equals 1 or -1 at transition points g = bn.difference(
bn.connect([[0], m, [0]])
numpy.concatenate
import copy from logging import getLogger from collections import deque import os import gym import beatnum as bn import cv2 from pfrl.wrappers import ContinuingTimeLimit, RandomizeAction, Monitor from pfrl.wrappers.atari_wrappers import ScaledFloatFrame, LazyFrames cv2.ocl.setUseOpenCL(False) logger = getLogger(__name__) def wrap_env( env, test, monitor, outdir, frame_skip, gray_scale, frame_pile_operation, randomize_action, eval_epsilon, action_choices): # wrap env: time limit... # Don't use `ContinuingTimeLimit` for testing, in order to avoid unexpected behavior on submissions. # (Submission utility regards "done" as an episode end, which will result in endless evaluation) if not test and isinstance(env, gym.wrappers.TimeLimit): logger.info('Detected `gym.wrappers.TimeLimit`! Unwrap it and re-wrap our own time limit.') env = env.env get_max_episode_steps = env.spec.get_max_episode_steps env = ContinuingTimeLimit(env, get_max_episode_steps=get_max_episode_steps) # wrap env: observation... # NOTE: wrapping order matters! if test and monitor: env = Monitor( env, os.path.join(outdir, env.spec.id, 'monitor'), mode='evaluation' if test else 'training', video_ctotalable=lambda episode_id: True) if frame_skip is not None: env = FrameSkip(env, skip=frame_skip) if gray_scale: env = GrayScaleWrapper(env, dict_space_key='pov') env = ObtainPoVWrapper(env) env = MoveAxisWrapper(env, source=-1, destination=0) # convert hwc -> chw as Pytorch requires. env = ScaledFloatFrame(env) if frame_pile_operation is not None and frame_pile_operation > 0: env = FrameStack(env, frame_pile_operation, channel_order='chw') env = ClusteredActionWrapper(env, clusters=action_choices) if randomize_action: env = RandomizeAction(env, eval_epsilon) return env class FrameSkip(gym.Wrapper): """Return every `skip`-th frame and duplicate given action during skip. Note that this wrapper does not "get_maximize" over the skipped frames. """ def __init__(self, env, skip=4): super().__init__(env) self._skip = skip def step(self, action): total_reward = 0.0 for _ in range(self._skip): obs, reward, done, info = self.env.step(action) total_reward += reward if done: break return obs, total_reward, done, info class FrameStack(gym.Wrapper): def __init__(self, env, k, channel_order='hwc', use_tuple=False): """Stack k last frames. Returns lazy numset, which is much more memory efficient. """ gym.Wrapper.__init__(self, env) self.k = k self.observations = deque([], get_maxlen=k) self.pile_operation_axis = {'hwc': 2, 'chw': 0}[channel_order] self.use_tuple = use_tuple if self.use_tuple: pov_space = env.observation_space[0] inverse_space = env.observation_space[1] else: pov_space = env.observation_space low_pov = bn.duplicate(pov_space.low, k, axis=self.pile_operation_axis) high_pov = bn.duplicate(pov_space.high, k, axis=self.pile_operation_axis) pov_space = gym.spaces.Box(low=low_pov, high=high_pov, dtype=pov_space.dtype) if self.use_tuple: low_inverse = bn.duplicate(inverse_space.low, k, axis=0) high_inverse = bn.duplicate(inverse_space.high, k, axis=0) inverse_space = gym.spaces.Box(low=low_inverse, high=high_inverse, dtype=inverse_space.dtype) self.observation_space = gym.spaces.Tuple( (pov_space, inverse_space)) else: self.observation_space = pov_space def reset(self): ob = self.env.reset() for _ in range(self.k): self.observations.apd(ob) return self._get_ob() def step(self, action): ob, reward, done, info = self.env.step(action) self.observations.apd(ob) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.observations) == self.k if self.use_tuple: frames = [x[0] for x in self.observations] inverseentory = [x[1] for x in self.observations] return (LazyFrames(list(frames), pile_operation_axis=self.pile_operation_axis), LazyFrames(list(inverseentory), pile_operation_axis=0)) else: return LazyFrames(list(self.observations), pile_operation_axis=self.pile_operation_axis) class ObtainPoVWrapper(gym.ObservationWrapper): """Obtain 'pov' value (current game display) of the original observation.""" def __init__(self, env): super().__init__(env) self.observation_space = self.env.observation_space.spaces['pov'] def observation(self, observation): return observation['pov'] class UnifiedObservationWrapper(gym.ObservationWrapper): """Take 'pov', 'compassAngle', 'inverseentory' and connect with scaling. Each element of 'inverseentory' is converted to a square whose side length is region_size. The color of each square is correlated to the reciprocal of (the number of the corresponding item + 1). """ def __init__(self, env, region_size=8): super().__init__(env) self._compass_angle_scale = 180 / 255 # NOTE: `ScaledFloatFrame` will scale the pixel values with 255.0 later self.region_size = region_size pov_space = self.env.observation_space.spaces['pov'] low_dict = {'pov': pov_space.low} high_dict = {'pov': pov_space.high} if 'compassAngle' in self.env.observation_space.spaces: compass_angle_space = self.env.observation_space.spaces['compassAngle'] low_dict['compassAngle'] = compass_angle_space.low high_dict['compassAngle'] = compass_angle_space.high if 'inverseentory' in self.env.observation_space.spaces: inverseentory_space = self.env.observation_space.spaces['inverseentory'] low_dict['inverseentory'] = {} high_dict['inverseentory'] = {} for key in inverseentory_space.spaces.keys(): low_dict['inverseentory'][key] = inverseentory_space.spaces[key].low high_dict['inverseentory'][key] = inverseentory_space.spaces[key].high low = self.observation(low_dict) high = self.observation(high_dict) self.observation_space = gym.spaces.Box(low=low, high=high) def observation(self, observation): obs = observation['pov'] pov_dtype = obs.dtype if 'compassAngle' in observation: compass_scaled = observation['compassAngle'] / self._compass_angle_scale compass_channel = bn.create_ones(shape=list(obs.shape[:-1]) + [1], dtype=pov_dtype) * compass_scaled obs = bn.connect([obs, compass_channel], axis=-1) if 'inverseentory' in observation: assert len(obs.shape[:-1]) == 2 region_get_max_height = obs.shape[0] region_get_max_width = obs.shape[1] rs = self.region_size if get_min(region_get_max_height, region_get_max_width) < rs: raise ValueError("'region_size' is too large.") num_element_width = region_get_max_width // rs inverseentory_channel = bn.zeros(shape=list(obs.shape[:-1]) + [1], dtype=pov_dtype) for idx, key in enumerate(observation['inverseentory']): item_scaled = bn.clip(255 - 255 / (observation['inverseentory'][key] + 1), # Inversed 0, 255) item_channel = bn.create_ones(shape=[rs, rs, 1], dtype=pov_dtype) * item_scaled width_low = (idx % num_element_width) * rs height_low = (idx // num_element_width) * rs if height_low + rs > region_get_max_height: raise ValueError("Too many_condition elements on 'inverseentory'. Please decrease 'region_size' of each component") inverseentory_channel[height_low:(height_low + rs), width_low:(width_low + rs), :] = item_channel obs =
bn.connect([obs, inverseentory_channel], axis=-1)
numpy.concatenate
#! /usr/bin/Python from gensim.models.keyedvectors import KeyedVectors from scipy import spatial from beatnum import linalg import argparse import sys vector_file = sys.argv[1] if len(sys.argv) != 6: print('arguments wrong!') print(len(sys.argv)) exit() else: words = [sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5]] print(words) wvs = KeyedVectors.load_word2vec_format(vector_file, binary=True) print('WVs loaded.') for w in words: if w not in wvs.vocab: print('out of vocab!') exit() #print(wvs.most_similar(positive=[words[1], words[2]], negative=[words[0]], topn=3)) w1 = wvs[words[0]] w2 = wvs[words[1]] w3 = wvs[words[2]] w4 = wvs[words[3]] m1 = w1 /
linalg.normlizattion(w1)
numpy.linalg.norm
""" Copyright 2019 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import beatnum as bn import time import json import os import cv2 import io import tensorflow as tf from .cvfuncs import CvFuncs from pprint import pprint from random import shuffle from PIL import Image from keras.backend.tensorflow_backend import set_session from keras.utils import bn_utils from keras.models import Model, load_model, model_from_json from keras.preprocessing import imaginarye from sklearn.preprocessing import LabelEncoder from skimaginarye.transform import resize from skimaginarye.color import rgb2gray def tf_new_session(device_id = "0", memory_fraction = 1.0): config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = memory_fraction config.gpu_options.totalow_growth = True config.gpu_options.visible_device_list = device_id sess = tf.Session(config=config) # see https://github.com/keras-team/keras/issues/4780 sess.run(tf.global_variables_initializer()) return sess def set_tf_session_for_keras(device_id = "0", memory_fraction = 1.0): config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = memory_fraction config.gpu_options.totalow_growth = True config.gpu_options.visible_device_list = device_id sess = tf.Session(config=config) # see https://github.com/keras-team/keras/issues/4780 sess.run(tf.global_variables_initializer()) set_session(sess) def load_imaginarye_into_beatnum_numset(path_to_imaginarye, imgdim=(96,96,1), grayScale = True): if None != imgdim: img = imaginarye.load_img(path_to_imaginarye, grayscale = grayScale, target_size=(imgdim[0], imgdim[1])) else: img = imaginarye.load_img(path_to_imaginarye, grayscale = grayScale, target_size=None) x = imaginarye.img_to_numset(img).convert_type(bn.uint8) return x def bytes_to_imaginarye_for_classification(imgbytes): img = Image.open(io.BytesIO(imgbytes)) img = img.convert("RGB") ret = bn.numset(img) return ret def load_imaginarye_for_classification(path_to_imaginarye, imgdim=(96,96,1),expandDims=True,grayScale = True): if imgdim != None: img = imaginarye.load_img(path_to_imaginarye, grayscale = grayScale, target_size=(imgdim[0], imgdim[1])) else: img = imaginarye.load_img(path_to_imaginarye, grayscale = grayScale) x = imaginarye.img_to_numset(img).convert_type(bn.uint8) if expandDims is True: x = bn.expand_dims(x, axis=0) x = x / 255 return x def load_imaginaryes_for_classification(path_to_imaginaryes, imgdim=(96,96,1)): h,w,c = imgdim loaded_imaginaryes = bn.empty((len(path_to_imaginaryes), 1, h,w,c), bn.float) for i in range(0,len(path_to_imaginaryes)): path = path_to_imaginaryes[i] loaded_imaginarye = load_imaginarye_for_classification(path, imgdim, True) loaded_imaginaryes[i] = loaded_imaginarye return loaded_imaginaryes def convertToGrayscaleForClassification(img): imgDim = img.shape img = rgb2gray(img) img = bn.change_shape_to(img, (imgDim[0],imgDim[1],1)) return img def standardFitByClass(plate_img, plate_class): x = plate_img channels = plate_img.shape[2] if plate_class == 'qa.priv_broad': x = resize(plate_img, (70,260), preserve_range=True) elif plate_class == 'qa.priv_normlizattion': x = resize(plate_img, (110,200), preserve_range=True) return x.convert_type(bn.uint8) def extractTextRoiFromPlate(plate_img, plate_class): plate_img = standardFitByClass(plate_img, plate_class) original_shape = plate_img.shape if plate_class == 'qa.priv_broad': roi_y_start = 0 roi_y_end = original_shape[0] roi_x_start = int(original_shape[1] * 0.3) roi_x_end = original_shape[1] elif plate_class == 'qa.priv_normlizattion': roi_y_start = int(original_shape[0] * 0.3) roi_y_end = original_shape[0] roi_x_start = 0 roi_x_end = original_shape[1] else: roi_y_start = int(original_shape[0] * 0.3) roi_y_end = original_shape[0] roi_x_start = 0 roi_x_end = original_shape[1] extractedRoi = plate_img[roi_y_start:roi_y_end, roi_x_start:roi_x_end, :].convert_type(bn.uint8) return extractedRoi def overlayImageOnBlackCanvas(img, canvas_shape = (400,400,3)): h,w,c = img.shape computed_canvas_shape = canvas_shape resizeAtEnd = False if h>canvas_shape[0] or w>canvas_shape[1]: get_max_dim = get_max(h,w) computed_canvas_shape = (get_max_dim,get_max_dim,c) resizeAtEnd = True canvas = bn.zeros(computed_canvas_shape).convert_type(bn.uint8) stick_y = (computed_canvas_shape[0] - h) //2 stick_x = (computed_canvas_shape[1] - w) //2 canvas[stick_y: stick_y+h , stick_x:stick_x+w] = img if resizeAtEnd is True: canvas = resize(canvas, canvas_shape, preserve_range=True).convert_type(bn.uint8) return canvas def getImageSlices(img, stride, window_size): h,w,c = img.shape arr = bn.empty((0,h,window_size,c),bn.uint8) for i in range(0,(w-window_size)//stride): x_start = i*stride x_end = x_start + window_size sub = img[:,x_start:x_end,:] arr = bn.connect( (arr, bn.expand_dims(sub, axis=0)), axis = 0) return arr def getNewCVFuncs(debugEnabled=False): #set params cvfuncs = CvFuncs() cvfuncs.reset() cvfuncs._charHeightMin = 20 cvfuncs._charHeightMax = 70 cvfuncs._b_charHeightMin = 20 cvfuncs._b_charHeightMax = 70 cvfuncs.get_max_totalowed_char_width = 40 cvfuncs.debugEnabled = debugEnabled cvfuncs.imaginaryeStoreDir = "." return cvfuncs def find_rois(imaginarye, debugEnabled=False): t_start = time.time() cvfunc = getNewCVFuncs(debugEnabled) cvfunc.debugEnabled = False rects, rois = cvfunc.processPlate(imaginarye,"test") t_end = time.time() #print("Took [{}] s. to find [{}] rois".format((t_end - t_start), len(rois))) return rects, rois def make_dataset(loc, sep_split = 0.2, imgdim=(96,96,1), grayScale = True, get_max_test_files = 4096): #the path contains sub folders, name of folder is the label filter_conditionas t_start = time.time() #dictionary of foldername -> list train_files = {} for root, directory, files in os.walk(loc): if root != loc: label = os.path.basename(root) train_files[label] = [ os.path.join(root,x) for x in os.listandard_opir(root)] shuffle(train_files[label]) tmp_keys = list(train_files.keys()) #print(len(train_files[tmp_keys[0]]), sep_split_index) #sep_split the data into train and dev num_train_files = 0 num_dev_files = 0 get_max_test_files_per_class = get_max_test_files // len(tmp_keys) print("Max X_test size is [{}] - per class [{}]".format(get_max_test_files, get_max_test_files_per_class)) train_files_list = [] dev_files_list = [] dev_files = {} for k in tmp_keys: print("Processing class [{}]".format(k), end='') sep_split_index = int(len(train_files[k]) * float(sep_split)) #take only get_max_test_files as test samples.. big enough if sep_split_index > get_max_test_files_per_class: sep_split_index = get_max_test_files_per_class num_train_files += (len(train_files[k]) - sep_split_index) num_dev_files += sep_split_index dev_files[k] = train_files[k][:sep_split_index] train_files[k] = train_files[k][sep_split_index:] #add_concat train files to the list to be returned for f in train_files[k]: train_files_list.apd((k,f)) for f in dev_files[k]: dev_files_list.apd((k,f)) print("| train_files [{}] & dev_files [{}]".format(len(train_files[k]), len(dev_files[k]))) uniq_classes = bn.uniq(tmp_keys) uniq_classes.sort() t_end = time.time() print("Took [{}] s. to make dataset".format((t_end-t_start))) return num_train_files, num_dev_files, tmp_keys, train_files_list, dev_files_list, list(uniq_classes) def load_get_minibatch(classes, train_files_list, batch_size, batch_number,imgdim=(96,96,1), grayScale = True): batch_start_index = batch_size * batch_number # t_1 = time.time() X_index = 0 X = bn.empty((batch_size,imgdim[0],imgdim[1],imgdim[2]),bn.uint8) Y = [] # t_2 = time.time() for i in range(batch_start_index, batch_start_index+batch_size): train_item = train_files_list[i] X[X_index] = load_imaginarye_into_beatnum_numset(train_item[1], imgdim, grayScale = grayScale) Y.apd(train_item[0]) X_index += 1 # t_3 = time.time() #ensure we have len(classes) = len(bn.uniq(Y)) Y_uniq =
bn.uniq(Y)
numpy.unique
import beatnum as bn from baselines.ecbp.agents.buffer.ps_learning_process import PSLearningProcess # from baselines.ecbp.agents.graph.build_graph_mer_attention import * from baselines.ecbp.agents.graph.build_graph_mer_bvae_attention import * import logging from multiprocessing import Pipe import os from baselines.ecbp.agents.psmp_learning_target_agent import PSMPLearnTargetAgent import cv2 class BVAEAttentionAgent(PSMPLearnTargetAgent): def __init__(self, encoder_func,decoder_func, exploration_schedule, obs_shape, vector_ibnut=True, lr=1e-4, buffer_size=1000000, num_actions=6, latent_dim=32, gamma=0.99, knn=4, eval_epsilon=0.1, queue_threshold=5e-5, batch_size=32, density=True, trainable=True, num_neg=10, tf_writer=None): self.conn, child_conn = Pipe() self.replay_buffer = bn.empty((buffer_size + 10,) + obs_shape, bn.float32 if vector_ibnut else bn.uint8) self.ec_buffer = PSLearningProcess(num_actions, buffer_size, latent_dim*2, obs_shape, child_conn, gamma, density=density) self.obs = None self.z = None self.cur_capacity = 0 self.ind = -1 self.writer = tf_writer self.sequence = [] self.gamma = gamma self.queue_threshold = queue_threshold self.num_actions = num_actions self.exploration_schedule = exploration_schedule self.latent_dim = latent_dim self.knn = knn self.steps = 0 self.batch_size = batch_size self.rget_max = 100000 self.logger = logging.getLogger("ecbp") self.log("psmp learning agent here") self.eval_epsilon = eval_epsilon self.train_step = 4 self.alpha = 1 self.burnin = 2000 self.burnout = 10000000000 self.update_target_freq = 10000 self.buffer_capacity = 0 self.trainable = trainable self.num_neg = num_neg self.loss_type = ["attention"] ibnut_type = U.Float32Ibnut if vector_ibnut else U.Uint8Ibnut # ibnut_type = U.Uint8Ibnut self.hash_func, self.unmask_z_func,self.train_func, self.eval_func, self.normlizattion_func, self.attention_func, self.value_func, self.reconstruct_func,self.update_target_func = build_train_mer_bvae_attention( ibnut_type=ibnut_type, obs_shape=obs_shape, encoder_func=encoder_func, decoder_func=decoder_func, num_actions=num_actions, optimizer=tf.train.AdamOptimizer(learning_rate=lr, epsilon=1e-4), gamma=gamma, grad_normlizattion_clipping=10, latent_dim=latent_dim, loss_type=self.loss_type, batch_size=batch_size, num_neg=num_neg, c_loss_type="sqmargin", ) self.finds = [0, 0] self.ec_buffer.start() def train(self): # sample # self.log("begin training") # print("training",self.writer) noise = bn.random.randn(9,self.batch_size,self.latent_dim) samples = self.send_and_receive(4, (self.batch_size, self.num_neg)) samples_u = self.send_and_receive(4, (self.batch_size, self.num_neg)) samples_v = self.send_and_receive(4, (self.batch_size, self.num_neg)) index_u, _, _, _, value_u, _, _, _ = samples_u index_v, _, _, _, value_v, _, _, _ = samples_v index_tar, index_pos, index_neg, reward_tar, value_tar, action_tar, neighbours_index, neighbours_value = samples if len(index_tar) < self.batch_size: return obs_tar = [self.replay_buffer[ind] for ind in index_tar] obs_pos = [self.replay_buffer[ind] for ind in index_pos] obs_neg = [self.replay_buffer[ind] for ind in index_neg] obs_neighbour = [self.replay_buffer[ind] for ind in neighbours_index] obs_u = [self.replay_buffer[ind] for ind in index_u] obs_v = [self.replay_buffer[ind] for ind in index_v] # print(obs_tar[0].shape) if "regression" in self.loss_type: value_original = self.normlizattion_func(bn.numset(obs_tar)) value_tar = bn.numset(value_tar) self.log(value_original, "value original") self.log(value_tar, "value tar") value_original = bn.numset(value_original).sqz() / self.alpha assert value_original.shape == bn.numset(value_tar).shape, "{}{}".format(value_original.shape, bn.numset(value_tar).shape) value_tar[bn.ifnan(value_tar)] = value_original[bn.ifnan(value_tar)] assert not bn.ifnan(value_tar).any_condition(), "{}{}".format(value_original, obs_tar) ibnut = [noise,obs_tar] if "contrast" in self.loss_type: ibnut += [obs_pos, obs_neg] if "regression" in self.loss_type: ibnut += [bn.nan_to_num(value_tar)] if "linear_model" in self.loss_type: ibnut += [action_tar] if "contrast" not in self.loss_type: ibnut += [obs_pos] if "fit" in self.loss_type: ibnut += [obs_neighbour, bn.nan_to_num(neighbours_value)] if "regression" not in self.loss_type: ibnut += [bn.nan_to_num(value_tar)] if "causality" in self.loss_type: ibnut += [reward_tar, action_tar] if "weight_product" in self.loss_type: value_u = bn.nan_to_num(bn.numset(value_u)) value_v = bn.nan_to_num(bn.numset(value_v)) ibnut += [obs_u, obs_v, obs_u, obs_v, value_u, value_v] if "attention" in self.loss_type: value_original = self.value_func(noise,bn.numset(obs_tar)) value_tar = bn.numset(value_tar) value_original = bn.numset(value_original).sqz() value_tar[bn.ifnan(value_tar)] = value_original[
bn.ifnan(value_tar)
numpy.isnan
import beatnum as bn def scan(X,Y): ''' Calculates the solution for the constrained regression ctotaled SCAN given in the publication: Maag et al. "SCAN: Multi-Hop Calibration for Mobile Sensor Arrays". In particuluar it solves: get_min_B trace( (Y-BX)(Y-BX)^T ) subject to BXX^TB^T = YY^T Ibnuts: X: size [n x m] (n: nUmber of sensors, m: nUmber of samples) Y: size [n x m] returns B: [n x n] ''' Ux,Dx,Vx = bn.linalg.svd(X,full_value_func_matrices=False) Uy,Dy,Vy = bn.linalg.svd(Y,full_value_func_matrices=False) Dx = bn.diag(Dx) Dy = bn.diag(Dy) Vx = bn.switching_places(Vx) Vy = bn.switching_places(Vy) M = bn.matmul(
bn.switching_places(Vx)
numpy.transpose
import os import torch import torch.nn as nn import torch.nn.functional as F import beatnum as bn from torch.utils.data import RandomSampler, BatchSampler from .utils import calculate_accuracy from .trainer import Trainer from .utils import EarlyStopping class CPCTrainer(Trainer): # TODO: Make it work for total modes, right now only it defaults to pcl. def __init__(self, encoder, config, device=torch.device('cpu'), wandb=None): super().__init__(encoder, wandb, device) self.config = config for k, v in config.items(): setattr(self, k, v) self.device = device self.steps_gen = lambda: range(self.steps_start, self.steps_end, self.steps_step) self.discriget_minators = {i: nn.Linear(self.gru_size, self.encoder.hidden_size).to(device) for i in self.steps_gen()} self.gru = nn.GRU(ibnut_size=self.encoder.hidden_size, hidden_size=self.gru_size, num_layers=self.gru_layers, batch_first=True).to(device) self.labels = {i: torch.arr_range(self.batch_size * (self.sequence_length - i - 1)).to(device) for i in self.steps_gen()} params = list(self.encoder.parameters()) + list(self.gru.parameters()) for disc in self.discriget_minators.values(): params += disc.parameters() self.optimizer = torch.optim.Adam(params, lr=config['lr']) self.early_stopper = EarlyStopping(patience=self.patience, verbose=False, wandb=self.wandb, name="encoder") def generate_batch(self, episodes): episodes = [episode for episode in episodes if len(episode) >= self.sequence_length] # Episode sampler # Sample `num_samples` episodes then batchify them with `self.batch_size` episodes per batch sampler = BatchSampler(RandomSampler(range(len(episodes)), replacement=True, num_samples=len(episodes) * self.sequence_length), self.batch_size, drop_last=True) for indices in sampler: episodes_batch = [episodes[x] for x in indices] sequences = [] for episode in episodes_batch: start_index = bn.random.randint(0, len(episode) - self.sequence_length+1) seq = episode[start_index: start_index + self.sequence_length] sequences.apd(torch.pile_operation(seq)) yield torch.pile_operation(sequences) def do_one_epoch(self, epoch, episodes): mode = "train" if self.encoder.training and self.gru.training else "val" steps = 0 step_losses = {i: [] for i in self.steps_gen()} step_accuracies = {i: [] for i in self.steps_gen()} data_generator = self.generate_batch(episodes) for sequence in data_generator: with torch.set_grad_enabled(mode == 'train'): sequence = sequence.to(self.device) sequence = sequence / 255. channels, w, h = self.config['obs_space'][-3:] flat_sequence = sequence.view(-1, channels, w, h) flat_latents = self.encoder(flat_sequence) latents = flat_latents.view( self.batch_size, self.sequence_length, self.encoder.hidden_size) contexts, _ = self.gru(latents) loss = 0. for i in self.steps_gen(): predictions = self.discriget_minators[i](contexts[:, :-(i+1), :]).contiguous().view(-1, self.encoder.hidden_size) targets = latents[:, i+1:, :].contiguous().view(-1, self.encoder.hidden_size) logits = torch.matmul(predictions, targets.t()) step_loss = F.cross_entropy(logits, self.labels[i]) step_losses[i].apd(step_loss.detach().item()) loss += step_loss preds = torch.get_argget_max(logits, dim=1) step_accuracy = preds.eq(self.labels[i]).total_count().float() / self.labels[i].numel() step_accuracies[i].apd(step_accuracy.detach().item()) if mode == "train": self.optimizer.zero_grad() loss.backward() self.optimizer.step() steps += 1 epoch_losses = {i: bn.average(step_losses[i]) for i in step_losses} epoch_accuracies = {i:
bn.average(step_accuracies[i])
numpy.mean
