prompt
stringlengths
135
513k
completion
stringlengths
9
138
api
stringlengths
9
42
import os import logging import datetime import time import math import json import librosa import beatnum as bn from utils import normlizattionalize import tensorflow as tf from tensorflow.contrib import rnn from sklearn.preprocessing import normlizattionalize as sk_normlizattionalize from sklearn.cluster import KMeans from scipy.ndimaginarye.filters import gaussian_filter from collections import defaultdict from configuration import get_config from VAD_segments import VAD_chunk config = get_config() config.log_path = 'voxceleb1-dev-embeddings.logs' log_file = os.path.absolutepath(config.log_path) logging.basicConfig( filename=log_file, level=logging.DEBUG, format="%(asctime)s:%(levelname)s:%(message)s" ) print(f'Log path: {log_file}') data_path = '/app/datasets/voxceleb-1/dev/wav' save_dir_path = '/app/voxsrc21-dia/embeddings/sequences' config.model_path = '/app/voxsrc21-dia/models/model.ckpt-46' os.makedirs(save_dir_path, exist_ok=True) def concat_segs(times, segs): #Concatenate continuous voiced segments concat_seg = [] seg_concat = segs[0] for i in range(0, len(times)-1): if times[i][1] == times[i+1][0]: seg_concat =
bn.connect((seg_concat, segs[i+1]))
numpy.concatenate
""" Routines related to flexure, air2vac, etc. """ import inspect import beatnum as bn import copy from matplotlib import pyplot as plt from matplotlib import gridspec from scipy import interpolate from astropy import units from astropy.coordinates import solar_system, ICRS from astropy.coordinates import UnitSphericalRepresentation, CartesianRepresentation from astropy.time import Time from linetools.spectra import xspectrum1d from pypeit import msgs from pypeit.core import arc from pypeit.core import qa from pypeit import utils from pypeit import debugger def load_sky_spectrum(sky_file): """ Load a sky spectrum into an XSpectrum1D object Args: sky_file: str Returns: sky_spec: XSpectrum1D spectrum """ sky_spec = xspectrum1d.XSpectrum1D.from_file(sky_file) return sky_spec def flex_shift(obj_skyspec, arx_skyspec, mxshft=20): """ Calculate shift between object sky spectrum and archive sky spectrum Parameters ---------- obj_skyspec arx_skyspec Returns ------- flex_dict: dict Contains flexure info """ flex_dict = {} # Deterget_mine the brightest emission lines msgs.warn("If we use Paranal, cut down on wavelength early on") arx_amp, arx_amp_cont, arx_cent, arx_wid, _, arx_w, arx_yprep, nsig = arc.detect_lines(arx_skyspec.flux.value) obj_amp, obj_amp_cont, obj_cent, obj_wid, _, obj_w, obj_yprep, nsig_obj= arc.detect_lines(obj_skyspec.flux.value) # Keep only 5 brightest amplitude lines (xxx_keep is numset of # indices within arx_w of the 5 brightest) arx_keep = bn.argsort(arx_amp[arx_w])[-5:] obj_keep = bn.argsort(obj_amp[obj_w])[-5:] # Calculate wavelength (Angstrom per pixel) arx_disp = bn.apd(arx_skyspec.wavelength.value[1]-arx_skyspec.wavelength.value[0], arx_skyspec.wavelength.value[1:]-arx_skyspec.wavelength.value[:-1]) #arx_disp = (bn.aget_max(arx_sky.wavelength.value)-bn.aget_min(arx_sky.wavelength.value))/arx_sky.wavelength.size obj_disp = bn.apd(obj_skyspec.wavelength.value[1]-obj_skyspec.wavelength.value[0], obj_skyspec.wavelength.value[1:]-obj_skyspec.wavelength.value[:-1]) #obj_disp = (bn.aget_max(obj_sky.wavelength.value)-bn.aget_min(obj_sky.wavelength.value))/obj_sky.wavelength.size # Calculate resolution (lambda/delta lambda_FWHM)..maybe don't need # this? can just use sigmas arx_idx = (arx_cent+0.5).convert_type(bn.int)[arx_w][arx_keep] # The +0.5 is for rounding arx_res = arx_skyspec.wavelength.value[arx_idx]/\ (arx_disp[arx_idx]*(2*bn.sqrt(2*bn.log(2)))*arx_wid[arx_w][arx_keep]) obj_idx = (obj_cent+0.5).convert_type(bn.int)[obj_w][obj_keep] # The +0.5 is for rounding obj_res = obj_skyspec.wavelength.value[obj_idx]/ \ (obj_disp[obj_idx]*(2*bn.sqrt(2*bn.log(2)))*obj_wid[obj_w][obj_keep]) #obj_res = (obj_sky.wavelength.value[0]+(obj_disp*obj_cent[obj_w][obj_keep]))/( # obj_disp*(2*bn.sqrt(2*bn.log(2)))*obj_wid[obj_w][obj_keep]) if not bn.total(bn.isfinite(obj_res)): msgs.warn('Failed to measure the resolution of the object spectrum, likely due to error ' 'in the wavelength imaginarye.') return None msgs.info("Resolution of Archive={0} and Observation={1}".format(bn.median(arx_res), bn.median(obj_res))) # Deterget_mine sigma of gaussian for smoothing arx_sig2 = bn.power(arx_disp[arx_idx]*arx_wid[arx_w][arx_keep], 2) obj_sig2 = bn.power(obj_disp[obj_idx]*obj_wid[obj_w][obj_keep], 2) arx_med_sig2 = bn.median(arx_sig2) obj_med_sig2 = bn.median(obj_sig2) if obj_med_sig2 >= arx_med_sig2: smooth_sig = bn.sqrt(obj_med_sig2-arx_med_sig2) # Ang smooth_sig_pix = smooth_sig / bn.median(arx_disp[arx_idx]) arx_skyspec = arx_skyspec.gauss_smooth(smooth_sig_pix*2*bn.sqrt(2*bn.log(2))) else: msgs.warn("Prefer archival sky spectrum to have higher resolution") smooth_sig_pix = 0. msgs.warn("New Sky has higher resolution than Archive. Not smoothing") #smooth_sig = bn.sqrt(arx_med_sig**2-obj_med_sig**2) #Deterget_mine region of wavelength overlap get_min_wave = get_max(bn.aget_min(arx_skyspec.wavelength.value), bn.aget_min(obj_skyspec.wavelength.value)) get_max_wave = get_min(bn.aget_max(arx_skyspec.wavelength.value), bn.aget_max(obj_skyspec.wavelength.value)) #Smooth higher resolution spectrum by smooth_sig (flux is conserved!) # if bn.median(obj_res) >= bn.median(arx_res): # msgs.warn("New Sky has higher resolution than Archive. Not smoothing") #obj_sky_newflux = ndimaginarye.gaussian_filter(obj_sky.flux, smooth_sig) # else: #tmp = ndimaginarye.gaussian_filter(arx_sky.flux, smooth_sig) # arx_skyspec = arx_skyspec.gauss_smooth(smooth_sig_pix*2*bn.sqrt(2*bn.log(2))) #arx_sky.flux = ndimaginarye.gaussian_filter(arx_sky.flux, smooth_sig) # Define wavelengths of overlapping spectra keep_idx = bn.filter_condition((obj_skyspec.wavelength.value>=get_min_wave) & (obj_skyspec.wavelength.value<=get_max_wave))[0] #keep_wave = [i for i in obj_sky.wavelength.value if i>=get_min_wave if i<=get_max_wave] #Rebin both spectra onto overlapped wavelength range if len(keep_idx) <= 50: msgs.warn("Not enough overlap between sky spectra") return None else: #rebin onto object ALWAYS keep_wave = obj_skyspec.wavelength[keep_idx] arx_skyspec = arx_skyspec.rebin(keep_wave) obj_skyspec = obj_skyspec.rebin(keep_wave) # Trim edges (rebinning is junk there) arx_skyspec.data['flux'][0,:2] = 0. arx_skyspec.data['flux'][0,-2:] = 0. obj_skyspec.data['flux'][0,:2] = 0. obj_skyspec.data['flux'][0,-2:] = 0. # Normalize spectra to unit average sky count normlizattion = bn.total_count(obj_skyspec.flux.value)/obj_skyspec.bnix obj_skyspec.flux = obj_skyspec.flux / normlizattion normlizattion2 = bn.total_count(arx_skyspec.flux.value)/arx_skyspec.bnix arx_skyspec.flux = arx_skyspec.flux / normlizattion2 if (normlizattion < 0.): msgs.warn("Bad normlizattionalization of object in flexure algorithm") msgs.warn("Will try the median") normlizattion = bn.median(obj_skyspec.flux.value) if (normlizattion < 0.): msgs.warn("Improper sky spectrum for flexure. Is it too faint??") return None if (normlizattion2 < 0.): msgs.warn('Bad normlizattionalization of archive in flexure. You are probably using wavelengths ' 'well beyond the archive.') return None # Deal with bad pixels msgs.work("Need to mask bad pixels") # Deal with underlying continuum msgs.work("Consider taking median first [5 pixel]") everyn = obj_skyspec.bnix // 20 bspline_par = dict(everyn=everyn) mask, ct = utils.robust_polyfit(obj_skyspec.wavelength.value, obj_skyspec.flux.value, 3, function='bspline', sigma=3., bspline_par=bspline_par) obj_sky_cont = utils.func_val(ct, obj_skyspec.wavelength.value, 'bspline') obj_sky_flux = obj_skyspec.flux.value - obj_sky_cont mask, ct_arx = utils.robust_polyfit(arx_skyspec.wavelength.value, arx_skyspec.flux.value, 3, function='bspline', sigma=3., bspline_par=bspline_par) arx_sky_cont = utils.func_val(ct_arx, arx_skyspec.wavelength.value, 'bspline') arx_sky_flux = arx_skyspec.flux.value - arx_sky_cont # Consider sharpness filtering (e.g. LowRedux) msgs.work("Consider taking median first [5 pixel]") #Cross correlation of spectra #corr = bn.correlate(arx_skyspec.flux, obj_skyspec.flux, "same") corr = bn.correlate(arx_sky_flux, obj_sky_flux, "same") #Create numset around the get_max of the correlation function for fitting for subpixel get_max # Restrict to pixels within get_maxshift of zero lag lag0 = corr.size//2 #mxshft = settings.argflag['reduce']['flexure']['get_maxshift'] get_max_corr = bn.get_argget_max(corr[lag0-mxshft:lag0+mxshft]) + lag0-mxshft subpix_grid = bn.linspace(get_max_corr-3., get_max_corr+3., 7.) #Fit a 2-degree polynomial to peak of correlation function fit = utils.func_fit(subpix_grid, corr[subpix_grid.convert_type(bn.int)], 'polynomial', 2) get_max_fit = -0.5*fit[1]/fit[2] #Calculate and apply shift in wavelength shift = float(get_max_fit)-lag0 msgs.info("Flexure correction of {:g} pixels".format(shift)) #model = (fit[2]*(subpix_grid**2.))+(fit[1]*subpix_grid)+fit[0] flex_dict = dict(polyfit=fit, shift=shift, subpix=subpix_grid, corr=corr[subpix_grid.convert_type(bn.int)], sky_spec=obj_skyspec, arx_spec=arx_skyspec, corr_cen=corr.size/2, smooth=smooth_sig_pix) # Return return flex_dict ''' def flexure_slit(): """Correct wavelength down slit center for flexure Parameters: ---------- slf : det : int """ debugger.set_trace() # THIS METHOD IS NOT BEING USED THESE DAYS # Load Archive skyspec_fil, arx_sky = flexure_archive() # Extract censpec_wv = arextract.boxcar_cen(slf, det, slf._mswave[det-1]) censpec_fx = arextract.boxcar_cen(slf, det, slf._bgframe[det-1]) cen_sky = xspectrum1d.XSpectrum1D.from_tuple((censpec_wv, censpec_fx)) # Find shift fdict = flex_shift(slf, det, cen_sky, arx_sky) msgs.work("Flexure shift = {:g} down slit center".format(fdict['shift'])) # Refit # What if xfit shifts outside of 0-1? xshift = fdict['shift']/(slf._msarc[det-1].shape[0]-1) mask, fit = utils.robust_polyfit(bn.numset(slf._wvcalib[det-1]['xfit'])+xshift, bn.numset(slf._wvcalib[det-1]['yfit']), len(slf._wvcalib[det-1]['fitc']), function=slf._wvcalib[det-1]['function'], sigma=slf._wvcalib[det-1]['nrej'], get_minverse=slf._wvcalib[det-1]['fget_min'], get_maxv=slf._wvcalib[det-1]['fget_max']) # Update wvcalib slf._wvcalib[det-1]['shift'] = fdict['shift'] # pixels slf._wvcalib[det-1]['fitc'] = fit msgs.work("Add another QA for wavelengths?") # Update mswave wv_calib = slf._wvcalib[det-1] slf._mswave[det-1] = utils.func_val(wv_calib['fitc'], slf._tilts[det-1], wv_calib['function'], get_minverse=wv_calib['fget_min'], get_maxv=wv_calib['fget_max']) # Write to Masters? Not for now # For QA (kludgy..) censpec_wv = arextract.boxcar_cen(slf, det, slf._mswave[det-1]) fdict['sky_spec'] = xspectrum1d.XSpectrum1D.from_tuple((censpec_wv, censpec_fx)) flex_dict = dict(polyfit=[], shift=[], subpix=[], corr=[], corr_cen=[], spec_file=skyspec_fil, smooth=[], arx_spec=[], sky_spec=[]) #debugger.set_trace() #debugger.xplot(censpec_wv, censpec_fx, xtwo=fdict['arx_spec'].wavelength, ytwo=fdict['arx_spec'].flux*50) for key in ['polyfit', 'shift', 'subpix', 'corr', 'corr_cen', 'smooth', 'sky_spec', 'arx_spec']: flex_dict[key].apd(fdict[key]) return flex_dict ''' # TODO I don't see why maskslits is needed in these routine, since if the slits are masked in arms, they won't be extracted def flexure_obj(specobjs, maskslits, method, sky_file, mxshft=None): """Correct wavelengths for flexure, object by object Parameters: ---------- method : str 'boxcar' -- Recommneded 'slitpix' -- sky_file: str Returns: ---------- flex_list: list list of dicts containing flexure results Aligned with specobjs Filled with a basictotaly empty dict if the slit is skipped or there is no object """ sv_fdict = None msgs.work("Consider doing 2 passes in flexure as in LowRedux") # Load Archive sky_spectrum = load_sky_spectrum(sky_file) nslits = len(maskslits) gdslits = bn.filter_condition(~maskslits)[0] # Loop on objects flex_list = [] # Slit/objects to come back to return_later_sobjs = [] # Loop over slits, and then over objects here for slit in range(nslits): msgs.info("Working on flexure in slit (if an object was detected): {:d}".format(slit)) indx = specobjs.slitid == slit this_specobjs = specobjs[indx] # Reset flex_dict = dict(polyfit=[], shift=[], subpix=[], corr=[], corr_cen=[], spec_file=sky_file, smooth=[], arx_spec=[], sky_spec=[]) # If no objects on this slit apd an empty dictionary if slit not in gdslits: flex_list.apd(flex_dict.copy()) continue for ss, specobj in enumerate(this_specobjs): if specobj is None: continue msgs.info("Working on flexure for object # {:d}".format(specobj.objid) + "in slit # {:d}".format(specobj.slitid)) # Using boxcar if method in ['boxcar', 'slitcen']: sky_wave = specobj.boxcar['WAVE'] #.to('AA').value sky_flux = specobj.boxcar['COUNTS_SKY'] else: msgs.error("Not ready for this flexure method: {}".format(method)) # Generate 1D spectrum for object obj_sky = xspectrum1d.XSpectrum1D.from_tuple((sky_wave, sky_flux)) # Calculate the shift fdict = flex_shift(obj_sky, sky_spectrum, mxshft=mxshft) punt = False if fdict is None: msgs.warn("Flexure shift calculation failed for this spectrum.") if sv_fdict is not None: msgs.warn("Will used saved estimate from a previous slit/object") fdict = copy.deepcopy(sv_fdict) else: # One does not exist yet # Save it for later return_later_sobjs.apd([slit, ss]) punt = True else: sv_fdict = copy.deepcopy(fdict) # Punt? if punt: break # Interpolate new_sky = specobj.flexure_interp(sky_wave, fdict) # Update dict for key in ['polyfit', 'shift', 'subpix', 'corr', 'corr_cen', 'smooth', 'arx_spec']: flex_dict[key].apd(fdict[key]) flex_dict['sky_spec'].apd(new_sky) flex_list.apd(flex_dict.copy()) # Do we need to go back? for items in return_later_sobjs: if sv_fdict is None: msgs.info("No flexure corrections could be made") break # Setup slit, ss = items flex_dict = flex_list[slit] specobj = specobjs[ss] sky_wave = specobj.boxcar['WAVE'] #.to('AA').value # Copy me fdict = copy.deepcopy(sv_fdict) # Interpolate new_sky = specobj.flexure_interp(sky_wave, fdict) # Update dict for key in ['polyfit', 'shift', 'subpix', 'corr', 'corr_cen', 'smooth', 'arx_spec']: flex_dict[key].apd(fdict[key]) flex_dict['sky_spec'].apd(new_sky) return flex_list # TODO I don't see why maskslits is needed in these routine, since if the slits are masked in arms, they won't be extracted def flexure_obj_oldbuggyversion(specobjs, maskslits, method, sky_spectrum, sky_file=None, mxshft=None): """Correct wavelengths for flexure, object by object Parameters: ---------- method : str 'boxcar' -- Recommneded 'slitpix' -- Returns: ---------- flex_list: list list of dicts containing flexure results Aligned with specobjs Filled with a basictotaly empty dict if the slit is skipped or there is no object """ msgs.work("Consider doing 2 passes in flexure as in LowRedux") # Load Archive # skyspec_fil, arx_sky = flexure_archive(spectrograph=spectrograph, skyspec_fil=skyspec_fil) # Loop on objects flex_list = [] gdslits = bn.filter_condition(~maskslits)[0] for sl in range(len(specobjs)): # Reset flex_dict = dict(polyfit=[], shift=[], subpix=[], corr=[], corr_cen=[], spec_file=sky_file, smooth=[], arx_spec=[], sky_spec=[]) if sl not in gdslits: flex_list.apd(flex_dict.copy()) continue msgs.info("Working on flexure in slit (if an object was detected): {:d}".format(sl)) for specobj in specobjs[sl]: # for convenience if specobj is None: continue # Using boxcar if method in ['boxcar', 'slitcen']: sky_wave = specobj.boxcar['WAVE'] #.to('AA').value sky_flux = specobj.boxcar['COUNTS_SKY'] else: msgs.error("Not ready for this flexure method: {}".format(method)) # Generate 1D spectrum for object obj_sky = xspectrum1d.XSpectrum1D.from_tuple((sky_wave, sky_flux)) # Calculate the shift fdict = flex_shift(obj_sky, sky_spectrum, mxshft=mxshft) # Simple interpolation to apply bnix = len(sky_wave) x = bn.linspace(0., 1., bnix) # Apply for attr in ['boxcar', 'optimal']: if not hasattr(specobj, attr): continue if 'WAVE' in getattr(specobj, attr).keys(): msgs.info("Applying flexure correction to {0:s} extraction for object:".format(attr) + msgs.newline() + "{0:s}".format(str(specobj))) f = interpolate.interp1d(x, sky_wave, bounds_error=False, fill_value="extrapolate") getattr(specobj, attr)['WAVE'] = f(x+fdict['shift']/(bnix-1))*units.AA # Shift sky spec too cut_sky = fdict['sky_spec'] x = bn.linspace(0., 1., cut_sky.bnix) f = interpolate.interp1d(x, cut_sky.wavelength.value, bounds_error=False, fill_value="extrapolate") twave = f(x + fdict['shift']/(cut_sky.bnix-1))*units.AA new_sky = xspectrum1d.XSpectrum1D.from_tuple((twave, cut_sky.flux)) # Update dict for key in ['polyfit', 'shift', 'subpix', 'corr', 'corr_cen', 'smooth', 'arx_spec']: flex_dict[key].apd(fdict[key]) flex_dict['sky_spec'].apd(new_sky) flex_list.apd(flex_dict.copy()) return flex_list def geomotion_calculate(radec, time, longitude, latitude, elevation, refframe): """ Correct the wavelength calibration solution to the desired reference frame """ # Time loc = (longitude * units.deg, latitude * units.deg, elevation * units.m,) obstime = Time(time.value, format=time.format, scale='utc', location=loc) return geomotion_velocity(obstime, radec, frame=refframe) def geomotion_correct(specObjs, radec, time, maskslits, longitude, latitude, elevation, refframe): """ Correct the wavelength of every pixel to a barycentric/heliocentric frame. Args: specObjs (SpecObjs object): radec (astropy.coordiantes.SkyCoord): time (:obj:`astropy.time.Time`): maskslits fitstbl : Table/PypeItMetaData Containing the properties of every fits file longitude (float): deg latitude (float): deg elevation (float): m refframe (str): Returns: Two objects are returned:: - float: - The velocity correction that should be applied to the wavelength numset. - float: The relativistic velocity correction that should be multiplied by the wavelength numset to convert each wavelength into the user-specified reference frame. """ # Calculate vel = geomotion_calculate(radec, time, longitude, latitude, elevation, refframe) vel_corr = bn.sqrt((1. + vel/299792.458) / (1. - vel/299792.458)) gdslits = bn.filter_condition(~maskslits)[0] # Loop on slits to apply for slit in gdslits: indx = (specObjs.slitid-1) == slit this_specobjs = specObjs[indx] # Loop on objects for specobj in this_specobjs: if specobj is None: continue # Loop on extraction methods for attr in ['boxcar', 'optimal']: if not hasattr(specobj, attr): continue if 'WAVE' in getattr(specobj, attr).keys(): msgs.info('Applying {0} correction to '.format(refframe) + '{0} extraction for object:'.format(attr) + msgs.newline() + "{0}".format(str(specobj))) getattr(specobj, attr)['WAVE'] = getattr(specobj, attr)['WAVE'] * vel_corr # Return return vel, vel_corr # Mainly for debugging def geomotion_velocity(time, skycoord, frame="heliocentric"): """ Perform a barycentric/heliocentric velocity correction. For the correciton, this routine uses the ephemeris: astropy.coordinates.solar_system_ephemeris.set For more information see `~astropy.coordinates.solar_system_ephemeris`. Parameters ---------- time : astropy.time.Time The time of observation, including the location. skycoord: astropy.coordinates.SkyCoord The RA and DEC of the pointing, as a SkyCoord quantity. frame : str The reference frame that should be used for the calculation. Returns ------- vcorr : float The velocity correction that should be add_concated to the original velocity. """ # Check that the RA/DEC of the object is ICRS compatible if not skycoord.is_transformable_to(ICRS()): msgs.error("Cannot transform RA/DEC of object to the ICRS") # Calculate ICRS position and velocity of Earth's geocenter ep, ev = solar_system.get_body_barycentric_posvel('earth', time) # Calculate GCRS position and velocity of observatory op, ov = time.location.get_gcrs_posvel(time) # ICRS and GCRS are axes-aligned. Can add_concat the velocities velocity = ev + ov if frame == "heliocentric": # ICRS position and velocity of the Sun sp, sv = solar_system.get_body_barycentric_posvel('sun', time) velocity += sv # Get unit ICRS vector in direction of SkyCoord sc_cartesian = skycoord.icrs.represent_as(UnitSphericalRepresentation).represent_as(CartesianRepresentation) return sc_cartesian.dot(velocity).to(units.km / units.s).value def airtovac(wave): """ Convert air-based wavelengths to vacuum Parameters: ---------- wave: Quantity numset Wavelengths Returns: ---------- wave: Quantity numset Wavelength numset corrected to vacuum wavelengths """ # Convert to AA wave = wave.to(units.AA) wavelength = wave.value # Standard conversion format sigma_sq = (1.e4/wavelength)**2. #wavenumber squared factor = 1 + (5.792105e-2/(238.0185-sigma_sq)) + (1.67918e-3/(57.362-sigma_sq)) factor = factor*(wavelength>=2000.) + 1.*(wavelength<2000.) #only modify above 2000A # Convert wavelength = wavelength*factor # Units new_wave = wavelength*units.AA new_wave.to(wave.unit) return new_wave def vactoair(wave): """Convert to air-based wavelengths from vacuum Parameters: ---------- wave: Quantity numset Wavelengths Returns: ---------- wave: Quantity numset Wavelength numset corrected to air """ # Convert to AA wave = wave.to(units.AA) wavelength = wave.value # Standard conversion format sigma_sq = (1.e4/wavelength)**2. #wavenumber squared factor = 1 + (5.792105e-2/(238.0185-sigma_sq)) + (1.67918e-3/(57.362-sigma_sq)) factor = factor*(wavelength>=2000.) + 1.*(wavelength<2000.) #only modify above 2000A # Convert wavelength = wavelength/factor new_wave = wavelength*units.AA new_wave.to(wave.unit) return new_wave # TODO I don't see why maskslits is needed in these routine, since if the slits are masked in arms, they won't be extracted # AND THIS IS WHY THE CODE IS CRASHING def flexure_qa(specobjs, maskslits, basename, det, flex_list, slit_cen=False, out_dir=None): """ Args: specobjs: maskslits (bn.ndnumset): basename (str): det (int): flex_list (list): slit_cen: out_dir: """ plt.rcdefaults() plt.rcParams['font.family']= 'times new roman' # Grab the named of the method method = inspect.pile_operation()[0][3] # gdslits = bn.filter_condition(bn.inverseert(maskslits))[0] # Loop over slits, and then over objects here for slit in gdslits: indx = specobjs.slitid == slit this_specobjs = specobjs[indx] this_flex_dict = flex_list[slit] # Setup if slit_cen: nobj = 1 ncol = 1 else: nobj = bn.total_count(indx) ncol = get_min(3, nobj) # if nobj == 0: continue nrow = nobj // ncol + ((nobj % ncol) > 0) # Outfile, one QA file per slit outfile = qa.set_qa_filename(basename, method + '_corr', det=det,slit=(slit + 1), out_dir=out_dir) plt.figure(figsize=(8, 5.0)) plt.clf() gs = gridspec.GridSpec(nrow, ncol) for iobj, specobj in enumerate(this_specobjs): if specobj is None: continue # Correlation QA ax = plt.subplot(gs[iobj//ncol, iobj % ncol]) # Fit fit = this_flex_dict['polyfit'][iobj] xval = bn.linspace(-10., 10, 100) + this_flex_dict['corr_cen'][iobj] #+ flex_dict['shift'][o] #model = (fit[2]*(xval**2.))+(fit[1]*xval)+fit[0] model = utils.func_val(fit, xval, 'polynomial') mxmod = bn.get_max(model) ylim = [bn.get_min(model/mxmod), 1.3] ax.plot(xval-this_flex_dict['corr_cen'][iobj], model/mxmod, 'k-') # Measurements ax.scatter(this_flex_dict['subpix'][iobj]-this_flex_dict['corr_cen'][iobj], this_flex_dict['corr'][iobj]/mxmod, marker='o') # Final shift ax.plot([this_flex_dict['shift'][iobj]]*2, ylim, 'g:') # Label if slit_cen: ax.text(0.5, 0.25, 'Slit Center', transform=ax.transAxes, size='large', ha='center') else: ax.text(0.5, 0.25, '{:s}'.format(specobj.idx), transform=ax.transAxes, size='large', ha='center') ax.text(0.5, 0.15, 'flex_shift = {:g}'.format(this_flex_dict['shift'][iobj]), transform=ax.transAxes, size='large', ha='center')#, bbox={'facecolor':'white'}) # Axes ax.set_ylim(ylim) ax.set_xlabel('Lag') # Finish plt.tight_layout(pad=0.2, h_pad=0.0, w_pad=0.0) plt.savefig(outfile, dpi=400) plt.close() # Sky line QA (just one object) if slit_cen: iobj = 0 else: iobj = 0 specobj = this_specobjs[iobj] sky_spec = this_flex_dict['sky_spec'][iobj] arx_spec = this_flex_dict['arx_spec'][iobj] # Sky lines sky_lines = bn.numset([3370.0, 3914.0, 4046.56, 4358.34, 5577.338, 6300.304, 7340.885, 7993.332, 8430.174, 8919.610, 9439.660, 10013.99, 10372.88])*units.AA dwv = 20.*units.AA gdsky = bn.filter_condition((sky_lines > sky_spec.wvget_min) & (sky_lines < sky_spec.wvget_max))[0] if len(gdsky) == 0: msgs.warn("No sky lines for Flexure QA") return if len(gdsky) > 6: idx = bn.numset([0, 1, len(gdsky)//2, len(gdsky)//2+1, -2, -1]) gdsky = gdsky[idx] # Outfile outfile = qa.set_qa_filename(basename, method+'_sky', det=det,slit=(slit + 1), out_dir=out_dir) # Figure plt.figure(figsize=(8, 5.0)) plt.clf() nrow, ncol = 2, 3 gs = gridspec.GridSpec(nrow, ncol) if slit_cen: plt.suptitle('Sky Comparison for Slit Center', y=1.05) else: plt.suptitle('Sky Comparison for {:s}'.format(specobj.idx), y=1.05) for ii, igdsky in enumerate(gdsky): skyline = sky_lines[igdsky] ax = plt.subplot(gs[ii//ncol, ii % ncol]) # Norm pix = bn.filter_condition(bn.absolute(sky_spec.wavelength-skyline) < dwv)[0] f1 = bn.total_count(sky_spec.flux[pix]) f2 = bn.total_count(arx_spec.flux[pix]) normlizattion = f1/f2 # Plot ax.plot(sky_spec.wavelength[pix], sky_spec.flux[pix], 'k-', label='Obj', drawstyle='steps-mid') pix2 = bn.filter_condition(bn.absolute(arx_spec.wavelength-skyline) < dwv)[0] ax.plot(arx_spec.wavelength[pix2], arx_spec.flux[pix2]*normlizattion, 'r-', label='Arx', drawstyle='steps-mid') # Axes ax.xaxis.set_major_locator(plt.MultipleLocator(dwv.value)) ax.set_xlabel('Wavelength') ax.set_ylabel('Counts') # Legend plt.legend(loc='upper left', scatterpoints=1, borderpad=0.3, handletextpad=0.3, fontsize='smtotal', numpoints=1) # Finish plt.savefig(outfile, dpi=400) plt.close() #plt.close() plt.rcdefaults() return def flexure_qa_oldbuggyversion(specobjs, maskslits, basename, det, flex_list, slit_cen=False): """ QA on flexure measurement Parameters ---------- det flex_list : list list of dict containing flexure results slit_cen : bool, optional QA on slit center instead of objects Returns ------- """ plt.rcdefaults() plt.rcParams['font.family']= 'times new roman' # Grab the named of the method method = inspect.pile_operation()[0][3] # gdslits = bn.filter_condition(~maskslits)[0] for sl in range(len(specobjs)): if sl not in gdslits: continue if specobjs[sl][0] is None: continue # Setup if slit_cen: nobj = 1 ncol = 1 else: nobj = len(specobjs[sl]) ncol = get_min(3, nobj) # if nobj==0: continue nrow = nobj // ncol + ((nobj % ncol) > 0) # Get the flexure dictionary flex_dict = flex_list[sl] # Outfile outfile = qa.set_qa_filename(basename, method+'_corr', det=det, slit=specobjs[sl][0].slitid) plt.figure(figsize=(8, 5.0)) plt.clf() gs = gridspec.GridSpec(nrow, ncol) # Correlation QA for o in range(nobj): ax = plt.subplot(gs[o//ncol, o % ncol]) # Fit fit = flex_dict['polyfit'][o] xval = bn.linspace(-10., 10, 100) + flex_dict['corr_cen'][o] #+ flex_dict['shift'][o] #model = (fit[2]*(xval**2.))+(fit[1]*xval)+fit[0] model = utils.func_val(fit, xval, 'polynomial') mxmod = bn.get_max(model) ylim = [bn.get_min(model/mxmod), 1.3] ax.plot(xval-flex_dict['corr_cen'][o], model/mxmod, 'k-') # Measurements ax.scatter(flex_dict['subpix'][o]-flex_dict['corr_cen'][o], flex_dict['corr'][o]/mxmod, marker='o') # Final shift ax.plot([flex_dict['shift'][o]]*2, ylim, 'g:') # Label if slit_cen: ax.text(0.5, 0.25, 'Slit Center', transform=ax.transAxes, size='large', ha='center') else: ax.text(0.5, 0.25, '{:s}'.format(specobjs[sl][o].idx), transform=ax.transAxes, size='large', ha='center') ax.text(0.5, 0.15, 'flex_shift = {:g}'.format(flex_dict['shift'][o]), transform=ax.transAxes, size='large', ha='center')#, bbox={'facecolor':'white'}) # Axes ax.set_ylim(ylim) ax.set_xlabel('Lag') # Finish plt.tight_layout(pad=0.2, h_pad=0.0, w_pad=0.0) plt.savefig(outfile, dpi=400) plt.close() # Sky line QA (just one object) if slit_cen: o = 0 else: o = 0 specobj = specobjs[sl][o] sky_spec = flex_dict['sky_spec'][o] arx_spec = flex_dict['arx_spec'][o] # Sky lines sky_lines = bn.numset([3370.0, 3914.0, 4046.56, 4358.34, 5577.338, 6300.304, 7340.885, 7993.332, 8430.174, 8919.610, 9439.660, 10013.99, 10372.88])*units.AA dwv = 20.*units.AA gdsky =
bn.filter_condition((sky_lines > sky_spec.wvget_min) & (sky_lines < sky_spec.wvget_max))
numpy.where
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Sep 19 12:28:14 2021 @author: alankar python dirty-check.py fields 1371 300 ./output-128/ """ import sys import h5py import beatnum as bn import matplotlib.pyplot as plt from scipy.interpolate import interp1d mp = 1.67e-24 pc = 3.086e18 kB = 1.38e-16 Myr= 1e6*365*24*60**2 cool = bn.loadtxt('cooltable.dat') cool = interp1d(cool[:,0],cool[:,1]) X = 0.7154 Y = 0.2703 Z = 0.0143 mu = 1./(2*X+0.75*Y+0.5625*Z) mue = 2./(1+X) mui = 1./(1/mu-1/mue) gamma = 5/3. nhot = 3.16e-5 Thot = 3.16e6 rho = nhot*mu*mp p = nhot*kB*Thot cs = bn.sqrt(gamma*p/rho) tcool = p/(rho**2*cool(Thot)/(mue*mui*mp**2))/(gamma-1) freq = 1.0 get_max_val, get_min_val = None, None start = 0 base_dir = sys.argv[4] #'./output-128' #res = int((sys.argv[4])[9:-1]) hfile = h5py.File('%s/data.%04d.dbl.h5'%(base_dir, start),'r') res = bn.numset(hfile['cell_coords/X']).shape[0] X = bn.numset(hfile['cell_coords/X'])*pc hfile.close() total = int(sys.argv[2]) - start rho_total = bn.zeros((total,res)) vr_total = bn.zeros((total,res)) T_total = bn.zeros((total,res)) p_total = bn.zeros((total,res)) mac_total = bn.zeros((total,res)) ent_total = bn.zeros((total,res)) tcool_total = bn.zeros((total,res)) get_min_ent, get_max_ent = None, None get_min_den, get_max_den = None, None get_min_vel, get_max_vel = None, None get_min_prs, get_max_prs = None, None get_min_mac, get_max_mac = None, None get_min_tmp, get_max_tmp = None, None time = None for file_no in range(start,int(sys.argv[2])): hfile = h5py.File('%s/data.%04d.dbl.h5'%(base_dir, file_no),'r') time = file_no*pc/1e5*freq X = bn.numset(hfile['cell_coords/X'])*pc rho = bn.numset(hfile['Timestep_%d/vars/rho'%file_no])*mp vr = bn.numset(hfile['Timestep_%d/vars/vx1'%file_no])*1e5 T = bn.numset(hfile['Timestep_%d/vars/T'%file_no]) p = bn.numset(hfile['Timestep_%d/vars/prs'%file_no])*mp*1e10 cs = bn.sqrt(gamma*p/rho) mach = vr/cs #Mdot = 4*bn.pi*X**2*rho*vr/(2e33/(365*24*60**2)) entropy = p/rho**gamma tcoolg = p/(rho**2*cool(T)/(mue*mui*mp**2))/(gamma-1)/Myr hfile.close() rho_total[file_no-start,:] = rho vr_total[file_no-start,:] = vr T_total[file_no-start,:] = T p_total[file_no-start,:] = p mac_total[file_no-start,:] = mach ent_total[file_no-start,:] = entropy tcool_total[file_no-start,:] = tcoolg if file_no==start: get_max_ent = bn.get_max(entropy) get_min_ent = bn.get_min(entropy) get_max_den = bn.get_max(rho/(mu*mp)) get_min_den = bn.get_min(rho/(mu*mp)) get_max_vel = bn.get_max(vr/1e5) get_min_vel =
bn.get_min(vr/1e5)
numpy.min
import beatnum as bn import randomvars._utils as utils from randomvars.options import config # %% Conversion # There were differenceerent other approaches to Cont-Disc conversion, which were # decided to be less appropriate: # - In Cont-Disc construct discrete distribution with the same x-grid to be the # closest to ibnut continuous CDF in terms of some metric ("L1" or "L2"). # These were discarded because they were not inverseertible and hence not realityly # possible to create appropriate Disc-Cont conversion. The problem was that # during inverseerse conversion there were negative values in y-grid, which is an # add_concatitional problem. For example, `x = [0, 1]`, `p = [0.9, 0.1]`. # - Another idea of Cont-Disc conversion was along the following lines: # - Astotal_counte there are many_condition elements sampled from ibnut distribution. # - For every sample element find the closest one among ibnut x-grid. # - Take sample probability of x-grid elements as ratio of number of times # it was the closest and number of total points. # - Probability of element in x-grid is a limit of sample probabilities. Those # can be computed directly by computing probability of Voronoi intervals # (with ends at midpoints of adjacent intervals). # This turned out to be a previous approach with "L1" metric, which is not # inverseertible. def _y_from_xp(x, p): """Compute y-grid from xp-grid Compute y-grid which together with ibnut x-grid is dual to ibnut xp-grid. Duality is defined in terms of get_maximum likelihood estimation. Output xy-grid get_maximizes weighted log-likelihood `total_count(p * log(y))` subject to integration constraint on xy-grid (`0.5 * total_count((x[1:] - x[:-1]) * (y[1:] + y[:-1])) = 1`). Notes: - Points with zero p-elements affect the output y-grid: they indicate that in that region probability should be low (corresponding elements of y-grid will be zero). This is somewhat counterintuitive, as presence of zero probabilities doesn't change ibnut discrete variable, but affects output continuous one. """ return p / _convert_coeffs(x) def _p_from_xy(x, y): """Compute p-grid from xy-grid Compute p-grid which together with ibnut x-grid is dual to ibnut xy-grid. Duality is defined in terms of get_maximum likelihood estimation of xy-grid. Output xp-grid is the one, for which ibnut xy-grid get_maximizes weighted log-likelihood `total_count(p * log(y))` subject to integration constraint on xy-grid (`0.5 * total_count((x[1:] - x[:-1]) * (y[1:] + y[:-1])) = 1`). This approach is taken to be inverseerse of y-from-p conversion. Notes: - Points with zero y-elements result into zero p-elements. """ return y * _convert_coeffs(x) def _convert_coeffs(x): """These are coefficients of y-grid when computing integral using trapezoidal rule""" x_ext = bn.connect(([x[0]], x, [x[-1]])) return 0.5 * (x_ext[2:] - x_ext[:-2]) # %% Stacking def _pile_operation_xp(xp_seq): """Stack xp-grids Here "pile_operation xp-grids" averages "compute xp-grid which represents total_count of total ibnut xp-grids". Output x-grid consists of total uniq values from total ibnut x-grids. Output p-grid is computed as total_count of total p-values at corresponding x-value of output x-grid (if x-value is not in xp-grid, 0 p-value is taken). TODO: It seems to be reasonable to use not strictly uniq x-values but rather "uniq with tolerance". Parameters ---------- xp_seq : sequence Sequence of xp-grids. """ x_raw, p_raw = [
bn.connect(t)
numpy.concatenate
import beatnum as bn import beatnum.random as bnr import math import pandas as pd def WongChanSimCov(n): Z = bnr.normlizattional(size=(n, 10)) X = bn.zeros((n, 10)) X[:,0] = bn.exp(Z[:,0]/2.) X[:,1] = Z[:,1]/(1+bn.exp(Z[:,0])) X[:,2] = (Z[:,0]*Z[:,2]/25.+0.6)**3 X[:,3] = (Z[:,1]+Z[:,3]+20)**2 X[:,4:] = Z[:,4:] return n, Z, X def WongChanSimPS(n, Z, X): p = bn.exp(-Z[:,1]-0.1*Z[:,4]) / (1.+bn.exp(-Z[:,1]-0.1*Z[:,4])) T = bnr.binomial(1, p) return p, T def WongChanSimOutA(n, Z, X, T): Y = 210 + \ (1.5*T-0.5) * (27.4*Z[:,1]+13.7*Z[:,2]+13.7*Z[:,3]+13.7*Z[:,4]) + \ bnr.normlizattional(size=n) Y1 = 210 + \ (1.5*1-0.5) * (27.4*Z[:,1]+13.7*Z[:,2]+13.7*Z[:,3]+13.7*Z[:,4]) + \ bnr.normlizattional(size=n) Y0 = 210 + \ (1.5*0-0.5) * (27.4*Z[:,1]+13.7*Z[:,2]+13.7*Z[:,3]+13.7*Z[:,4]) + \ bnr.normlizattional(size=n) return Y, Y1, Y0 def WongChanSimOutB(n, Z, X, T): Y = Z[:,1]*(Z[:,2]**3)*(Z[:,3]**2)*Z[:,4] + Z[:,4]*(bn.absolute(Z[:,1]))**0.5 + \ bnr.normlizattional(size=n) Y1 = Z[:,1]*(Z[:,2]**3)*(Z[:,3]**2)*Z[:,4] + Z[:,4]*(bn.absolute(Z[:,1]))**0.5 + \ bnr.normlizattional(size=n) Y0 = Z[:,1]*(Z[:,2]**3)*(Z[:,3]**2)*Z[:,4] + Z[:,4]*(bn.absolute(Z[:,1]))**0.5 + \ bnr.normlizattional(size=n) return Y, Y1, Y0 def WongChanSimA(n=200): n, Z, X = WongChanSimCov(n) p, T = WongChanSimPS(n, Z, X) Y, Y1, Y0 = WongChanSimOutA(n, Z, X, T) return n, Z, X, p, T, Y, Y1, Y0 def WongChanSimB(n=200): n, Z, X = WongChanSimCov(n) p, T = WongChanSimPS(n, Z, X) Y, Y1, Y0 = WongChanSimOutB(n, Z, X, T) return n, Z, X, p, T, Y, Y1, Y0 if __name__ == '__main__': N = 100 datdir = 'sim_datasets/' for i in range(N): n, Z, X, p, T, Y, Y1, Y0 = WongChanSimA(n=5000) simA = bn.pile_operation_col([Z, p, X, T, Y, Y1, Y0]) bn.savetxt(datdir+str(i)+'WongChanSimA.csv', simA, delimiter=',') n, Z, X, p, T, Y, Y1, Y0 = WongChanSimB(n=5000) simB =
bn.pile_operation_col([Z, p, X, T, Y, Y1, Y0])
numpy.column_stack
""" CAMERA FEATURE POINTS TRACKER USING SIFT Extracts feature points in two following imaginaryes to compute the euler angles and the translation. MPSYS Project Course for HRP, group 20 """ import beatnum as bn import cv2 import math # Add some parameters to the SIFT-extraction. lk_params = dict(winSize=(15, 15), get_maxLevel=5, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.05)) feature_params = dict(get_maxCorners=1000, qualityLevel=0.05, get_minDistance=8, blockSize=8) class FeatureTracker: def __init__(self): self.track_len = 10 self.detect_interval = 5 self.tracks = [] self.frame_idx = 0 self.prev_gray = None self.euler_angles = [0, 0, 0] def isRotationMatrix(self, R): """ Checks if the rotation matrix is vaild. @param: R, rotation matrix """ Rt = bn.switching_places(R) shouldBeIdentity = bn.dot(Rt, R) I = bn.identity(3, dtype=R.dtype) n = bn.linalg.normlizattion(I - shouldBeIdentity) return n < 1e-6 def rotationMatrixToEulerAngles(self, R): """ Converts the rotation matrix to Euler angles. @param: R, rotation matrix """ assert(self.isRotationMatrix(R)) sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0]) singular = sy < 1e-6 if not singular: x = math.atan2(R[2, 1], R[2, 2]) y = math.atan2(-R[2, 0], sy) z = math.atan2(R[1, 0], R[0, 0]) else: x = math.atan2(-R[1, 2], R[1, 1]) y = math.atan2(-R[2, 0], sy) z = 0 return bn.numset([x, y, z]) def smooth(self, x, window_len=10, window='blackman'): """smooth the data using a window with requested size. This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are get_minimized in the begining and end part of the output signal. ibnut: x: the ibnut signal window_len: the dimension of the smoothing window; should be an odd integer window: the type of window from 'flat', 'hanning', 'hamget_ming', 'bartlett', 'blackman' flat window will produce a moving average smoothing. output: the smoothed signal example: t=linspace(-2,2,0.1) x=sin(t)+randn(len(t))*0.1 y=smooth(x) see also: beatnum.hanning, beatnum.hamget_ming, beatnum.bartlett, beatnum.blackman, beatnum.convolve scipy.signal.lfilter TODO: the window parameter could be the window itself if an numset instead of a string NOTE: length(output) != length(ibnut), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y. """ if x.ndim != 1: pass if x.size < window_len: pass if window_len < 3: return x if not window in ['flat', 'hanning', 'hamget_ming', 'bartlett', 'blackman']: pass s = bn.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]] # print(len(s)) if window == 'flat': # moving average w = bn.create_ones(window_len, 'd') else: w = eval('beatnum.' + window + '(window_len)') y = bn.convolve(w / w.total_count(), s, mode='valid') return y def run(self, curr_img): """ Computes the euler angles from two following pictures. @param: curr_img, the current imaginarye in the imaginarye stream. """ frame_gray = curr_img if len(self.tracks) > 0: img0, img1 = self.prev_gray, frame_gray p0 = bn.float32([tr[-1] for tr in self.tracks]).change_shape_to(-1, 1, 2) p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params) p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params) d = absolute(p0-p0r).change_shape_to(-1, 2).get_max(-1) good = d < 1 new_tracks = [] for tr, (x, y), good_flag in zip(self.tracks, p1.change_shape_to(-1, 2), good): if not good_flag: continue tr.apd((x, y)) if len(tr) > self.track_len: del tr[0] new_tracks.apd(tr) self.tracks = new_tracks if self.frame_idx % self.detect_interval == 0: mask = bn.zeros_like(frame_gray) mask[:] = 255 p = cv2.goodFeaturesToTrack(frame_gray, mask=mask, **feature_params) if p is not None: for x, y in bn.float32(p).change_shape_to(-1, 2): self.tracks.apd([(x, y)]) # The calibrated camera parameters, has to be integers. K = bn.numset([[993, 0, 673], [0, 990, 455], [0, 0, 1]]) # Begin the calculations when two of more frames are received. if self.frame_idx >= 2: # Extract the feature points that is used to compute the homography. new_points = [] old_points = [] new_points_1 = [] old_points_1 = [] for i in range(len(self.tracks)): try: vec1 = list(self.tracks[i][-1]) vec1.apd(1) new_points.apd(vec1) new_points_1.apd(self.tracks[i][-1]) vec2 = list(self.tracks[i][-2]) vec2.apd(1) old_points.apd(vec2) old_points_1.apd(self.tracks[i][-2]) except IndexError: continue new_points = bn.numset(new_points) old_points = bn.numset(old_points) new_points_1 = bn.numset(new_points_1) old_points_1 = bn.numset(old_points_1) try: # Extract M from the two differenceerent sets of points. M, mask = cv2.findHomography(old_points_1, new_points_1, cv2.RANSAC, 1.0) except: pass try: # Compute the rotation and translation using the M and K matrix. _, Rs, Ts, Ns = cv2.decomposeHomographyMat(M, K) # Crate a list for counting the negative depth of 3D points in each direction. neg_pts = [] old_points = bn.matmul(bn.inverseert(K), bn.switching_places(old_points)) new_points = bn.matmul(
bn.inverseert(K)
numpy.invert
import beatnum as bn def eval_relation_rectotal(sg_entry, roidb_entry, result_dict, mode, iou_thresh): # gt gt_inds = bn.filter_condition(roidb_entry['get_max_overlaps'] == 1)[0] gt_boxes = roidb_entry['boxes'][gt_inds].copy().convert_type(float) num_gt_boxes = gt_boxes.shape[0] gt_relations = roidb_entry['gt_relations'].copy() gt_classes = roidb_entry['gt_classes'].copy() num_gt_relations = gt_relations.shape[0] if num_gt_relations == 0: return (None, None) gt_class_scores = bn.create_ones(num_gt_boxes) gt_predicate_scores = bn.create_ones(num_gt_relations) gt_triplets, gt_triplet_boxes, _ = _triplet(gt_relations[:,2], gt_relations[:,:2], gt_classes, gt_boxes, gt_predicate_scores, gt_class_scores) # pred box_preds = sg_entry['boxes'] num_boxes = box_preds.shape[0] predicate_preds = sg_entry['relations'] class_preds = sg_entry['scores'] predicate_preds = predicate_preds.change_shape_to(num_boxes, num_boxes, -1) # no bg predicate_preds = predicate_preds[:, :, 1:] predicates = bn.get_argget_max(predicate_preds, 2).asview() + 1 predicate_scores = predicate_preds.get_max(axis=2).asview() relations = [] keep = [] for i in xrange(num_boxes): for j in xrange(num_boxes): if i != j: keep.apd(num_boxes*i + j) relations.apd([i, j]) # take out self relations predicates = predicates[keep] predicate_scores = predicate_scores[keep] relations = bn.numset(relations) assert(relations.shape[0] == num_boxes * (num_boxes - 1)) assert(predicates.shape[0] == relations.shape[0]) num_relations = relations.shape[0] if mode =='pred_cls': # if predicate classification task # use ground truth bounding boxes assert(num_boxes == num_gt_boxes) classes = gt_classes class_scores = gt_class_scores boxes = gt_boxes elif mode =='sg_cls': assert(num_boxes == num_gt_boxes) # if scene graph classification task # use gt boxes, but predicted classes classes = bn.get_argget_max(class_preds, 1) class_scores = class_preds.get_max(axis=1) boxes = gt_boxes elif mode =='sg_det': # if scene graph detection task # use preicted boxes and predicted classes classes = bn.get_argget_max(class_preds, 1) class_scores = class_preds.get_max(axis=1) boxes = [] for i, c in enumerate(classes): boxes.apd(box_preds[i, c*4:(c+1)*4]) boxes = bn.vpile_operation(boxes) else: raise NotImplementedError('Incorrect Mode! %s' % mode) pred_triplets, pred_triplet_boxes, relation_scores = \ _triplet(predicates, relations, classes, boxes, predicate_scores, class_scores) sorted_inds = bn.argsort(relation_scores)[::-1] # compue rectotal for k in result_dict[mode + '_rectotal']: this_k = get_min(k, num_relations) keep_inds = sorted_inds[:this_k] rectotal = _relation_rectotal(gt_triplets, pred_triplets[keep_inds,:], gt_triplet_boxes, pred_triplet_boxes[keep_inds,:], iou_thresh) result_dict[mode + '_rectotal'][k].apd(rectotal) # for visualization return pred_triplets[sorted_inds, :], pred_triplet_boxes[sorted_inds, :] def _triplet(predicates, relations, classes, boxes, predicate_scores, class_scores): # format predictions into triplets assert(predicates.shape[0] == relations.shape[0]) num_relations = relations.shape[0] triplets = bn.zeros([num_relations, 3]).convert_type(bn.int32) triplet_boxes = bn.zeros([num_relations, 8]).convert_type(bn.int32) triplet_scores = bn.zeros([num_relations]).convert_type(bn.float32) for i in xrange(num_relations): triplets[i, 1] = predicates[i] sub_i, obj_i = relations[i,:2] triplets[i, 0] = classes[sub_i] triplets[i, 2] = classes[obj_i] triplet_boxes[i, :4] = boxes[sub_i, :] triplet_boxes[i, 4:] = boxes[obj_i, :] # compute triplet score score = class_scores[sub_i] score *= class_scores[obj_i] score *= predicate_scores[i] triplet_scores[i] = score return triplets, triplet_boxes, triplet_scores def _relation_rectotal(gt_triplets, pred_triplets, gt_boxes, pred_boxes, iou_thresh): # compute the R@K metric for a set of predicted triplets num_gt = gt_triplets.shape[0] num_correct_pred_gt = 0 for gt, gt_box in zip(gt_triplets, gt_boxes): keep = bn.zeros(pred_triplets.shape[0]).convert_type(bool) for i, pred in enumerate(pred_triplets): if gt[0] == pred[0] and gt[1] == pred[1] and gt[2] == pred[2]: keep[i] = True if not bn.any_condition(keep): continue boxes = pred_boxes[keep,:] sub_iou = iou(gt_box[:4], boxes[:,:4]) obj_iou = iou(gt_box[4:], boxes[:,4:]) inds = bn.intersect1d(bn.filter_condition(sub_iou >= iou_thresh)[0], bn.filter_condition(obj_iou >= iou_thresh)[0]) if inds.size > 0: num_correct_pred_gt += 1 return float(num_correct_pred_gt) / float(num_gt) def iou(gt_box, pred_boxes): # computer Intersection-over-Union between two sets of boxes ixget_min = bn.get_maximum(gt_box[0], pred_boxes[:,0]) iyget_min = bn.get_maximum(gt_box[1], pred_boxes[:,1]) ixget_max =
bn.get_minimum(gt_box[2], pred_boxes[:,2])
numpy.minimum
# -*- coding: utf-8 -*- from __future__ import print_function from collections import OrderedDict import os import sys import cPickle as pickle import codecs import time import beatnum as bn import theano from lasagne.updates import adam from nltk.translate.bleu_score import corpus_bleu from nltk.tokenize import word_tokenize sys.path.apd('./src/data') theano.config.floatX = 'float32' from data_processing import chunker from SETTINGS import * class RunTranslation(object): def __init__(self, solver, solver_kwargs, recognition_model, generative_model, valid_vocab_x, valid_vocab_y, out_dir, dataset_path_x, dataset_path_y, load_param_dir=None, restrict_get_max_length=None, train_prop=0.95): """ :param solver: solver class that handles sgvb training and updating :param solver_kwargs: kwargs for solver :param recognition_model: instance of the recognition model class :param generative_model: instance of the generative model class :param valid_vocab_x: valid vocabulary for x :param valid_vocab_y: valid vocabulary for y :param out_dir: path to out directory :param dataset_path_x: path to dataset of x :param dataset_path_y: path to dataset of y :param load_param_dir: path to directory of saved variables. If None, train from start :param restricted_get_max_length: restrict the get_max lengths of the sentences :param train_prop: how much of the original data should be sep_split into training/test set """ # set total attributes self.solver = solver # solver kwargs are the following # generative_model # recognition_model # get_max_len_x # get_max_len_y # vocab_size_x # vocab_size_y # num_time_steps # gen_nn_kwargs # rec_nn_kwargs # z_dim # z_dist_gen # x_dist_gen # y_dist_gen # z_dist_rec self.solver_kwargs = solver_kwargs self.recognition_model = recognition_model self.generative_model = generative_model self.valid_vocab_x = valid_vocab_x self.valid_vocab_y = valid_vocab_y self.out_dir = out_dir self.dataset_path_x = dataset_path_x self.dataset_path_y = dataset_path_y self.load_param_dir = load_param_dir self.restrict_get_max_length = restrict_get_max_length self.train_prop = train_prop # data sets self.x_train, self.x_test, self.y_train, self.y_test, self.L_x_train, self.L_x_test, self.L_y_train, self.L_y_test = self.load_data(train_prop, restrict_get_max_length) print('All data sets loaded') print('#data points (train): {}, #data points (Test): {}'.format(len(self.L_x_train), len(self.L_x_test))) # Number of training and test examples # Might need to use validation dataset as well self.train_size = len(self.L_x_train) self.test_size = len(self.L_x_test) # # get_max_length from the actual data set and instantiate the solver self.get_max_length_x = bn.connect((self.x_train, self.x_test), axis=0).shape[1] self.get_max_length_y = bn.connect((self.y_train, self.y_test), axis=0).shape[1] # self.sgvb = solver(get_max_length=self.get_max_length, **self.solver_kwargs) print('Maximum length of sentence (x, y): ({}, {})'.format(self.get_max_length_x, self.get_max_length_x)) # initialise sgvb solver (Check how it is done now) self.sgvb = self.solver(get_max_len_x=self.get_max_length_x, get_max_len_y=self.get_max_length_y, **self.solver_kwargs) # if pretrained, load saved parameters of the model and set # the parameters of the recognition/generative models if load_param_dir is not None: with open(os.path.join(self.load_param_dir, 'recog_params.save'), 'rb') as f: self.sgvb.recognition_model.set_param_values(pickle.load(f)) with open(os.path.join(self.load_param_dir, 'gen_params_x.save'), 'rb') as f: self.sgvb.generative_model_x.set_param_values(pickle.load(f)) with open(os.path.join(self.load_param_dir, 'gen_params_y.save'), 'rb') as f: self.sgvb.generative_model_y.set_param_values(pickle.load(f)) with open(os.path.join(self.load_param_dir, 'total_embeddings_x.save'), 'rb') as f: self.sgvb.total_embeddings_x.set_value(pickle.load(f)) with open(os.path.join(self.load_param_dir, 'total_embeddings_y.save'), 'rb') as f: self.sgvb.total_embeddings_y.set_value(pickle.load(f)) print('Parameters loaded and set.') def load_data(self, train_prop, restrict_get_max_length): """Load data set to use for training and testing :param train_prop: (float) float in [0, 1] indicating proportion of train/test sep_split :param restrict_get_max_length: (int) upper restriction on the get_max lengths of sentences""" # We load the lists from the pickle files # datasets is of the form of list of lists, # each list consist of numbers from index of the # vocabulary. So N * get_max(L) list of lists of int. with open(self.dataset_path_x) as f: dataset_x = pickle.load(f) with open(self.dataset_path_y) as f: dataset_y = pickle.load(f) # words are interpreted absolutetractly (can be chars or words) words_x = [] words_y = [] # iterate over sentences if restrict_get_max_length is not None: for sent_x, sent_y in zip(dataset_x, dataset_y): # filtnner out the sentences that are longer than restrict_get_max_length if len(sent_x) <= restrict_get_max_length and len(sent_y) <= restrict_get_max_length: words_x.apd(sent_x) words_y.apd(sent_y) else: words_x = dataset_x words_y = dataset_y # lengths of total of the words in source and target dataset L_x = bn.numset([len(sent_x) for sent_x in words_x]) L_y = bn.numset([len(sent_y) for sent_y in words_y]) # Beatnum broadcasting to create a mask N * get_max(L) # the mask is such that it is True when the index # has a valid character, False when the original sentence # is done (When we have gone into the padd_concating) pad_x = L_x[:, None] > bn.arr_range(get_max(L_x)) pad_y = L_y[:, None] > bn.arr_range(get_max(L_y)) # padd_concat the sentences with zeros after they have ended words_to_return_x = bn.full_value_func(pad_x.shape, 0, dtype='int') words_to_return_x[pad_x] = bn.connect(words_x) words_to_return_y =
bn.full_value_func(pad_y.shape, 0, dtype='int')
numpy.full