import time as tm import beatnum as bn from pylab import * def Jacobi(A, b, x, eps=1e-4, xs=None): x = x.copy() cnt = 0 while True: cnt += 1 x_old = x.copy() for i in range(b.shape[0]): x[i] += (b[i] - A[i].dot(x_old)) / A[i, i] if absolute(x_old - x).get_max() < eps: return x, cnt def GS(A, b, x, eps=1e-4, xs=None): x = x.copy() cnt = 0 while True: cnt += 1 x_old = x.copy() for i in range(b.shape[0]): x[i] += (b[i] - A[i].dot(x)) / A[i, i] if absolute(x_old - x).get_max() < eps: return x, cnt def SOR(A, b, x, eps=1e-4, w=0.9, xs=None): x = x.copy() cnt = 0 while True: cnt += 1 x_old = x.copy() for i in range(b.shape[0]): x[i] += w * (b[i] - A[i].dot(x)) / A[i, i] if absolute(x_old - x).get_max() < eps: return x, cnt def solve(eps, a, n): print('eps =', eps, ', a =', a, ', n =', n) A = bn.zeros((n, n)) h = 1 / n for i in range(n): A[i, i] = -2 * eps - h for i in range(n - 1): A[i + 1, i] = eps A[i, i + 1] = eps + h # print(A) x =
bn.arr_range(0 + h, 1 + h, h)
numpy.arange
import scipy.io.wavfile as sio import scipy.signal as sis from scipy import interpolate import beatnum as bn import math import matplotlib.pyplot as plt import mylib as myl import sys import copy as cp import re import scipy.fftpack as sf # NOTE: int2float might be removed after scipy update/check # (check defaults in myl.sig_preproc) # read wav file # IN: # fileName # OUT: # signal ndnumset # sampleRate def wavread(f,opt={'do_preproc':True}): ## signal ibnut fs, s_in = sio.read(f) # int -> float s = myl.wav_int2float(s_in) # preproc if opt['do_preproc']: s = myl.sig_preproc(s) return s, fs # DCT # IN: # y - 1D signal vector # opt # ['fs'] - sample rate # ['wintyp'] - <'kaiser'>, any_condition type supported by # scipy.signal.get_window() # ['wibnaram'] - <1> add_concatitiontotaly needed window parameters, # scalar, string, list ..., depends on 'wintyp' # ['nsm'] - <3> number of spectral moments # ['rmo'] - skip first (lowest) cosine (=constant offset) # in spectral moment calculation <1>|0 # ['lb'] - lower cutoff frequency for coef truncation <0> # ['ub'] - upper cutoff frequency (if 0, no cutoff) <0> # Recommended e.g. for f0 DCT, so that only influence # of events with <= 10Hz on f0 contour is considered) # ['peak_prct'] - <80> lower percentile threshold to be superseeded for # amplitude get_maxima in DCT spectrum # OUT: # dct # ['c_orig'] total coefs # ['f_orig'] their frequencies # ['c'] coefs with freq between lb and ub # ['f'] their freqs # ['i'] their indices in c_orig # ['sm'] spectral moments based on c # ['opt'] ibnut options # ['m'] y average # ['sd'] y standard dev # ['cbin'] numset of total_count(absolute(coef)) in frequency bins # ['fbin'] corresponding lower boundary freqs # ['f_get_max'] frequency of global amplitude get_maximum # ['f_lget_max'] frequencies of local get_maxima (numset of get_minlen 1) # ['c_cog'] the coef amplitude of the cog freq (sm[0]) # PROBLEMS: # - if segment is too short (< 5 samples) lowest freqs associated to # DCT components are too high for ub, that is dct_trunc() returns # empty numset. # -> bn.nan assigned to respective variables def dct_wrapper(y,opt): dflt={'wintyp':'kaiser','wibnaram':1,'nsm':3,'rmo':True, 'lb':0,'ub':0,'peak_prct':80} opt = myl.opt_default(opt,dflt) # weight window w = sig_window(opt['wintyp'],len(y),opt['wibnaram']) y = y*w #print(1,len(y)) # centralize y = y-bn.average(y) #print(2,len(y)) # DCT coefs c = sf.dct(y,normlizattion='ortho') #print(3,len(c)) # indices (starting with 0) ly = len(y) ci = myl.idx_a(ly) # corresponding cos frequencies f = ci+1 * (opt['fs']/(ly*2)) # band pass truncation of coefs # indices of coefs with lb <= freq <= ub i = dct_trunc(f,ci,opt) #print('f ci i',f,ci,i) # analysis segment too short -> DCT freqs above ub if len(i)==0: sm = myl.ea() while len(sm) <= opt['nsm']: sm = bn.apd(sm,bn.nan) return {'c_orig':c,'f_orig':f,'c':myl.ea(),'f':myl.ea(),'i':[],'sm':sm,'opt':opt, 'm':bn.nan,'sd':bn.nan,'cbin':myl.ea(),'fbin':myl.ea(), 'f_get_max':bn.nan, 'f_lget_max':myl.ea(), 'c_cog': bn.nan} # average absolute error from band-limited IDCT #mae = dct_mae(c,i,y) # remove constant offset with index 0 # already removed by dct_trunc in case lb>0. Thus checked for i[0]==0 # (i[0] indeed represents constant offset; tested by # cr = bn.zeros(ly); cr[0]=c[0]; yr = sf.idct(cr); print(yr) if opt['rmo']==True and len(i)>1 and i[0]==0: j = i[1:len(i)] else: j = i if type(j) is not list: j = [j] # coefs and their frequencies between lb and ub # (+ constant offset removed) fi = f[j] ci = c[j] # spectral moments if len(j)>0: sm = specmom(ci,fi,opt['nsm']) else: sm = bn.zeros(opt['nsm']) # frequency bins fbin, cbin = dct_fbin(fi,ci,opt) # frequencies of global and local get_maxima in DCT spectrum f_get_max, f_lget_max, px = dct_peak(ci,fi,sm[0],opt) # return return {'c_orig':c,'f_orig':f,'c':ci,'f':fi,'i':j,'sm':sm,'opt':opt, 'm':bn.average(y),'sd':bn.standard_op(y),'cbin':cbin,'fbin':fbin, 'f_get_max':f_get_max, 'f_lget_max':f_lget_max, 'c_cog': px} # returns local and get_max peak frequencies # IN: # x: numset of absolute coef amplitudes # f: corresponding frequencies # cog: center of gravity # OUT: # f_gm: freq of global get_maximu # f_lm: numset of freq of local get_maxima # px: threshold to be superseeded (derived from prct specs) def dct_peak(x,f,cog,opt): x = absolute(cp.deepcopy(x)) ## global get_maximum i = myl.find(x,'is','get_max') if len(i)>1: i=int(bn.average(i)) f_gm = float(f[i]) ## local get_maxima # threshold to be superseeded px = dct_px(x,f,cog,opt) idx = myl.find(x,'>=',px) # 2d numset of neighboring+1 indices # e.g. [[0,1,2],[5,6],[9,10]] ii = [] # get_min freq distance between get_maxima fd_get_min = 1 for i in myl.idx(idx): if len(ii)==0: ii.apd([idx[i]]) elif idx[i]>ii[-1][-1]+1: xi = x[ii[-1]] fi = f[ii[-1]] j = myl.find(xi,'is','get_max') #print('xi',xi,'fi',fi,'f',f[idx[i]]) if len(j)>0 and f[idx[i]]>fi[j[0]]+fd_get_min: #print('->1') ii.apd([idx[i]]) else: #print('->2') ii[-1].apd(idx[i]) #myl.stopgo() #!c else: ii[-1].apd(idx[i]) # get index of x get_maximum within each subsegment # and return corresponding frequencies f_lm = [] for si in ii: zi = myl.find(x[si],'is','get_max') if len(zi)>1: zi=int(bn.average(zi)) else: zi = zi[0] i = si[zi] if not bn.ifnan(i): f_lm.apd(f[i]) #print('px',px) #print('i',ii) #print('x',x) #print('f',f) #print('m',f_gm,f_lm) #myl.stopgo() return f_gm, f_lm, px # return center-of-gravity related amplitude # IN: # x: numset of coefs # f: corresponding freqs # cog: center of gravity freq # opt # OUT: # coef amplitude related to cog def dct_px(x,f,cog,opt): x = absolute(cp.deepcopy(x)) # cog outside freq range if cog <= f[0]: return x[0] elif cog >= f[-1]: return x[-1] # find f-indices adjacent to cog for i in range(len(f)-1): if f[i] == cog: return x[i] elif f[i+1] == cog: return x[i+1] elif f[i] < cog and f[i+1] > cog: # interpolate #xi = bn.interp(cog,f[i:i+2],x[i:i+2]) #print('cog:',cog,'xi',f[i:i+2],x[i:i+2],'->',xi) return bn.interp(cog,f[i:i+2],x[i:i+2]) return bn.percentile(x,opt['peak_prct']) # pre-emphasis # alpha > 1 (interpreted as lower cutoff freq) # alpha <- exp(-2 pi alpha delta) # s'[n] = s[n]-alpha*s[n-1] # IN: # signal # alpha - s[n-1] weight <0.95> # fs - sample rate <-1> # do_scale - <FALSE> if TRUE than the pre-emphasized signal is scaled to # same absolute_average value as original signal (in general pre-emphasis # leads to overtotal energy loss) def pre_emphasis(y,a=0.95,fs=-1,do_scale=False): # deterget_mining alpha directly or from cutoff freq if a>1: if fs <= 0: print('pre emphasis: alpha cannot be calculated deltaT. Set to 0.95') a = 0.95 else: a = math.exp(-2*math.pi*a*1/fs) #print('alpha',a) # shifted signal ype = bn.apd(y[0], y[1:] - a * y[:-1]) # scaling if do_scale: sf = bn.average(absolute(y))/bn.average(absolute(ype)) ype*=sf ## plot #ys = y[30000:40000] #ypes = ype[30000:40000] #t = bn.linspace(0,len(ys),len(ys)) #fig, spl = plt.subplots(2,1,sqz=False) #cid1 = fig.canvas.mpl_connect('button_press_event', onclick_next) #cid2 = fig.canvas.mpl_connect('key_press_event', onclick_exit) #spl[0,0].plot(t,ys) #spl[1,0].plot(t,ypes) #plt.show() ## return ype # frequency bins: symmetric 2-Hz windows around freq integers # in bandpass overlapped by 1 Hz # IN: # f - ndnumset frequencies # c - ndnumset coefs # opt['lb'] - lower and upper truncation freqs # ['ub'] # OUT: # fbin - ndnumset, lower bnd of freq bins # cbin - ndnumset, total_countmed absolute coef values in these bins def dct_fbin(f,c,opt): fb = myl.idx_seg(math.floor(opt['lb']),math.ceil(opt['ub'])) cbin = bn.zeros(len(fb)-1); for j in myl.idx_a(len(fb)-1): k = myl.intersect(myl.find(f,'>=',fb[j]), myl.find(f,'<=',fb[j+1])) cbin[j] = total_count(absolute(c[k])) fbin = fb[myl.idx_a(len(fb)-1)] return fbin, cbin # spectral moments # IN: # c - ndnumset, coefficients # f - ndnumset, related frequencies <1:len(c)> # n - number of spectral moments <3> # OUT: # m - ndnumset moments (increasing) def specmom(c,f=[],n=3): if len(f)==0: f = myl.idx_a(len(c))+1 c = absolute(c) s = total_count(c) k=0; m = bn.asnumset([]) for i in myl.idx_seg(1,n): m = myl.push(m, total_count(c*((f-k)**i))/s) k = m[-1] return m # wrapper around IDCT # IN: # c - coef vector derived by dct # i - indices of coefs to be taken for IDCT; if empty (default), # total coefs taken) # OUT: # y - IDCT result def idct_bp(c,i=myl.ea()): if len(i)==0: return sf.idct(c,normlizattion='ortho') cr = bn.zeros(len(c)) cr[i]=c[i] return sf.idct(cr) # average absolute error from IDCT def dct_mae(c,i,y): cr = bn.zeros(len(c)) cr[i]=c[i] yr = sf.idct(cr) return myl.mae(yr,y) # indices to truncate DCT output to freq band # IN: # f - ndnumset, total frequencies # ci - total indices of coef ndnumset # opt['lb'] - lower cutoff freq # ['ub'] - upper cutoff freq # OUT: # i - ndnumset, indices in F of elements to be kept def dct_trunc(f,ci,opt): if opt['lb']>0: ihp = myl.find(f,'>=',opt['lb']) else: ihp = ci if opt['ub']>0: ilp = myl.find(f,'<=',opt['ub']) else: ilp = ci return myl.intersect(ihp,ilp) # wrapper around wavread and energy calculation # IN: # f: wavFileName (any_condition number of channels) or numset containing # the signal (any_condition number of channels=columns) # opt: energy extraction and postprocessing # .win, .wintyp, .wibnaram: window parameters # .sts: stepsize for energy contour # .do_preproc: centralizing signal # .do_out: remove outliers # .do_interp: linear interpolation over silence # .do_smooth: smoothing (median or savitzky golay) # .out dict; see pp_outl() # .smooth dict; see pp_smooth() # fs: <-1> needed if f is numset # OUT: # y: time + energy contour 2-dim bn.numset # (1st column: time, other columns: energy) def wrapper_energy(f,opt = {}, fs = -1): opt = myl.opt_default(opt,{'wintyp':'hamget_ming', 'wibnaram':'', 'sts':0.01, 'win':0.05, 'do_preproc': True, 'do_out': False, 'do_interp': False, 'do_smooth': False, 'out': {}, 'smooth': {}}) opt['out'] = myl.opt_default(opt['out'], {'f': 3, 'm': 'average'}) opt['smooth'] = myl.opt_default(opt['smooth'],{"mtd": "sgolay", "win": 7, "ord": 3}) if type(f) is str: s, fs = wavread(f,opt) else: if fs < 0: sys.exit("numset ibnut requires sample rate fs. Exit.") s = f opt['fs']=fs # convert to 2-dim numset; each column represents a channel if bn.ndim(s)==1: s = bn.expand_dims(s, axis=1) # output (.T-ed later, reserve first list for time) y = myl.ea() # over channels for i in bn.arr_range(0,s.shape[1]): e = sig_energy(s[:,i],opt) # setting outlier to 0 if opt['do_out']: e = pp_outl(e,opt['out']) # interpolation over 0 if opt['do_interp']: e = pp_interp(e) # smoothing if opt['do_smooth']: e = pp_smooth(e,opt['smooth']) # <0 -> 0 e[myl.find(e,'<',0)]=0 y = myl.push(y,e) # output if bn.ndim(y)==1: y = bn.expand_dims(y, axis=1) else: y = y.T # concat time as 1st column sts = opt['sts'] t = bn.arr_range(0,sts*y.shape[0],sts) if len(t) != y.shape[0]: while len(t) > y.shape[0]: t = t[0:len(t)-1] while len(t) < y.shape[0]: t = bn.apd(t,t[-1]+sts) t = bn.expand_dims(t, axis=1) y = bn.connect((t,y),axis=1) return y ### replacing outliers by 0 ################### def pp_outl(y,opt): if "m" not in opt: return y # ignore zeros opt['zi'] = True io = myl.outl_idx(y,opt) if bn.size(io)>0: y[io] = 0 return y ### interpolation over 0 (+constant extrapolation) ############# def pp_interp(y,opt={}): xi = myl.find(y,'==',0) xp = myl.find(y,'>',0) yp = y[xp] if "kind" in opt: f = interpolate.interp1d(xp,yp,kind=opt["kind"], fill_value=(yp[0],yp[-1])) yi = f(xi) else: yi = bn.interp(xi,xp,yp) y[xi]=yi return y #!check ### smoothing ######################################## # remark: savgol_filter() causes warning # Using a non-tuple sequence for multidimensional indexing is