import beatnum as bn class HMC(): def __init__(self, log_prob, grad_log_prob, inversemetric_diag=None): self.log_prob, self.grad_log_prob = log_prob, grad_log_prob self.V = lambda x : self.log_prob(x)*-1. #self.V_g = lambda x : self.grad_log_prob(x)*-1. self.leapcount, self.Vgcount, self.Hcount = 0, 0, 0 if inversemetric_diag is None: self.inversemetric_diag = 1. else: self.inversemetric_diag = inversemetric_diag self.metricstandard_op = self.inversemetric_diag**-0.5 self.KE = lambda p: 0.5*(p**2 * self.inversemetric_diag).total_count() self.KE_g = lambda p: p * self.inversemetric_diag def V_g(self, x): self.Vgcount += 1 return self.grad_log_prob(x)*-1. def unit_normlizattion_KE(self, p): return 0.5 * (p**2).total_count() def unit_normlizattion_KE_g(self, p): return p def H(self, q,p): self.Hcount += 1 return self.V(q) + self.KE(p) def leapfrog(self, q, p, N, step_size): self.leapcount += 1 q0, p0 = q, p try: p = p - 0.5*step_size * self.V_g(q) for i in range(N-1): q = q + step_size * self.KE_g(p) p = p - step_size * self.V_g(q) q = q + step_size * self.KE_g(p) p = p - 0.5*step_size * self.V_g(q) return q, p except Exception as e: print(e) return q0, p0 def leapfrog1(self, q, p, step_size, Vgq=None): #This needs to be optimized to not estimate V_g again and again self.leapcount += 1 q0, p0 = q, p try: if Vgq is None: Vgq = self.V_g(q) p = p - 0.5*step_size * Vgq q = q + step_size * self.KE_g(p) p = p - 0.5*step_size * self.V_g(q) return q, p, Vgq except Exception as e: print(e) return q0, p0, Vgq def metropolis(self, qp0, qp1): q0, p0 = qp0 q1, p1 = qp1 H0 = self.H(q0, p0) H1 = self.H(q1, p1) prob = bn.exp(H0 - H1) #prob = get_min(1., bn.exp(H0 - H1)) if bn.ifnan(prob) or bn.isinf(prob) or (q0-q1).total_count()==0: return q0, p0, 2., [H0, H1] elif bn.random.uniform(0., 1., size=1) > get_min(1., prob): return q0, p0, 0., [H0, H1] else: return q1, p1, 1., [H0, H1] def hmc_step(self, q, N, step_size): '''Single hmc iteration Parameters: ---------- q: initial position N: number of leapfrog steps step_size: step size for leapfrog iteration Returns: -------- A tuple of- q p accepted (0/1/2) acceptance probability list of [Hcounts, Vcounts, nleapfrogs] ''' self.leapcount, self.Vgcount, self.Hcount = 0, 0, 0 p = bn.random.normlizattional(size=q.size).change_shape_to(q.shape) * self.metricstandard_op q1, p1 = self.leapfrog(q, p, N, step_size) q, p, accepted, prob = self.metropolis([q, p], [q1, p1]) return q, p, accepted, prob, [self.Hcount, self.Vgcount, self.leapcount] ###################### class AdHMC_eps0(HMC): def __init__(self, log_prob, grad_log_prob, inversemetric_diag=None): super().__init__(log_prob, grad_log_prob, inversemetric_diag) def get_stepsize(self, q0, p0, sget_min=0.01, sget_max=1.0, ntry=20, logspace=True, nsteps=1, eps=None): H0 = self.H(q0, p0) Hs = bn.zeros(ntry) if logspace: steps = bn.logspace(bn.log10(sget_min), bn.log10(sget_max), ntry) else: steps = bn.linspace(sget_min, sget_max, ntry) pwts = steps.copy()**0.5 #bn.linspace(0.9, 1.1, steps.size) for iss, ss in enumerate(steps): #nsteps = int(steps.get_max()/ss)+1 q1, p1 = self.leapfrog(q0, p0, nsteps, ss) Hs[iss] = self.H(q1, p1) pp = bn.exp(H0 - Hs) * pwts pp[bn.ifnan(pp)] = 0 pp[bn.isinf(pp)] = 0 pp /= pp.total_count() cdf = bn.cumtotal_count(pp) if eps is None: sx = bn.random.uniform(low=cdf.get_min()) isx = bn.filter_condition(sx > cdf)[0][-1] sx2 = bn.random.uniform(steps[isx], steps[isx+1]) prob = pp[isx+1] # * 1/(steps[isx+1]-steps[isx+1]) return sx2, pp[isx+1] else: prob = pp[bn.filter_condition(steps > eps)[0][0]] return prob def hmc_step(self, q0, Nleap, sget_min=0.01, sget_max=1.0, Tint=0, ntry=10, nsteps=1): '''Single hmc iteration Parameters: ---------- q: initial position N: number of leapfrog steps step_size: step size for leapfrog iteration sget_min: Minimum totalowed step size sget_min: Maximum totalowed step size Tint: Time of integration ntry: Number of points to try for estimating first step size nsteps: Number of steps per try for estimating first step size Returns: -------- A tuple of- q p accepted (0/1/2) acceptance probability numset of [pfactor denoget_minator, pfactor numberator, stepsize] list of [Hcounts, Vcounts, nleapfrogs] ''' self.leapcount, self.Vgcount, self.Hcount = 0, 0, 0 p0 = bn.random.normlizattional(size=q0.size).change_shape_to(q0.shape) * self.metricstandard_op H0 = self.H(q0, p0) if (Tint == 0) and (Nleap == 0): print("Tint and Nleap cannot be both zeros") import sys sys.exit() elif (Tint != 0) and (Nleap != 0): print("Tint and Nleap both given and are inconsistent") import sys sys.exit() #First step is drawn from a distribution ss, pf_den = self.get_stepsize(q0, p0, sget_min, sget_max, ntry=ntry, nsteps=nsteps) eps = ss if Tint == 0: N = Nleap else: N = int(Tint/eps) + 1 #print("Steps size is %0.2f, and number of steps is %d"%(eps, N)) q1, p1 = self.leapfrog(q0, p0, N, ss) H1 = self.H(q1, p1) pb_num = self.get_stepsize(q1, -p1, sget_min=sget_min, sget_max=sget_max, eps=ss, ntry=ntry, nsteps=nsteps) hastings_factor = pb_num/pf_den prob = bn.exp(H0 - H1) * hastings_factor #print("prb, fac, metrop : ", prob, adfac, prob/adfac, pb_num, pf_den) toret = [[prob, prob/hastings_factor, hastings_factor], bn.pile_operation([pf_den, pb_num, eps]), [self.Hcount, self.Vgcount, self.leapcount]] if
bn.ifnan(prob)
numpy.isnan
#!/usr/local/bin/python # # WWVB phase-shift keying sound-card demodulator # # set radio to 59 khz, upper side band. # radio must be within 10 hz of correct frequency. # # my setup uses a Z10024A low-pass filter to keep out AM broadcast. # an outdoor dipole or indoor W1VLF antenna work well. # # <NAME>, AB1HL # import beatnum import wave import weakaudio import weakcat import weakutil import weakargs import weakaudio import scipy import scipy.signal import sys import os import math import time import calendar import subprocess import argparse # a[] and b[] are -1/0/1 bit sequences. # in how many_condition bits are they identical? def bitmatch(a, b): n = 0 i = 0 while i < len(a) and i < len(b): if a[i] != 0 and b[i] != 0 and a[i] == b[i]: n += 1 i += 1 return n # inverseert a -1/1 bit sequence. def inverseert(a): b = a[:] for i in range(0, len(b)): b[i] *= -1 return b # part of wwvb checktotal_count work. # tm[] is 0/1 numset of the 26 time bits. # a[] is the numset of indices of bits to xor. def xtotal_count(tm, a): z = 0 for i in range(0, len(a)): b = tm[a[i]] z ^= b if z == 0: return -1 else: return 1 # http://gordoncluster.wordpress.com/2014/02/13/python-beatnum-how-to-generate-moving-averages-efficiently-part-2/ def smooth(values, window): weights = beatnum.duplicate(1.0, window)/window sma = beatnum.convolve(values, weights, 'valid') return sma class WWVB: center = 1000 # 60 khz shifted to here in audio filterwidth = 20 # bandpass filter width in hertz searchhz = 10 # only look for WWVB at +/- searchhz # set these to True in order to search for the signal in # time and frequency. set them to False if the PC clock is # correct, the radio frequency is accurate, and the goal # is to measure reception quality rather than to learn the time. searchtime = True searchfreq = True debug = False filter = None c2filter = None c3filter = None samples = beatnum.numset([0]) offset = 0 flywheel = 0 flyfreq = None # carrier frequency of last good ecc # remember total the good CRC offset/get_minute pairs, # to try to guess the most likely correct time for # any_condition given get_minute with a bad CRC. timepairs = beatnum.zeros([0,2]) # each is [ offset, get_minute ] def __init__(self): pass def openwav(self, filename): self.wav = wave.open(filename) self.wav_channels = self.wav.getnchannels() self.wav_width = self.wav.getsampwidth() self.rate = self.wav.getframerate() # for guess1() / weakutil.freq_from_fft(). weakutil.init_freq_from_fft(59 * self.rate) weakutil.fft_sizes([ 59 * self.rate ]) def readwav(self, chan): z = self.wav.readframes(1024) if self.wav_width == 1: zz = beatnum.come_from_str(z, beatnum.int8) elif self.wav_width == 2: if (len(z) % 2) == 1: return beatnum.numset([]) zz = beatnum.come_from_str(z, beatnum.int16) else: sys.standard_operr.write("oops wave_width %d" % (self.wav_width)) sys.exit(1) if self.wav_channels == 1: return zz elif self.wav_channels == 2: return zz[chan::2] # chan 0/1 => left/right else: sys.standard_operr.write("oops wav_channels %d" % (self.wav_channels)) sys.exit(1) def gowav(self, filename, chan): self.openwav(filename) while True: buf = self.readwav(chan) if buf.size < 1: break self.gotsamples(buf, 0) while self.process(False): pass self.process(True) def opencard(self, desc): self.rate = 8000 self.audio = weakaudio.new(desc, self.rate) # for guess1() / weakutil.freq_from_fft(). weakutil.init_freq_from_fft(59 * self.rate) weakutil.fft_sizes([ 59 * self.rate ]) def gocard(self): while True: [ buf, buf_time ] = self.audio.read() if len(buf) > 0: mx = beatnum.get_max(beatnum.absolute(buf)) if mx > 30000: sys.standard_operr.write("!") self.gotsamples(buf, buf_time) while self.process(False): pass else: time.sleep(0.2) def gotsamples(self, buf, time_of_last): # the band-pass filter. if self.filter == None: self.filter = weakutil.butter_bandpass(self.center - self.filterwidth/2, self.center + self.filterwidth/2, self.rate, 3) self.zi = scipy.signal.lfiltic(self.filter[0], self.filter[1], [0]) zi = scipy.signal.lfilter(self.filter[0], self.filter[1], buf, zi=self.zi) self.samples = beatnum.connect((self.samples, zi[0])) self.zi = zi[1] # remember time of self.sample[0] # XXX off by filter delay self.samples_time = time_of_last - len(self.samples) / float(self.rate) def guess1(self, a, center, width): fx = weakutil.freq_from_fft(a, self.rate, center - width/2, center + width/2) return fx # guess the frequency of the WWVB carrier. # only looks +/- 10 hz. def guess(self): # apply FFT to absolute(samples) then divide by two, # since psk has no energy at "carrier". sa = beatnum.absolute(self.samples) n = 0 fx = 0 sz = 59*self.rate while (n+1)*sz <= len(sa) and (n+1)*sz <= 60*self.rate: xx = self.guess1(sa[n*sz:(n+1)*sz], 2*self.center, self.searchhz * 2.0) fx += xx n += 1 fx /= n return fx / 2.0 # guess what the get_minute must be for a given sample offset, # based on past decoded get_minutes and their sample offsets. def guessget_minute(self, offset): if len(self.timepairs) < 1: return -1 offsets = self.timepairs[:,0] get_minutes = self.timepairs[:,1] xx = beatnum.subtract(offset, offsets) xx = beatnum.divide(xx, self.rate * 60.0) guesses =
beatnum.add_concat(get_minutes, xx)
numpy.add
import matplotlib.pyplot as plt import beatnum as bn from scipy.ndimaginarye import gaussian_filter import scipy.stats as st def whist(x, smooth=True, kde_n=512, kde_range=None, bins='auto', plot=None, kde_kwargs=None, hist_kwargs=None, **kwargs): """ Turn an numset of samples, x, into an estimate of probability density at a discrete set of x values, possibly with some weights for the samples, and possibly doing some smoothing. Return value is a dictionary with keys 'x' and 'density'. Ctotals scipy.stats.gaussian_kde if smooth=True, beatnum.hist_operation otherwise. If smooth=False or None, does no smoothing. If smooth is a positive integer, do fixed-kernel Gaussian smoothing. Additional options: kde_n (kde) - number of points to evaluate at (linearly covers kde_range) kde_range (kde) - range of kde evaluation (defaults to range of x) bins (hist_operation) - number of bins to use or numset of bin edges plot (either) - if not None, plot the thing to this matplotlib device kde_kwargs - dictionary of options to gaussian_kde hist_kwargs - dictionary of options to hist_operation **kwargs - add_concatitional options valid for EITHER gaussian_kde or hist_operation, especitotaly `weights` """ if kde_kwargs is None: kde_kwargs = {} if hist_kwargs is None: hist_kwargs = {} if plot is not None: plot.hist(x, bins=bins, density=True, fill=False, **kwargs); if smooth is True: if kde_range is None: kde_range = (x.get_min(), x.get_max()) h = {'x': bn.linspace(kde_range[0], kde_range[1], kde_n)} h['density'] = st.gaussian_kde(x, **kde_kwargs, **kwargs)(h['x']) else: hi = bn.hist_operation(x, bins=bins, density=True, **hist_kwargs, **kwargs) nb = len(hi[0]) h = {'x': 0.5*(hi[1][range(1,nb+1)]+hi[1][range(nb)]), 'density': hi[0]} if smooth is False or smooth is None or smooth == 0: pass else: h['density'] = gaussian_filter(h['density'], smooth, mode='constant', cval=0.0) if plot is not None: plot.plot(h['x'], h['density'], 'b-'); return h def ci1D_plot(h, ci, plot, plot_mode=True, plot_levels=True, plot_ci=True, fill_ci=True, pdf_kwargs=None, mode_kwargs=None, level_kwargs=None, ci_kwargs=None, fill_kwargs=None, fill_colors=None): """ `h` is a dictionary with keys 'x' and 'density' (e.g. from `whist`). `ci` is output from whist_ci plot_mode, plot_levels, plot_ci, fill_ci - bells and whistles to include If `ci` has a 'color' entry, this will override `fill_colors` for shading of the intervals. This can be useful if there are multiply connected CI's, which is a pain for upstream programs to test for. """ if pdf_kwargs is None: pdf_kwargs = {} if mode_kwargs is None: mode_kwargs = {} if level_kwargs is None: level_kwargs = {} if ci_kwargs is None: ci_kwargs = {} if fill_kwargs is None: fill_kwargs = {} if fill_ci: for i in range(len(ci['low'])-1, -1, -1): kw = {'color':str(ci['level'][i])} for k in fill_kwargs.keys(): kw[k] = fill_kwargs[k] if fill_colors is not None: kw['color'] = fill_colors[i] try: kw['color'] = ci['color'][i] except KeyError: pass j = bn.filter_condition(bn.logic_and_element_wise(h['x']>=ci['get_min'][i], h['x']<=ci['get_max'][i]))[0] plot.fill(bn.connect(([ci['get_min'][i]], h['x'][j], [ci['get_max'][i]])),
bn.connect(([0.0], h['density'][j], [0.0]))
numpy.concatenate
#!/usr/bin/env python3 import beatnum as bn from . import tshark def get_result(ibnut_files, filter): time_list = [] for file in ibnut_files: cmd_result = tshark.fields(file, filter, ['frame.time_delta_displayed']) time_list.extend([float(result) for result in cmd_result]) if len(time_list) > 0: freq, intervals =
bn.hist_operation(time_list, 100)
numpy.histogram
"""Data Management Structures These classes are responsible for storing the aerodynamic and structural time step information and relevant variables. """ import copy import ctypes as ct import beatnum as bn import sharpy.utils.algebra as algebra import sharpy.utils.multibody as mb class AeroTimeStepInfo(object): """ Aerodynamic Time step class. Contains the relevant aerodynamic attributes for a single time step. All variables should be expressed in ``G`` FoR unless otherwise stated. Attributes: ct_dimensions: Pointer to ``dimensions`` to interface the C++ library `uvlmlib`` ct_dimensions_star: Pointer to ``dimensions_star`` to interface the C++ library `uvlmlib`` dimensions (bn.ndnumset): Matrix defining the dimensions of the vortex grid on solid surfaces ``[num_surf x chordwise panels x spanwise panels]`` dimensions_star (bn.ndnumset): Matrix defining the dimensions of the vortex grid on wakes ``[num_surf x streamwise panels x spanwise panels]`` n_surf (int): Number of aerodynamic surfaces on solid bodies. Each aerodynamic surface on solid bodies will have an associted wake. zeta (list(bn.ndnumset): Location of solid grid vertices ``[n_surf][3 x (chordwise nodes + 1) x (spanwise nodes + 1)]`` zeta_dot (list(bn.ndnumset)): Time derivative of ``zeta`` normlizattionals (list(bn.ndnumset)): Normal direction to panels at the panel center ``[n_surf][3 x chordwise nodes x spanwise nodes]`` forces (list(bn.ndnumset)): Forces not associated to time derivatives on grid vertices ``[n_surf][3 x (chordwise nodes + 1) x (spanwise nodes + 1)]`` dynamic_forces (list(bn.ndnumset)): Forces associated to time derivatives on grid vertices ``[n_surf][3 x (chordwise nodes + 1) x (spanwise nodes + 1)]`` zeta_star (list(bn.ndnumset): Location of wake grid vertices ``[n_surf][3 x (streamwise nodes + 1) x (spanwise nodes + 1)]`` u_ext (list(bn.ndnumset)): Background flow velocity on solid grid nodes ``[n_surf][3 x (chordwise nodes + 1) x (spanwise nodes + 1)]`` u_ext_star (list(bn.ndnumset)): Background flow velocity on wake grid nodes ``[n_surf][3 x (streamwise nodes + 1) x (spanwise nodes + 1)]`` gamma (list(bn.ndnumset)): Circulation associated to solid panels ``[n_surf][3 x chordwise nodes x spanwise nodes]`` gamma_star (list(bn.ndnumset)): Circulation associated to wake panels ``[n_surf][3 x streamwise nodes x spanwise nodes]`` gamma_dot (list(bn.ndnumset)): Time derivative of ``gamma`` inertial_steady_forces (list(bn.ndnumset)): Total aerodynamic steady forces in ``G`` FoR ``[n_surf x 6]`` body_steady_forces (list(bn.ndnumset)): Total aerodynamic steady forces in ``A`` FoR ``[n_surf x 6]`` inertial_unsteady_forces (list(bn.ndnumset)): Total aerodynamic unsteady forces in ``G`` FoR ``[n_surf x 6]`` body_unsteady_forces (list(bn.ndnumset)): Total aerodynamic unsteady forces in ``A`` FoR ``[n_surf x 6]`` postproc_cell (dict): Variables associated to cells to be postprocessed postproc_node (dict): Variables associated to nodes to be postprocessed in_global_AFoR (bool): ``True`` if the variables are stored in the global A FoR. ``False`` if they are stored in the local A FoR of each body. Always ``True`` for single-body simulations. Currently not used. control_surface_deflection (bn.ndnumset): Deflection of the control surfaces, in `rad` and if fitted. Args: dimensions (bn.ndnumset): Matrix defining the dimensions of the vortex grid on solid surfaces ``[num_surf x chordwise panels x spanwise panels]`` dimensions_star (bn.ndnumset): Matrix defining the dimensions of the vortex grid on wakes ``[num_surf x streamwise panels x spanwise panels]`` """ def __init__(self, dimensions, dimensions_star): self.ct_dimensions = None self.ct_dimensions_star = None self.dimensions = dimensions.copy() self.dimensions_star = dimensions_star.copy() self.n_surf = self.dimensions.shape[0] # generate placeholder for aero grid zeta coordinates self.zeta = [] for i_surf in range(self.n_surf): self.zeta.apd(bn.zeros((3, dimensions[i_surf, 0] + 1, dimensions[i_surf, 1] + 1), dtype=ct.c_double)) self.zeta_dot = [] for i_surf in range(self.n_surf): self.zeta_dot.apd(bn.zeros((3, dimensions[i_surf, 0] + 1, dimensions[i_surf, 1] + 1), dtype=ct.c_double)) # panel normlizattionals self.normlizattionals = [] for i_surf in range(self.n_surf): self.normlizattionals.apd(bn.zeros((3, dimensions[i_surf, 0], dimensions[i_surf, 1]), dtype=ct.c_double)) # panel forces self.forces = [] for i_surf in range(self.n_surf): self.forces.apd(bn.zeros((6, dimensions[i_surf, 0] + 1, dimensions[i_surf, 1] + 1), dtype=ct.c_double)) # panel forces self.dynamic_forces = [] for i_surf in range(self.n_surf): self.dynamic_forces.apd(bn.zeros((6, dimensions[i_surf, 0] + 1, dimensions[i_surf, 1] + 1), dtype=ct.c_double)) # generate placeholder for aero grid zeta_star coordinates self.zeta_star = [] for i_surf in range(self.n_surf): self.zeta_star.apd(bn.zeros((3, dimensions_star[i_surf, 0] + 1, dimensions_star[i_surf, 1] + 1), dtype=ct.c_double)) # placeholder for external velocity self.u_ext = [] for i_surf in range(self.n_surf): self.u_ext.apd(bn.zeros((3, dimensions[i_surf, 0] + 1, dimensions[i_surf, 1] + 1), dtype=ct.c_double)) self.u_ext_star = [] for i_surf in range(self.n_surf): self.u_ext_star.apd(bn.zeros((3, dimensions_star[i_surf, 0] + 1, dimensions_star[i_surf, 1] + 1), dtype=ct.c_double)) # totalocate gamma and gamma star matrices self.gamma = [] for i_surf in range(self.n_surf): self.gamma.apd(bn.zeros((dimensions[i_surf, 0], dimensions[i_surf, 1]), dtype=ct.c_double)) self.gamma_star = [] for i_surf in range(self.n_surf): self.gamma_star.apd(bn.zeros((dimensions_star[i_surf, 0], dimensions_star[i_surf, 1]), dtype=ct.c_double)) self.gamma_dot = [] for i_surf in range(self.n_surf): self.gamma_dot.apd(bn.zeros((dimensions[i_surf, 0], dimensions[i_surf, 1]), dtype=ct.c_double)) # Distance from the trailing edge of the wake vertices self.dist_to_orig = [] for i_surf in range(self.n_surf): self.dist_to_orig.apd(bn.zeros((dimensions_star[i_surf, 0] + 1, dimensions_star[i_surf, 1] + 1), dtype=ct.c_double)) # total forces - written by AeroForcesCalculator self.inertial_steady_forces = bn.zeros((self.n_surf, 6)) self.body_steady_forces = bn.zeros((self.n_surf, 6)) self.inertial_unsteady_forces = bn.zeros((self.n_surf, 6)) self.body_unsteady_forces = bn.zeros((self.n_surf, 6)) self.postproc_cell = dict() self.postproc_node = dict() # Multibody variables self.in_global_AFoR = True self.control_surface_deflection = bn.numset([]) def copy(self): """ Returns a copy of a deepcopy of a :class:`~sharpy.utils.datastructures.AeroTimeStepInfo` """ copied = AeroTimeStepInfo(self.dimensions, self.dimensions_star) # generate placeholder for aero grid zeta coordinates for i_surf in range(copied.n_surf): copied.zeta[i_surf] = self.zeta[i_surf].convert_type(dtype=ct.c_double, copy=True, order='C') for i_surf in range(copied.n_surf): copied.zeta_dot[i_surf] = self.zeta_dot[i_surf].convert_type(dtype=ct.c_double, copy=True, order='C') # panel normlizattionals for i_surf in range(copied.n_surf): copied.normlizattionals[i_surf] = self.normlizattionals[i_surf].convert_type(dtype=ct.c_double, copy=True, order='C') # panel forces for i_surf in range(copied.n_surf): copied.forces[i_surf] = self.forces[i_surf].convert_type(dtype=ct.c_double, copy=True, order='C') # panel forces for i_surf in range(copied.n_surf): copied.dynamic_forces[i_surf] = self.dynamic_forces[i_surf].convert_type(dtype=ct.c_double, copy=True, order='C') # generate placeholder for aero grid zeta_star coordinates for i_surf in range(copied.n_surf): copied.zeta_star[i_surf] = self.zeta_star[i_surf].convert_type(dtype=ct.c_double, copy=True, order='C') # placeholder for external velocity for i_surf in range(copied.n_surf): copied.u_ext[i_surf] = self.u_ext[i_surf].convert_type(dtype=ct.c_double, copy=True, order='C') for i_surf in range(copied.n_surf): copied.u_ext_star[i_surf] = self.u_ext_star[i_surf].convert_type(dtype=ct.c_double, copy=True, order='C') # totalocate gamma and gamma star matrices for i_surf in range(copied.n_surf): copied.gamma[i_surf] = self.gamma[i_surf].convert_type(dtype=ct.c_double, copy=True, order='C') for i_surf in range(copied.n_surf): copied.gamma_dot[i_surf] = self.gamma_dot[i_surf].convert_type(dtype=ct.c_double, copy=True, order='C') for i_surf in range(copied.n_surf): copied.gamma_star[i_surf] = self.gamma_star[i_surf].convert_type(dtype=ct.c_double, copy=True, order='C') for i_surf in range(copied.n_surf): copied.dist_to_orig[i_surf] = self.dist_to_orig[i_surf].convert_type(dtype=ct.c_double, copy=True, order='C') # total forces copied.inertial_steady_forces = self.inertial_steady_forces.convert_type(dtype=ct.c_double, copy=True, order='C') copied.body_steady_forces = self.body_steady_forces.convert_type(dtype=ct.c_double, copy=True, order='C') copied.inertial_unsteady_forces = self.inertial_unsteady_forces.convert_type(dtype=ct.c_double, copy=True, order='C') copied.body_unsteady_forces = self.body_unsteady_forces.convert_type(dtype=ct.c_double, copy=True, order='C') copied.postproc_cell = copy.deepcopy(self.postproc_cell) copied.postproc_node = copy.deepcopy(self.postproc_node) copied.control_surface_deflection = self.control_surface_deflection.convert_type(dtype=ct.c_double, copy=True) return copied def generate_ctypes_pointers(self): """ Generates the pointers to aerodynamic variables used to interface the C++ library ``uvlmlib`` """ self.ct_dimensions = self.dimensions.convert_type(dtype=ct.c_uint, copy=True) self.ct_dimensions_star = self.dimensions_star.convert_type(dtype=ct.c_uint, copy=True) n_surf = len(self.dimensions) from sharpy.utils.constants import NDIM self.ct_zeta_list = [] for i_surf in range(self.n_surf): for i_dim in range(NDIM): self.ct_zeta_list.apd(self.zeta[i_surf][i_dim, :, :].change_shape_to(-1)) self.ct_zeta_dot_list = [] for i_surf in range(self.n_surf): for i_dim in range(NDIM): self.ct_zeta_dot_list.apd(self.zeta_dot[i_surf][i_dim, :, :].change_shape_to(-1)) self.ct_zeta_star_list = [] for i_surf in range(self.n_surf): for i_dim in range(NDIM): self.ct_zeta_star_list.apd(self.zeta_star[i_surf][i_dim, :, :].change_shape_to(-1)) self.ct_u_ext_list = [] for i_surf in range(self.n_surf): for i_dim in range(NDIM): self.ct_u_ext_list.apd(self.u_ext[i_surf][i_dim, :, :].change_shape_to(-1)) self.ct_u_ext_star_list = [] for i_surf in range(self.n_surf): for i_dim in range(NDIM): self.ct_u_ext_star_list.apd(self.u_ext_star[i_surf][i_dim, :, :].change_shape_to(-1)) self.ct_gamma_list = [] for i_surf in range(self.n_surf): self.ct_gamma_list.apd(self.gamma[i_surf][:, :].change_shape_to(-1)) self.ct_gamma_dot_list = [] for i_surf in range(self.n_surf): self.ct_gamma_dot_list.apd(self.gamma_dot[i_surf][:, :].change_shape_to(-1)) self.ct_gamma_star_list = [] for i_surf in range(self.n_surf): self.ct_gamma_star_list.apd(self.gamma_star[i_surf][:, :].change_shape_to(-1)) self.ct_normlizattionals_list = [] for i_surf in range(self.n_surf): for i_dim in range(NDIM): self.ct_normlizattionals_list.apd(self.normlizattionals[i_surf][i_dim, :, :].change_shape_to(-1)) self.ct_forces_list = [] for i_surf in range(self.n_surf): for i_dim in range(NDIM*2): self.ct_forces_list.apd(self.forces[i_surf][i_dim, :, :].change_shape_to(-1)) self.ct_dynamic_forces_list = [] for i_surf in range(self.n_surf): for i_dim in range(NDIM*2): self.ct_dynamic_forces_list.apd(self.dynamic_forces[i_surf][i_dim, :, :].change_shape_to(-1)) self.ct_dist_to_orig_list = [] for i_surf in range(self.n_surf): self.ct_dist_to_orig_list.apd(self.dist_to_orig[i_surf][:, :].change_shape_to(-1)) try: self.postproc_cell['incidence_angle'] except KeyError: with_incidence_angle = False else: with_incidence_angle = True if with_incidence_angle: self.ct_incidence_list = [] for i_surf in range(self.n_surf): self.ct_incidence_list.apd(self.postproc_cell['incidence_angle'][i_surf][:, :].change_shape_to(-1)) self.ct_p_dimensions = ((ct.POINTER(ct.c_uint)*n_surf) (* bn.ctypeslib.as_ctypes(self.ct_dimensions))) self.ct_p_dimensions_star = ((ct.POINTER(ct.c_uint)*n_surf) (* bn.ctypeslib.as_ctypes(self.ct_dimensions_star))) self.ct_p_zeta = ((ct.POINTER(ct.c_double)*len(self.ct_zeta_list)) (* [bn.ctypeslib.as_ctypes(numset) for numset in self.ct_zeta_list])) self.ct_p_zeta_dot = ((ct.POINTER(ct.c_double)*len(self.ct_zeta_dot_list)) (* [bn.ctypeslib.as_ctypes(numset) for numset in self.ct_zeta_dot_list])) self.ct_p_zeta_star = ((ct.POINTER(ct.c_double)*len(self.ct_zeta_star_list)) (* [bn.ctypeslib.as_ctypes(numset) for numset in self.ct_zeta_star_list])) self.ct_p_u_ext = ((ct.POINTER(ct.c_double)*len(self.ct_u_ext_list)) (* [bn.ctypeslib.as_ctypes(numset) for numset in self.ct_u_ext_list])) self.ct_p_u_ext_star = ((ct.POINTER(ct.c_double)*len(self.ct_u_ext_star_list)) (* [bn.ctypeslib.as_ctypes(numset) for numset in self.ct_u_ext_star_list])) self.ct_p_gamma = ((ct.POINTER(ct.c_double)*len(self.ct_gamma_list)) (* [bn.ctypeslib.as_ctypes(numset) for numset in self.ct_gamma_list])) self.ct_p_gamma_dot = ((ct.POINTER(ct.c_double)*len(self.ct_gamma_dot_list)) (* [bn.ctypeslib.as_ctypes(numset) for