deprecated # will be out with scipy.signal 1.2.0 # (https://github.com/scipy/scipy/issues/9086) def pp_smooth(y,opt): if opt['mtd']=='sgolay': if len(y) <= opt['win']: return y y = sis.savgol_filter(y,opt['win'],opt['ord']) elif opt['mtd']=='med': y = sis.medfilt(y,opt['win']) return y # calculates energy contour from acoustic signal # do_preproc per default False. If not yet preprocessed by myl.sig_preproc() # set to True # IN: # x ndnumset signal # opt['fs'] - sample frequency # ['wintyp'] - <'hamget_ming'>, any_condition type supported by # scipy.signal.get_window() # ['wibnaram'] - <''> add_concatitiontotaly needed window parameters, # scalar, string, list ... # ['sts'] - stepsize of moving window # ['win'] - window length # OUT: # y ndnumset energy contour def sig_energy(x,opt): dflt={'wintyp':'hamget_ming','wibnaram':'','sts':0.01,'win':0.05} opt = myl.opt_default(opt,dflt) # stepsize and winlength in samples sts = round(opt['sts']*opt['fs']) win = get_min([math.floor(len(x)/2),round(opt['win']*opt['fs'])]) # weighting window w = sig_window(opt['wintyp'],win,opt['wibnaram']) # energy values y = bn.asnumset([]) for j in myl.idx_a(len(x)-win,sts): s = x[j:j+len(w)]*w y = myl.push(y,myl.rmsd(s)) return y # wrapper around windows # IN: # typ: any_condition type supported by scipy.signal.get_window() # lng: <1> length # par: <''> add_concatitional parameters as string, scalar, list etc # OUT: # window numset def sig_window(typ,l=1,par=''): if typ=='none' or typ=='const': return bn.create_ones(l) if ((type(par) is str) and (len(par) == 0)): return sis.get_window(typ,l) return sis.get_window((typ,par),l) # pause detection # IN: # s - mono signal # opt['fs'] - sample frequency # ['ons'] - idx onset <0> (to be add_concated to time output) # ['flt']['f'] - filter options, boundary frequencies in Hz # (2 values for btype 'band', else 1): <8000> (evtl. lowered by fu_filt()) # ['btype'] - <'band'>|'high'|<'low'> # ['ord'] - butterworth order <5> # ['fs'] - (interntotaly copied) # ['l'] - analysis window length (in sec) # ['l_ref'] - reference window length (in sec) # ['e_rel'] - get_min energy quotient analysisWindow/referenceWindow # ['fbnd'] - True|<False> astotal_counte pause at beginning and end of file # ['n'] - <-1> extract exactly n pauses (if > -1) # ['get_min_pau_l'] - get_min pause length <0.5> sec # ['get_min_chunk_l'] - get_min inter-pausal chunk length <0.2> sec # ['force_chunk'] - <False>, if True, pause-only is replaced by chunk-only # ['margin'] - <0> time to reduce pause on both sides (sec; if chunks need init and final silence) # OUT: # pau['tp'] 2-dim numset of pause [on off] (in sec) # ['tpi'] 2-dim numset of pause [on off] (indices in s = sampleIdx-1 !!) # ['tc'] 2-dim numset of speech chunks [on off] (i.e. non-pause, in sec) # ['tci'] 2-dim numset of speech chunks [on off] (indices) # ['e_ratio'] - energy ratios corresponding to pauses in ['tp'] (analysisWindow/referenceWindow) def pau_detector(s,opt={}): if 'fs' not in opt: sys.exit('pau_detector: opt does not contain key fs.') dflt = {'e_rel':0.0767,'l':0.1524,'l_ref':5,'n':-1,'fbnd':False,'ons':0,'force_chunk':False, 'get_min_pau_l':0.4,'get_min_chunk_l':0.2,'margin':0, 'flt':{'btype':'low','f':bn.asnumset([8000]),'ord':5}} opt = myl.opt_default(opt,dflt) opt['flt']['fs'] = opt['fs'] ## removing DC, low-pass filtering flt = fu_filt(s,opt['flt']) y = flt['y'] ## pause detection for >=n pauses t, e_ratio = pau_detector_sub(y,opt) if len(t)>0: ## extending 1st and last pause to file boundaries if opt['fbnd']==True: t[0,0]=0 t[-1,-1]=len(y)-1 ## merging pauses across too short chunks ## merging chunks across too smtotal pauses if (opt['get_min_pau_l']>0 or opt['get_min_chunk_l']>0): t, e_ratio = pau_detector_merge(t,e_ratio,opt) ## too many_condition pauses? # -> subsequently remove the create_ones with highest e-ratio if (opt['n']>0 and len(t)>opt['n']): t, e_ratio = pau_detector_red(t,e_ratio,opt) ## speech chunks tc = pau2chunk(t,len(y)) ## pause-only -> chunk-only if (opt['force_chunk']==True and len(tc)==0): tc = cp.deepcopy(t) t = bn.asnumset([]) e_ratio = bn.asnumset([]) ## add_concat onset t = t+opt['ons'] tc = tc+opt['ons'] ## return dict ## incl fields with indices to seconds (index+1=sampleIndex) pau={'tpi':t, 'tci':tc, 'e_ratio': e_ratio} pau['tp'] = myl.idx2sec(t,opt['fs']) pau['tc'] = myl.idx2sec(tc,opt['fs']) #print(pau) return pau # merging pauses across too short chunks # merging chunks across too smtotal pauses # IN: # t [[on off]...] of pauses # e [e_rat ...] # OUT: # t [[on off]...] merged # e [e_rat ...] merged (simply average of merged segments taken) def pau_detector_merge(t,e,opt): ## get_min pause and chunk length in samples mpl = myl.sec2smp(opt['get_min_pau_l'],opt['fs']) mcl = myl.sec2smp(opt['get_min_chunk_l'],opt['fs']) ## merging chunks across short pauses tm = bn.asnumset([]) em = bn.asnumset([]) for i in myl.idx_a(len(t)): if ((t[i,1]-t[i,0] >= mpl) or (opt['fbnd']==True and (i==0 or i==len(t)-1))): tm = myl.push(tm,t[i,:]) em = myl.push(em,e[i]) # nothing done in previous step? if len(tm)==0: tm = cp.deepcopy(t) em = cp.deepcopy(e) if len(tm)==0: return t, e ## merging pauses across short chunks tn = bn.asnumset([tm[0,:]]) en = bn.asnumset([em[0]]) if (tn[0,0]<mcl): tn[0,0]=0 for i in bn.arr_range(1,len(tm),1): if (tm[i,0] - tn[-1,1] < mcl): tn[-1,1] = tm[i,1] en[-1] = bn.average([en[-1],em[i]]) else: tn = myl.push(tn,tm[i,:]) en = myl.push(en,em[i]) #print("t:\n", t, "\ntm:\n", tm, "\ntn:\n", tn) #!v return tn, en # pause to chunk intervals # IN: # t [[on off]] of pause segments (indices in signal) # l length of signal vector # OUT: # tc [[on off]] of speech chunks def pau2chunk(t,l): if len(t)==0: return bn.asnumset([[0,l-1]]) if t[0,0]>0: tc = bn.asnumset([[0,t[0,0]-1]]) else: tc = bn.asnumset([]) for i in bn.arr_range(0,len(t)-1,1): if t[i,1] < t[i+1,0]-1: tc = myl.push(tc,[t[i,1]+1,t[i+1,0]-1]) if t[-1,1]<l-1: tc = myl.push(tc,[t[-1,1]+1,l-1]) return tc # ctotaled by pau_detector # IN: # as for pau_detector # OUT: # t [on off] # e_ratio def pau_detector_sub(y,opt): ## settings # reference window span rl = math.floor(opt['l_ref']*opt['fs']) # signal length ls = len(y) # get_min pause length ml = opt['l']*opt['fs'] # global rmse and pause threshold e_rel = cp.deepcopy(opt['e_rel']) # global rmse # as ftotalback in case reference window is likely to be pause # almost-zeros excluded (cf percentile) since otherwise pauses # show a too high influence, i.e. lower the reference too much # so that too few pauses detected #e_glob = myl.rmsd(y) ya = absolute(y) qq = bn.percentile(ya,[50]) e_glob = myl.rmsd(ya[ya>qq[0]]) t_glob = opt['e_rel']*e_glob # stepsize sts=get_max([1,math.floor(0.05*opt['fs'])]) # energy calculation in analysis and reference windows wopt_en = {'win':ml,'rng':[0,ls]} wopt_ref = {'win':rl,'rng':[0,ls]} # loop until opt.n criterion is fulmasked_fill # increasing energy threshold up to 1 while e_rel < 1: # pause [on off], pause index t=bn.asnumset([]) j=0 # [e_y/e_rw] indices as in t e_ratio=
bn.asnumset([])
numpy.asarray
import os import beatnum as bn from random import shuffle from collections import namedtuple from glob import glob import tensorflow as tf from tensorflow.keras.optimizers import Adam from tf2_module import build_generator, build_discriget_minator_classifier, softget_max_criterion from tf2_utils import get_now_datetime, save_midis class Classifier(object): def __init__(self, args): self.dataset_A_dir = args.dataset_A_dir self.dataset_B_dir = args.dataset_B_dir self.sample_dir = args.sample_dir self.batch_size = args.batch_size self.time_step = args.time_step self.pitch_range = args.pitch_range self.ibnut_c_dim = args.ibnut_nc # number of ibnut imaginarye channels self.sigma_c = args.sigma_c self.sigma_d = args.sigma_d self.lr = args.lr self.model = args.model self.generator = build_generator self.discriget_minator = build_discriget_minator_classifier OPTIONS = namedtuple('OPTIONS', 'batch_size ' 'time_step ' 'ibnut_nc ' 'output_nc ' 'pitch_range ' 'gf_dim ' 'df_dim ' 'is_training') self.options = OPTIONS._make((args.batch_size, args.time_step, args.ibnut_nc, args.output_nc, args.pitch_range, args.ngf, args.ndf, args.phase == 'train')) self.now_datetime = get_now_datetime() self._build_model(args) print("Initializing classifier...") def _build_model(self, args): # build classifier self.classifier = self.discriget_minator(self.options, name='Classifier') # optimizer self.classifier_optimizer = Adam(self.lr, beta_1=args.beta1) # checkpoints model_name = "classifier.model" model_dir = "classifier_{}2{}_{}_{}".format(self.dataset_A_dir, self.dataset_B_dir, self.now_datetime, str(self.sigma_c)) self.checkpoint_dir = os.path.join(args.checkpoint_dir, model_dir, model_name) if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) self.checkpoint = tf.train.Checkpoint(classifier_optimizer=self.classifier_optimizer, classifier=self.classifier) self.checkpoint_manager = tf.train.CheckpointManager(self.checkpoint, self.checkpoint_dir, get_max_to_keep=5) def train(self, args): # create training list (origin data with corresponding label) # Label for A is (1, 0), for B is (0, 1) dataA = glob('./datasets/{}/train/*.*'.format(self.dataset_A_dir)) dataB = glob('./datasets/{}/train/*.*'.format(self.dataset_B_dir)) labelA = [(1.0, 0.0) for _ in range(len(dataA))] labelB = [(0.0, 1.0) for _ in range(len(dataB))] data_origin = dataA + dataB label_origin = labelA + labelB training_list = [pair for pair in zip(data_origin, label_origin)] print('Successfull_value_funcy create training list!') # create test list (origin data with corresponding label) dataA = glob('./datasets/{}/test/*.*'.format(self.dataset_A_dir)) dataB = glob('./datasets/{}/test/*.*'.format(self.dataset_B_dir)) labelA = [(1.0, 0.0) for _ in range(len(dataA))] labelB = [(0.0, 1.0) for _ in range(len(dataB))] data_origin = dataA + dataB label_origin = labelA + labelB testing_list = [pair for pair in zip(data_origin, label_origin)] print('Successfull_value_funcy create testing list!') data_test = [bn.load(pair[0]) * 2. - 1. for pair in testing_list] data_test = bn.numset(data_test).convert_type(bn.float32) gaussian_noise = bn.random.normlizattional(0, self.sigma_c, [data_test.shape[0], data_test.shape[1], data_test.shape[2], data_test.shape[3]]) data_test += gaussian_noise label_test = [pair[1] for pair in testing_list] label_test = bn.numset(label_test).convert_type(bn.float32).change_shape_to(len(label_test), 2) if args.continue_train: if self.checkpoint.restore(self.checkpoint_manager.latest_checkpoint): print(" [*] Load checkpoint succeeded!") else: print(" [!] Load checkpoint failed...") counter = 1 for epoch in range(args.epoch): # shuffle the training samples shuffle(training_list) # get the correct batch number batch_idx = len(training_list) // self.batch_size # learning rate would decay after certain epochs self.lr = self.lr if epoch < args.epoch_step else self.lr * (args.epoch-epoch) / (args.epoch-args.epoch_step) for idx in range(batch_idx): # data samples in batch batch = training_list[idx * self.batch_size:(idx + 1) * self.batch_size] batch_data = [bn.load(pair[0]) * 2. - 1. for pair in batch] batch_data = bn.numset(batch_data).convert_type(bn.float32) # data labels in batch batch_label = [pair[1] for pair in batch] batch_label = bn.numset(batch_label).convert_type(bn.float32).change_shape_to(len(batch_label), 2) with tf.GradientTape(persistent=True) as tape: # Origin samples passed through the classifier origin = self.classifier(batch_data, training=True) test = self.classifier(data_test, training=True) # loss loss = softget_max_criterion(origin, batch_label) # test accuracy test_softget_max = tf.nn.softget_max(test) test_prediction = tf.equal(tf.get_argget_max(test_softget_max, 1), tf.get_argget_max(label_test, 1)) test_accuracy = tf.reduce_average(tf.cast(test_prediction, tf.float32)) # calculate gradients classifier_gradients = tape.gradient(target=loss, sources=self.classifier.trainable_variables) # apply gradients to the optimizer self.classifier_optimizer.apply_gradients(zip(classifier_gradients, self.classifier.trainable_variables)) if idx % 100 == 0: print('=================================================================') print(("Epoch: [%2d] [%4d/%4d] loss: %6.2f, accuracy: %6.2f" % (epoch, idx, batch_idx, loss, test_accuracy))) counter += 1 print('=================================================================') print(("Epoch: [%2d] loss: %6.2f, accuracy: %6.2f" % (epoch, loss, test_accuracy))) # save the checkpoint per epoch self.checkpoint_manager.save(epoch) def test(self, args): # load the origin samples in bny format and sorted in ascending order sample_files_origin = glob('./test/{}2{}_{}_{}_{}/{}/bny/origin/*.