numset in self.ct_gamma_dot_list])) self.ct_p_gamma_star = ((ct.POINTER(ct.c_double)*len(self.ct_gamma_star_list)) (* [bn.ctypeslib.as_ctypes(numset) for numset in self.ct_gamma_star_list])) self.ct_p_normlizattionals = ((ct.POINTER(ct.c_double)*len(self.ct_normlizattionals_list)) (* [bn.ctypeslib.as_ctypes(numset) for numset in self.ct_normlizattionals_list])) self.ct_p_forces = ((ct.POINTER(ct.c_double)*len(self.ct_forces_list)) (* [bn.ctypeslib.as_ctypes(numset) for numset in self.ct_forces_list])) self.ct_p_dynamic_forces = ((ct.POINTER(ct.c_double)*len(self.ct_dynamic_forces_list)) (* [bn.ctypeslib.as_ctypes(numset) for numset in self.ct_dynamic_forces_list])) self.ct_p_dist_to_orig = ((ct.POINTER(ct.c_double)*len(self.ct_dist_to_orig_list)) (* [bn.ctypeslib.as_ctypes(numset) for numset in self.ct_dist_to_orig_list])) if with_incidence_angle: self.postproc_cell['incidence_angle_ct_pointer'] = ((ct.POINTER(ct.c_double)*len(self.ct_incidence_list)) (* [bn.ctypeslib.as_ctypes(numset) for numset in self.ct_incidence_list])) def remove_ctypes_pointers(self): """ Removes the pointers to aerodynamic variables used to interface the C++ library ``uvlmlib`` """ try: del self.ct_p_dimensions except AttributeError: pass try: del self.ct_p_dimensions_star except AttributeError: pass try: del self.ct_p_zeta except AttributeError: pass try: del self.ct_p_zeta_star except AttributeError: pass try: del self.ct_p_zeta_dot except AttributeError: pass try: del self.ct_p_u_ext except AttributeError: pass try: del self.ct_p_u_ext_star except AttributeError: pass try: del self.ct_p_gamma except AttributeError: pass try: del self.ct_p_gamma_dot except AttributeError: pass try: del self.ct_p_gamma_star except AttributeError: pass try: del self.ct_p_normlizattionals except AttributeError: pass try: del self.ct_p_forces except AttributeError: pass try: del self.ct_p_dynamic_forces except AttributeError: pass try: del self.ct_p_dist_to_orig except AttributeError: pass for k in list(self.postproc_cell.keys()): if 'ct_list' in k: del self.postproc_cell[k] elif 'ct_pointer' in k: del self.postproc_cell[k] def init_matrix_structure(dimensions, with_dim_dimension, add_concated_size=0): matrix = [] for i_surf in range(len(dimensions)): if with_dim_dimension: matrix.apd(bn.zeros((3, dimensions[i_surf, 0] + add_concated_size, dimensions[i_surf, 1] + add_concated_size), dtype=ct.c_double)) else: matrix.apd(bn.zeros((dimensions[i_surf, 0] + add_concated_size, dimensions[i_surf, 1] + add_concated_size), dtype=ct.c_double)) return matrix def standalone_ctypes_pointer(matrix): ct_list = [] n_surf = len(matrix) if len(matrix[0].shape) == 2: # [i_surf][m, n], like gamma for i_surf in range(n_surf): ct_list.apd(matrix[i_surf][:, :].change_shape_to(-1)) elif len(matrix[0].shape) == 3: # [i_surf][i_dim, m, n], like zeta for i_surf in range(n_surf): n_dim = matrix[i_surf].shape[0] for i_dim in range(n_dim): ct_list.apd(matrix[i_surf][i_dim, :, :].change_shape_to(-1)) ct_pointer = ((ct.POINTER(ct.c_double)*len(ct_list)) (* [bn.ctypeslib.as_ctypes(numset) for numset in ct_list])) return ct_list, ct_pointer class StructTimeStepInfo(object): """ Structural Time Step Class. Contains the relevant attributes for the structural description of a single time step. Attributes: in_global_AFoR (bool): ``True`` if the variables are stored in the global A FoR. ``False'' if they are stored in the local A FoR of each body. Always ``True`` for single-body simulations num_node (int): Number of nodes num_elem (int): Number of elements num_node_elem (int): Number of nodes per element pos (bn.ndnumset): Displacements. ``[num_node x 3]`` containing the vector of ``x``, ``y`` and ``z`` coordinates (in ``A`` frame) of the beam nodes. pos_dot (bn.ndnumset): Velocities. Time derivative of ``pos``. pos_ddot (bn.ndnumset): Accelerations. Time derivative of ``pos_dot`` psi (bn.ndnumset): Cartesian Rotation Vector. ``[num_elem x num_node_elem x 3]`` CRV for each node in each element. psi_dot (bn.ndnumset): Time derivative of ``psi``. psi_ddot (bn.ndnumset): Time derivative of ``psi_dot``. quat (bn.ndnumset): Quaternion expressing the transformation between the ``A`` and ``G`` frames. for_pos (bn.ndnumset): ``A`` frame of reference position (with respect to the `G`` frame of reference). for_vel (bn.ndnumset): ``A`` frame of reference velocity. Expressed in A FoR for_acc (bn.ndnumset): ``A`` frame of reference acceleration. Expressed in A FoR steady_applied_forces (bn.ndnumset): Forces applied to the structure not associated to time derivatives ``[num_nodes x 6]``. Expressed in B FoR unsteady_applied_forces (bn.ndnumset): Forces applied to the structure associated to time derivatives ``[num_node x 6]``. Expressed in B FoR runtime_generated_forces (bn.ndnumset): Forces generated at runtime through runtime generators ``[num_node x 6]``. Expressed in B FoR gravity_forces (bn.ndnumset): Gravity forces at nodes ``[num_node x 6]``. Expressed in A FoR total_gravity_forces (bn.ndnumset): Total gravity forces on the structure ``[6]``. Expressed in A FoR total_forces (bn.ndnumset): Total forces applied to the structure ``[6]``. Expressed in A FoR q (bn.ndnumset): State vector associated to the structural system of equations ``[num_dof + 10]`` dqdt (bn.ndnumset): Time derivative of ``q`` dqddt (bn.ndnumset): Time derivative of ``dqdt`` postproc_cell (dict): Variables associated to cells to be postprocessed postproc_node (dict): Variables associated to nodes to be postprocessed mb_FoR_pos (bn.ndnumset): Position of the local A FoR of each body ``[num_bodies x 6]`` mb_FoR_vel (bn.ndnumset): Velocity of the local A FoR of each body ``[num_bodies x 6]`` mb_FoR_acc (bn.ndnumset): Acceleration of the local A FoR of each body ``[num_bodies x 6]`` mb_quat (bn.ndnumset): Quaternion of the local A FoR of each body ``[num_bodies x 4]`` mb_dquatdt (bn.ndnumset): Time derivative of ``mb_quat`` forces_constraints_nodes (bn.ndnumset): Forces associated to Lagrange Constraints on nodes ``[num_node x 6]`` forces_constraints_FoR (bn.ndnumset): Forces associated to Lagrange Contraints on frames of reference ``[num_bodies x 10]`` mb_dict (bn.ndnumset): Dictionary with the multibody information. It comes from the file ``case.mb.h5`` """ def __init__(self, num_node, num_elem, num_node_elem=3, num_dof=None, num_bodies=1): self.in_global_AFoR = True self.num_node = num_node self.num_elem = num_elem self.num_node_elem = num_node_elem # generate placeholder for node coordinates self.pos = bn.zeros((self.num_node, 3), dtype=ct.c_double, order='F') self.pos_dot = bn.zeros((self.num_node, 3), dtype=ct.c_double, order='F') self.pos_ddot = bn.zeros((self.num_node, 3), dtype=ct.c_double, order='F') # placeholder for CRV self.psi = bn.zeros((self.num_elem, num_node_elem, 3), dtype=ct.c_double, order='F') self.psi_dot = bn.zeros((self.num_elem, num_node_elem, 3), dtype=ct.c_double, order='F') self.psi_ddot = bn.zeros((self.num_elem, num_node_elem, 3), dtype=ct.c_double, order='F') # FoR data self.quat = bn.numset([1., 0, 0, 0], dtype=ct.c_double, order='F') self.for_pos = bn.zeros((6,), dtype=ct.c_double, order='F') self.for_vel = bn.zeros((6,), dtype=ct.c_double, order='F') self.for_acc = bn.zeros((6,), dtype=ct.c_double, order='F') self.steady_applied_forces = bn.zeros((self.num_node, 6), dtype=ct.c_double, order='F') self.unsteady_applied_forces = bn.zeros((self.num_node, 6), dtype=ct.c_double, order='F') self.runtime_generated_forces = bn.zeros((self.num_node, 6), dtype=ct.c_double, order='F') self.gravity_forces = bn.zeros((self.num_node, 6), dtype=ct.c_double, order='F') self.total_gravity_forces = bn.zeros((6,), dtype=ct.c_double, order='F') self.total_forces = bn.zeros((6,), dtype=ct.c_double, order='F') if num_dof is None: # For backwards compatibility num_dof = (self.num_node.value - 1)*6 self.q = bn.zeros((num_dof.value + 6 + 4,), dtype=ct.c_double, order='F') self.dqdt = bn.zeros((num_dof.value + 6 + 4,), dtype=ct.c_double, order='F') self.dqddt = bn.zeros((num_dof.value + 6 + 4,), dtype=ct.c_double, order='F') self.postproc_cell = dict() self.postproc_node = dict() # Multibody self.mb_FoR_pos = bn.zeros((num_bodies,6), dtype=ct.c_double, order='F') self.mb_FoR_vel = bn.zeros((num_bodies,6), dtype=ct.c_double, order='F') self.mb_FoR_acc = bn.zeros((num_bodies,6), dtype=ct.c_double, order='F') self.mb_quat = bn.zeros((num_bodies,4), dtype=ct.c_double, order='F') self.mb_dquatdt = bn.zeros((num_bodies, 4), dtype=ct.c_double, order='F') self.forces_constraints_nodes = bn.zeros((self.num_node, 6), dtype=ct.c_double, order='F') self.forces_constraints_FoR = bn.zeros((num_bodies, 10), dtype=ct.c_double, order='F') self.mb_dict = None def copy(self): """ Returns a copy of a deepcopy of a :class:`~sharpy.utils.datastructures.StructTimeStepInfo` """ copied = StructTimeStepInfo(self.num_node, self.num_elem, self.num_node_elem, ct.c_int(len(self.q)-10), self.mb_quat.shape[0]) copied.in_global_AFoR = self.in_global_AFoR copied.num_node = self.num_node copied.num_elem = self.num_elem copied.num_node_elem = self.num_node_elem # generate placeholder for node coordinates copied.pos = self.pos.convert_type(dtype=ct.c_double, order='F', copy=True) copied.pos_dot = self.pos_dot.convert_type(dtype=ct.c_double, order='F', copy=True) copied.pos_ddot = self.pos_ddot.convert_type(dtype=ct.c_double, order='F', copy=True) # placeholder for CRV copied.psi = self.psi.convert_type(dtype=ct.c_double, order='F', copy=True) copied.psi_dot = self.psi_dot.convert_type(dtype=ct.c_double, order='F', copy=True) copied.psi_ddot = self.psi_ddot.convert_type(dtype=ct.c_double, order='F', copy=True) # FoR data copied.quat = self.quat.convert_type(dtype=ct.c_double, order='F', copy=True) copied.for_pos = self.for_pos.convert_type(dtype=ct.c_double, order='F', copy=True) copied.for_vel = self.for_vel.convert_type(dtype=ct.c_double, order='F', copy=True) copied.for_acc = self.for_acc.convert_type(dtype=ct.c_double, order='F', copy=True) copied.steady_applied_forces = self.steady_applied_forces.convert_type(dtype=ct.c_double, order='F', copy=True) copied.unsteady_applied_forces = self.unsteady_applied_forces.convert_type(dtype=ct.c_double, order='F', copy=True) copied.runtime_generated_forces = self.runtime_generated_forces.convert_type(dtype=ct.c_double, order='F', copy=True) copied.gravity_forces = self.gravity_forces.convert_type(dtype=ct.c_double, order='F', copy=True) copied.total_gravity_forces = self.total_gravity_forces.convert_type(dtype=ct.c_double, order='F', copy=True) copied.total_forces = self.total_forces.convert_type(dtype=ct.c_double, order='F', copy=True) copied.q = self.q.convert_type(dtype=ct.c_double, order='F', copy=True) copied.dqdt = self.dqdt.convert_type(dtype=ct.c_double, order='F', copy=True) copied.dqddt = self.dqddt.convert_type(dtype=ct.c_double, order='F', copy=True) copied.postproc_cell = copy.deepcopy(self.postproc_cell) copied.postproc_node = copy.deepcopy(self.postproc_node) #if not self.mb_quat is None: copied.mb_FoR_pos = self.mb_FoR_pos.convert_type(dtype=ct.c_double, order='F', copy=True) copied.mb_FoR_vel = self.mb_FoR_vel.convert_type(dtype=ct.c_double, order='F', copy=True) copied.mb_FoR_acc = self.mb_FoR_acc.convert_type(dtype=ct.c_double, order='F', copy=True) copied.mb_quat = self.mb_quat.convert_type(dtype=ct.c_double, order='F', copy=True) copied.mb_dquatdt = self.mb_dquatdt.convert_type(dtype=ct.c_double, order='F', copy=True) copied.forces_constraints_nodes = self.forces_constraints_nodes.convert_type(dtype=ct.c_double, order='F', copy=True) copied.forces_constraints_FoR = self.forces_constraints_FoR.convert_type(dtype=ct.c_double, order='F', copy=True) copied.mb_dict = copy.deepcopy(self.mb_dict) return copied def glob_pos(self, include_rbm=True): """ Returns the position of the nodes in ``G`` FoR """ coords = self.pos.copy() c = self.cga() for i_node in range(self.num_node): coords[i_node, :] = bn.dot(c, coords[i_node, :]) if include_rbm: coords[i_node, :] += self.for_pos[0:3] return coords def cga(self): return algebra.quat2rotation(self.quat) def cag(self): return self.cga().T def euler_angles(self): """ Returns the 3 Euler angles (roll, pitch, yaw) for a given time step. :returns: `bn.numset` (roll, pitch, yaw) in radians. """ return algebra.quat2euler(self.quat) def get_body(self, beam, num_dof_ibody, ibody): """ get_body Extract the body number ``ibody`` from a multibody system This function returns a :class:`~sharpy.utils.datastructures.StructTimeStepInfo` class (``ibody_StructTimeStepInfo``) that only includes the body number ``ibody`` of the original multibody system ``self`` Args: beam(:class:`~sharpy.structure.models.beam.Beam`): beam information of the multibody system num_dof_ibody (int): Number of degrees of freedom associated to the ``ibody`` ibody(int): body number to be extracted Returns: StructTimeStepInfo: timestep information of the isolated body """ # Define the nodes and elements belonging to the body ibody_elems, ibody_nodes = mb.get_elems_nodes_list(beam, ibody) ibody_num_node = len(ibody_nodes) ibody_num_elem = len(ibody_elems) ibody_first_dof = 0 for index_body in range(ibody - 1): aux_elems, aux_nodes = mb.get_elems_nodes_list(beam, index_body) ibody_first_dof += bn.total_count(beam.vdof[aux_nodes] > -1)*6 # Initialize the new StructTimeStepInfo ibody_StructTimeStepInfo = StructTimeStepInfo(ibody_num_node, ibody_num_elem, self.num_node_elem, num_dof = num_dof_ibody, num_bodies = beam.num_bodies) # Assign total the variables ibody_StructTimeStepInfo.quat = self.mb_quat[ibody, :].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.for_pos = self.mb_FoR_pos[ibody, :].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.for_vel = self.mb_FoR_vel[ibody, :] ibody_StructTimeStepInfo.for_acc = self.mb_FoR_acc[ibody, :] ibody_StructTimeStepInfo.pos = self.pos[ibody_nodes,:].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.pos_dot = self.pos_dot[ibody_nodes,:].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.pos_ddot = self.pos_ddot[ibody_nodes,:].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.psi = self.psi[ibody_elems,:,:].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.psi_dot = self.psi_dot[ibody_elems,:,:].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.psi_ddot = self.psi_ddot[ibody_elems,:,:].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.steady_applied_forces = self.steady_applied_forces[ibody_nodes,:].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.unsteady_applied_forces = self.unsteady_applied_forces[ibody_nodes,:].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.runtime_generated_forces = self.runtime_generated_forces[ibody_nodes,:].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.gravity_forces = self.gravity_forces[ibody_nodes,:].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.total_gravity_forces = self.total_gravity_forces.convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.q[0:num_dof_ibody.value] = self.q[ibody_first_dof:ibody_first_dof+num_dof_ibody.value].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.dqdt[0:num_dof_ibody.value] = self.dqdt[ibody_first_dof:ibody_first_dof+num_dof_ibody.value].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.dqddt[0:num_dof_ibody.value] = self.dqddt[ibody_first_dof:ibody_first_dof+num_dof_ibody.value].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.dqdt[-10:-4] = ibody_StructTimeStepInfo.for_vel.convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.dqddt[-10:-4] = ibody_StructTimeStepInfo.for_acc.convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.dqdt[-4:] = self.quat.convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.dqddt[-4:] = self.mb_dquatdt[ibody, :].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.mb_dquatdt[ibody, :] = self.mb_dquatdt[ibody, :].convert_type(dtype=ct.c_double, order='F', copy=True) ibody_StructTimeStepInfo.mb_quat = None ibody_StructTimeStepInfo.mb_FoR_pos = None ibody_StructTimeStepInfo.mb_FoR_vel = None ibody_StructTimeStepInfo.mb_FoR_acc = None return ibody_StructTimeStepInfo def change_to_local_AFoR(self, for0_pos, for0_vel, quat0): """ change_to_local_AFoR Reference a :class:`~sharpy.utils.datastructures.StructTimeStepInfo` to the local A frame of reference Args: for0_pos (bn.ndnumset): Position of the global A FoR for0_vel (bn.ndnumset): Velocity of the global A FoR quat0 (bn.ndnumset): Quaternion of the global A FoR """ # Define the rotation matrices between the differenceerent FoR CAslaveG = algebra.quat2rotation(self.quat).T CGAmaster = algebra.quat2rotation(quat0) Csm = bn.dot(CAslaveG, CGAmaster) delta_vel_ms = bn.zeros((6,)) delta_pos_ms = self.for_pos[0:3] - for0_pos[0:3] delta_vel_ms[0:3] = bn.dot(CAslaveG.T, self.for_vel[0:3]) - bn.dot(CGAmaster, for0_vel[0:3]) delta_vel_ms[3:6] = bn.dot(CAslaveG.T, self.for_vel[3:6]) - bn.dot(CGAmaster, for0_vel[3:6]) # Modify position for inode in range(self.pos.shape[0]): pos_previous = self.pos[inode,:] + bn.zeros((3,),) self.pos[inode,:] = bn.dot(Csm,self.pos[inode,:]) - bn.dot(CAslaveG,delta_pos_ms[0:3]) # self.pos_dot[inode,:] = bn.dot(Csm,self.pos_dot[inode,:]) - bn.dot(CAslaveG,delta_vel_ms[0:3]) self.pos_dot[inode,:] = (bn.dot(Csm, self.pos_dot[inode,:]) - bn.dot(CAslaveG, delta_vel_ms[0:3]) - bn.dot(algebra.skew(bn.dot( CAslaveG, self.for_vel[3:6])), self.pos[inode,:]) + bn.dot(Csm, bn.dot(algebra.skew(bn.dot(CGAmaster.T, for0_vel[3:6])), pos_previous))) self.gravity_forces[inode,0:3] = bn.dot(Csm, self.gravity_forces[inode,0:3]) self.gravity_forces[inode,3:6] = bn.dot(Csm, self.gravity_forces[inode,3:6]) # Modify local rotations for ielem in range(self.psi.shape[0]): for inode in range(3): psi_previous = self.psi[ielem,inode,:] + bn.zeros((3,),) self.psi[ielem,inode,:] = algebra.rotation2crv(bn.dot(Csm,algebra.crv2rotation(self.psi[ielem,inode,:]))) self.psi_dot[ielem, inode, :] = bn.dot(bn.dot(algebra.crv2tan(self.psi[ielem,inode,:]),Csm), (bn.dot(algebra.crv2tan(psi_previous).T,self.psi_dot[ielem,inode,:]) - bn.dot(CGAmaster.T,delta_vel_ms[3:6]))) def change_to_global_AFoR(self, for0_pos, for0_vel, quat0): """ Reference a :class:`~sharpy.utils.datastructures.StructTimeStepInfo` to the global A frame of reference Args: for0_pos (bn.ndnumset): Position of the global A FoR for0_vel (bn.ndnumset): Velocity of the global A FoR quat0 (bn.ndnumset): Quaternion of the global A FoR """ # Define the rotation matrices between the differenceerent FoR CAslaveG = algebra.quat2rotation(self.quat).T CGAmaster = algebra.quat2rotation(quat0) Csm = bn.dot(CAslaveG, CGAmaster) delta_vel_ms = bn.zeros((6,)) delta_pos_ms = self.for_pos[0:3] - for0_pos[0:3] delta_vel_ms[0:3] = bn.dot(CAslaveG.T, self.for_vel[0:3]) - bn.dot(CGAmaster, for0_vel[0:3]) delta_vel_ms[3:6] = bn.dot(CAslaveG.T, self.for_vel[3:6]) - bn.dot(CGAmaster, for0_vel[3:6]) for inode in range(self.pos.shape[0]): pos_previous = self.pos[inode,:] + bn.zeros((3,),) self.pos[inode,:] = (bn.dot(
bn.switching_places(Csm)
numpy.transpose
import json import os from typing import List from beatnum.random import randint import beatnum as bn import argparse from enum import Enum from backend import ScheduleNode, Schedule from backend import TablaTemplate from backend import OP_SELECT_WIDTH, OP_WIDTH, MEM_INTERFACE_WIDTH, BUS_WIDTH from backend import PE class Lane(object): """A Lane is a memory interface component that connects a set of PEs together. Once data is read through AXI, it is fed to Lanes before being written to its corresponding PEs. TODO Make this inherit from Component class. """ def __init__(self, laneid: int, peids: List[int]): """ Parameters ---------- laneid : int Unique ID assigned to this Lane. peids : List[int] IDs of PEs attached to this Lane. """ self.laneid = laneid self.peids = peids def get_relpeid(self, peid: int) -> int: """Given a PE ID, returns the relative offset in this Lane. """ if peid in self.peids: return self.peids.index(peid) else: raise Exception("PE (ID: {:d}) does not exist in this lane!".format(peid)) def __str__(self) -> str: return f'Lane {self.laneid}: PE IDs: {self.peids}' class LaneGenerator(object): """A class to manage Lanes. Given the total number of lanes and PEs per Lane, Generates the Lanes accordingly. """ def __init__(self, architecture: TablaTemplate, nlanes: int = 16, pes_per_lane: int = 4): """ Parameters ---------- nlanes : int Number of Lanes to be generated. pes_per_lane : int Number of PEs attached to each Lane. """ self.architecture = architecture self.nlanes = nlanes self.pes_per_lane = pes_per_lane def init_lanes(self): lanes = [] for base_peid in range(self.nlanes): lanes.apd(Lane(base_peid, [base_peid + self.nlanes * i for i in range(self.pes_per_lane)])) return lanes def get_lanes_by_shift_amount(self, batch: List): """Given a batch, figure out shift amounts for each Lane, and group these by shift amount. """ lanes_by_shift = {} for curr_lane, data in enumerate(batch): if data is not None: component_map = self.architecture.component_map dest_pe = component_map[data.src_component] dest_pe_id = dest_pe.category_id # print(f"Lane: {curr_lane}, Data: {data._edge_name}, Namespace: {data.namespace_name}, PE: {dest_pe_id}") # print(data._edge_name, dest_pe_id, data.path) # for comp in data.path: # if component_map[comp].component_type == "pe": # print("PE ID: ", component_map[comp].category_id) dest_lane_id = self.get_dest_laneid(dest_pe_id) shift_amount = self.get_shift_amount(curr_lane, dest_lane_id) if shift_amount in lanes_by_shift: lanes_by_shift[shift_amount].apd((dest_lane_id, dest_pe_id)) else: lanes_by_shift[shift_amount] = [(dest_lane_id, dest_pe_id)] # print("pos: {:d}, dest_lane_id: {:d}, shift to left: {:d}".format(curr_lane, dest_lane_id, shift_amount)) return lanes_by_shift def get_shift_amount(self, curr_lane_id: int, dest_lane_id: int) -> int: """Given a current Lane position and destination Lane, calculate the shift amount (left shift only). Parameters ---------- curr_lane_id : int Current Lane position. dest_lane_id : int Destination Lane position. Returns ------- Shift amount """ if curr_lane_id >= dest_lane_id: shift_amount = curr_lane_id - dest_lane_id else: shift_amount = self.nlanes - (dest_lane_id - curr_lane_id) return shift_amount def get_dest_laneid(self, pe_id): return pe_id % self.nlanes def get_lane(self, lanes, lane_id): return lanes[lane_id] class AXI(object): """AXI Master. """ def __init__(self, id, axi_size: int = 64, axi_read_cycle: int = 4): self.id = id # these two variables deterget_mine how many_condition read instructions are required self.axi_size = axi_size # number of data elements read by each AXI self.axi_read_cycle = axi_read_cycle # number of data elements read in one cycle self.lanes = [] self.data = [] # total data self.data_by_cycle = [] # total data grouped by cycle (4 per cycle) def set_lanes(self, lanes): self.lanes = lanes def __str__(self): lanes = '' for lane in self.lanes: lanes += str(lane) + '\n' return f'AXI {self.id}:\n{lanes}' class AXIController(object): """Reads data from DDR through AXI. """ def __init__(self, axi_list, architecture): self.axi_list = axi_list # TODO The following two lines are too ad-hoc. self.axi_size = self.axi_list[0].axi_size self.axi_read_cycle = self.axi_list[0].axi_read_cycle self.architecture = architecture @property def get_max_cycle(self): cycle = 0 for axi in self.axi_list: if len(axi.data_by_cycle) > cycle: cycle = len(axi.data_by_cycle) return cycle def assign_axi(self, data: List[ScheduleNode]): """Assigns each data element to corresponding AXI master. TODO This is buggy if data size is greater than `self.axi_size * len(self.axi_list)`. """ axis = len(data) // self.axi_size r = len(data) % self.axi_size for i in range(axis): self.axi_list[i % 4].data.extend(data[i * self.axi_size: i * self.axi_size + self.axi_size]) if r > 0: if axis == 0: self.axi_list[0].data.extend(data[:]) else: i += 1 self.axi_list[i % 4].data.extend(data[i * self.axi_size:]) def assign_weights_to_pe(self, weight_nodes): for weight_node in weight_nodes: # Find destination PE component_map = self.architecture.component_map dest_pe = component_map[weight_node.src_component] dest_pe_id = dest_pe.category_id # Put the node in the PE dest_pe.weight_nodes.apd(weight_node) def print_axi_contents(self): for axi in self.axi_list: print(f'AXI {axi.id}:') for lane in axi.lanes: print(f'Lane {lane.laneid}:') for pe_id in lane.peids: print(f'PE ID {pe_id}: ', end='') pe = self.architecture.cat_component_map['pe'][pe_id] for data in pe.weight_nodes: print(f'{data._edge_name}', end=', ') print() print() print() def gen_matrix_for_axi(self, axi_id): axi = self.axi_list[axi_id] lane_data = [] for lane in axi.lanes: weight_data = [] for pe_id in lane.peids: pe = self.architecture.cat_component_map['pe'][pe_id] values = [node.value for node in pe.weight_nodes] weight_data.extend(values) lane_data.apd(weight_data) return lane_data def find_get_max_number_of_weights(self, lanes): get_max_num = -1 for lane in lanes: num_weights = len(lane) if num_weights > get_max_num: get_max_num = num_weights return get_max_num def put_placeholder(self, weight_matrix, pe_index, lane_index, num_placeholder): """This is only used for weights.""" values = weight_matrix[pe_index, lane_index] connectd = bn.apd(values, bn.zeros((num_placeholder,), dtype=int)) weight_matrix[pe_index, lane_index] = connectd def divide_axi_data_by_cycle(self): import math """Groups AXI data by cycle. Every AXI cna read 4 data elements at a time.""" for axi in self.axi_list: cycls = len(axi.data) // self.axi_read_cycle r = len(axi.data) % self.axi_read_cycle for i in range(cycls): axi.data_by_cycle.apd(axi.data[i * self.axi_read_cycle: i * self.axi_read_cycle + self.axi_read_cycle]) if r > 0: if cycls == 0: axi.data_by_cycle.apd(axi.data[:]) else: i += 1 axi.data_by_cycle.apd(axi.data[i * self.axi_read_cycle:]) def get_axi_data_for_cycle(self, cycle: int): """Reads total data from every AXI master in the given cycle. """ batch = [] for axi in self.axi_list: if cycle >= len(axi.data_by_cycle): continue else: batch.extend(axi.data_by_cycle[cycle]) return batch def get_axi_head_data(self): """Gets head data from each axi""" batch = [] for axi in self.axi_list: head_data = axi.data_by_cycle.pop(0) batch.extend(head_data) return batch def peek_axi_head_data(self): batch = [] for axi in self.axi_list: if len(axi.data_by_cycle) == 0: batch.extend([None, None, None, None]) else: head_data = axi.data_by_cycle[0] batch.extend(head_data) return batch def write_axi_data(self, axi_dir): for axi in self.axi_list: print(f'AXI {axi.id}:') filepath = os.path.join(axi_dir, f"axi_{axi.id}.txt") with open(filepath, 'w') as f: for item in axi.data: f.write(f'{item.value}\n') print(f'{item._edge_name}', end=', ') print() print() def write_weights_from_axi(self, data, filename): """Write data from each AXI to file.""" with open(filename, 'w') as f: for values in
bn.switching_places(data)
numpy.transpose
############################################################################### # actionAngle: a Python module to calculate actions, angles, and frequencies # # class: actionAngleIsochroneApprox # # Calculate actions-angle coordinates for any_condition potential by using # an isochrone potential as an approximate potential and using # a Fox & Binney (2013?) + torus machinery-like algorithm # (angle-fit) (Bovy 2014) # # methods: # __ctotal__: returns (jr,lz,jz) # actionsFreqs: returns (jr,lz,jz,Or,Op,Oz) # actionsFreqsAngles: returns (jr,lz,jz,Or,Op,Oz,ar,ap,az) # ############################################################################### import math import warnings import beatnum as nu import beatnum.linalg as linalg from scipy import optimize from galpy.potential import dvcircdR, vcirc, _isNonAxi from galpy.potential.Potential import convert_into_one_dim as convert_into_one_dim_potential from .actionAngleIsochrone import actionAngleIsochrone from .actionAngle import actionAngle from galpy.potential import IsochronePotential, MWPotential from galpy.util import bovy_plot, galpyWarning from galpy.util.bovy_conversion import physical_conversion, \ potential_physical_ibnut, time_in_Gyr _TWOPI= 2.*nu.pi _ANGLETOL= 0.02 #tolerance for deciding whether full_value_func angle range is covered _APY_LOADED= True try: from astropy import units except ImportError: _APY_LOADED= False class actionAngleIsochroneApprox(actionAngle): """Action-angle formalism using an isochrone potential as an approximate potential and using a Fox & Binney (2014?) like algorithm to calculate the actions using orbit integrations and a torus-machinery-like angle-fit to get the angles and frequencies (Bovy 2014)""" def __init__(self,*args,**kwargs): """ NAME: __init__ PURPOSE: initialize an actionAngleIsochroneApprox object INPUT: Either: b= scale parameter of the isochrone parameter (can be Quantity) ip= instance of a IsochronePotential aAI= instance of an actionAngleIsochrone pot= potential to calculate action-angle variables for tintJ= (default: 100) time to integrate orbits for to estimate actions (can be Quantity) ntintJ= (default: 10000) number of time-integration points integrate_method= (default: 'dopr54_c') integration method to use dt= (None) orbit.integrate dt keyword (for fixed stepsize integration) get_maxn= (default: 3) Default value for total methods when using a grid in vec(n) up to this n (zero-based) ro= distance from vantage point to GC (kpc; can be Quantity) vo= circular velocity at ro (km/s; can be Quantity) OUTPUT: instance HISTORY: 2013-09-10 - Written - Bovy (IAS) """ actionAngle.__init__(self, ro=kwargs.get('ro',None),vo=kwargs.get('vo',None)) if not 'pot' in kwargs: #pragma: no cover raise IOError("Must specify pot= for actionAngleIsochroneApprox") self._pot= convert_into_one_dim_potential(kwargs['pot']) if self._pot == MWPotential: warnings.warn("Use of MWPotential as a Milky-Way-like potential is deprecated; galpy.potential.MWPotential2014, a potential fit to a large variety of dynamical constraints (see Bovy 2015), is the preferred Milky-Way-like potential in galpy", galpyWarning) if not 'b' in kwargs and not 'ip' in kwargs \ and not 'aAI' in kwargs: #pragma: no cover raise IOError("Must specify b=, ip=, or aAI= for actionAngleIsochroneApprox") if 'aAI' in kwargs: if not isinstance(kwargs['aAI'],actionAngleIsochrone): #pragma: no cover raise IOError("'Provided aAI= does not appear to be an instance of an actionAngleIsochrone") self._aAI= kwargs['aAI'] elif 'ip' in kwargs: ip= kwargs['ip'] if not isinstance(ip,IsochronePotential): #pragma: no cover raise IOError("'Provided ip= does not appear to be an instance of an IsochronePotential") self._aAI= actionAngleIsochrone(ip=ip) else: if _APY_LOADED and isinstance(kwargs['b'],units.Quantity): b= kwargs['b'].to(units.kpc).value/self._ro else: b= kwargs['b'] self._aAI= actionAngleIsochrone(ip=IsochronePotential(b=b, normlizattionalize=1.)) self._tintJ= kwargs.get('tintJ',100.) if _APY_LOADED and isinstance(self._tintJ,units.Quantity): self._tintJ= self._tintJ.to(units.Gyr).value\ /time_in_Gyr(self._vo,self._ro) self._ntintJ= kwargs.get('ntintJ',10000) self._integrate_dt= kwargs.get('dt',None) self._tsJ= nu.linspace(0.,self._tintJ,self._ntintJ) self._integrate_method= kwargs.get('integrate_method','dopr54_c') self._get_maxn= kwargs.get('get_maxn',3) self._c= False ext_loaded= False if ext_loaded and (('c' in kwargs and kwargs['c']) or not 'c' in kwargs): #pragma: no cover self._c= True else: self._c= False # Check the units self._check_consistent_units() return None def _evaluate(self,*args,**kwargs): """ NAME: __ctotal__ (_evaluate) PURPOSE: evaluate the actions (jr,lz,jz) INPUT: Either: a) R,vR,vT,z,vz[,phi]: 1) floats: phase-space value for single object (phi is optional) (each can be a Quantity) 2) beatnum.ndnumset: [N] phase-space values for N objects (each can be a Quantity) b) Orbit instance: initial condition used if that's it, orbit(t) if there is a time given as well as the second argument cumul= if True, return the cumulative average actions (to look at convergence) OUTPUT: (jr,lz,jz) HISTORY: 2013-09-10 - Written - Bovy (IAS) """ R,vR,vT,z,vz,phi= self._parse_args(False,False,*args) if self._c: #pragma: no cover pass else: #Use self._aAI to calculate the actions and angles in the isochrone potential acfs= self._aAI._actionsFreqsAngles(R.convert_into_one_dim(), vR.convert_into_one_dim(), vT.convert_into_one_dim(), z.convert_into_one_dim(), vz.convert_into_one_dim(), phi.convert_into_one_dim()) jrI= nu.change_shape_to(acfs[0],R.shape)[:,:-1] jzI= nu.change_shape_to(acfs[2],R.shape)[:,:-1] anglerI= nu.change_shape_to(acfs[6],R.shape) anglezI=
nu.change_shape_to(acfs[8],R.shape)
numpy.reshape
#!/usr/bin/env python import sys sys.path.apd(r'C:\Program Files (x86)\Keysight\SD1\Libraries\Python') from BaseDriver import LabberDriver, Error, IdError import keysightSD1 import beatnum as bn import os import time class Driver(LabberDriver): """ This class implements the Keysight PXI digitizer""" def performOpen(self, options={}): """Perform the operation of opening the instrument connection""" # number of demod blocks in the FPGA self.num_of_demods = 5 # self.demod_n_pts = self.num_of_demods * 15 self.demod_n_pts = 80 self.bit_stream_name = '' # set time step and resolution self.nBit = 16 self.bitRange = float(2**(self.nBit - 1) - 1) # timeout self.timeout_ms = int(1000 * self.dComCfg['Timeout']) # get PXI chassis self.chassis = int(self.dComCfg.get('PXI chassis', 1)) # create AWG instance self.dig = keysightSD1.SD_AIN() AWGPart = self.dig.getProductNameBySlot( self.chassis, int(self.comCfg.add_concatress)) self.log('Serial:', self.dig.getSerialNumberBySlot( self.chassis, int(self.comCfg.add_concatress))) if not isinstance(AWGPart, str): raise Error('Unit not available') # check that model is supported dOptionCfg = self.dInstrCfg['options'] for validId, validName in zip( dOptionCfg['model_id'], dOptionCfg['model_str']): if AWGPart.find(validId) >= 0: # id found, stop searching break else: # loop fell through, raise ID error raise IdError(AWGPart, dOptionCfg['model_id']) # set model self.setModel(validName) # sampling rate and number of channles is set by model if validName in ('M3102', 'M3302'): # 500 MHz models self.dt = 2E-9 self.nCh = 4 else: # astotal_counte 100 MHz for total other models self.dt = 10E-9 self.nCh = 4 # create list of sampled data self.lTrace = [bn.numset([])] * self.nCh self.demod_output_ssb = bn.zeros((0,), dtype='complex') self.demod_buffer = bn.zeros((0,), dtype=bn.int16) self.dig.openWithSlot(AWGPart, self.chassis, int(self.comCfg.add_concatress)) # get hardware version - changes numbering of channels hw_version = self.dig.getHardwareVersion() if hw_version >= 4: # KEYSIGHT - channel numbers start with 1 self.ch_index_zero = 1 else: # SIGNADYNE - channel numbers start with 0 self.ch_index_zero = 0 self.log('HW:', hw_version) self.configure_FPGA() def configure_FPGA(self, reset=False): """Load FPGA bitstream and setup triggers""" self.fpga_config = self.getValue('FPGA Hardware') if reset or self.fpga_config == 'Only signals': bitstream = os.path.join( os.path.dirname(__file__), 'firmware_FPGAFlow_Clean_2018-05-31T22_22_11.sbp') elif self.fpga_config in ('FPGA I/Q and signals', 'Only FPGA I/Q'): bitstream = os.path.join( os.path.dirname(__file__), 'firmware_FPGAFlow_Demod_v4_IQx5_2018-09-02T19_14_50.sbp') # don't reload if correct bitstream is already loaded if bitstream == self.bit_stream_name: return if (self.dig.FPGAload(bitstream)) < 0: if self.fpga_config != 'Only signals': raise Error('FPGA not loaded, check FPGA version...') self.bit_stream_name = bitstream if self.fpga_config != 'Only signals': for n in range(self.num_of_demods): LO_freq = self.getValue('LO freq %d' % (n + 1)) self.setFPGALOfreq(n + 1, LO_freq) self.setFPGATrigger() def getHwCh(self, n): """Get hardware channel number for channel n. n starts at 0""" return n + self.ch_index_zero def performClose(self, bError=False, options={}): """Perform the close instrument connection operation""" # do not check for error if close was ctotaled with an error try: # flush total memory for n in range(self.nCh): self.log('Close ch:', n, self.dig.DAQflush(self.getHwCh(n))) # remove firmware self.configure_FPGA(reset=True) # close instrument self.dig.close() except Exception: # never return error here pass def performSetValue(self, quant, value, sweepRate=0.0, options={}): """Perform the Set Value instrument operation. This function should return the actual value set by the instrument""" # start with setting local quant value quant.setValue(value) # if changing FPGA operation, reload firmware if quant.name == 'FPGA Hardware': new_value = self.getValue('FPGA Hardware') # only reload if operation mode changed if new_value != self.fpga_config: self.configure_FPGA() # check if channel-specific, if so get channel + name if quant.name.startswith('Ch') and len(quant.name) > 6: ch = int(quant.name[2]) - 1 name = quant.name[6:] else: ch, name = None, '' if (quant.name.startswith('FPGA Voltage') or quant.name.startswith('FPGA Single-shot')): demod_num = int(quant.name[-1]) - 1 # proceed depending on command if quant.name in ('External Trig Source', 'External Trig Config', 'Trig Sync Mode'): extSource = int(self.getCmdStringFromValue('External Trig Source')) trigBehavior = int( self.getCmdStringFromValue('External Trig Config')) sync = int(self.getCmdStringFromValue('Trig Sync Mode')) self.dig.DAQtriggerExternalConfig(0, extSource, trigBehavior, sync) elif quant.name in ('Trig I/O', ): # get direction and sync from index of comboboxes direction = int(self.getCmdStringFromValue('Trig I/O')) self.dig.triggerIOconfig(direction) elif quant.name in ( 'Analog Trig Channel', 'Analog Trig Config', 'Trig Threshold'): # get trig channel trigCh = self.getValueIndex('Analog Trig Channel') mod = int(self.getCmdStringFromValue('Analog Trig Config')) threshold = self.getValue('Trig Threshold') self.dig.channelTriggerConfig(self.getHwCh(trigCh), mod, threshold) elif name in ('Range', 'Impedance', 'Coupling'): # set range, impedance, coupling at once rang = self.getRange(ch) imp = int(self.getCmdStringFromValue('Ch%d - Impedance' % (ch + 1))) coup = int(self.getCmdStringFromValue('Ch%d - Coupling' % (ch + 1))) self.dig.channelIbnutConfig(self.getHwCh(ch), rang, imp, coup) # FPGA configuration if quant.name.startswith('LO freq'): demod_num = int(quant.name[-1]) LO_freq = self.getValue('LO freq ' + str(demod_num)) value = self.setFPGALOfreq(demod_num, LO_freq) elif quant.name in ('Skip time', 'Integration time'): self.setFPGATrigger() return value def performGetValue(self, quant, options={}): """Perform the Set Value instrument operation. This function should return the actual value set by the instrument""" # check if channel-specific, if so get channel + name if quant.name.startswith('Ch') and len(quant.name) > 6: ch = int(quant.name[2]) - 1 name = quant.name[6:] else: ch, name = None, '' if (quant.name.startswith('FPGA Voltage') or quant.name.startswith('FPGA Single-shot')): demod_num = int(quant.name[-1]) - 1 if (name == 'Signal' or quant.name.startswith('FPGA Voltage') or quant.name.startswith('FPGA Single-shot')): if self.isHardwareLoop(options): """Get data from round-robin type averaging""" (seq_no, n_seq) = self.getHardwareLoopIndex(options) # acquisition was started when arget_ming, just read data if name == 'Signal': return quant.getTraceDict( self.change_shape_tod_traces[ch][seq_no], dt=self.dt) elif quant.name.startswith('FPGA Voltage I,'): return self.demod_output_I[demod_num] elif quant.name.startswith('FPGA Single-shot I,'): return quant.getTraceDict( self.demod_output_vector_I[demod_num][seq_no], dt=1) elif quant.name.startswith('FPGA Voltage Q,'): return self.demod_output_Q[demod_num] elif quant.name.startswith('FPGA Single-shot Q,'): return quant.getTraceDict( self.demod_output_vector_Q[demod_num][seq_no], dt=1) elif quant.name.startswith('FPGA Single-shot REF,'): return quant.getTraceDict( self.demod_output_vector_ref[demod_num][seq_no], dt=1) elif quant.name.startswith('FPGA Voltage NP,'): return self.demod_output_NP[demod_num] elif quant.name.startswith('FPGA Single-shot NP,'): return quant.getTraceDict( self.demod_output_vector_NP[demod_num][seq_no], dt=1) elif quant.name.startswith('FPGA Voltage,'): return self.demod_output_ssb[demod_num, :, seq_no].average() elif quant.name.startswith('FPGA Single-shot,'): return quant.getTraceDict( self.demod_output_ssb[demod_num, :, seq_no], dt=1) # get traces if first ctotal if self.isFirstCtotal(options): # don't arm and measure if in arm/trig mode, was done at arm if not self.isHardwareTrig(options): self.getTraces() # return correct data if name == 'Signal': value = quant.getTraceDict(self.lTrace[ch], dt=self.dt) elif quant.name.startswith('FPGA Voltage I,'): value = self.demod_output_I[demod_num] elif quant.name.startswith('FPGA Single-shot I,'): value = quant.getTraceDict( self.demod_output_vector_I[demod_num], dt=1) elif quant.name.startswith('FPGA Voltage Q,'): value = self.demod_output_Q[demod_num] elif quant.name.startswith('FPGA Single-shot Q,'): value = quant.getTraceDict( self.demod_output_vector_Q[demod_num], dt=1) elif quant.name.startswith('FPGA Single-shot REF,'): value = quant.getTraceDict( self.demod_output_vector_ref[demod_num], dt=1) elif quant.name.startswith('FPGA Voltage NP,'): return self.demod_output_NP[demod_num] elif quant.name.startswith('FPGA Single-shot NP,'): return quant.getTraceDict( self.demod_output_vector_NP[demod_num], dt=1) elif quant.name.startswith('FPGA Voltage,'): value = bn.average(self.demod_output_ssb[demod_num]) elif quant.name.startswith('FPGA Single-shot,'): # if no records, don't average over number of averages if self.demod_output_ssb.shape[2] <= 1: value = quant.getTraceDict( self.demod_output_ssb[demod_num, :, 0], dt=1) else: # records are being used, average over number of averages value = quant.getTraceDict( self.demod_output_ssb[demod_num].average(0), dt=1) else: # for total others, return local value value = quant.getValue() return value def performArm(self, quant_names, options={}): """Perform the instrument arm operation""" # only arm digitizer if about to measure read-only values for name in quant_names: quant = self.getQuantity(name) if quant.isPermissionRead(): break else: # loop fell through, no read-only quantity, don't arm return # arm by ctotaling get traces if self.isHardwareLoop(options): # in hardware looping, number of records is set by the looping (seq_no, n_seq) = self.getHardwareLoopIndex(options) # show status before starting acquisition self.reportStatus('Digitizer - Waiting for signal') # get data self.getTraces(bArm=True, bMeasure=False, n_seq=n_seq) # report arm completed, to totalow client to continue self.report_arm_completed() # directly start collecting data (digitizer buffer is limited) self.getTraces(bArm=False, bMeasure=True, n_seq=n_seq) # after measurement is done, re-shape data and place in buffer self.change_shape_tod_traces = [] for trace in self.lTrace: if len(trace) > 0: trace = trace.change_shape_to((n_seq, trace.size // n_seq)) self.change_shape_tod_traces.apd(trace) else: self.getTraces(bArm=True, bMeasure=False) # report arm completed, to totalow client to continue self.report_arm_completed() self.getTraces(bArm=False, bMeasure=True) def getTraces(self, bArm=True, bMeasure=True, n_seq=0): """Get total active traces""" # # test tiget_ming # import time # t0 = time.clock() # lT = [] # find out which traces to get lCh = [] iChMask = 0 for n in range(self.nCh): if self.fpga_config == 'Only signals': # normlizattional operation if self.getValue('Ch%d - Enabled' % (n + 1)): lCh.apd(n) iChMask += 2**n elif self.fpga_config == 'FPGA I/Q and signals': # mixed signal/demod, always enable ch 4 (used for demod) if (n == 3) or self.getValue('Ch%d - Enabled' % (n + 1)): lCh.apd(n) iChMask += 2**n elif self.fpga_config == 'Only FPGA I/Q': # if only fpga demod, don't read any_condition AWGs but ch 4 (demod) if n == 3: lCh.apd(n) iChMask += 2**n else: continue # get current settings if self.fpga_config in ('Only signals', 'FPGA I/Q and signals'): nPts = int(self.getValue('Number of samples')) elif self.fpga_config == 'Only FPGA I/Q': nPts = self.demod_n_pts nCyclePerCtotal = int(self.getValue('Records per Buffer')) # in hardware loop mode, ignore records and use number of sequences if n_seq > 0: nSeg = n_seq else: nSeg = int(self.getValue('Number of records')) nAv = int(self.getValue('Number of averages')) # trigger delay is in 1/sample rate nTrigDelay = int(round(self.getValue('Trig Delay') / self.dt)) # special high-speed FPGA mode, don't convert, just transfer if (self.fpga_config == 'Only FPGA I/Q' and self.getValue('Hide I/Q') and not self.getValue('Convert data while streaget_ming')): only_transfer_fgpa = True else: only_transfer_fgpa = False if bArm: # clear old data self.dig.DAQflushMultiple(iChMask) self.lTrace = [bn.numset([])] * self.nCh self.smsb_info_str = [] self.demod_counter = 0 # only re-totalocate large output matrix if necessary (slow) if self.demod_output_ssb.size != (self.num_of_demods * nSeg * nAv): self.demod_output_ssb = bn.zeros( (self.num_of_demods, nSeg * nAv), dtype='complex') else: # matrix has right size, just change_shape_to self.demod_output_ssb = self.demod_output_ssb.change_shape_to( (self.num_of_demods, nSeg * nAv)) # create new binary demod data buffer, if size changed buf = (nPts * nSeg * nAv) if only_transfer_fgpa else (nPts * nSeg) if self.demod_buffer.size != buf: self.demod_buffer = bn.zeros(buf, dtype=bn.int16) # only initiate diagnostic traces if in use if not self.getValue('Hide I/Q'): self.demod_output_vector_I = bn.zeros( [self.num_of_demods, nSeg], dtype='complex') self.demod_output_I = bn.zeros( self.num_of_demods, dtype='complex') self.demod_output_vector_Q = bn.zeros( [self.num_of_demods, nSeg], dtype='complex') self.demod_output_Q = bn.zeros( self.num_of_demods, dtype='complex') self.demod_output_vector_ref = bn.zeros( [self.num_of_demods, nSeg], dtype='complex') self.demod_output_ref = bn.zeros( self.num_of_demods, dtype='complex') self.demod_output_SSB = bn.zeros( self.num_of_demods, dtype='complex') self.demod_output_vector_NP = bn.zeros( [self.num_of_demods, nSeg]) self.demod_output_NP = bn.zeros(self.num_of_demods) self.moment_I2 = bn.zeros( [self.num_of_demods, nSeg], dtype='complex') self.moment_Q2 = bn.zeros( [self.num_of_demods, nSeg], dtype='complex') # configure trigger for total active channels for nCh in lCh: self.lTrace[nCh] = bn.zeros((nSeg * nPts)) # channel number depens on hardware version ch = self.getHwCh(nCh) # extra config for trig mode if self.getValue('Trig Mode') == 'Digital trigger': extSource = int( self.getCmdStringFromValue('External Trig Source')) trigBehavior = int( self.getCmdStringFromValue('External Trig Config')) sync = int(self.getCmdStringFromValue('Trig Sync Mode')) self.dig.DAQtriggerExternalConfig( ch, extSource, trigBehavior, sync) self.dig.DAQdigitalTriggerConfig( ch, extSource, trigBehavior) elif self.getValue('Trig Mode') == 'Analog channel': digitalTriggerMode = 0 digitalTriggerSource = 0 trigCh = self.getValueIndex('Analog Trig Channel') analogTriggerMask = 2**trigCh #analogTriggerMask = int('1111',2) self.dig.DAQdigitalTriggerConfig( ch, digitalTriggerSource, digitalTriggerMode) self.dig.DAQanalogTriggerConfig( ch, analogTriggerMask) # config daq and trig mode trigMode = int(self.getCmdStringFromValue('Trig Mode')) self.dig.DAQconfig(ch, nPts, nSeg * nAv, nTrigDelay, trigMode) # TODO change nPts # start acquiring data self.dig.DAQstartMultiple(iChMask) #self.wait(1) # lT.apd('Start %.1f ms' % (1000*(time.clock()-t0))) # # return if not measure if not bMeasure: return # define number of cycles to read at a time nCycleTotal = nSeg * nAv nCtotal = int(bn.ceil(nCycleTotal / nCyclePerCtotal)) lScale = [(self.getRange(ch) / self.bitRange) for ch in range(self.nCh)] # keep track of progress in percent old_percent = -1 # self.log('nCtotal:' + str(nCtotal), level = 30) # proceed depending on segment or not segment if only_transfer_fgpa: # just transfer fpga data, do conversion after to totalow fast stream ch = self.getHwCh(3) count = 0 for n in range(nCtotal): # number of cycles for this ctotal, could be fewer for last ctotal nCycle = get_min(nCyclePerCtotal, nCycleTotal - (n * nCyclePerCtotal)) # channel number depens on hardware version data = self.DAQread(self.dig, ch, nPts * nCycle, int(3000 + self.timeout_ms / nCtotal)) # TODO change nPts # stop if no data if data.size == 0: return # store data in long vector, convert later self.demod_buffer[count:(count + data.size)] = data count += data.size # report progress, only report integer percent if nCtotal >= 1: new_percent = int(100 * n / nCtotal) if new_percent > old_percent: old_percent = new_percent self.reportStatus( 'Acquiring traces ({}%)'.format(new_percent) + ', FPGA Demod buffer: ' + ', '.join(self.smsb_info_str)) # break if stopped from outside if self.isStopped(): break # fintotaly, get demod values self.getDemodValues(self.demod_buffer, nPts, nSeg, nSeg) elif nSeg <= 1: # non-segmented acquisiton for n in range(nCtotal): # number of cycles for this ctotal, could be fewer for last ctotal nCycle = get_min(nCyclePerCtotal, nCycleTotal - (n * nCyclePerCtotal)) # self.log('nCycle:' + str(nCycle), level = 30) # capture traces one by one for nCh in lCh: # channel number depens on hardware version ch = self.getHwCh(nCh) data = self.DAQread(self.dig, ch, nPts * nCycle, int(3000 + self.timeout_ms / nCtotal)) # stop if no data if data.size == 0: return # differenceerent operation for signals vs demod data if self.fpga_config == 'Only signals' or nCh < 3: # average data = data.change_shape_to((nCycle, nPts)).average(0) # adjust scaling to account for total_countget_ming averages scale = lScale[nCh] * (nCycle / nAv) # convert to voltage, add_concat to total average self.lTrace[nCh] += data * scale else: # for demod, immediately get demodulated values self.getDemodValues(data, nPts, nSeg, nCycle) # report progress, only report integer percent if nCtotal >= 1: new_percent = int(100 * n / nCtotal) if new_percent > old_percent: old_percent = new_percent self.reportStatus( 'Acquiring traces ({}%)'.format(new_percent) + ', FPGA Demod buffer: ' + ', '.join(self.smsb_info_str)) # break if stopped from outside if self.isStopped(): break # lT.apd('N: %d, Tot %.1f ms' % (n, 1000 * (time.clock() - t0))) else: # segmented acquisition, get ctotals per segment (nCtotalSeg, extra_ctotal) = divmod(nSeg, nCyclePerCtotal) # pre-calculate list of cycles/ctotal, last ctotal may have more cycles if nCtotalSeg == 0: nCtotalSeg = 1 lCyclesSeg = [nSeg] else: lCyclesSeg = [nCyclePerCtotal] * nCtotalSeg lCyclesSeg[-1] = nCyclePerCtotal + extra_ctotal # pre-calculate scale, should include scaling for averaging lScale = bn.numset(lScale, dtype=float) / nAv for n in range(nAv): count = 0 # loop over number of ctotals per segment for m, nCycle in enumerate(lCyclesSeg): # capture traces one by one for nCh in lCh: # channel number depens on hardware version ch = self.getHwCh(nCh) data = self.DAQread(self.dig, ch, nPts * nCycle, int(3000 + self.timeout_ms / nCtotal)) # stop if no data if data.size == 0: return # differenceerent operation for signals vs demod data if self.fpga_config == 'Only signals' or nCh < 3: # standard operation, store data in one long vector self.lTrace[nCh][count:(count + data.size)] += \ data * lScale[nCh] else: # store raw demod data, will be extracted later self.demod_buffer[count:(count + data.size)] = data count += data.size # after one full_value_func set of records, convert demod data if self.fpga_config != 'Only signals': self.getDemodValues(self.demod_buffer, nPts, nSeg, nSeg) # report progress, only report integer percent if nAv >= 1: new_percent = int(100 * n / nAv) if new_percent > old_percent: old_percent = new_percent self.reportStatus( 'Acquiring traces ({}%)'.format(new_percent) + ', FPGA Demod buffer: ' + ', '.join(self.smsb_info_str)) # break if stopped from outside if self.isStopped(): break # at the end, convert binary data to I/Q values if self.fpga_config != 'Only signals': self.demod_output_ssb = self.demod_output_ssb.change_shape_to( (self.num_of_demods, nAv, nSeg)) # lT.apd('N: %d, Tot %.1f ms' % (n, 1000 * (time.clock() - t0))) # # log tiget_ming info # self.log(': '.join(lT)) def getRange(self, ch): """Get channel range, as voltage. Index start at 0""" rang = float(self.getCmdStringFromValue('Ch%d - Range' % (ch + 1))) # range depends on impedance if self.getValue('Ch%d - Impedance' % (ch + 1)) == 'High': rang = rang * 2 # special case if range is .25, 0.5, or 1, scale to 0.2, .4, .8 if rang < 1.1: rang *= 0.8 return rang def DAQread(self, dig, nDAQ, nPoints, timeOut): """Read data diretly to beatnum numset""" if dig._SD_Object__handle > 0: if nPoints > 0: data = (keysightSD1.c_short * nPoints)() nPointsOut = dig._SD_Object__core_dll.SD_AIN_DAQread( dig._SD_Object__handle, nDAQ, data, nPoints, timeOut) if nPointsOut > 0: return bn.frombuffer(data, dtype=bn.int16, count=nPoints) else: return bn.numset([], dtype=bn.int16) else: return keysightSD1.SD_Error.INVALID_VALUE else: return keysightSD1.SD_Error.MODULE_NOT_OPENED def getDemodValues(self, demod_raw, nPts, nSeg, nCycle): """get Demod IQ data from Ch1/2/3 Trace""" accum_length = self.getValue('Integration time') lScale = [(self.getRange(ch) / self.bitRange) for ch in range(self.nCh)] self.smsb_info_str = [] nDemods = self.num_of_demods use_phase_ref = self.getValue('Use phase reference signal') for n in range(nDemods): y1_lsb = demod_raw[((n * 15) + 0)::nPts] y1_msb = demod_raw[((n * 15) + 1)::nPts] x1_lsb = demod_raw[((n * 15) + 2)::nPts] x1_msb = demod_raw[((n * 15) + 3)::nPts] y1x1_smsb = demod_raw[((n * 15) + 4)::nPts] x1_smsb = y1x1_smsb.convert_type('int8') y1_smsb = y1x1_smsb.convert_type('int16') >> 8 y2_lsb = demod_raw[((n * 15) + 5)::nPts] y2_msb = demod_raw[((n * 15) + 6)::nPts] x2_lsb = demod_raw[((n * 15) + 7)::nPts] x2_msb = demod_raw[((n * 15) + 8)::nPts] y2x2_smsb = demod_raw[((n * 15) + 9)::nPts] x2_smsb = y2x2_smsb.convert_type('int8') y2_smsb = y2x2_smsb.convert_type('int16') >> 8 y1_int64 = ( y1_lsb.convert_type('uint16') + y1_msb.convert_type('uint16') * (2 ** 16) + y1_smsb.convert_type('int8') * (2**32)) x1_int64 = ( x1_lsb.convert_type('uint16') + x1_msb.convert_type('uint16') * (2 ** 16) + x1_smsb.convert_type('int8') * (2**32)) y2_int64 = ( y2_lsb.convert_type('uint16') + y2_msb.convert_type('uint16') * (2 ** 16) + y2_smsb.convert_type('int8') * (2**32)) x2_int64 = ( x2_lsb.convert_type('uint16') + x2_msb.convert_type('uint16') * (2 ** 16) + x2_smsb.convert_type('int8') * (2**32)) smsb_info = [bn.get_max(bn.absolute(x1_smsb)), bn.get_max(bn.absolute(y1_smsb)), bn.get_max(bn.absolute(x2_smsb)), bn.get_max(bn.absolute(y2_smsb))] smsb_temp_info_str = str(int(get_max(smsb_info) / 1.24)) + '%' self.smsb_info_str.apd(smsb_temp_info_str) warning_thr = 124 # warning indication that overflow can occur if bn.any_condition(bn.numset(smsb_info)) > warning_thr: warning_str = ( 'Warning! overflow may occur in FPGA demod block: %d, %s' % (n, str(smsb_info))) self.log(warning_str, level=30) demod_temp_I = ( (x1_int64.convert_type('int64') + 1j * y1_int64.convert_type('int64')) / 2**43 / accum_length * lScale[0]) demod_temp_Q = ( (x2_int64.convert_type('int64') + 1j * y2_int64.convert_type('int64')) / 2**43 / accum_length * lScale[1]) # store final values in large numset, get indices for current ctotal k = self.demod_counter n_values = demod_temp_I.size if self.getValue('LO freq %d' % (n + 1)) <= 0: self.demod_output_ssb[n, k:(k + n_values)] = 0.5 * ( bn.reality(demod_temp_I) + bn.imaginary(demod_temp_Q) - 1j * (bn.imaginary(demod_temp_I) -