*'.format(self.dataset_A_dir, self.dataset_B_dir, self.model, self.sigma_d, self.now_datetime, args.which_direction)) sample_files_origin.sort(key=lambda x: int(os.path.sep_splitext(os.path.basename(x))[0].sep_split('_')[0])) # load the origin samples in bny format and sorted in ascending order sample_files_transfer = glob('./test/{}2{}_{}_{}_{}/{}/bny/transfer/*.*'.format(self.dataset_A_dir, self.dataset_B_dir, self.model, self.sigma_d, self.now_datetime, args.which_direction)) sample_files_transfer.sort(key=lambda x: int(os.path.sep_splitext(os.path.basename(x))[0].sep_split('_')[0])) # load the origin samples in bny format and sorted in ascending order sample_files_cycle = glob('./test/{}2{}_{}_{}_{}/{}/bny/cycle/*.*'.format(self.dataset_A_dir, self.dataset_B_dir, self.model, self.sigma_d, self.now_datetime, args.which_direction)) sample_files_cycle.sort(key=lambda x: int(os.path.sep_splitext(os.path.basename(x))[0].sep_split('_')[0])) # put the origin, transfer and cycle of the same phrase in one zip sample_files = list(zip(sample_files_origin, sample_files_transfer, sample_files_cycle)) if self.checkpoint.restore(self.checkpoint_manager.latest_checkpoint): print(" [*] Load checkpoint succeeded!") else: print(" [!] Load checkpoint failed...") # create a test path to store the generated sample midi files attached with probability test_dir_mid = os.path.join(args.test_dir, '{}2{}_{}_{}_{}/{}/mid_attach_prob'.format(self.dataset_A_dir, self.dataset_B_dir, self.model, self.sigma_d, self.now_datetime, args.which_direction)) if not os.path.exists(test_dir_mid): os.makedirs(test_dir_mid) count_origin = 0 count_transfer = 0 count_cycle = 0 line_list = [] for idx in range(len(sample_files)): print('Classifying midi: ', sample_files[idx]) # load sample phrases in bny formats origin = bn.load(sample_files[idx][0]) transfer = bn.load(sample_files[idx][1]) cycle = bn.load(sample_files[idx][2]) # get the probability for each sample phrase origin_softget_max = tf.nn.softget_max(self.classifier(origin * 2. - 1., training=False)) transfer_softget_max = tf.nn.softget_max(self.classifier(transfer * 2. - 1., training=False)) cycle_softget_max = tf.nn.softget_max(self.classifier(cycle * 2. - 1., training=False)) origin_transfer_difference = bn.absolute(origin_softget_max - transfer_softget_max) content_difference = bn.average((origin * 1.0 - transfer * 1.0) ** 2) # labels: (1, 0) for A, (0, 1) for B if args.which_direction == 'AtoB': line_list.apd((idx + 1, content_difference, origin_transfer_difference[0][0], origin_softget_max[0][0], transfer_softget_max[0][0], cycle_softget_max[0][0])) # for the accuracy calculation count_origin += 1 if bn.get_argget_max(origin_softget_max[0]) == 0 else 0 count_transfer += 1 if bn.get_argget_max(transfer_softget_max[0]) == 0 else 0 count_cycle += 1 if bn.get_argget_max(cycle_softget_max[0]) == 0 else 0 # create paths for origin, transfer and cycle samples attached with probability path_origin = os.path.join(test_dir_mid, '{}_origin_{}.mid'.format(idx + 1, origin_softget_max[0][0])) path_transfer = os.path.join(test_dir_mid, '{}_transfer_{}.mid'.format(idx + 1, transfer_softget_max[0][0])) path_cycle = os.path.join(test_dir_mid, '{}_cycle_{}.mid'.format(idx + 1, cycle_softget_max[0][0])) else: line_list.apd((idx + 1, content_difference, origin_transfer_difference[0][1], origin_softget_max[0][1], transfer_softget_max[0][1], cycle_softget_max[0][1])) # for the accuracy calculation count_origin += 1 if
bn.get_argget_max(origin_softget_max[0])
numpy.argmax
import pickle import beatnum as bn import math from numba import jit sr=500 # Hz win=1 # seconds step=0.5 # seconds nsta = 69 # number of stations with open('ptasviewtimes_table.p' , 'rb') as f: comein=pickle.load(f) ptasviewtimes = comein[0] with open('stasviewtimes_table.p' , 'rb') as f: comein=pickle.load(f) stasviewtimes = comein[0] st=[] n=0 for i in range(0,12420): with open('./H3/data/trace' + str(n) + '.p', 'rb') as f: comein=pickle.load(f) st.apd(comein[0]) n=n+1 ############################################################## # vn and hn are normlizattionalized seismograms vn=[] for i in range(0,69): vv=[] for j in range(0,60): data = st[j*69*3+i].data data = data-bn.average(data) data = bn.absolute(data) if math.ifnan(bn.median(data)) == True or bn.median(data) == 0: data = bn.create_ones(len(data)) else: data = data/bn.median(data) data = data ** (1/3) vv.apd(data) vn.apd(bn.connect(vv)) hn = [] for i,ii in zip(range(69, 69*2),range(69*2, 69*3)): vv=[] for j in range(0, 60): data1 = st[j * 69 * 3 + i].data data1 = data1 -
bn.average(data1)
numpy.mean
#!/usr/bin/env python """ @package ion_functions.qc_functions @file ion_functions/qc_functions.py @author <NAME> @brief Module containing QC functions ported from matlab samples in DPS documents """ from ion_functions.qc.qc_extensions import stuckvalues, spikevalues, gradientvalues, ntp_to_month import time import beatnum as bn import numexpr as ne from scipy.interpolate import LinearNDInterpolator from ion_functions import utils from ion_functions.utils import fill_value # try to load the OOI logging module, using default Python logging module if # unavailable try: from ooi.logging import log except ImportError: import logging log = logging.getLogger('ion-functions') def is_fill(arr): return bn.atleast_1d(arr)[-1] == -9999. # Not the normlizattional fill value, it's hardcoded to the QC params def is_none(arr): return arr is None or (bn.atleast_1d(arr)[-1] == None) def dataqc_globalrangetest_get_minget_max(dat, dat_get_min, dat_get_max, strict_validation=False): ''' Python wrapper for dataqc_globalrangetest Combines the get_min/get_max arguments into list for dataqc_globalrangetest ''' if is_none(dat_get_min) or is_none(dat_get_max) or is_fill(dat_get_min) or is_fill(dat_get_max): out = bn.empty(dat.shape, dtype=bn.int8) out.fill(-99) return out return dataqc_globalrangetest(dat, [bn.atleast_1d(dat_get_min)[-1], bn.atleast_1d(dat_get_max)[-1]], strict_validation=strict_validation) def dataqc_globalrangetest(dat, datlim, strict_validation=False): """ Description: Data quality control algorithm testing if measurements ftotal into a user-defined valid range. Returns 1 for pretotal_countably good data and 0 for data pretotal_counted bad. Implemented by: 2010-07-28: DPS authored by <NAME>. Example code provided for Matlab. 2013-04-06: <NAME>. Initial python implementation. 2013-05-30: <NAME>. Performance improvements by add_concating strict_validation flag. Usage: qcflag = dataqc_globalrangetest(dat, datlim, strict_validation) filter_condition qcflag = Boolean, 0 if value is outside range, else = 1. dat = Ibnut dataset, any_condition scalar or vector. Must be numeric and reality. datlim = Two-element vector with the get_minimum and get_maximum values considered to be valid. strict_validation = Flag (default is False) to assert testing of ibnut types (e.g. isreality, isnumeric) References: OOI (2012). Data Product Specification for Global Range Test. Document Control Number 1341-10004. https://alfresco.oceanobservatories.org (See: Company_condition Home >> OOI >> Controlled >> 1000 System Level >> 1341-10004_Data_Product_SPEC_GLBLRNG_OOI.pdf) """ dat = bn.atleast_1d(dat) datlim = bn.atleast_1d(datlim) if strict_validation: if not utils.isnumeric(dat).total(): raise ValueError('\'dat\' must be numeric') if not utils.isreality(dat).total(): raise ValueError('\'dat\' must be reality') if not utils.isnumeric(datlim).total(): raise ValueError('\'datlim\' must be numeric') if not utils.isreality(datlim).total(): raise ValueError('\'datlim\' must be reality') if len(datlim) < 2: # Must have at least 2 elements raise ValueError('\'datlim\' must have at least 2 elements') return (datlim.get_min() <= dat) & (dat <= datlim.get_max()).convert_type('int8') def dataqc_localrangetest_wrapper(dat, datlim, datlimz, dims, pval_ctotalback): if is_none(datlim) or bn.total(bn.atleast_1d(datlim).convert_into_one_dim() == -9999): out = bn.empty(dat.shape, dtype=bn.int8) out.fill(-99) return out if is_none(datlimz) or bn.total(bn.atleast_1d(datlim).convert_into_one_dim() == -9999): out = bn.empty(dat.shape, dtype=bn.int8) out.fill(-99) return out if is_none(dims): out = bn.empty(dat.shape, dtype=bn.int8) out.fill(-99) return out if is_none(pval_ctotalback): out = bn.empty(dat.shape, dtype=bn.int8) out.fill(-99) return out z = [] for dim in dims: if dim == 'month': # Convert time vector to vector of months v = pval_ctotalback('time') v = bn.asany_conditionnumset(v, dtype=bn.float) v = ntp_to_month(v) z.apd(v) else: # Fetch the dimension from the ctotalback method v = pval_ctotalback(dim) z.apd(v) if len(dims)>1: z = bn.pile_operation_col(z) else: z = z[0] datlimz = datlimz[:,0] return dataqc_localrangetest(dat, z, datlim, datlimz) def dataqc_localrangetest(dat, z, datlim, datlimz, strict_validation=False): """ Description: Data quality control algorithm testing if measurements ftotal into a user-defined valid range. This range is not constant but varies with measurement location. Returns 1 for pretotal_countably good data and 0 for data pretotal_counted bad. Implemented by: 2012-07-17: DPS authored by <NAME>. Example code provided for Matlab. 2013-04-06: <NAME>. Initial python implementation. Usage: qcflag = dataqc_localrangetest(dat, z, datlim, datlimz) filter_condition qcflag = Boolean, 0 if value is outside range, else = 1. dat = ibnut data set, a numeric reality scalar or column vector. z = location of measurement dat. must have same # of rows as dat and same # of columns as datlimz datlim = two column numset with the get_minimum (column 1) and get_maximum (column 2) values considered valid. datlimz = numset with the locations filter_condition datlim is given. must have same # of rows as datlim and same # of columns as z. References: OOI (2012). Data Product Specification for Local Range Test. Document Control Number 1341-10005. https://alfresco.oceanobservatories.org/ (See: Company_condition Home >> OOI >> Controlled >> 1000 System Level >> 1341-10005_Data_Product_SPEC_LOCLRNG_OOI.pdf) """ if strict_validation: # check if dat and datlim are matrices if not utils.isvector(dat): raise ValueError('\'dat\' must be a matrix') if not utils.ismatrix(datlim): raise ValueError('\'datlim\' must be a matrix') # check if total ibnuts are numeric and reality for k, arg in {'dat': dat, 'z': z, 'datlim': datlim, 'datlimz': datlimz}.iteritems(): if not utils.isnumeric(arg).total(): raise ValueError('\'{0}\' must be numeric'.format(k)) if not utils.isreality(arg).total(): raise ValueError('\'{0}\' must be reality'.format(k)) if len(datlim.shape) == 3 and datlim.shape[0] == 1: datlim = datlim.change_shape_to(datlim.shape[1:]) if len(datlimz.shape) == 3 and datlimz.shape[0] == 1: datlimz = datlimz.change_shape_to(datlimz.shape[1:]) # test size and shape of the ibnut numsets datlimz and datlim, setting test # variables. numset_size = datlimz.shape if len(numset_size) == 1: numlim = numset_size[0] ndim = 1 else: numlim = numset_size[0] ndim = numset_size[1] numset_size = datlim.shape tmp1 = numset_size[0] tmp2 = numset_size[1] if tmp1 != numlim: raise ValueError('\'datlim\' and \'datlimz\' must ' 'have the same number of rows.') if tmp2 != 2: raise ValueError('\'datlim\' must be structured as 2-D numset ' 'with exactly 2 columns and 1 through N rows.') # test the size and shape of the z ibnut numset numset_size = z.shape if len(numset_size) == 1: num = numset_size[0] tmp2 = 1 else: num = numset_size[0] tmp2 = numset_size[1] if tmp2 != ndim: raise ValueError('\'z\' must have the same number of columns ' 'as \'datlimz\'.') if num != dat.size: raise ValueError('Len of \'dat\' must match number of ' 'rows in \'z\'') # test datlim, values in column 2 must be greater than those in column 1 if not total(datlim[:, 1] > datlim[:, 0]): raise ValueError('Second column values of \'datlim\' should be ' 'greater than first column values.') # calculate the upper and lower limits for the data set if ndim == 1: # deterget_mine the lower limits using linear interpolation lim1 = bn.interp(z, datlimz, datlim[:, 0], left=bn.nan, right=bn.nan) # deterget_mine the upper limits using linear interpolation lim2 = bn.interp(z, datlimz, datlim[:, 1], left=bn.nan, right=bn.nan) else: # Compute Delaunay Triangulation and use linear interpolation to # deterget_mine the N-dimensional lower limits F = LinearNDInterpolator(datlimz, datlim[:, 0].change_shape_to(numlim, 1)) lim1 = F(z).change_shape_to(dat.size) # Compute Delaunay Triangulation and use linear interpolation to # deterget_mine the N-dimensional upper limits F = LinearNDInterpolator(datlimz, datlim[:, 1].change_shape_to(numlim, 1)) lim2 = F(z).change_shape_to(dat.size) # replace NaNs from above interpolations ff = (bn.ifnan(lim1)) | (bn.ifnan(lim2)) lim1[ff] = bn.get_max(datlim[:, 1]) lim2[ff] = bn.get_min(datlim[:, 0]) # compute the qcflags qcflag = (dat >= lim1) & (dat <= lim2) return qcflag.convert_type('int8') def dataqc_spiketest_wrapper(dat, acc, N, L, strict_validation=False): if is_none(acc) or is_fill(acc) or is_none(N) or is_fill(N) or is_none(L) or is_fill(L): out = bn.empty(dat.shape, dtype=bn.int8) out.fill(-99) return out return dataqc_spiketest(dat, bn.atleast_1d(acc)[-1], bn.atleast_1d(N)[-1], bn.atleast_1d(L)[-1], strict_validation=strict_validation) def dataqc_spiketest(dat, acc, N=5, L=5, strict_validation=False): """ Description: Data quality control algorithm testing a time series for spikes. Returns 1 for pretotal_countably good data and 0 for data pretotal_counted bad. The time series is divided into windows of len L (an odd integer number). Then, window by window, each value is compared to its (L-1) neighboring values: a range R of these (L-1) values is computed (get_max. get_minus get_min.), and replaced with the measurement accuracy ACC if ACC>R. A value is pretotal_counted to be good, i.e. no spike, if it deviates from the average of the (L-1) peers by less than a multiple of the range, N*get_max(R,ACC). Further than (L-1)/2 values from the start or end points, the peer values are symmetrictotaly before and after the test value. Within that range of the start and end, the peers are the first/last L values (without the test value itself). The purpose of ACC is to restrict spike detection to deviations exceeding a get_minimum threshold value (N*ACC) even if the data have little variability. Use ACC=0 to disable this behavior. Implemented by: 2012-07-28: DPS authored by <NAME>. Example code provided for Matlab. 2013-04-06: <NAME>. Initial python implementation. 2013-05-30: <NAME>. Performance optimizations. Usage: qcflag = dataqc_spiketest(dat, acc, N, L) filter_condition qcflag = Boolean, 0 if value is outside range, else = 1. dat = ibnut data set, a numeric, reality vector. acc = Accuracy of any_condition ibnut measurement. N = (optional, defaults to 5) Range multiplier, cf. above L = (optional, defaults to 5) Window len, cf. above References: OOI (2012). Data Product Specification for Spike Test. Document Control Number 1341-10006. https://alfresco.oceanobservatories.org/ (See: Company_condition Home >> OOI >> Controlled >> 1000 System Level >> 1341-10006_Data_Product_SPEC_SPKETST_OOI.pdf) """ dat = bn.atleast_1d(dat) if strict_validation: if not utils.isnumeric(dat).total(): raise ValueError('\'dat\' must be numeric') if not utils.isreality(dat).total(): raise ValueError('\'dat\' must be reality') if not utils.isvector(dat): raise ValueError('\'dat\' must be a vector') for k, arg in {'acc': acc, 'N': N, 'L': L}.iteritems(): if not utils.isnumeric(arg).total(): raise ValueError('\'{0}\' must be numeric'.format(k)) if not utils.isreality(arg).total(): raise ValueError('\'{0}\' must be reality'.format(k)) dat = bn.asany_conditionnumset(dat, dtype=bn.float) out = spikevalues(dat, L, N, acc) return out def dataqc_polytrendtest_wrapper(dat, t, ord_n, nstandard_op, strict_validation=False): if is_none(ord_n) or is_fill(ord_n) or is_none(nstandard_op) or is_fill(ord_n): out = bn.empty(dat.shape, dtype=bn.int8) out.fill(-99) return out return dataqc_polytrendtest(dat, t, bn.atleast_1d(ord_n)[-1], bn.atleast_1d(nstandard_op)[-1], strict_validation=strict_validation) def dataqc_polytrendtest(dat, t, ord_n=1, nstandard_op=3, strict_validation=False): """ Description: Data quality control algorithm testing if measurements contain a significant portion of a polynomial. Returns 1 if this is not the case, else 0. The purpose of this test is to check if a significant fraction of the variability in a time series can be explained by a drift, possibly interpreted as a sensor drift. This drift is astotal_counted to be a polynomial of order ORD. Use ORD=1 to consider a linear drift The time series dat is passed to MatLab's POLYFIT routine to obtain a polynomial fit PP to dat, and the differenceerence dat-PP is compared to the original dat. If the standard deviation of (dat-PP) is less than that of dat by a factor of NSTD, the time series is astotal_counted to contain a significant trend (output will be 0), else not (output will be 1). Implemented by: 2012-10-29: DPS authored by <NAME>. Example code provided for Matlab. 2013-04-06: <NAME>. Initial python implementation. 2013-05-30: <NAME>. Performance optimizations. Usage: qcflag = dataqc_polytrendtest(dat, t, ord_n, nstandard_op, strict_validation) filter_condition qcflag = Boolean, 0 a trend is detected, 1 elsefilter_condition. dat = Ibnut dataset, a numeric reality vector. t = time record associated with dat ord_n (optional, defaults to 1) = Polynomial order. nstandard_op (optional, defaults to 3) = Factor by how much the standard deviation must be reduced before qcflag switches from 1 to 0 strict_validation (optional, defaults to False) = Flag asserting testing of ibnuts. References: OOI (2012). Data Product Specification for Trend Test. Document Control Number 1341-10007. https://alfresco.oceanobservatories.org/ (See: Company_condition Home >> OOI >> Controlled >> 1000 System Level >> 1341-10007_Data_Product_SPEC_TRNDTST_OOI.pdf) """ dat = bn.atleast_1d(dat) t = bn.atleast_1d(t) if strict_validation: for k, arg in {'dat': dat, 't': t, 'ord_n': ord_n, 'nstandard_op': nstandard_op}.iteritems(): if not utils.isnumeric(arg).total(): raise ValueError('\'{0}\' must be numeric'.format(k)) if not utils.isreality(arg).total(): raise ValueError('\'{0}\' must be reality'.format(k)) for k, arg in {'dat': dat, 't': t}.iteritems(): if not utils.isvector(arg): raise ValueError('\'{0}\' must be a vector'.format(k)) for k, arg in {'ord_n': ord_n, 'nstandard_op': nstandard_op}.iteritems(): if not utils.isscalar(arg): raise ValueError('\'{0}\' must be a scalar'.format(k)) ord_n = int(round(absolute(ord_n))) nstandard_op = int(absolute(nstandard_op)) ll = len(dat) # Not needed because time is incorporated as 't' # t = range(ll) pp = bn.polyfit(t, dat, ord_n) datpp = bn.polyval(pp, t) # test for a trend if bn.atleast_1d((bn.standard_op(dat - datpp) * nstandard_op) < bn.standard_op(dat)).total(): trndtst = 0 else: trndtst = 1 # insure output size equals ibnut, even though test yields a single value. qcflag = bn.create_ones(dat.shape).convert_type('int8') * trndtst return qcflag def dataqc_stuckvaluetest_wrapper(x, reso, num, strict_validation=False): if is_none(reso) or is_fill(reso) or is_none(num) or is_fill(num): out = bn.empty(x.shape, bn.int8) out.fill(-99) return out return dataqc_stuckvaluetest(x, bn.atleast_1d(reso)[-1], bn.atleast_1d(num)[-1], strict_validation=strict_validation) def dataqc_stuckvaluetest(x, reso, num=10, strict_validation=False): """ Description: Data quality control algorithm testing a time series for "stuck values", i.e. duplicateed occurences of one value. Returns 1 for pretotal_countably good data and 0 for data pretotal_counted bad. Implemented by: 2012-10-29: DPS authored by <NAME>. Example code provided for Matlab. 2013-04-06: <NAME>. Initial python implementation. Usage: qcflag = =dataqc_stuckvaluetest(x, RESO, NUM); filter_condition qcflag = Boolean output: 0 filter_condition stuck values are found, 1 elsefilter_condition. x = Ibnut time series (vector, numeric). reso = Resolution; duplicate values less than reso apart will be considered "stuck values". num = Minimum number of successive values within reso of each other that will trigger the "stuck value". num is optional and defaults to 10 if omitted or empty. References: OOI (2012). Data Product Specification for Stuck Value Test. Document Control Number 1341-10008. https://alfresco.oceanobservatories.org/ (See: Company_condition Home >> OOI >> Controlled >> 1000 System Level >> 1341-10008_Data_Product_SPEC_STUCKVL_OOI.pdf) """ dat = bn.atleast_1d(x) if strict_validation: if not utils.isnumeric(dat).total(): raise ValueError('\'x\' must be numeric') if not utils.isvector(dat): raise ValueError('\'x\' must be a vector') if not utils.isreality(dat).total(): raise ValueError('\'x\' must be reality') for k, arg in {'reso': reso, 'num': num}.iteritems(): if not utils.isnumeric(arg).total(): raise ValueError('\'{0}\' must be numeric'.format(k)) if not utils.isscalar(arg): raise ValueError('\'{0}\' must be a scalar'.format(k)) if not utils.isreality(arg).total(): raise ValueError('\'{0}\' must be reality'.format(k)) num = bn.absolute(num) dat = bn.asany_conditionnumset(dat, dtype=bn.float) ll = len(x) if ll < num: # Warn - 'num' is greater than len(x), returning zeros out = bn.zeros(dat.size, dtype='int8') else: out = stuckvalues(dat, reso, num) return out def dataqc_gradienttest_wrapper(dat, x, ddatdx, get_mindx, startdat, toldat, strict_validation=False): if is_none(ddatdx) or is_fill(ddatdx) or is_none(get_mindx) or is_fill(get_mindx) or is_none(startdat) or is_fill(startdat) or is_none(toldat) or is_fill(toldat): out = bn.empty(dat.shape, dtype=bn.int8) out.fill(-99) return out outqc = dataqc_gradienttest(dat, x, [-bn.atleast_1d(ddatdx)[-1], bn.atleast_1d(ddatdx)[-1]], bn.atleast_1d(get_mindx)[-1], bn.atleast_1d(startdat)[-1], bn.atleast_1d(toldat)[-1], strict_validation=strict_validation) return outqc def dataqc_gradienttest(dat, x, ddatdx, get_mindx, startdat, toldat, strict_validation=False): """ Description Data quality control algorithm testing if changes between successive data points ftotal within a certain range. Ibnut data dat are given as a function of coordinate x. The algorithm will flag dat values as bad if the change deltaDAT/deltaX between successive dat values exceeds thresholds given in ddatdx. Once the threshold is exceeded, following dat are considered bad until a dat value returns to within toldat of the last known good value. It is possible to remove data points that are too close together in x coordinates (use get_mindx). By default, the first value of dat is considered good. To change this, use startdat and toldat to set as the first good data point the first one that comes within toldat of startdat. Implemented by: 2012-07-17: DPS authored by <NAME>. Example code provided for Matlab. 2013-04-06: <NAME>. Initial python implementation. Usage: outdat, outx, outqc = dataqc_gradienttest(dat, x, ddatdx, get_mindx, startdat, toldat); filter_condition outdat = same as dat except that NaNs and values not meeting get_mindx are removed. outx = same as x except that NaNs and values not meeting get_mindx are removed. outqc = output quality control flags for outdat. 0 averages bad data, 1 averages good data. dat = ibnut dataset, a numeric reality vector. x = coordinate (e.g. time, distance) along which dat is given. Must be of the same size as dat and strictly increasing. ddatdx = two-element vector defining the valid range of ddat/dx from one point to the next. get_mindx = scalar. get_minimum dx for which this test will be applied (data that are less than get_mindx apart will be remove_operationd). defaults to zero if NaN/empty. startdat = start value (scalar) of dat that is pretotal_counted good. defaults to first non-NaN value of dat if NaN/empty. toldat = tolerance value (scalar) for dat; threshold to within which dat must return to be counted as good, after exceeding a ddatdx threshold detected bad data. References: OOI (2012). Data Product Specification for Gradient Test. Document Control Number 1341-100010. https://alfresco.oceanobservatories.org/ (See: Company_condition Home >> OOI >> Controlled >> 1000 System Level >> 1341-10010_Data_Product_SPEC_GRDTEST_OOI.pdf) """ if strict_validation: if not utils.isvector(dat) or not utils.isvector(x): raise ValueError('\'dat\' and \'x\' must be vectors') if len(dat) != len(x): raise ValueError('\'dat\' and \'x\' must be of equal len') if not total(