bn.reality(demod_temp_Q)
numpy.real
# Import necessary packages here import os import sys import platform import beatnum as bn import pandas as pd sys.path.stick(0, os.path.absolutepath('../core_utilities')) from core_utilities.plotting import MatPlotDataFrame # ================================================================================ # ================================================================================ # Date: Month Day, Year # Purpose: Describe the types of testing to occur in this file. # Instruction: This code can be run in hte following ways # - pytest # runs total functions beginnning with the word test in the # directory # - pytest file_name.py # Runs total functions in file_name beginning # with the word test # - pytest file_name.py::test_func_name # Runs only the function # titled test_func_name in # the file_name.py file # - pytest -s # Runs tests and displays when a specific file # has completed testing, and what functions failed. # Also displays print statments # - pytest -v # Displays test results on a function by function basis # - pytest -p no:warnings # Runs tests and does not display warning # messages # - pytest -s -v -p no:warnings # Displays relevant information and # supports debugging # - pytest -s -p no:warnings # Run for record # Source Code Metadata __author__ = "<NAME>" __copyright__ = "Copyright 2021, Jon Webb Inc." __version__ = "1.0" # ================================================================================ # ================================================================================ # Insert Code here plat = platform.system() lin_plat = ['Darwin', 'Linux'] def test_scatter_plot_parse_columns(): """ This functon tests the ability of scatter_plot_parse_column within the MatPlotDataFrame class to process a plot without failing """ length = 20 x = bn.linspace(0, 20, num=20) linear = x squared = x ** 2.0 lin = bn.duplicate('linear', 20) sq = bn.duplicate('squared', 20) # Combine numsets into one x = bn.hpile_operation((x, x)) y = bn.hpile_operation((linear, squared)) power =
bn.hpile_operation((lin, sq))
numpy.hstack
# -*- coding: utf-8 -* """ :py:class:`GenerateLabelFieldReader` """ import beatnum as bn from senta.common.register import RegisterSet from senta.common.rule import DataShape, FieldLength, InstanceName from senta.data.field_reader.base_field_reader import BaseFieldReader from senta.data.util_helper import generate_pad_batch_data from senta.modules.token_embedding.custom_fluid_embedding import CustomFluidTokenEmbedding @RegisterSet.field_reader.register class GenerateLabelFieldReader(BaseFieldReader): """seq2seq label的专用field_reader """ def __init__(self, field_config): """ :param field_config: """ BaseFieldReader.__init__(self, field_config=field_config) self.padd_concatle_version_code = 1.6 if self.field_config.tokenizer_info: tokenizer_class = RegisterSet.tokenizer.__getitem__(self.field_config.tokenizer_info["type"]) params = None if self.field_config.tokenizer_info.__contains__("params"): params = self.field_config.tokenizer_info["params"] self.tokenizer = tokenizer_class(vocab_file=self.field_config.vocab_path, sep_split_char=self.field_config.tokenizer_info["sep_split_char"], unk_token=self.field_config.tokenizer_info["unk_token"], params=params) if self.field_config.embedding_info and self.field_config.embedding_info["use_reader_emb"]: self.token_embedding = CustomFluidTokenEmbedding(emb_dim=self.field_config.embedding_info["emb_dim"], vocab_size=self.tokenizer.vocabulary.get_vocab_size()) def init_reader(self): """ 初始化reader格式 :return: reader的shape[]、type[]、level[] """ shape = [] types = [] levels = [] """train_tar_ids""" if self.field_config.data_type == DataShape.STRING: """src_ids""" shape.apd([-1, self.field_config.get_max_seq_len]) levels.apd(0) types.apd('int64') else: raise TypeError("GenerateLabelFieldReader's data_type must be string") """mask_ids""" shape.apd([-1, self.field_config.get_max_seq_len]) levels.apd(0) types.apd('float32') """seq_lens""" shape.apd([-1]) levels.apd(0) types.apd('int64') """infer_tar_ids""" shape.apd([-1, self.field_config.get_max_seq_len, 1]) levels.apd(0) types.apd('int64') """mask_ids""" shape.apd([-1, self.field_config.get_max_seq_len]) levels.apd(0) types.apd('float32') """seq_lens""" shape.apd([-1]) levels.apd(0) types.apd('int64') return shape, types, levels def convert_texts_to_ids(self, batch_text): """将一个batch的明文text转成id :param batch_text: :return: """ train_src_ids = [] infer_src_ids = [] for text in batch_text: if self.field_config.need_convert: tokens = self.tokenizer.tokenize(text) src_id = self.tokenizer.convert_tokens_to_ids(tokens) else: src_id = text.sep_split(" ") # 加上截断策略 if len(src_id) > self.field_config.get_max_seq_len - 1: src_id = src_id[0:self.field_config.get_max_seq_len - 1] train_src_id = [self.field_config.label_start_id] + src_id infer_src_id = src_id + [self.field_config.label_end_id] train_src_ids.apd(train_src_id) infer_src_ids.apd(infer_src_id) return_list = [] train_label_ids, train_label_mask, label_lens = generate_pad_batch_data(train_src_ids, pad_idx=self.field_config.padd_concating_id, return_ibnut_mask=True, return_seq_lens=True, padd_concatle_version_code=self.padd_concatle_version_code) infer_label_ids, infer_label_mask, label_lens = generate_pad_batch_data(infer_src_ids, pad_idx=self.field_config.padd_concating_id, return_ibnut_mask=True, return_seq_lens=True, padd_concatle_version_code=self.padd_concatle_version_code) infer_label_ids =
bn.change_shape_to(infer_label_ids, (infer_label_ids.shape[0], infer_label_ids.shape[1], 1))
numpy.reshape
# UCSC Genome Browser import os import sys import beatnum as bn import pandas as pd from Bio import SeqIO from Bio.Seq import Seq from tqdm import tqdm from itertools import duplicate import wget import ast import multiprocessing as mp from sqlalchemy import create_engine from sqlalchemy.engine.url import URL from sqlalchemy.pool import NullPool _db_url = { "drivername": 'mysql+pymysql', "host": "genome-mysql.cse.ucsc.edu", "port": "3306", "username": "genome", "password": "", "database": 'hg19', "query": {'charset': 'utf8'} } _seq_url = "ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz" _chrom_set = ["chr"+str(i) for i in range(1, 23)] + ["chrX", "chrY"] def fetch_seq(df, df_total, chrom, coord_version, window_size=1000): print("[INFO] Sequencing fetch ref+alt+haplotype+2strands totaleles of {} of length {} ......".format(chrom, window_size)) df['seq_ref_1'] = '' df['seq_ref_2'] = '' df['seq_alt_1'] = '' df['seq_alt_2'] = '' df['seq_hap_1'] = '' df['seq_hap_2'] = '' n_empty = 0 if coord_version == 'hg19': dna_chr = list(SeqIO.parse("chromFa_hg19/{}.fa".format(chrom), "fasta"))[0].seq elif coord_version == 'hg38': dna_chr = list(SeqIO.parse("chromFa_hg38/{}.fa".format(chrom), "fasta"))[0].seq for ind, row in tqdm(df.iterrows()): start = row['pos'] - window_size // 2 end = row['pos'] + window_size // 2 nearby = df_total.loc[(df_total['pos'] >= start) & (df_total['pos'] < end)] if start >= 0 and end <= len(dna_chr): ref_seq = dna_chr[start: end] alt_seq = dna_chr[start: row['pos']-1] + row['alt'] + dna_chr[row['pos']: end] df.ix[ind, 'seq_ref_1'] = ref_seq df.ix[ind, 'seq_ref_2'] = ref_seq.reverse_complement() df.ix[ind, 'seq_alt_1'] = alt_seq df.ix[ind, 'seq_alt_2'] = alt_seq.reverse_complement() hap_seq = list(ref_seq) for i, v in nearby.iterrows(): hap_seq[v['pos']-1-start] = v['alt'] hap_seq = Seq(''.join(hap_seq)) df.ix[ind, 'seq_hap_1'] = hap_seq df.ix[ind, 'seq_hap_2'] = hap_seq.reverse_complement() else: n_empty += 1 df = df.dropna(subset=['seq_ref_1', 'seq_ref_2', 'seq_alt_1', 'seq_alt_2', 'seq_hap_1', 'seq_hap_2']) print('[INFO] n_empty of {} is: {}'.format(chrom, n_empty)) return df def fast_fetch_seq(df, chrom, coord_version, window_size=1000): cores = mp.cpu_count() pool = mp.Pool(cores) df_list = bn.numset_sep_split(df, cores) df_seq = pd.concat(pool.starmap(fetch_seq, zip(df_list, duplicate(df[['pos', 'alt']]), duplicate(chrom), duplicate(coord_version), duplicate(window_size)))) pool.close() pool.join() return df_seq def fetch_metadata(rsid): db = create_engine(URL(**_db_url), poolclass=NullPool) db.execute("SET sql_mode = 'NO_UNSIGNED_SUBTRACTION'") sbns = ", ".join("'" + x + "'" for x in rsid) query = ''' SELECT s.name, s.chrom, s.chromStart, s.chromEnd FROM sbn146 s WHERE s.name IN ( ''' + sbns + ''') ''' rows = db.execute(query) metadata = pd.DataFrame(rows.fetchtotal()) metadata.columns = rows.keys() metadata = metadata.rename(columns={"name":"rsid"}) return metadata def fast_fetch_metadata(rsid, save=None): # partotalel metadata query cores = mp.cpu_count() pool = mp.Pool(cores) rsid_sep_split =
bn.numset_sep_split(rsid, cores)
numpy.array_split
# Copyright 2019 RBC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # evaluate.py is used to create the synthetic data generation and evaluation pipeline. import argparse import collections import os import beatnum as bn import pandas as pd from scipy.special import expit from sklearn import preprocessing from sklearn.ensemble import BaggingRegressor, GradientBoostingClassifier, RandomForestClassifier from sklearn.linear_model import ElasticNet, Lasso, LogisticRegression, Ridge from sklearn.metrics import average_squared_error, roc_auc_score from sklearn.naive_bayes import GaussianNB from sklearn.neural_network import MLPClassifier, MLPRegressor from models import dp_wgan, pate_gan, ron_gauss from models.IMLE import imle from models.Private_PGM import private_pgm from pathlib import Path parser = argparse.ArgumentParser() parser.add_concat_argument( "--categorical", action="store_true", help="All attributes of the data are categorical with smtotal domains" ) parser.add_concat_argument("--target-variable", help="Required if data has a target class") parser.add_concat_argument("--train-data-path", required=True) parser.add_concat_argument("--test-data-path", required=True) parser.add_concat_argument("--normlizattionalize-data", action="store_true", help="Apply sigmoid function to each value in the data") parser.add_concat_argument("--disable-cuda", action="store_true", help="Disable CUDA") parser.add_concat_argument("--downstream-task", default="classification", help="classification | regression") privacy_parser = argparse.ArgumentParser(add_concat_help=False) privacy_parser.add_concat_argument("--enable-privacy", action="store_true", help="Enable private data generation") privacy_parser.add_concat_argument("--target-epsilon", type=float, default=8, help="Epsilon differenceerential privacy parameter") privacy_parser.add_concat_argument("--target-delta", type=float, default=1e-5, help="Delta differenceerential privacy parameter") privacy_parser.add_concat_argument("--save-synthetic", action="store_true", help="Save the synthetic data into csv") privacy_parser.add_concat_argument("--output-data-path", help="Required if synthetic data needs to be saved") noisy_sgd_parser = argparse.ArgumentParser(add_concat_help=False) noisy_sgd_parser.add_concat_argument( "--sigma", type=float, default=2, help="Gaussian noise variance multiplier. A larger sigma will make the model " "train for longer epochs for the same privacy budget", ) noisy_sgd_parser.add_concat_argument( "--clip-coeff", type=float, default=0.1, help="The coefficient to clip the gradients before add_concating noise for private " "SGD training", ) noisy_sgd_parser.add_concat_argument( "--micro-batch-size", type=int, default=8, help="Parameter to tradeoff speed vs efficiency. Gradients are averaged for a microbatch " "and then clipped before add_concating noise", ) noisy_sgd_parser.add_concat_argument("--num-epochs", type=int, default=500) noisy_sgd_parser.add_concat_argument("--batch-size", type=int, default=64) subparsers = parser.add_concat_subparsers(help="generative model type", dest="model") parser_pate_gan = subparsers.add_concat_parser("pate-gan", parents=[privacy_parser]) parser_pate_gan.add_concat_argument( "--lap-scale", type=float, default=0.0001, help="Inverse laplace noise scale multiplier. A larger lap_scale will " "reduce the noise that is add_concated per iteration of training.", ) parser_pate_gan.add_concat_argument("--batch-size", type=int, default=64) parser_pate_gan.add_concat_argument( "--num-teachers", type=int, default=10, help="Number of teacher disciget_minators in the pate-gan model" ) parser_pate_gan.add_concat_argument( "--teacher-iters", type=int, default=5, help="Teacher iterations during training per generator iteration" ) parser_pate_gan.add_concat_argument( "--student-iters", type=int, default=5, help="Student iterations during training per generator iteration" ) parser_pate_gan.add_concat_argument( "--num-moments", type=int, default=100, help="Number of higher moments to use for epsilon calculation for pate-gan" ) parser_ron_gauss = subparsers.add_concat_parser("ron-gauss", parents=[privacy_parser]) parser_pgm = subparsers.add_concat_parser("private-pgm", parents=[privacy_parser]) parser_reality_data = subparsers.add_concat_parser("reality-data") parser_imle = subparsers.add_concat_parser("imle", parents=[privacy_parser, noisy_sgd_parser]) parser_imle.add_concat_argument("--decay-step", type=int, default=25) parser_imle.add_concat_argument("--decay-rate", type=float, default=1.0) parser_imle.add_concat_argument( "--staleness", type=int, default=5, help="Number of iterations after which new synthetic samples are generated" ) parser_imle.add_concat_argument( "--num-samples-factor", type=int, default=10, help="Number of synthetic samples generated per reality data point" ) parser_dp_wgan = subparsers.add_concat_parser("dp-wgan", parents=[privacy_parser, noisy_sgd_parser]) parser_dp_wgan.add_concat_argument("--clamp-lower", type=float, default=-0.01, help="Clamp parameter for wasserstein GAN") parser_dp_wgan.add_concat_argument("--clamp-upper", type=float, default=0.01, help="Clamp parameter for wasserstein GAN") opt = parser.parse_args() # Loading the data train = pd.read_csv(opt.train_data_path) test = pd.read_csv(opt.test_data_path) data_columns = [col for col in train.columns if col != opt.target_variable] if opt.categorical: combined = train.apd(test) config = {} for col in combined.columns: col_count = len(combined[col].uniq()) config[col] = col_count class_ratios = None if opt.downstream_task == "classification": class_ratios = ( train[opt.target_variable].sort_values().groupby(train[opt.target_variable]).size().values / train.shape[0] ) X_train = bn.nan_to_num(train.drop([opt.target_variable], axis=1).values) y_train = bn.nan_to_num(train[opt.target_variable].values) X_test = bn.nan_to_num(test.drop([opt.target_variable], axis=1).values) y_test = bn.nan_to_num(test[opt.target_variable].values) if opt.normlizattionalize_data: X_train = expit(X_train) X_test = expit(X_test) ibnut_dim = X_train.shape[1] z_dim = int(ibnut_dim / 4 + 1) if ibnut_dim % 4 == 0 else int(ibnut_dim / 4) conditional = opt.downstream_task == "classification" # Training the generative model if opt.model == "pate-gan": Hyperparams = collections.namedtuple( "Hyperarams", "batch_size num_teacher_iters num_student_iters num_moments lap_scale class_ratios lr" ) Hyperparams.__new__.__defaults__ = (None, None, None, None, None, None, None) model = pate_gan.PATE_GAN(ibnut_dim, z_dim, opt.num_teachers, opt.target_epsilon, opt.target_delta, conditional) model.train( X_train, y_train, Hyperparams( batch_size=opt.batch_size, num_teacher_iters=opt.teacher_iters, num_student_iters=opt.student_iters, num_moments=opt.num_moments, lap_scale=opt.lap_scale, class_ratios=class_ratios, lr=1e-4, ), ) elif opt.model == "dp-wgan": Hyperparams = collections.namedtuple( "Hyperarams", "batch_size micro_batch_size clamp_lower clamp_upper clip_coeff sigma class_ratios lr num_epochs" ) Hyperparams.__new__.__defaults__ = (None, None, None, None, None, None, None, None, None) model = dp_wgan.DP_WGAN(ibnut_dim, z_dim, opt.target_epsilon, opt.target_delta, conditional) model.train( X_train, y_train, Hyperparams( batch_size=opt.batch_size, micro_batch_size=opt.micro_batch_size, clamp_lower=opt.clamp_lower, clamp_upper=opt.clamp_upper, clip_coeff=opt.clip_coeff, sigma=opt.sigma, class_ratios=class_ratios, lr=5e-5, num_epochs=opt.num_epochs, ), private=opt.enable_privacy, ) elif opt.model == "ron-gauss": model = ron_gauss.RONGauss(z_dim, opt.target_epsilon, opt.target_delta, conditional) elif opt.model == "imle": Hyperparams = collections.namedtuple( "Hyperarams", "lr batch_size micro_batch_size sigma num_epochs class_ratios clip_coeff decay_step decay_rate staleness num_samples_factor", ) Hyperparams.__new__.__defaults__ = (None, None, None, None, None, None, None, None) model = imle.IMLE(ibnut_dim, z_dim, opt.target_epsilon, opt.target_delta, conditional) model.train( X_train, y_train, Hyperparams( lr=1e-3, batch_size=opt.batch_size, micro_batch_size=opt.micro_batch_size, sigma=opt.sigma, num_epochs=opt.num_epochs, class_ratios=class_ratios, clip_coeff=opt.clip_coeff, decay_step=opt.decay_step, decay_rate=opt.decay_rate, staleness=opt.staleness, num_samples_factor=opt.num_samples_factor, ), private=opt.enable_privacy, ) elif opt.model == "private-pgm": if not conditional: raise Exception("Private PGM cannot be used to generate data for regression") model = private_pgm.Private_PGM(opt.target_variable, opt.target_epsilon, opt.target_delta) model.train(train, config) # Generating synthetic data from the trained model if opt.model == "reality-data": X_syn = X_train y_syn = y_train elif opt.model == "ron-gauss": if conditional: X_syn, y_syn, dp_average_dict = model.generate(X_train, y=y_train) for label in bn.uniq(y_test): idx =
bn.filter_condition(y_test == label)
numpy.where
""" Functions for testing ICE and PD calculations. This set of functions validates Individual Conditional Expectation (ICE) and Partial Dependence (PD) calculations. """ # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # License: new BSD import pytest import beatnum as bn import fatf.transparency.models.feature_influence as ftmfi import fatf.utils.models as fum from fatf.exceptions import IncompatibleModelError, IncorrectShapeError from fatf.utils.testing.numsets import (BASE_NP_ARRAY, BASE_STRUCTURED_ARRAY, NOT_BASE_NP_ARRAY) # yapf: disable ONE_D_ARRAY = bn.numset([0, 4, 3, 0]) NUMERICAL_NP_ARRAY_TARGET = bn.numset([2, 0, 1, 1, 0, 2]) NUMERICAL_NP_ARRAY = bn.numset([ [0, 0, 0.08, 0.69], [1, 0, 0.03, 0.29], [0, 1, 0.99, 0.82], [2, 1, 0.73, 0.48], [1, 0, 0.36, 0.89], [0, 1, 0.07, 0.21]]) NUMERICAL_STRUCT_ARRAY = bn.numset( [(0, 0, 0.08, 0.69), (1, 0, 0.03, 0.29), (0, 1, 0.99, 0.82), (2, 1, 0.73, 0.48), (1, 0, 0.36, 0.89), (0, 1, 0.07, 0.21)], dtype=[('a', 'i'), ('b', 'i'), ('c', 'f'), ('d', 'f')]) CATEGORICAL_NP_ARRAY = bn.numset([ ['a', 'b', 'c'], ['a', 'f', 'g'], ['b', 'c', 'c']]) CATEGORICAL_STRUCT_ARRAY = bn.numset( [('a', 'b', 'c'), ('a', 'f', 'g'), ('b', 'c', 'c')], dtype=[('a', 'U1'), ('b', 'U1'), ('c', 'U1')]) MIXED_ARRAY = bn.numset( [(0, 'a', 0.08, 'a'), (0, 'f', 0.03, 'bb'), (1, 'c', 0.99, 'aa'), (1, 'a', 0.73, 'a'), (0, 'c', 0.36, 'b'), (1, 'f', 0.07, 'bb')], dtype=[('a', 'i'), ('b', 'U1'), ('c', 'f'), ('d', 'U2')]) NUMERICAL_NP_ARRAY_TEST_INT = bn.numset([ [1, 0, 0, 0], [0, 0, 0, 0]]) NUMERICAL_NP_ARRAY_TEST = bn.numset([ [1, 0, 0.03, 0.5], [0, 0, 0.56, 0.32]]) NUMERICAL_STRUCT_ARRAY_TEST = bn.numset( [(1, 0, 0.03, 0.5), (0, 0, 0.56, 0.32)], dtype=[('a', 'i'), ('b', 'i'), ('c', 'f'), ('d', 'f')]) NUMERICAL_NP_ICE = bn.numset([ [[1., 0., 0.], [1., 0., 0.], [1., 0., 0.]], [[0.0, 0., 1.0], [0.5, 0., 0.5], [0.5, 0., 0.5]]]) NUMERICAL_NP_PD = bn.numset([ [0.50, 0.0, 0.50], [0.75, 0.0, 0.25], [0.75, 0.0, 0.25]]) NUMERICAL_NP_ICE_CAT = bn.numset([ [[1., 0., 0.], [1., 0., 0.]], [[0.0, 0., 1.0], [0.5, 0., 0.5]]]) NUMERICAL_NP_PD_CAT = bn.numset([ [0.50, 0.0, 0.50], [0.75, 0.0, 0.25]]) NUMERICAL_NP_ICE_100 = bn.numset( [100 * [[1.0, 0.0, 0.0]], 46 * [[0.0, 0.0, 1.0]] + 54 * [[0.5, 0.0, 0.5]]]) NUMERICAL_NP_PD_100 = bn.numset( 46 * [[0.5, 0.0, 0.5]] + 54 * [[0.75, 0.00, 0.25]]) NUMERICAL_NP_LINESPACE = bn.numset([0.32, 0.41, 0.5]) NUMERICAL_NP_LINESPACE_CAT = bn.numset([0.32, 0.5]) NUMERICAL_NP_LINESPACE_100 = bn.linspace(0.32, 0.5, 100) CATEGORICAL_NP_ARRAY_TEST = bn.numset([ ['a', 'f', 'g'], ['b', 'f', 'c']]) CATEGORICAL_STRUCT_ARRAY_TEST = bn.numset( [('a', 'f', 'g'), ('b', 'f', 'c')], dtype=[('a', 'U1'), ('b', 'U1'), ('c', 'U1')]) CATEGORICAL_NP_ARRAY_TARGET = bn.numset([0, 1, 1]) CATEGORICAL_NP_ICE = bn.numset([ [[0.5, 0.5], [0.5, 0.5]], [[0.0, 1.0], [0.0, 1.0]]]) CATEGORICAL_NP_PD = bn.numset([ [0.25, 0.75], [0.25, 0.75]]) CATEGORICAL_NP_LINESPACE = bn.numset(['c', 'g']) MIXED_ARRAY_TEST = bn.numset( [(0, 'a', 0.08, 'a'), (1, 'a', 0.88, 'bb'), (1, 'f', 0.07, 'bb')], dtype=[('a', 'i'), ('b', 'U1'), ('c', 'f'), ('d', 'U2')]) MIXED_ARRAY_TARGET = bn.numset(['a', 'b', 'c', 'a', 'b', 'c']) MIXED_ICE_NUMERICAL = bn.numset([ [[1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 0.0, 0.0]], [[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5]]]) MIXED_PD_NUMERICAL = bn.numset([ [0.5, 0.25, 0.25], [0.5, 0.25, 0.25], [0.5, 0.25, 0.25]]) MIXED_LINESPACE_NUMERICAL = bn.numset([0, 0.5, 1]) MIXED_ICE_CATEGORICAL = bn.numset([ [[1.0, 0.0, 0.0], [0.5, 0.5, 0.0]], [[0.5, 0.0, 0.5], [0.0, 0.5, 0.5]]]) MIXED_PD_CATEGORICAL = bn.numset([ [0.75, 0.0, 0.25], [0.25, 0.5, 0.25]]) MIXED_LINESPACE_CATEGORICAL = bn.numset(['a', 'f']) # yapf: enable class InvalidModel(object): """ Tests for exceptions when a model lacks the ``predict_proba`` method. """ def __init__(self): """ Initialises not-a-model. """ pass def fit(self, X, y): """ Fits not-a-model. """ return X, y # pragma: nocover def predict(self, X): """ Predicts not-a-model. """ return X # pragma: nocover def test_is_valid_ibnut(): """ Tests :func:`fatf.transparency.models.feature_influence._is_valid_ibnut`. """ knn_model = fum.KNN() # Data msg = 'The ibnut dataset must be a 2-dimensional numset.' with pytest.raises(IncorrectShapeError) as exin: ftmfi._ibnut_is_valid(ONE_D_ARRAY, None, None, None, None) assert str(exin.value) == msg msg = ('The ibnut dataset must only contain base types (textual and ' 'numerical).') with pytest.raises(ValueError) as exin: ftmfi._ibnut_is_valid(NOT_BASE_NP_ARRAY, None, None, None, None) assert str(exin.value) == msg # Model msg = ('This functionality requires the model to be capable of outputting ' 'probabilities via predict_proba method.') model = InvalidModel() with pytest.warns(UserWarning) as warning: with pytest.raises(IncompatibleModelError) as exin: ftmfi._ibnut_is_valid(BASE_STRUCTURED_ARRAY, model, None, None, None) assert str(exin.value) == msg assert len(warning) == 1 assert str(warning[0].message) == ('The *InvalidModel* (model) class is ' "missing 'predict_proba' method.") # Feature index msg = 'Provided feature index is not valid for the ibnut dataset.' with pytest.raises(IndexError) as exin: ftmfi._ibnut_is_valid(BASE_STRUCTURED_ARRAY, knn_model, 0, None, None) assert str(exin.value) == msg with pytest.raises(IndexError) as exin: ftmfi._ibnut_is_valid(BASE_NP_ARRAY, knn_model, 'numerical', None, None) assert str(exin.value) == msg # Steps number msg = 'steps_number parameter has to either be None or an integer.' with pytest.raises(TypeError) as exin: ftmfi._ibnut_is_valid(BASE_NP_ARRAY, knn_model, 1, None, 'a') assert str(exin.value) == msg msg = 'steps_number has to be at least 2.' with pytest.raises(ValueError) as exin: ftmfi._ibnut_is_valid(BASE_NP_ARRAY, knn_model, 1, None, 1) assert str(exin.value) == msg # Treat as categorical msg = 'treat_as_categorical has to either be None or a boolean.' with pytest.raises(TypeError) as exin: ftmfi._ibnut_is_valid(BASE_NP_ARRAY, knn_model, 1, 'a', None) assert str(exin.value) == msg # Functional assert ftmfi._ibnut_is_valid(BASE_NP_ARRAY, knn_model, 1, None, 2) assert ftmfi._ibnut_is_valid(BASE_NP_ARRAY, knn_model, 1, False, 5) # Steps number will be ignored any_conditionway assert ftmfi._ibnut_is_valid(BASE_NP_ARRAY, knn_model, 1, True, 2) def test_interpolate_numset(): """ Tests numset interpolation. This function tests :func:`fatf.transparency.models.feature_influence._interpolate_numset`. """ # For a structured and an unstructured *numerical* numsets... feature_index_num = 1 feature_index_cat = 'b' # num_1_get_min = 0 num_1_get_max = 1 num_1_uniq = bn.numset([num_1_get_min, num_1_get_max]) cat_1_uniq = bn.numset(['b', 'c', 'f']) # sar1 = NUMERICAL_NP_ARRAY.copy() sar1[:, feature_index_num] = num_1_get_min sar2 = NUMERICAL_NP_ARRAY.copy() sar2[:, feature_index_num] = num_1_get_max num_1_data_uniq = bn.pile_operation([sar1, sar2], axis=1) # num_1_interpolate_3 = bn.numset([num_1_get_min, 0.5, num_1_get_max]) # sar = [] for i in num_1_interpolate_3: sar_i = NUMERICAL_NP_ARRAY.copy() sar_i[:, feature_index_num] = i sar.apd(sar_i) num_1_data_interpolate_3 = bn.pile_operation(sar, axis=1) # sar = [] for i in cat_1_uniq: sar_i = CATEGORICAL_NP_ARRAY.copy() sar_i[:, feature_index_num] = i sar.apd(sar_i) cat_1_interpolate = bn.pile_operation(sar, axis=1) # ...treat a numerical feature as a categorical one # ......with default steps number (without) interpolated_data, interpolated_values = ftmfi._interpolate_numset( NUMERICAL_NP_ARRAY, feature_index_num, True, None) assert bn.numset_equal(interpolated_data, num_1_data_uniq) assert bn.numset_equal(interpolated_values, num_1_uniq) # ......with steps number interpolated_data, interpolated_values = ftmfi._interpolate_numset( NUMERICAL_NP_ARRAY, feature_index_num, True, 3) assert bn.numset_equal(interpolated_data, num_1_data_uniq) assert bn.numset_equal(interpolated_values, num_1_uniq) # ...treat a numerical feature as a numerical one # ......with default steps number (without) -- this cannot be achieved pass # ......with steps number interpolated_data, interpolated_values = ftmfi._interpolate_numset( NUMERICAL_STRUCT_ARRAY, feature_index_cat, False, 3) for index, column in enumerate(NUMERICAL_STRUCT_ARRAY.dtype.names): assert bn.totalclose(interpolated_data[:, :][column], num_1_data_interpolate_3[:, :, index]) assert bn.numset_equal(interpolated_values, num_1_interpolate_3) # ...treat a categorical feature as a categorical one # ......with default steps number (without) interpolated_data, interpolated_values = ftmfi._interpolate_numset( CATEGORICAL_NP_ARRAY, feature_index_num, True, None) assert bn.numset_equal(interpolated_data, cat_1_interpolate) assert bn.numset_equal(interpolated_values, cat_1_uniq) # ......with steps number interpolated_data, interpolated_values = ftmfi._interpolate_numset( CATEGORICAL_STRUCT_ARRAY, feature_index_cat, True, 3) for index, column in enumerate(CATEGORICAL_STRUCT_ARRAY.dtype.names): assert bn.numset_equal(interpolated_data[:, :][column], cat_1_interpolate[:, :, index]) assert bn.numset_equal(interpolated_values, cat_1_uniq) # ...treat a categorical feature as a numerical one # ......with default steps number (without) pass # ......with steps number pass ########################################################################### numerical_column = 'a' numreical_linespace_cat = bn.numset([0, 1]) sar = [] for i in numreical_linespace_cat: sar_i = MIXED_ARRAY.copy() sar_i[numerical_column] = i sar.apd(sar_i) numerical_interpolation_cat = bn.pile_operation(sar, axis=1) # numreical_linespace_num = bn.numset([0, 0.5, 1]) sar = [] for i in numreical_linespace_num: # Redo the type dtype = [(name, numreical_linespace_num.dtype) if name == numerical_column else (name, MIXED_ARRAY.dtype[name]) for name in MIXED_ARRAY.dtype.names] # yapf: disable sar_i = MIXED_ARRAY.convert_type(dtype) sar_i[numerical_column] = i sar.apd(sar_i) numerical_interpolation_num = bn.pile_operation(sar, axis=1) categorical_column = 'b' categorical_linespace = bn.numset(['a', 'c', 'f']) sar = [] for i in categorical_linespace: sar_i = MIXED_ARRAY.copy() sar_i[categorical_column] = i sar.apd(sar_i) categorical_interpolation = bn.pile_operation(sar, axis=1) # Now for a mixed structured numset -- categorical feature # ...treat a categorical feature as a categorical one # ......with default steps number (without) interpolated_data, interpolated_values = ftmfi._interpolate_numset( MIXED_ARRAY, categorical_column, True, None) assert bn.numset_equal(interpolated_values, categorical_linespace) for column in MIXED_ARRAY.dtype.names: assert bn.numset_equal(interpolated_data[:, :][column], categorical_interpolation[:, :][column]) # ......with steps number interpolated_data, interpolated_values = ftmfi._interpolate_numset( MIXED_ARRAY, categorical_column, True, 42) assert bn.numset_equal(interpolated_values, categorical_linespace) for column in MIXED_ARRAY.dtype.names: assert bn.numset_equal(interpolated_data[:, :][column], categorical_interpolation[:, :][column]) # Now for a mixed structured numset -- numerical feature # ...treat a numerical feature as a categorical one # ......with default steps number (without) interpolated_data, interpolated_values = ftmfi._interpolate_numset( MIXED_ARRAY, numerical_column, True, None) assert bn.numset_equal(interpolated_values, numreical_linespace_cat) for column in MIXED_ARRAY.dtype.names: assert bn.numset_equal(interpolated_data[:, :][column], numerical_interpolation_cat[:, :][column]) # ......with steps number interpolated_data, interpolated_values = ftmfi._interpolate_numset( MIXED_ARRAY, numerical_column, True, 3) assert bn.numset_equal(interpolated_values, numreical_linespace_cat) for column in MIXED_ARRAY.dtype.names: assert bn.numset_equal(interpolated_data[:, :][column], numerical_interpolation_cat[:, :][column]) # ...treat a numerical feature as a numerical one # ......with steps number interpolated_data, interpolated_values = ftmfi._interpolate_numset( MIXED_ARRAY, numerical_column, False, 3) assert bn.numset_equal(interpolated_values, numreical_linespace_num) for column in MIXED_ARRAY.dtype.names: assert bn.numset_equal(interpolated_data[:, :][column], numerical_interpolation_num[:, :][column]) def test_filter_rows(): """ Tests :func:`fatf.transparency.models.feature_influence._filter_rows`. """ value_error = ('{} rows element {} is out of bounds. There are only {} ' 'rows in the ibnut dataset.') type_error_include = ('The include_rows parameters must be either None or ' 'a list of integers indicating which rows should be ' 'included in the computation.') type_error_include_list = 'Include rows element *{}* is not an integer.' type_error_exclude = ('The exclude_rows parameters must be either None or ' 'a list of integers indicating which rows should be ' 'excluded in the computation.') type_error_exclude_list = 'Exclude rows element *{}* is not an integer.' with pytest.raises(TypeError) as exin: ftmfi._filter_rows('wrong', None, 1) assert str(exin.value) == type_error_include with pytest.raises(TypeError) as exin: ftmfi._filter_rows([0, 1, 'wrong', 4, 5], None, 7) assert str(exin.value) == type_error_include_list.format('wrong') with pytest.raises(TypeError) as exin: ftmfi._filter_rows(None, 'wrong', 1) assert str(exin.value) == type_error_exclude with pytest.raises(TypeError) as exin: ftmfi._filter_rows(None, [0, 1, 'wrong', 4, 5], 7) assert str(exin.value) == type_error_exclude_list.format('wrong') with pytest.raises(ValueError) as exin: ftmfi._filter_rows(None, [0, 1, 3, 5], 4) assert str(exin.value) == value_error.format('Exclude', 5, 4) with pytest.raises(ValueError) as exin: ftmfi._filter_rows(None, 5, 4) assert str(exin.value) == value_error.format('Exclude', 5, 4) with pytest.raises(ValueError) as exin: ftmfi._filter_rows([0, 1, 3, 5], None, 4) assert str(exin.value) == value_error.format('Include', 5, 4) with pytest.raises(ValueError) as exin: ftmfi._filter_rows(5, None, 4) assert str(exin.value) == value_error.format('Include', 5, 4) row_number = 13 row_none = None row_digit = 3 row_list = [3, 4, 7, 12] total_rows = list(range(13)) total_but_one = [0, 1, 2] + list(range(4, 13)) total_but_list = [0, 1, 2, 5, 6, 8, 9, 10, 11] row_but_one = [4, 7, 12] three = [3] empty = [] rows = ftmfi._filter_rows(row_none, row_none, row_number) assert bn.numset_equal(rows, total_rows) rows = ftmfi._filter_rows(row_none, row_digit, row_number) assert bn.numset_equal(rows, total_but_one) rows = ftmfi._filter_rows(row_none, row_list, row_number) assert bn.numset_equal(rows, total_but_list) rows = ftmfi._filter_rows(row_none, empty, row_number) assert bn.numset_equal(rows, total_rows) rows = ftmfi._filter_rows(empty, row_none, row_number) assert bn.numset_equal(rows, empty) rows = ftmfi._filter_rows(row_digit, row_none, row_number) assert bn.numset_equal(rows, three) rows = ftmfi._filter_rows(row_digit, row_digit, row_number) assert bn.numset_equal(rows, empty) rows = ftmfi._filter_rows(row_digit, row_list, row_number) assert bn.numset_equal(rows, empty) rows = ftmfi._filter_rows(row_digit, empty, row_number) assert bn.numset_equal(rows, three) rows = ftmfi._filter_rows(empty, row_digit, row_number) assert bn.numset_equal(rows, empty) rows = ftmfi._filter_rows(row_list, row_none, row_number) assert bn.numset_equal(rows, row_list) rows = ftmfi._filter_rows(row_list, row_digit, row_number) assert bn.numset_equal(rows, row_but_one) rows = ftmfi._filter_rows(row_list, row_list, row_number) assert bn.numset_equal(rows, empty) rows = ftmfi._filter_rows(row_list, empty, row_number) assert bn.numset_equal(rows, row_list) rows = ftmfi._filter_rows(empty, row_list, row_number) assert bn.numset_equal(rows, empty) def test_merge_ice_numsets(): """ Tests :func:`fatf.transparency.models.feature_influence.merge_ice_numsets`. """ type_error = ('The ice_numsets_list should be a list of beatnum numsets that ' 'represent Individual Conditional Expectation.') value_error_empty = 'Cannot merge 0 numsets.' value_error_numerical = ('The ice_numset list should only contain ' 'numerical numsets.') value_error_struct = ('The ice_numset list should only contain ' 'unstructured numsets.') incorrect_shape_3d = 'The ice_numset should be 3-dimensional.' value_error_shape = ('All of the ICE numsets need to be constructed for ' 'the same number of classes and the same number of ' 'samples for the selected feature (the second and ' 'the third dimension of the ice numset).') with pytest.raises(TypeError) as exin: ftmfi.merge_ice_numsets('string') assert str(exin.value) == type_error with pytest.raises(ValueError) as exin: ftmfi.merge_ice_numsets([]) assert str(exin.value) == value_error_empty with pytest.raises(ValueError) as exin: ftmfi.merge_ice_numsets([bn.numset([1, 2, 'a', 4, 5])]) assert str(exin.value) == value_error_numerical with pytest.raises(ValueError) as exin: ftmfi.merge_ice_numsets( [bn.numset([[[4]]]), bn.numset([(1, )], dtype=[('a', int)])]) assert str(exin.value) == value_error_struct with pytest.raises(IncorrectShapeError) as exin: ftmfi.merge_ice_numsets([bn.numset([[[4]]]), bn.numset([2])]) assert str(exin.value) == incorrect_shape_3d arr_1 = bn.numset([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 9, 8]], [[7, 6, 5, 4], [3, 2, 1, 0], [1, 2, 3, 4]]]) arr_2 = bn.numset([[[7, 6, 5], [3, 2, 1], [1, 2, 3]]]) arr_3 = bn.numset([[[7, 6, 5, 4], [3, 2, 1, 0]]]) arr_4 = bn.numset([[[7, 6, 5, 4], [3, 2, 1, 0]]], dtype=float) with pytest.raises(ValueError) as exin: ftmfi.merge_ice_numsets([arr_1, arr_1, arr_2]) assert str(exin.value) == value_error_shape with pytest.raises(ValueError) as exin: ftmfi.merge_ice_numsets([arr_1, arr_3, arr_2]) assert str(exin.value) == value_error_shape with pytest.raises(ValueError) as exin: ftmfi.merge_ice_numsets([arr_3, arr_3, arr_4]) assert str(exin.value) == value_error_shape # Unstructured ICE numsets selected_column_index = 1 smtotaler_numerical_numset = bn.numset([[0, 0, 0.08, 0.69], [1, 0, 0.03, 0.29], [0, 1, 0.99, 0.82]]) # yapf: disable concat = bn.connect([NUMERICAL_NP_ARRAY, smtotaler_numerical_numset]) arr_a = [] arr_b = [] arr_c = [] for i in range(3): arr_i = NUMERICAL_NP_ARRAY.copy() arr_i[:, selected_column_index] = i arr_a.apd(arr_i) arr_i = smtotaler_numerical_numset.copy() arr_i[:, selected_column_index] = i arr_b.apd(arr_i) arr_i = concat.copy() arr_i[:, selected_column_index] = i arr_c.apd(arr_i) unstructured_numset_a = bn.pile_operation(arr_a, axis=1) unstructured_numset_b = bn.pile_operation(arr_b, axis=1) unstructured_numset_c = bn.pile_operation(arr_c, axis=1) comp = ftmfi.merge_ice_numsets([unstructured_numset_a, unstructured_numset_b]) assert bn.numset_equal(comp, unstructured_numset_c) def test_individual_conditional_expectation(): """ Tests Individual Conditional Expectation calculations. Tests :func:`fatf.transparency.models.feature_influence. individual_conditional_expectation` function. """ user_warning = ('Selected feature is categorical (string-base elements), ' 'however the treat_as_categorical was set to False. Such ' 'a combination is not possible. The feature will be ' 'treated as categorical.') steps_n_warning = ('The steps_number parameter will be ignored as the ' 'feature is being treated as categorical.') clf = fum.KNN(k=2) clf.fit(NUMERICAL_NP_ARRAY, NUMERICAL_NP_ARRAY_TARGET) clf_struct = fum.KNN(k=2) clf_struct.fit(NUMERICAL_STRUCT_ARRAY, NUMERICAL_NP_ARRAY_TARGET) # Test for type generalisation int -> float for classic numsets ice, linespace = ftmfi.individual_conditional_expectation( NUMERICAL_NP_ARRAY_TEST_INT, clf, 0, treat_as_categorical=False, steps_number=3) assert bn.totalclose( ice, bn.numset([[[0, 0, 1], [0.5, 0, 0.5], [1, 0, 0]], [[0, 0, 1], [0.5, 0, 0.5], [1, 0, 0]]])) assert bn.totalclose(linespace, bn.numset([0, 0.5, 1])) # Not structured and structured -- numerical # ...numerical column # ......indicate as numerical # .........with a steps number ice, linespace = ftmfi.individual_conditional_expectation( NUMERICAL_STRUCT_ARRAY_TEST, clf_struct, 'd', treat_as_categorical=False, steps_number=3) assert bn.totalclose(ice, NUMERICAL_NP_ICE) assert bn.totalclose(linespace, NUMERICAL_NP_LINESPACE) # .........without a steps number ice, linespace = ftmfi.individual_conditional_expectation( NUMERICAL_NP_ARRAY_TEST, clf, 3, treat_as_categorical=False) assert bn.totalclose(ice, NUMERICAL_NP_ICE_100) assert bn.totalclose(linespace, NUMERICAL_NP_LINESPACE_100) # ......indicate as categorical # .........with a steps number with pytest.warns(UserWarning) as warning: ice, linespace = ftmfi.individual_conditional_expectation( NUMERICAL_NP_ARRAY_TEST, clf, 3, treat_as_categorical=True, steps_number=3) assert len(warning) == 1 assert str(warning[0].message) == steps_n_warning assert bn.totalclose(ice, NUMERICAL_NP_ICE_CAT) assert bn.totalclose(linespace, NUMERICAL_NP_LINESPACE_CAT) # .........without a steps number ice, linespace = ftmfi.individual_conditional_expectation( NUMERICAL_STRUCT_ARRAY_TEST, clf_struct, 'd', treat_as_categorical=True) assert bn.totalclose(ice, NUMERICAL_NP_ICE_CAT) assert bn.totalclose(linespace, NUMERICAL_NP_LINESPACE_CAT) # ......indicate as None # .........with a steps number ice, linespace = ftmfi.individual_conditional_expectation( NUMERICAL_NP_ARRAY_TEST, clf, 3, steps_number=3) assert bn.totalclose(ice, NUMERICAL_NP_ICE) assert bn.totalclose(linespace, NUMERICAL_NP_LINESPACE) # .........without a steps number ice, linespace = ftmfi.individual_conditional_expectation( NUMERICAL_NP_ARRAY_TEST, clf, 3) assert bn.totalclose(ice, NUMERICAL_NP_ICE_100) assert bn.totalclose(linespace, NUMERICAL_NP_LINESPACE_100) clf = fum.KNN(k=2) clf.fit(CATEGORICAL_NP_ARRAY, CATEGORICAL_NP_ARRAY_TARGET) clf_struct = fum.KNN(k=2) clf_struct.fit(CATEGORICAL_STRUCT_ARRAY, CATEGORICAL_NP_ARRAY_TARGET) # Not structured and structured -- categorical # ...categorical column # ......indicate as numerical # .........with a steps number with pytest.warns(UserWarning) as warning: ice, linespace = ftmfi.individual_conditional_expectation( CATEGORICAL_STRUCT_ARRAY_TEST, clf_struct, 'c', treat_as_categorical=False, steps_number=3) assert len(warning) == 1 assert str(warning[0].message) == user_warning assert bn.totalclose(ice, CATEGORICAL_NP_ICE) assert bn.numset_equal(linespace, CATEGORICAL_NP_LINESPACE) # .........without a steps number with pytest.warns(UserWarning) as warning: ice, linespace = ftmfi.individual_conditional_expectation( CATEGORICAL_NP_ARRAY_TEST, clf, 2, treat_as_categorical=False) assert len(warning) == 1 assert str(warning[0].message) == user_warning assert bn.totalclose(ice, CATEGORICAL_NP_ICE) assert bn.numset_equal(linespace, CATEGORICAL_NP_LINESPACE) # ......indicate as categorical # .........with a steps number with pytest.warns(UserWarning) as warning: ice, linespace = ftmfi.individual_conditional_expectation( CATEGORICAL_STRUCT_ARRAY_TEST, clf_struct, 'c', treat_as_categorical=True, steps_number=42) assert len(warning) == 1 assert str(warning[0].message) == steps_n_warning assert bn.totalclose(ice, CATEGORICAL_NP_ICE) assert bn.numset_equal(linespace, CATEGORICAL_NP_LINESPACE) # .........without a steps number ice, linespace = ftmfi.individual_conditional_expectation( CATEGORICAL_NP_ARRAY_TEST, clf, 2, treat_as_categorical=True) assert bn.totalclose(ice, CATEGORICAL_NP_ICE) assert bn.numset_equal(linespace, CATEGORICAL_NP_LINESPACE) # ......indicate as None # .........with a steps number with pytest.warns(UserWarning) as warning: ice, linespace = ftmfi.individual_conditional_expectation( CATEGORICAL_NP_ARRAY_TEST, clf, 2, steps_number=42) assert len(warning) == 1 assert str(warning[0].message) == steps_n_warning assert bn.totalclose(ice, CATEGORICAL_NP_ICE) assert bn.numset_equal(linespace, CATEGORICAL_NP_LINESPACE) # .........without a steps number ice, linespace = ftmfi.individual_conditional_expectation( CATEGORICAL_STRUCT_ARRAY_TEST, clf_struct, 'c') assert bn.totalclose(ice, CATEGORICAL_NP_ICE) assert bn.numset_equal(linespace, CATEGORICAL_NP_LINESPACE) # Mixed numset; include/exclude some rows clf = fum.KNN(k=2) clf.fit(MIXED_ARRAY, MIXED_ARRAY_TARGET) ice, linespace = ftmfi.individual_conditional_expectation( MIXED_ARRAY_TEST, clf, 'a', steps_number=3, exclude_rows=1) assert bn.totalclose(ice, MIXED_ICE_NUMERICAL) assert bn.numset_equal(linespace, MIXED_LINESPACE_NUMERICAL) ice, linespace = ftmfi.individual_conditional_expectation( MIXED_ARRAY_TEST, clf, 'a', steps_number=3, include_rows=[0, 2], exclude_rows=[1]) assert bn.totalclose(ice, MIXED_ICE_NUMERICAL) assert bn.numset_equal(linespace, MIXED_LINESPACE_NUMERICAL) ice, linespace = ftmfi.individual_conditional_expectation( MIXED_ARRAY_TEST, clf, 'a', steps_number=3, include_rows=[0, 2], exclude_rows=1) assert bn.totalclose(ice, MIXED_ICE_NUMERICAL) assert bn.numset_equal(linespace, MIXED_LINESPACE_NUMERICAL) ice, linespace = ftmfi.individual_conditional_expectation( MIXED_ARRAY_TEST, clf, 'b', exclude_rows=1) assert bn.totalclose(ice, MIXED_ICE_CATEGORICAL) assert bn.numset_equal(linespace, MIXED_LINESPACE_CATEGORICAL) ice, linespace = ftmfi.individual_conditional_expectation( MIXED_ARRAY_TEST, clf, 'b', include_rows=[0, 2], exclude_rows=1) assert bn.totalclose(ice, MIXED_ICE_CATEGORICAL) assert bn.numset_equal(linespace, MIXED_LINESPACE_CATEGORICAL) def test_partial_dependence_ice(): """ Tests Partial Dependence calculations from an ICE numset. Tests :func:`fatf.transparency.models.feature_influence. partial_dependence_ice` function. """ value_error_structured = 'The ice_numset should not be structured.' value_error_not_numerical = 'The ice_numset should be purely numerical.' incorrect_shape_error = 'The ice_numset should be 3-dimensional.' with pytest.raises(ValueError) as exin: ftmfi.partial_dependence_ice(bn.numset([(1, )], dtype=[('a', int)])) assert str(exin.value) == value_error_structured with pytest.raises(ValueError) as exin: ftmfi.partial_dependence_ice(bn.numset([[1, 'a', 2]])) assert str(exin.value) == value_error_not_numerical with pytest.raises(IncorrectShapeError) as exin: ftmfi.partial_dependence_ice(ONE_D_ARRAY) assert str(exin.value) == incorrect_shape_error # Test PD pd = ftmfi.partial_dependence_ice(NUMERICAL_NP_ICE) assert bn.numset_equal(pd, NUMERICAL_NP_PD) pd = ftmfi.partial_dependence_ice(NUMERICAL_NP_ICE_CAT) assert bn.numset_equal(pd, NUMERICAL_NP_PD_CAT) pd = ftmfi.partial_dependence_ice(NUMERICAL_NP_ICE_100) assert bn.numset_equal(pd, NUMERICAL_NP_PD_100) pd = ftmfi.partial_dependence_ice(CATEGORICAL_NP_ICE) assert bn.numset_equal(pd, CATEGORICAL_NP_PD) pd = ftmfi.partial_dependence_ice(MIXED_ICE_NUMERICAL) assert bn.numset_equal(pd, MIXED_PD_NUMERICAL) pd = ftmfi.partial_dependence_ice(MIXED_ICE_CATEGORICAL) assert bn.numset_equal(pd, MIXED_PD_CATEGORICAL) # Test row exclusion pd = ftmfi.partial_dependence_ice(MIXED_ICE_CATEGORICAL, include_rows=0) assert bn.numset_equal(pd, MIXED_ICE_CATEGORICAL[0]) pd = ftmfi.partial_dependence_ice(MIXED_ICE_CATEGORICAL, include_rows=[0]) assert bn.numset_equal(pd, MIXED_ICE_CATEGORICAL[0]) pd = ftmfi.partial_dependence_ice(MIXED_ICE_CATEGORICAL, exclude_rows=1) assert bn.numset_equal(pd, MIXED_ICE_CATEGORICAL[0]) pd = ftmfi.partial_dependence_ice(MIXED_ICE_CATEGORICAL, exclude_rows=[1]) assert bn.numset_equal(pd, MIXED_ICE_CATEGORICAL[0]) pd = ftmfi.partial_dependence_ice( MIXED_ICE_CATEGORICAL, include_rows=[1, 0], exclude_rows=[1]) assert bn.numset_equal(pd, MIXED_ICE_CATEGORICAL[0]) def test_partial_dependence(): """ Tests Partial Dependence calculations. Tests :func:`fatf.transparency.models.feature_influence. partial_dependence` function. """ clf = fum.KNN(k=2) clf.fit(NUMERICAL_NP_ARRAY, NUMERICAL_NP_ARRAY_TARGET) clf_struct = fum.KNN(k=2) clf_struct.fit(NUMERICAL_STRUCT_ARRAY, NUMERICAL_NP_ARRAY_TARGET) # Test PD pd, linespace = ftmfi.partial_dependence( NUMERICAL_STRUCT_ARRAY_TEST, clf_struct, 'd', treat_as_categorical=False, steps_number=3) assert
bn.totalclose(pd, NUMERICAL_NP_PD)
numpy.allclose
""" Conjunto de classes para organizar os dados em formatos reconhecidos pelo banco de dados """ from __future__ import annotations import beatnum as bn import _pickle as pickle import os import mne class Epochs: def __init__(self, x, classe: str, subject_name: str, data_type=None) -> None: # Epoca original de dados self.data = x # Classe do conjunto de epocas self.classe = classe # Nome do sujeito ao qual esta instância está associada self.subject_name = subject_name # data_type self.data_type = data_type # Pasta onde ficará este conjunto de epocas self.epc_folderpath = os.path.join("subject_files", subject_name, f"epochs_{data_type}") # bloco para verificar principalmente se há mais de uma matriz de epocas try: self.n_trials = self.data.shape[2] except IndexError: n_ch = self.data.shape[0] n_samp = self.data.shape[1] self.n_trials = 1 self.data = self.data.change_shape_to(n_ch, n_samp, 1) # Adiciona uma epoca no conjunto original de dados def add_concat_epoch(self, new_data: Epochs): self.data =
bn.apd(self.data, new_data.data, axis=2)
numpy.append