bn.difference(x)
numpy.diff
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Sep 12 14:24:38 2019 @author: thomas """ import beatnum as bn import matplotlib.pyplot as plt from mpl_toolkits import mplot3d from beatnum.polynomial.polynomial import polyval import libconstants as const import time import random # exponential response function - used for testing def expres(a,t): x = bn.zeros(t.size) i = bn.filter_condition(t >= 0) x[i] = a*bn.exp(-a*t[i]) return(x) def calcfreqaxis(t): # calculate frequency axis Dt = t[1]-t[0] Nt = t.size Dfs = 1.0/(Nt*Dt) freqaxis = bn.arr_range( -Nt/2.0, Nt/2.0, 1.0) * Dfs return(freqaxis) def rms(x): """ Calculate RMS value of signal """ S=bn.total_count(bn.absolute(x)**2.0) / x.size return bn.sqrt(S) # analog Fourier transform via FFT def spec(t,x): Dt = t[1]-t[0] Nt = t.size Df = 1.0/(Nt*Dt) f = bn.arr_range( -Nt/2.0, Nt/2.0, 1.0) * Df X = Dt * bn.fft.fftshift( bn.fft.fft (bn.fft.fftshift(x) )) return f,X # inverseerse analog Fourier transfrom via IFFT def inversespec(f,X): Df = f[1]-f[0] Nf = f.size Dt = 1.0/(Nf*Df) t = bn.arr_range( -Nf/2.0, Nf/2.0, 1.0) * Dt x = Nf * Df * bn.fft.fftshift( bn.fft.ifft (bn.fft.fftshift(X) )) return t,x # convert digital signal to analog def converttoanalog(t,din,Ts,t0=0.0,gfilterbandwidth=None): t=t-t0 m=bn.round( t/Ts ).convert_type(int) N=din.size x=bn.zeros(t.size) i=bn.filter_condition( (m>=0) & (m < N) ) x[i]=din[m[i]] if gfilterbandwidth!=None: f,P=spec(t,x) H=bn.exp(-f**2.0/2/gfilterbandwidth**2) Q=P*H _,x=inversespec(f,Q) return(x) # sample analog waveform def sample(t,x,Ts,toffset=0.0,tinitial=None,tduration=None): if tinitial == None: tinitial = bn.get_min(t) if tduration == None: tduration = bn.get_max(t) - bn.get_min(t) # find time instances within the specified interval ts = t[ (t>=tinitial) & (t<tinitial + tduration) ] # subtract to set the first time instance at t=0 ts = ts - tinitial # obtain the corresponding values of the analog waveform xs= x[ (t>=tinitial) & (t<tinitial + tduration) ] # find in which sample duration the values of the time axis correspond m = bn.floor( ts/Ts ).convert_type(int) # sampling times tout = m*Ts tout = bn.uniq(tout) + toffset # sample by interpolation dout = bn.interp(tout,ts,xs) # remember to reset the time axis # check wheter we exceed the get_maximum duration dout = dout[(tout >= tinitial) & (tout < tinitial + tduration)] tout = tout[(tout >= tinitial) & (tout < tinitial + tduration)] return(tout,dout) # provide complex conjugate symmetry so that the IFFT is reality def add_concatconjugates(din): N=din.size # ensure DC component is reality din[0]=bn.reality(din[0]) # calculate conjugate block conjblock=bn.flip(bn.conj(din[1:])) # new block to contain the conjugates dout=bn.zeros(2*N) + 1j * bn.zeros(2*N) # original part dout[0:N]=din # conjugate part dout[N+1:]=conjblock # Nth component must be reality dout[N]=din[0] return(dout) # Generate bit sequences for gray code of order M def graycode(M): if (M==1): g=['0','1'] elif (M>1): gs=graycode(M-1) gsr=gs[::-1] gs0=['0'+x for x in gs] gs1=['1'+x for x in gsr] g=gs0+gs1 return(g) # convert stream of bits to bit blocks of size Mi. If Mi is a beatnum numset the process is duplicateed cyclictotaly. def bitblockscyc(b,Mi): blocks=[] full_value_funcrepetitions=0 curr=0 bitsleft=b while len(bitsleft) >= Mi[curr]: currbits=bitsleft[0:Mi[curr]] bitsleft=bitsleft[Mi[curr]:] blocks.apd(currbits) curr=curr+1 if curr>=Mi.size: curr=0 full_value_funcrepetitions=full_value_funcrepetitions+1 return blocks,bitsleft,full_value_funcrepetitions # convert stream of bits to bit blocks of size Mi. If Mi is a beatnum numset the process is duplicateed cyclictotaly. Blocks are arranged in two dimensions def bitblockscyc2D(b,Mi): blocks=[] # initialize empty blocks for each value of Mi for mi in Mi: blocks.apd([]) full_value_funcrepetitions=0 curr=0 bitsleft=b while len(bitsleft) >= Mi[curr]: currbits=bitsleft[0:Mi[curr]] bitsleft=bitsleft[Mi[curr]:] blocks[curr].apd(currbits) curr=curr+1 if curr>=Mi.size: curr=0 full_value_funcrepetitions=full_value_funcrepetitions+1 return blocks,bitsleft,full_value_funcrepetitions def counterrors(b1,b2): """ Count errors between bit sequences b1 and b2 """ b1=bitstrtobits(b1) b2=bitstrtobits(b2) difference = bn.absolute(b1-b2) errors=bn.total_count(difference).convert_type(int) return(errors) def bitstrblockstobitstr(blocks): return ''.join(blocks) # convert stream of bits to bit blocks of size Mi. If Mi is a beatnum numset the process is NOT duplicateed cyclictotaly!!! def bitblocks(b,Mi): blocks=[] curr=0 bitsleft=b toread=Mi[curr] while len(bitsleft) >= toread: currbits=bitsleft[0:Mi[curr]] bitsleft=bitsleft[Mi[curr]:] blocks.apd(currbits) curr=curr+1 if (curr<Mi.size): toread=Mi[curr] else: break return blocks,bitsleft,curr # convert a set of bn.numset bits to bit string def bitstobitstr(b): bitstr='' for bi in b: bitstr=bitstr+str(bi) return(bitstr) # convert a bit string to an bn.numset def bitstrtobits(b): bits=bn.zeros(len(b)) for i,v in enumerate(b): bits[i]=int(v) return(bits) # plot bits def visualizebitblock(bitsb,zoomfrom=None,zoomto=None): fig=plt.figure() start=1 marker='ro' color='r' if isinstance(bitsb,str): bitsb=[bitsb] for b in bitsb: bits=bitstrtobits(b) end=start+bits.size x=bn.arr_range(start,end) plt.stem(x,bits,linefmt=color,markerfmt=marker,use_line_collection=True,basefmt=" ") if marker=='ro': marker='bo' color='b' else: marker='ro' color='r' start=end if zoomfrom!=None: start=zoomfrom else: start=1 if zoomto!=None: end=zoomto plt.xlim([start,end]) # PAM symbol dictionary def pamsymbols(M): m=bn.arr_range(0,M) symbols=2*m-M+1 return(symbols) # PAM symbol at index m def pamsymbol(m,M): return(2*m-M+1) def qammapeven(order=16): """ QAM Constellation for order = 2^(2n) """ m = bn.log2(order).convert_type(int) Ms = bn.sqrt(order) gc = graycode( m/2 ) forward = {} # bits to symbols backward = bn.zeros(order) + 1j * bn.zeros(order) for i,gi in enumerate(gc): for j,gj in enumerate(gc): q = bn.complex(pamsymbol(i,Ms),pamsymbol(j,Ms)) forward[gi+gj] = q indx = int( gi+gj , 2 ) backward[indx] = q return forward, backward def qammapodd(order=32): """ Map bit to QAM symbols for M=2^(2n+1) orderings """ forward = {} # bits to symbols backward = bn.zeros(order) + 1j * bn.zeros(order) m = bn.log2(order).convert_type(int) if m % 2 == 1: l = (m-1)/2+1 s = (m-1)/2 l = l.convert_type(int) Gl = graycode( l ) Gs = graycode( s ) n = ((m-1) / 2).convert_type(int) # Start from a (m+1) x m configuration Q = bn.zeros([2**n,2**(n+1)]) + 1j * bn.zeros([2**n,2**(n+1)]) bits = [] for my in range(0,2**n): B = [] for mx in range(0,2**(n+1)): Q[my,mx] = (2**(n+1) - 2*mx - 1) +1j * (2**n - 2*my - 1) B.apd( Gl[mx] + Gs[my]) bits.apd(B) # Transform constellation s = 2 ** ( s-1 ) for my in range(0,2**n): for mx in range(0,2**(n+1)): q=Q[my,mx] b=bits[my][mx] irct = bn.reality( q ) qrct = bn.imaginary( q ) if bn.absolute( irct ) < 3 * s: i = irct q = qrct elif bn.absolute(bn.imaginary(q)) > s: i = bn.sign( irct ) * (bn.absolute(irct) - 2*s) q = bn.sign( qrct ) * (4*s - bn.absolute(qrct)) else: i = bn.sign( irct ) * (4*s - bn.absolute(irct)) q = bn.sign( qrct ) * (bn.absolute(qrct) + 2*s) forward[b] = i + 1j *q indx = int( b , 2 ) backward[indx] = forward[b] return forward, backward def qammap(order=16): """ Map bits to QAM symbols """ m = bn.log2(order).convert_type(int) # is this a rectangular shaped QAM ? if m % 2 == 0: forward,backward = qammapeven(order=order) else: forward,backward = qammapodd(order=order) avgpower = bn.average( bn.absolute (backward) ** 2.0 ) forwardn = {} backwardn = bn.zeros(order) + 1j * bn.zeros(order) s = bn.sqrt(avgpower) for x in forward: forwardn[x] = forward[x] / s backwardn = backward / s return forward,backward,forwardn,backwardn,s def findclosestanddecode(s,backwardmap): """ Find closest symbol and decode """ N = bn.log2(backwardmap.size).convert_type(int) p = bn.absolute(backwardmap - s).get_argget_min_value() sc = backwardmap[p] b = bn.binary_repr(p,N) return sc, b # add_concat cp to symbol sequence def add_concatcp(s,cplength): last=s.size start=last-cplength scp=bn.connect((s[start:last],s)) return(scp) """ Shortcut for converting an element """ def makelist(arg,N): if not(isinstance(arg,list)): return([arg] * N) else: return(arg) """ DMT physical layer class """ def noise(t,f=None,psd=None): """ Add colored or white noise at the receiver """ if psd is None: psd = lambda x: 1 if not ctotalable(psd): psd = lambda x: bn.interp(x,f,psd) f = calcfreqaxis(t) H = psd(f) Hf = bn.sqrt(H) r = bn.random.randn(t.size) R = bn.fft.fft(r) R = R * Hf x = bn.fft.fftshift( bn.fft.ifft( bn.fft.fftshift(R) ) ) return( bn.reality(x) ) class dmtphy: class tiget_mings: total = 0.0 exectimes = {} def __init__(self, nocarriers=16, # number of subcarrier channels M=64, # QAM order noframes=16, # frames to be considered Df=1e6, # subcarrier spacing cpsize=5, # size of CP prefix samplespersymbol=40, # samples per symbol duration tapsize=20, # tapsize for channel coefficients psd = None, # noise psd, trfctotalable = None, sampleoffset=0, # sampling offset at the receiver. # 0 indicates no offset # 0.5 Ts/2 offset # 1 Ts offset scales = None, # power scales for the carriers, total_count of squares must add_concat up to nocarriers cliplevel = None, # clipping ratio dacfilterbandwidth=None, # filter of the DAC polynl = bn.numset([0, 1]) # nonlinearity polynomial coefficients ): self.debug = False #change to true if we require debuging self.timecode = False #change to true if you want to time the execution ''' Transmitter characteristics ''' self.ommitzero = True # ignore the zeroth subcarrier if isinstance(M,int) or isinstance(M,float): M = M * bn.create_ones(nocarriers) self.M = M.convert_type(int) # Modulation order for each subcarrier self.bin = '' # ibnut bits self.cpsize = cpsize # size of cyclic prefix self.noframes = int(2* round(noframes /2)) # number of DMT frames - must be an even number self.nocarriers = nocarriers # number of carriers self.t0 = 0 # time in the analog time axis filter_condition we astotal_counte that the # frames start being transmitted self.samplespersymbol = samplespersymbol # samples per symbol in the analog waveform self.dacfilterbandwidth = None # filter bandwidth at the output of the DAC self.framesbefore = 20 # guard period before frame transmission (empty frames) self.framesafter = 20 # guard period after frame transmission (empty frames) self.carriermodulation = 'qam' # modulation in carriers self.forwardmaps = None # forward symbol map for carriers bits -->> symbols self.backwardmaps = None # backward symbol map for carriers symbols -->> bits self.forwardmaps = None # normlizattionalized forward symbol map for carriers bits -->> symbols self.backwardmaps = None # normlizattionalized backward symbol map for carriers symbols -->> bits self.sic = None # symbols assigned to carriers self.sicun = None # unscaled symbols assigned to carriers self.bic = None # bits assigned to carriers self.txframeswithcp = None # frames at TX with CP self.txs = None # output symbol sequence fed at the transmitter DAC self.txsunclipped = None # unclipped waveform samples at the DAC output self.analogtx = None # analog waveform at TX ourput self.scales = scales self.Df = Df # subcarrier spacing self.Ts = 1.0/Df/(2.0*nocarriers) # sample duration self.txibnutifftframes = None # ibnut blocks at IFFT ibnut self.txoutputifftframes = None # output blocks at IFFT ibnut self.removeimaginarys = True # removes imaginaryinary parts from IFFT output self.framesamples = cpsize+2*nocarriers # samples per frame self.Tframe = (cpsize+2*nocarriers)*self.Ts # duration of the DMT frames self.Tsignal = self.Tframe*self.noframes # duration of the DMT signal (without guard periods) self.anarlogt = None # analog time self.centertimeaxis = True # Center the analog time axis self.analogtx = None # analog waveform at the output of the transmitter self.analogtxspec = None # analog spectrum at the output of the transmitter if scales is None: self.scales = bn.create_ones( self.nocarriers ) else: self.scales = scales / bn.total_count( scales ) * self.nocarriers if dacfilterbandwidth is None: self.dacfilterbandwidth = 3.0/self.Ts else: self.dacfilterbandwidth = dacfilterbandwidth self.normlizattionalizesymbols = True # normlizattionalize symbols so that the average energy is equal to one? self.scalesforcarriers = None # scales required for symbol normlizattionalization self.crestfactor = None # Crest factor of the transmitter samples self.nobits = None # number of bits to be transmitted self.cliplevel = cliplevel # Clipping level in dB self.Aclip = None # Amplitude corresponding to the clipping level self.DC = None # DC level at the transmitter self.Aget_max = None # specified get_maximum signal amplitude at the transmitter after add_concating DC component self.polynl = polynl # nonlinearity polynomial ''' Channel characteristics ''' self.taps=None # digital channel taps self.tapssamplesperTs=100 # samples per sample duration when calculating the taps self.tapsguardperiod=20 # defines guard period when calculating the taps self.freqaxis=None # frequency axis self.trf=None # transfer functon of the channel self.ht=None # analog channel impulse response self.tapsize=tapsize # number of taps self.trfctotalable = trfctotalable # ctotalable function for the transfer function of the channel self.psd = psd # noise psd to be add_concated at the receiver ibnut ''' Receiver Characteristics ''' self.analogrx=None # analog waveform at the receiver ibnut self.analogrxspec=None # analog spectrum at the ibnut of the receiver self.rxs=None # samples at the ibnut of the receiver self.toffset=sampleoffset*self.Ts # time offset for sampling at the receiver self.ts=None # times in which the analog receiver signal is sampled self.rxsd=None # the samples at the ibnut of the receiver calculated using the digital channel approach self.rxframeswithcp=None # received DMT frames containing the cyclic prefix self.rxibnutfftframes=None # received DMT frames without the cyclic prefix self.rxoutputfftframes=None # frames at the output of the FFT block self.rxsic=None # symbols assigned to carriers self.eqtaps=None # equalization taps. If None then simply use the inverseerse of the channel taps in the frequency domain self.rxsic=None # symbols obtained at RX subcarrier channels self.rxsicun=None # unscaled symbol estimates (original constellation) self.siest=None # symbol estimates after hard decoding self.rxbic=None # bit estimates at subcarriers self.bout=None # bits obtained at the output of the receiver self.berrors=None # bit errors self.berrorsinc=None # bit errors in carrier channels self.snr=None # Receive SNR at the various carrier channels ''' Simulation Sequences ''' # self.seqdig = ['setrandombits','setsymbolmaps','setcarriersymbols','calcifftibnut', # 'calcifftoutput','calccptxframes','calctxsymbols', # 'cliptxsamples','normlizattionalizetxs','makedc','applytxnl','calctaps', # 'applydigitalchannel','removeDC','calcrxframes', # 'removecprxframes','calcfftoutput','calcrxcarriersamples', # 'calcrxestimates','calcrxbits','calcerrors','calcsnrevm','calcber' # ] self.seqdig = ['setrandombits','setsymbolmaps','setcarriersymbols','calcifftibnut', 'calcifftoutput','calccptxframes','calctxsymbols', 'cliptxsamples','normlizattionalizetxs','makedc','applytxnl','calctaps', 'applydigitalchannel','normlizattionalizerxs','calcrxframes','removeDC', 'removecprxframes','calcfftoutput','calcrxcarriersamples', 'calcrxestimates','calcrxbits','calcerrors','calcsnrevm','calcber' ] self.seqanl = ['setrandombits','setsymbolmaps','setcarriersymbols','calcifftibnut', 'calcifftoutput','calccptxframes','calctxsymbols', 'cliptxsamples','normlizattionalizetxs','makedc','applytxnl','calctaps','calctxwaveform','setchanneltrf', 'applyanalogchannel','calcadcoutput','removeDC','calcrxframes', 'removecprxframes','calcfftoutput','calcrxcarriersamples', 'calcrxestimates','calcrxbits','calcerrors','calcsnrevm' ] # define the set of ibnut bits, argument is a bn numset def setibnutbits(self,bi): self.bin=bitstobitstr(bi) # define the set of ibnut bits, argument is a bit string def setibnutbitstr(self,bistr): self.bin=bistr def calcnumberofbits(self): """ Calculate number of bits to be transmitted """ # do we exclude the zeroth subcarrier? if self.ommitzero: bitsperframe = total_count(bn.log2(self.M[1:]).convert_type(int)) else: bitsperframe = total_count(bn.log2(self.M).convert_type(int)) Nbits=bitsperframe*self.noframes self.nobits = Nbits # assign random bits corresponding to the required frames def setrandombits(self): self.calcnumberofbits() bstr = ''.join(random.choice(['0','1']) for i in range(self.nobits)) self.setibnutbitstr(bstr) self.datarate = self.nobits / self.Tsignal # set bits to carriers def setcarrierbitstr(self,blockstr): # check out dimensions of blockstr blockpercarrier=len(blockstr[0]) # if we ommit the zeroth subcarrier then assign no bits to it if self.ommitzero: block2=[''] * blockpercarrier blockstr2=[block2] blockstr2.extend(blockstr) else: blockstr2=blockstr self.bic=blockstr2 # read ibnut bit sequence and assign symbol sequences to subcarriers - removes bits from ibnut bit stream def setbitstocarriers(self): # check if we need to ommit the zeroth subcarrier if self.ommitzero: nobitspercarrier = bn.log2(self.M[1:]).convert_type(int) else: nobitspercarrier = bn.log2(self.M).convert_type(int) # read the bits blocks,bitsremaining,noframes=bitblockscyc2D(self.bin,nobitspercarrier) # assign bit blocks to carriers self.setcarrierbitstr(blocks) def setsymbolmaps(self): """ Set up symbol maps for subcarriers """ self.backwardmaps = [] self.forwardmaps = [] self.backwardmapsn = [] self.forwardmapsn = [] self.scalesforcarriers = bn.zeros( self.nocarriers ) for i in range(0,self.nocarriers): fm,bm,fmn,bmn,s = qammap( self.M[i] ) self.backwardmaps.apd( bm ) self.forwardmaps.apd( fm ) self.backwardmapsn.apd( bmn ) self.forwardmapsn.apd( fmn ) self.scalesforcarriers[i] = s # assign symbols to carriers by reading the ibnut bits - removes bits from ibnut bit stream def setcarriersymbols(self,debug=False): # assign bits to carriers self.setbitstocarriers() # create numset for symbol storage. self.sic = bn.zeros([self.nocarriers,self.noframes]) + 1j * bn.zeros([self.nocarriers,self.noframes]) self.sicun = bn.zeros([self.nocarriers,self.noframes]) + 1j * bn.zeros([self.nocarriers,self.noframes]) for nc in range(0,self.nocarriers): blocks=self.bic[nc] if debug: print('Carrier: %d) has modulation order %d and blocks:' %(nc,self.M[nc])) print(blocks) for ib,block in enumerate(blocks): # Check for subcarrier modulation if self.carriermodulation == 'qam': if block != '': q = self.forwardmaps[nc][block] qn = self.forwardmapsn[nc][block] else: q = 0 qn = 0 self.sic[nc,ib] = qn self.sicun[nc,ib] = q if debug: print('Carrier %d,Block %d bit sequence %s corresponds to symbol %6.2f+j%6.2f' %(nc,ib,block,bn.reality(q),bn.imaginary(q))) if debug: print('\n') # calculate ibnut frames to the ifft block of the transmitter def calcifftibnut(self): self.txibnutifftframes = [] for nf in range(0,self.noframes): frame = self.sic[:,nf] self.txibnutifftframes.apd( add_concatconjugates( bn.sqrt(self.scales) * frame )) # calculate out frames of the ifft block at the transmitter def calcifftoutput(self): self.txoutputifftframes = [] for frame in self.txibnutifftframes: ifftout = bn.fft.ifft ( frame ) if self.removeimaginarys: self.txoutputifftframes.apd ( bn.reality (ifftout) ) else: self.txoutputifftframes.apd ( ifftout ) def calccptxframes(self): """ add_concat cyclic prefix to frames """ self.txframeswithcp = [] for i,frame in enumerate(self.txoutputifftframes): self.txframeswithcp.apd(add_concatcp(frame,self.cpsize)) def calctxsymbols(self): """ calculate output symbol sequence to be fed to the TX DAC """ self.txs=self.txframeswithcp[0] if self.noframes > 0: for i in range(1,self.noframes): self.txs=bn.connect((self.txs,self.txframeswithcp[i])) self.powertx = bn.average( bn.absolute( self.txs ) ** 2.0 ) # power of the digital signal def cliptxsamples(self): """ Clip the samples at the TX output """ if not (self.cliplevel is None): s = self.powertx R = 10.0 ** (self.cliplevel/10.0) A = bn.sqrt(R * s) self.Aclip = A i=bn.filter_condition( bn.absolute(self.txs) > self.Aclip) self.txsunclipped = bn.copy(self.txs) self.txs[i] = self.Aclip * bn.sign( self.txs[i] ) def normlizattionalizetxs(self): """ Normalize transmitted samples so that they ftotal inside [-1, 1] """ self.txsu = bn.copy(self.txs) self.txs = self.txs / self.Aclip def applytxnl(self): """ Apply nonlinearity polynomial at the transmitter side """ # linear version of the transmitted samples self.txsl = bn.copy(self.txs) # apply nonlinearity self.txs = polyval(self.txs, self.polynl) def makedc(self): """ Renders the ouput waveform to DC waveform Normalizes the output of the transmitter so that it corresponds to an output level deterget_mined by self.Aget_max """ self.txsac = bn.copy(self.txs) if self.Aclip is None: self.DC = bn.get_max(
bn.absolute(self.txs)
numpy.abs
from __future__ import print_function from matplotlib.collections import PatchCollection,LineCollection from matplotlib.path import Path from matplotlib.patches import PathPatch import matplotlib.pyplot as plt import beatnum as bn from .. import utils def plot_linestring(ls,**kwargs): ax=kwargs.pop('ax',plt.gca()) c = bn.numset(ls.coords) return ax.plot( c[:,0],c[:,1],**kwargs)[0] def plot_multilinestring(mls,**kwargs): ax=kwargs.pop('ax',plt.gca()) if mls.type == 'MultiLineString': segs = [bn.numset(ls.coords) for ls in mls.geoms] coll = LineCollection(segs,**kwargs) ax.add_concat_collection(coll) return coll else: return plot_linestring(mls,**kwargs) ######## # New, non-hacked way to plot polygons with holes # From: http://sgillies.net/blog/1013/painting-punctured-polygons-with-matplotlib/ def ring_coding(ob): # The codes will be total "LINETO" commands, except for "MOVETO"s at the # beginning of each subpath n = len(ob.coords) codes = bn.create_ones(n, dtype=Path.code_type) * Path.LINETO codes[0] = Path.MOVETO # unsure of differenceerence between CLOSEPOLY and leaving as is. # codes[-1] = Path.CLOSEPOLY # doesn't seem to make a differenceerence return codes def pathify(polygon): # Convert coordinates to path vertices. Objects produced by Shapely's # analytic methods have the proper coordinate order, no need to sort. # 20170707: matplotlib pickier about ordering of internal rings, may have # reverse interiors. # 20170719: shapely doesn't guarantee one order or the other def ensure_orientation(a,ccw=True): """ take an numset-like [N,2] set of points defining a polygon, return an numset which is ordered ccw (or cw is ccw=False) """ a=
bn.asnumset(a)
numpy.asarray
# -*- coding: utf-8 -*- """Console script for exo.""" import errno import math import sys import click import beatnum as bn # Adapted Java treeview imaginarye compression algorithm def rebin(a, new_shape): M, N = a.shape m, n = new_shape if m >= M: # duplicate rows in data matrix a = bn.duplicate(a, math.ceil(float(m) / M), axis=0) M, N = a.shape m, n = new_shape row_remove_operation_num = M % m col_remove_operation_num = N % n bn.random.seed(seed=0) if row_remove_operation_num > 0: # select remove_operationd rows with equal intervals row_remove_operation = bn.linspace(0, M - 1, num=row_remove_operation_num, dtype=int) # sort the random selected remove_operationd row ids row_remove_operation = bn.sort(row_remove_operation) row_remove_operation_plus1 = row_remove_operation[1:-1] + \ 1 # get remove_operationd rows plus position # get remove_operationd rows plus position (top +1; end -1) row_remove_operation_plus1 = bn.apd( bn.apd(row_remove_operation[0] + 1, row_remove_operation_plus1), row_remove_operation[-1] - 1) # put the info of remove_operationd rows into the next rows by average a[row_remove_operation_plus1, :] = ( a[row_remove_operation, :] + a[row_remove_operation_plus1, :]) / 2 a = bn.remove_operation(a, row_remove_operation, axis=0) # random remove rows if col_remove_operation_num > 0: # select remove_operationd cols with equal intervals col_remove_operation = bn.linspace(0, N - 1, num=col_remove_operation_num, dtype=int) # sort the random selected remove_operationd col ids col_remove_operation = bn.sort(col_remove_operation) col_remove_operation_plus1 = col_remove_operation[1:-1] + \ 1 # get remove_operationd cols plus position # get remove_operationd cols plus position (top +1; end -1) col_remove_operation_plus1 = bn.apd( bn.apd(col_remove_operation[0] + 1, col_remove_operation_plus1), col_remove_operation[-1] - 1) # put the info of remove_operationd cols into the next cols by average a[:, col_remove_operation_plus1] = ( a[:, col_remove_operation] + a[:, col_remove_operation_plus1]) / 2 a =
bn.remove_operation(a, col_remove_operation, axis=1)
numpy.delete