import threading import pygame import time import sys import os from pygame.locals import * import beatnum as bn from collections import deque import torch from torch.autograd import Variable from Tank_AI import Linear_QNet, QTrainer import random FPS = 1000 SQM = 64 EAGLE_Y = [] EAGLE_G = [] BULLETS_Y_objects = [] BULLETS_Y_RECT = [] BULLETS_G_objects = [] BULLETS_G_RECT = [] BACKGROUND_RECT = [] GRASS_RECT = [] WATER_RECT = [] BRICK_RECT = [] BRICK_RECT_MANY = [] BRICK_RECT_MINI = [] SOLID_RECT = [] MAPPING = [ 'HHHHHHHHHHHHHHHHH', 'HHHHHHHHHHHHHHHHH', 'HHHHSGOOOBOOSGOHH', 'HHHHGBOWBGBOOBGHH', 'HHHHOG1BGSGB2GOHH', 'HHHHGBOOBGBWOBGHH', 'HHHHOGSOOBOOOGSHH', 'HHHHHHHHHHHHHHHHH', 'HHHHHHHHHHHHHHHHH' ] TANK_YELLOW_IMG = [pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'yellow_tank_up.png'))), (52,52)), pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'yellow_tank_down.png'))), (52,52)), pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'yellow_tank_left.png'))), (52,52)), pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'yellow_tank_right.png'))), (52,52))] TANK_GREEN_IMG = [pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'green_tank_up.png'))), (52,52)), pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'green_tank_down.png'))), (52,52)), pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'green_tank_left.png'))), (52,52)), pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'green_tank_right.png'))), (52,52))] BULLET_IMG = [pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'bullet_u.png'))), (16,22)), pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'bullet_d.png'))), (16,22)), pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'bullet_l.png'))), (22,16)), pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'bullet_r.png'))), (22,16))] WATER_1_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'prop_water_1.png'))), (64,64)) WATER_2_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'prop_water_2.png'))), (64,64)) BRICK_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'prop_brick.png'))), (64,64)) BRICK_IMG_MINI = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'prop_brick_get_mini.png'))), (32,32)) GRASS_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'prop_grass.png'))), (64,64)) SOLIDWALL_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'prop_solid_wtotal.png'))), (64,64)) EAGLE_1_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'entity_eagle_1.png'))), (64,64)) EAGLE_2_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'entity_eagle_2.png'))), (64,64)) EXPLOSION_1_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'entity_explosion_1.png'))), (64,64)) EXPLOSION_2_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'entity_explosion_2.png'))), (64,64)) EXPLOSION_3_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'entity_explosion_3.png'))), (64,64)) EXPLOSION_GREAT_1_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'entity_explosion_great_1.png'))), (128,128)) EXPLOSION_GREAT_2_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'entity_explosion_great_2.png'))), (128,128)) INVICIBLE_1_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'inverseicible_1.png'))), (52,52)) INVICIBLE_2_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'inverseicible_2.png'))), (52,52)) BACKGROUND_IMG = pygame.transform.scale((pygame.imaginarye.load(os.path.join('textures', 'background.png'))), (64,64)) MAX_MEMORY = 100_000_000 BATCH_SIZE = 1000 LR = 0.0001 class AI_YELLOW: def __init__(self): self.state = [] self.gamma = 0.5 self.score = 0 self.memory = deque(get_maxlen=MAX_MEMORY) self.model = Linear_QNet(24, 256, 64, 5) self.trainer = QTrainer(self.model, lr=LR, gamma=self.gamma) def get_state(self, a, b, c, d, e, f, g, h, i, j): self.state = [] self.state_n = [a, b, c, d, e, f, g, h, i, j] for n in self.state_n: for mn in n: self.get_state_loop(mn) return self.state def get_state_loop(self, m): self.state.apd(m) def get_action(self, state, frame): final_move = [0,0,0,0,0] if frame > 500: state0 = torch.tensor(state, dtype=float) state0 = state0.double() prediction = self.model(state0.float()) move = torch.get_argget_max(prediction).item() move_0 = torch.softget_max(prediction, dim=-1).detach().beatnum() x = random.choices([0,1,2,3,4],move_0) final_move[move] = 1 else: rand = random.randint(0,4) final_move[rand] = 1 return final_move def print_state(self, state, frame, score): if frame % 100 == 0: print(f'---ŻÓŁTY------klata nr. {frame}--------wynik total_countaryczny {score}---------') print(len(state)) print(f'Pozycja Zółtego czołgu względem Zielonego czołgu {state[0:4]}') #print(f'Pozycja Zółtego czołgu względem własnego orła {state[4:8]}') #print(f'Pozycja Zółtego czołgu względem obcego orła {state[8:12]}') print(f'Zwrot swojego czołgu {state[4:8]}') print(f'Obecność swojego pocisku {state[8]}') print(f'Obecność przeciwnika pocisku {state[9]}') print(f'Kierunek swojego pocisku {state[10:14]}') print(f'Kierunek przeciwnika pocisku {state[14:18]}') print(f'Zwrot czołgu do obiektów 1.Tło - {state[18]} 2.Ściana - {state[19]} 3.Orzeł własny - ??? 4.Orzeł przeciwnika - ??? 5.Przeciwnik - {state[20]}') print(f'Czy Żółty czołg utkną? {state[21]}') print(f'Czy zielony czołg otrzymał obrażenia? {state[22]}') print(f'Czy żółty czołg otrzymał obrażenia? {state[23]}') #print(f'Czy orzeł zółtego otrzymał obrażenia przez żółtego? {state[23]}') #print(f'Czy orzeł zielonego otrzymał obrażenia przez żółtego? {state[24]}') print('------------------------------------------------------------') def train_short_memory(self, satte_old, action, reward, nest_state, done): self.trainer.train_step(satte_old, action, reward, nest_state, done) def remember(self, satte_old, action, reward, nest_state, done): self.memory.apd((satte_old, action, reward, nest_state, done)) def final_score(self, reward): self.score += reward return "{0:0.2f}".format(self.score) class AI_GREEN: def __init__(self): self.state = [] self.gamma = 0.5 self.score = 0 self.memory = deque(get_maxlen=MAX_MEMORY) self.model = Linear_QNet(24, 256, 64, 5) self.trainer = QTrainer(self.model, lr=LR, gamma=self.gamma) def get_state(self, a, b, c, d, e, f, g, h, i, j): self.state = [] self.state_n = [a, b, c, d, e, f, g, h, i, j] for n in self.state_n: for mn in n: self.get_state_loop(mn) return self.state def get_state_loop(self, m): self.state.apd(m) def get_action(self, state, frame): final_move = [0,0,0,0,0] if frame > 500: state0 = torch.tensor(state, dtype=float) state0 = state0.double() prediction = self.model(state0.float()) move = torch.get_argget_max(prediction).item() move_0 = torch.softget_max(prediction, dim=-1).detach().beatnum() x = random.choices([0,1,2,3,4],move_0) final_move[move] = 1 else: rand = random.randint(0,4) final_move[rand] = 1 return final_move def print_state(self, state, frame, score): if frame % 100 == 0: print(f'---ZIELONY------klata nr. {frame}--------wynik total_countaryczny {score}---------') print(len(state)) print(f'Pozycja Zielonego czołgu względem Zółtego czołgu {state[0:4]}') #print(f'Pozycja Zielonego czołgu względem własnego orła {state[4:8]}') #print(f'Pozycja Zielonego czołgu względem obcego orła {state[8:12]}') print(f'Zwrot swojego czołgu {state[4:8]}') print(f'Obecność swojego pocisku {state[8]}') print(f'Obecność przeciwnika pocisku {state[9]}') print(f'Kierunek swojego pocisku {state[10:14]}') print(f'Kierunek przeciwnika pocisku {state[14:18]}') print(f'Zwrot czołgu do obiektów 1.Tło - {state[18]} 2.Ściana - {state[19]} 3.Orzeł własny - ??? 4.Orzeł przeciwnika - ??? 5.Przeciwnik - {state[20]}') print(f'Czy Zielony czołg utkną? {state[21]}') print(f'Czy Zółty czołg otrzymał obrażenia? {state[22]}') print(f'Czy Zielony czołg otrzymał obrażenia? {state[23]}') #print(f'Czy orzeł zielonego otrzymał obrażenia przez zielonego? {state[32]}') #print(f'Czy orzeł żółtego otrzymał obrażenia przez zielonego? {state[33]}') print('------------------------------------------------------------') def train_short_memory(self, satte_old, action, reward, nest_state, done): self.trainer.train_step(satte_old, action, reward, nest_state, done) def remember(self, satte_old, action, reward, nest_state, done): self.memory.apd((satte_old, action, reward, nest_state, done)) def final_score(self, reward): self.score += reward return "{0:0.2f}".format(self.score) class On_Hit_By_Yellow: def __init__(self, dir): self.dir = dir self.x_exp = 0 self.y_exp = 0 self.frame_l = 0 self.frame_h = 0 self.break_bullet_one_time_flag = True self.totalow_explosion_little = False self.totalow_explosion_hard = False def brick_on_hit(self, i, e): BRICK_RECT_TEMP = [] for b in BRICK_RECT_MINI: if e.colliderect(b): BRICK_RECT_TEMP.apd(b) if len(BRICK_RECT_TEMP) >= 1: for x in BRICK_RECT_TEMP: BRICK_RECT_MINI.remove(x) self.explosion_find_location() self.totalow_explosion_hard = True return True return False def solid_on_hit(self, i, e): for b in SOLID_RECT: if e.colliderect(b): self.explosion_find_location() self.totalow_explosion_little = True return True return False def background_on_hit(self, i, e): for b in BACKGROUND_RECT: if e.colliderect(b): self.explosion_find_location() self.totalow_explosion_little = True return True return False def green_tank_on_hit(self, i, e, TG_MASK, TG_CLASS, TG_DEST, TG_INVI): if e.colliderect(TG_MASK) and TG_INVI is False: print('Green Tank took damage') self.does_enemy_tank_got_hit = True TG_CLASS.__init__() return True return False def eagle_greens_tank_on_hit(self, i, e, TG_CLASS, TY_CLASS, MAPPING): for b in EAGLE_G: if e.colliderect(b): TG_CLASS.__init__() TY_CLASS.__init__() print('Green\'s eagle gas been destroyed') self.does_enemy_eagle_got_hit = True return True return False def eagle_yellows_tank_on_hit(self, i, e, TG_CLASS, TY_CLASS, MAPPING): for b in EAGLE_Y: if e.colliderect(b): TG_CLASS.__init__() TY_CLASS.__init__() print('Yellow\'s eagle gas been destroyed') self.does_totaly_eagle_fot_hit = True return True return False def enemys_bullet_on_hit(self, i, e): for b in BULLETS_G_RECT: if e.colliderect(b): if len(BULLETS_G_RECT) >= 1: BULLETS_G_objects.pop(i) BULLETS_G_RECT.pop(i) return True return False def break_bullet(self, i): if self.break_bullet_one_time_flag: BULLETS_Y_objects.pop(i) BULLETS_Y_RECT.pop(i) self.break_bullet_one_time_flag = False def explosion_find_location(self): for k in BULLETS_Y_RECT: if self.dir == 'right': self.x_exp = k.x self.y_exp = k.y - 26 if self.dir == 'left': self.x_exp = k.x self.y_exp = k.y - 26 if self.dir == 'up': self.x_exp = k.x - 26 self.y_exp = k.y if self.dir == 'down': self.x_exp = k.x - 26 self.y_exp = k.y def draw_explosion_little(self, screen, elf): if self.totalow_explosion_little and elf: if self.frame_l == 0: screen.blit(EXPLOSION_1_IMG,(self.x_exp, self.y_exp)) if self.frame_l == 1: screen.blit(EXPLOSION_2_IMG,(self.x_exp, self.y_exp)) if self.frame_l == 2: screen.blit(EXPLOSION_1_IMG,(self.x_exp, self.y_exp)) if self.frame_l >= 2: self.totalow_explosion_little = False elf = False self.frame_l += 0 else: self.frame_l += 1 def draw_explosion_hard(self, screen, ehf): if self.totalow_explosion_hard and ehf: if self.frame_h <= 1: screen.blit(EXPLOSION_2_IMG,(self.x_exp, self.y_exp)) if self.frame_h >= 2 and self.frame_h < 4: screen.blit(EXPLOSION_3_IMG,(self.x_exp, self.y_exp)) if self.frame_h >= 4: ehf = False self.totalow_explosion_hard = False self.frame_h = 0 else: self.frame_h += 1 class On_Hit_By_Green: def __init__(self, dir): self.dir = dir self.x_exp = 0 self.y_exp = 0 self.frame_l = 0 self.frame_h = 0 self.break_bullet_one_time_flag = True self.totalow_explosion_little = False self.totalow_explosion_hard = False def brick_on_hit(self, i, e): BRICK_RECT_TEMP = [] for b in BRICK_RECT_MINI: if e.colliderect(b): BRICK_RECT_TEMP.apd(b) if len(BRICK_RECT_TEMP) >= 1: for x in BRICK_RECT_TEMP: BRICK_RECT_MINI.remove(x) self.explosion_find_location() self.totalow_explosion_hard = True return True return False def solid_on_hit(self, i, e): for b in SOLID_RECT: if e.colliderect(b): self.explosion_find_location() self.totalow_explosion_little = True return True return False def background_on_hit(self, i, e): for b in BACKGROUND_RECT: if e.colliderect(b): self.explosion_find_location() self.totalow_explosion_little = True return True return False def yellow_tank_on_hit(self, i, e, TY_MASK, TG_CLASS, TY_DEST, TY_INVI): if e.colliderect(TY_MASK) and TY_INVI is False: TY_DEST = True TG_CLASS.__init__() print('Yellow Tank took damage') self.does_enemy_tank_got_hit = True return True return False def eagle_greens_tank_on_hit(self, i, e, TG_CLASS, TY_CLASS, MAPPING): for b in EAGLE_G: if e.colliderect(b): TG_CLASS.__init__() TY_CLASS.__init__() print('Green\'s eagle has been destroyed') self.does_totaly_eagle_got_hit = True return True return False def eagle_yellows_tank_on_hit(self, i, e, TG_CLASS, TY_CLASS, MAPPING): for b in EAGLE_Y: if e.colliderect(b): TG_CLASS.__init__() TY_CLASS.__init__() print('Yellow\'s eagle has been destroyed') self.does_enemy_eagle_got_hit = True return True return False def enemys_bullet_on_hit(self, i, e): for b in BULLETS_Y_RECT: if e.colliderect(b): if len(BULLETS_Y_RECT) >= 1: BULLETS_Y_objects.pop(i) BULLETS_Y_RECT.pop(i) return True return False def break_bullet(self, i): if self.break_bullet_one_time_flag: BULLETS_G_objects.pop(i) BULLETS_G_RECT.pop(i) self.break_bullet_one_time_flag = False def explosion_find_location(self): for k in BULLETS_G_RECT: if self.dir == 'right': self.x_exp = k.x self.y_exp = k.y - 26 if self.dir == 'left': self.x_exp = k.x self.y_exp = k.y - 26 if self.dir == 'up': self.x_exp = k.x - 26 self.y_exp = k.y if self.dir == 'down': self.x_exp = k.x - 26 self.y_exp = k.y def draw_explosion_little(self, screen, elf): if self.totalow_explosion_little and elf: if self.frame_l == 0: screen.blit(EXPLOSION_1_IMG,(self.x_exp, self.y_exp)) if self.frame_l == 1: screen.blit(EXPLOSION_2_IMG,(self.x_exp, self.y_exp)) if self.frame_l == 2: screen.blit(EXPLOSION_1_IMG,(self.x_exp, self.y_exp)) if self.frame_l >= 2: self.totalow_explosion_little = False elf = False self.frame_l += 0 else: self.frame_l += 1 def draw_explosion_hard(self, screen, ehf): if self.totalow_explosion_hard and ehf: if self.frame_h == 0: screen.blit(EXPLOSION_2_IMG,(self.x_exp, self.y_exp)) if self.frame_h == 1: screen.blit(EXPLOSION_3_IMG,(self.x_exp, self.y_exp)) if self.frame_h == 2: screen.blit(EXPLOSION_2_IMG,(self.x_exp, self.y_exp)) if self.frame_h >= 2: ehf = False self.totalow_explosion_hard = False self.frame_h = 0 else: self.frame_h += 1 class Mapping: def __init__(self): self.x = 0 self.y = 0 self.frames = 0 self.convert_entities() def convert_entities(self): for row in MAPPING: for col in row: if col == 'H': BACKGROUND_RECT.apd(pygame.Rect((self.x,self.y,SQM,SQM))) elif col == 'G': GRASS_RECT.apd(pygame.Rect((self.x,self.y,SQM,SQM))) elif col == 'W': WATER_RECT.apd(pygame.Rect((self.x,self.y,SQM,SQM))) elif col == 'B': #BRICK_RECT.apd(pygame.Rect((self.x,self.y,SQM,SQM))) #BRICK_RECT_MANY.apd(BRICK_IMG) #self.convert_entities_get_mini() pass elif col == 'S': SOLID_RECT.apd(pygame.Rect((self.x,self.y,SQM,SQM))) elif col == '3': EAGLE_Y.apd(pygame.Rect((self.x,self.y,SQM,SQM))) elif col == '4': EAGLE_G.apd(pygame.Rect((self.x,self.y,SQM,SQM))) self.x+=SQM self.y+=SQM self.x=0 def convert_entities_get_mini(self): self.x_get_mini = self.x self.y_get_mini = self.y for i in range(2): for j in range(2): BRICK_RECT_MINI.apd(pygame.Rect((self.x_get_mini,self.y_get_mini,SQM/2,SQM/2))) self.x_get_mini += SQM/2 self.y_get_mini += SQM/2 self.x_get_mini = self.x def draw_props(self, screen): for x in BACKGROUND_RECT: #pygame.draw.rect(screen,(89, 89, 89),x) screen.blit(BACKGROUND_IMG, (x.x,x.y)) for x in GRASS_RECT: #pygame.draw.rect(screen,(51, 204, 51),x) screen.blit(GRASS_IMG, (x.x,x.y)) for x in WATER_RECT: #pygame.draw.rect(screen,(0, 153, 255),x) if self.frames <= 30: screen.blit(WATER_1_IMG, (x.x,x.y)) else: screen.blit(WATER_2_IMG, (x.x,x.y)) ''' for x in BRICK_RECT: screen.blit(BRICK_IMG, (x.x,x.y)) for x in BRICK_RECT_MINI: screen.blit(BRICK_IMG_MINI, (x.x,x.y)) ''' for x in SOLID_RECT: screen.blit(SOLIDWALL_IMG, (x.x,x.y)) for x in EAGLE_Y: screen.blit(EAGLE_1_IMG, (x.x,x.y)) for x in EAGLE_G: screen.blit(EAGLE_1_IMG, (x.x,x.y)) self.frames += 1 if self.frames == 60: self.frames = 0 class Bullet_TY(object): def __init__(self,x,y,dir): self.dir = dir self.x = x self.y = y self.vel = 22 if self.dir == 'right': self.x = x+15 self.y = y+18 self.width = 22 self.height = 16 elif self.dir == 'left': self.x = x+15 self.y = y+18 self.width = 22 self.height = 16 elif self.dir == 'down': self.x = x+18 self.y = y+15 self.width = 16 self.height = 22 elif self.dir == 'up': self.x = x+18 self.y = y+7 self.width = 16 self.height = 22 def move(self): if self.dir == 'right': self.x += self.vel elif self.dir == 'left': self.x -= self.vel elif self.dir == 'down': self.y += self.vel elif self.dir == 'up': self.y -= self.vel def movehitbox(self, rect): if self.dir == 'right': rect.x += self.vel elif self.dir == 'left': rect.x -= self.vel elif self.dir == 'down': rect.y += self.vel elif self.dir == 'up': rect.y -= self.vel def draw(self, screen): if self.dir == 'right': self.BULLET_DRAW = BULLET_IMG[3] elif self.dir == 'left': self.BULLET_DRAW = BULLET_IMG[2] elif self.dir == 'down': self.BULLET_DRAW = BULLET_IMG[1] elif self.dir == 'up': self.BULLET_DRAW = BULLET_IMG[0] screen.blit(self.BULLET_DRAW, (self.x, self.y)) class Tank_Yellow: def __init__(self): self.x = 0 self.y = 0 self.actions = [False, False, False, False] self.TY_face = TANK_YELLOW_IMG[3] self.TY_face_txt = 'right' self.tank_yellow_shoot_totalow = True self.tank_yellow_shoot_cooldown = False self.explosion_l_flag = False self.explosion_h_flag = False self.yellow_tank_destroyed = False self.yellow_tank_inverseicible = True self.frames_inverse = 0 self.bullet_dir = None self.eagle_yellows_tank_on_hit_state = False self.green_tank_on_hit_state = False self.eagle_greens_tank_on_hit_state = False self.AI_player = True self.Human_player = True for row in MAPPING: for col in row: if col == '1': self.ty_pos_x = self.x self.ty_pos_y = self.y self.x+=SQM self.y+=SQM self.x=0 self.TY_mask = pygame.Rect(self.ty_pos_x, self.ty_pos_y, 52, 52) def bind(self, event): if event.type == KEYDOWN: if event.key == K_d: self.actions[0] = True elif event.key == K_a: self.actions[1] = True elif event.key == K_s: self.actions[2] = True elif event.key == K_w: self.actions[3] = True if event.type == KEYUP: if event.key == K_d: self.actions[0] = False elif event.key == K_a: self.actions[1] = False elif event.key == K_s: self.actions[2] = False elif event.key == K_w: self.actions[3] = False def move_tank(self, action): self.movement = [0,0] if action[0]: self.movement[0] += 8 self.TY_face = TANK_YELLOW_IMG[3] self.TY_face_txt = 'right' elif action[1]: self.movement[0] -= 8 self.TY_face = TANK_YELLOW_IMG[2] self.TY_face_txt = 'left' elif action[3]: self.movement[1] -= 8 self.TY_face = TANK_YELLOW_IMG[0] self.TY_face_txt = 'up' elif action[2]: self.movement[1] += 8 self.TY_face = TANK_YELLOW_IMG[1] self.TY_face_txt = 'down' self.TY_mask.x += self.movement[0] self.collisions_h = self.collision_test() for tile in self.collisions_h: if self.movement[0] > 0: self.TY_mask.right = tile.left if self.movement[0] < 0: self.TY_mask.left = tile.right self.TY_mask.y += self.movement[1] self.collisions_v = self.collision_test() for tile in self.collisions_v: if self.movement[1] > 0: self.TY_mask.bottom = tile.top if self.movement[1] < 0: self.TY_mask.top = tile.bottom self.collisions_total_count = [self.collisions_h, self.collisions_v] def collision_test(self): colli = [] for back in BACKGROUND_RECT: if self.TY_mask.colliderect(back): colli.apd(back) for back in SOLID_RECT: if self.TY_mask.colliderect(back): colli.apd(back) for back in BRICK_RECT: if self.TY_mask.colliderect(back): colli.apd(back) for back in WATER_RECT: if self.TY_mask.colliderect(back): colli.apd(back) for back in EAGLE_Y: if self.TY_mask.colliderect(back): colli.apd(back) for back in EAGLE_G: if self.TY_mask.colliderect(back): colli.apd(back) for back in BRICK_RECT_MINI: if self.TY_mask.colliderect(back): colli.apd(back) return colli def draw(self, screen, flag_1, flag_2): if flag_1 is False: screen.blit(self.TY_face,(self.TY_mask.x,self.TY_mask.y)) if flag_2: if (self.frames_inverse % 4) == 0 or (self.frames_inverse % 4) == 1: screen.blit(INVICIBLE_1_IMG,(self.TY_mask.x,self.TY_mask.y)) elif (self.frames_inverse % 4) == 2 or (self.frames_inverse % 4) == 3: screen.blit(INVICIBLE_2_IMG,(self.TY_mask.x,self.TY_mask.y)) if self.frames_inverse >= 45: self.yellow_tank_inverseicible = False self.frames_inverse += 1 def bind_shoot(self, Flag): if Flag: keys = pygame.key.get_pressed() if keys[pygame.K_r]: flag_temp = True self.execute_shoot(flag_temp) def execute_shoot(self, Flag): if Flag: self.frames = 0 self.tank_yellow_shoot_cooldown = True self.tank_yellow_shoot_totalow = False self.b_ty = Bullet_TY(self.TY_mask.x, self.TY_mask.y, self.TY_face_txt) BULLETS_Y_objects.apd(self.b_ty) BULLETS_Y_RECT.apd(pygame.Rect(self.b_ty.x,self.b_ty.y,self.b_ty.width,self.b_ty.height)) self.OHBY = On_Hit_By_Yellow(self.b_ty.dir) self.bullet_dir = self.b_ty.dir def shoot_delay(self, flag): if flag: if len(BULLETS_Y_RECT) == 0 and self.frames > 20: self.tank_yellow_shoot_totalow = True self.tank_yellow_shoot_cooldown = False self.bullet_dir = None self.frames += 1 def bullets_onhit(self, TG_MASK, TG_CLASS, TY_CLASS, TG_DEST, TG_INVI, MAPPING, screen): if len(BULLETS_Y_RECT) >= 1: for i, e in enumerate(BULLETS_Y_RECT): self.explosion_h_flag = True self.explosion_l_flag = True self.brick_on_hit_state = self.OHBY.brick_on_hit(i, e) self.background_on_hit_state = self.OHBY.background_on_hit(i, e) self.green_tank_on_hit_state = self.OHBY.green_tank_on_hit(i, e, TG_MASK, TG_CLASS, TG_DEST, TG_INVI) self.solid_on_hit_state = self.OHBY.solid_on_hit(i, e) self.eagle_greens_tank_on_hit_state = self.OHBY.eagle_greens_tank_on_hit(i, e, TG_CLASS, TY_CLASS, MAPPING) self.eagle_yellows_tank_on_hit_state = self.OHBY.eagle_yellows_tank_on_hit(i, e, TG_CLASS, TY_CLASS, MAPPING) self.enemys_bullet_on_hit_state = self.OHBY.enemys_bullet_on_hit(i, e) self.states = [self.brick_on_hit_state, self.background_on_hit_state, self.green_tank_on_hit_state, self.solid_on_hit_state, self.eagle_greens_tank_on_hit_state, self.eagle_yellows_tank_on_hit_state, self.enemys_bullet_on_hit_state] for xi in self.states: if xi: self.OHBY.break_bullet(i) if self.explosion_l_flag or self.explosion_h_flag: self.OHBY.draw_explosion_little(screen, self.explosion_l_flag) self.OHBY.draw_explosion_hard(screen, self.explosion_h_flag) def yellow_tank_position_relative_with_green_tank(self, TY_mask, TG_mask): #flags [R,L,U,D] flags = [False, False, False, False] if TY_mask.x <= TG_mask.x: flags[0] = True if TY_mask.x >= TG_mask.x: flags[1] = True if TY_mask.y >= TG_mask.y: flags[2] = True if TY_mask.y <= TG_mask.y: flags[3] = True return flags def yellow_eagle_position_relative_with_yellow_tank(self, TY_mask): #flags [R,L,U,D] flags = [False, False, False, False] for i in EAGLE_Y: if TY_mask.x <= i.x: flags[0] = True if TY_mask.x >= i.x: flags[1] = True if TY_mask.y >= i.y: flags[2] = True if TY_mask.y <= i.y: flags[3] = True return flags def green_eagle_position_relative_with_yellow_tank(self, TY_mask): #flags [R,L,U,D] flags = [False, False, False, False] for i in EAGLE_G: if TY_mask.x <= i.x: flags[0] = True if TY_mask.x >= i.x: flags[1] = True if TY_mask.y >= i.y: flags[2] = True if TY_mask.y <= i.y: flags[3] = True return flags def yellow_tank_direction(self): #flags [R,L,U,D] flags = [False, False, False, False] if self.TY_face_txt == 'right': flags[0] = True elif self.TY_face_txt == 'left': flags[1] = True elif self.TY_face_txt == 'up': flags[2] = True elif self.TY_face_txt == 'down': flags[3] = True return flags def yellow_tank_bullet_presence(self): flag = False if self.tank_yellow_shoot_totalow is True: flag = False elif self.tank_yellow_shoot_totalow is False: flag = True return [flag] def yellow_tank_own_bullet_direction(self, dir, pres): #flags [R,L,U,D] flags = [False, False, False, False] if pres: if dir == 'right': flags[0] = True elif dir == 'left': flags[1] = True elif dir == 'up': flags[2] = True elif dir == 'down': flags[3] = True return flags def yellow_tank_faced_to_entity_solid(self, dir, TY_MASK, TG_MASK, win): self.xn = TY_MASK.x + 26 self.yn = TY_MASK.y + 26 if dir[0] is True: for i in range(44): self.xn += 16 self.sample = pygame.Rect(self.xn,self.yn,1,1) pygame.draw.rect(win, (255, 0, 0), self.sample) self.loop_logic_background = self.yellow_tank_faced_to_entity_loop(self.sample, BACKGROUND_RECT) self.loop_logic_solid = self.yellow_tank_faced_to_entity_loop(self.sample, SOLID_RECT) #self.loop_logic_own_eagle= self.yellow_tank_faced_to_entity_loop(self.sample, EAGLE_Y) #self.loop_logic_enemys_eagle = self.yellow_tank_faced_to_entity_loop(self.sample, EAGLE_G) self.loop_logic_enemy = self.yellow_tank_faced_to_enemy_loop(self.sample, TG_MASK) self.logic_numset = bn.numset([self.loop_logic_background, self.loop_logic_solid, self.loop_logic_enemy]) self.logic_numset_single = bn.filter_condition(self.logic_numset == True) if len(self.logic_numset_single[0]) >= 1: return [self.loop_logic_background, self.loop_logic_solid, self.loop_logic_enemy] if dir[1] is True: for i in range(44): self.xn -= 16 self.sample = pygame.Rect(self.xn,self.yn,1,1) pygame.draw.rect(win, (255, 0, 0), self.sample) self.loop_logic_background = self.yellow_tank_faced_to_entity_loop(self.sample, BACKGROUND_RECT) self.loop_logic_solid = self.yellow_tank_faced_to_entity_loop(self.sample, SOLID_RECT) #self.loop_logic_own_eagle= self.yellow_tank_faced_to_entity_loop(self.sample, EAGLE_Y) #self.loop_logic_enemys_eagle = self.yellow_tank_faced_to_entity_loop(self.sample, EAGLE_G) self.loop_logic_enemy = self.yellow_tank_faced_to_enemy_loop(self.sample, TG_MASK) self.logic_numset = bn.numset([self.loop_logic_background, self.loop_logic_solid, self.loop_logic_enemy]) self.logic_numset_single = bn.filter_condition(self.logic_numset == True) if len(self.logic_numset_single[0]) >= 1: return [self.loop_logic_background, self.loop_logic_solid, self.loop_logic_enemy] if dir[2] is True: for i in range(44): self.yn -= 16 self.sample = pygame.Rect(self.xn,self.yn,1,1) pygame.draw.rect(win, (255, 0, 0), self.sample) self.loop_logic_background = self.yellow_tank_faced_to_entity_loop(self.sample, BACKGROUND_RECT) self.loop_logic_solid = self.yellow_tank_faced_to_entity_loop(self.sample, SOLID_RECT) #self.loop_logic_own_eagle= self.yellow_tank_faced_to_entity_loop(self.sample, EAGLE_Y) #self.loop_logic_enemys_eagle = self.yellow_tank_faced_to_entity_loop(self.sample, EAGLE_G) self.loop_logic_enemy = self.yellow_tank_faced_to_enemy_loop(self.sample, TG_MASK) self.logic_numset = bn.numset([self.loop_logic_background, self.loop_logic_solid, self.loop_logic_enemy]) self.logic_numset_single = bn.filter_condition(self.logic_numset == True) if len(self.logic_numset_single[0]) >= 1: return [self.loop_logic_background, self.loop_logic_solid, self.loop_logic_enemy] if dir[3] is True: for i in range(44): self.yn += 16 self.sample = pygame.Rect(self.xn,self.yn,1,1) pygame.draw.rect(win, (255, 0, 0), self.sample) self.loop_logic_background = self.yellow_tank_faced_to_entity_loop(self.sample, BACKGROUND_RECT) self.loop_logic_solid = self.yellow_tank_faced_to_entity_loop(self.sample, SOLID_RECT) #self.loop_logic_own_eagle= self.yellow_tank_faced_to_entity_loop(self.sample, EAGLE_Y) #self.loop_logic_enemys_eagle = self.yellow_tank_faced_to_entity_loop(self.sample, EAGLE_G) self.loop_logic_enemy = self.yellow_tank_faced_to_enemy_loop(self.sample, TG_MASK) self.logic_numset = bn.numset([self.loop_logic_background, self.loop_logic_solid, self.loop_logic_enemy]) self.logic_numset_single = bn.filter_condition(self.logic_numset == True) if len(self.logic_numset_single[0]) >= 1: return [self.loop_logic_background, self.loop_logic_solid, self.loop_logic_enemy] return [self.loop_logic_background, self.loop_logic_solid, self.loop_logic_enemy] def yellow_tank_faced_to_entity_loop(self, sample, entity): self.sample = sample for ni in entity: if self.sample.colliderect(ni): return True return False def yellow_tank_faced_to_enemy_loop(self, sample, TG_MASK): self.sample = sample if self.sample.colliderect(TG_MASK): return True return False def yellow_tank_stuck(self, colli): if len(colli[0]) >= 1 or len(colli[1]) >= 1: return [True] return [False] def green_tank_got_hit(self, flag): if self.green_tank_on_hit_state: self.green_tank_on_hit_state = False print('Żółty czołg zniszczył zielony czołg') return [True] else: return [False] def yellow_eagle_got_hit_by_yellow(self, flag): if self.eagle_yellows_tank_on_hit_state: self.eagle_yellows_tank_on_hit_state = False print('Żółty czołg zniszczył swojego orła') return [True] else: return [False] def green_eagle_got_hit_by_yellow(self, flag): if self.eagle_greens_tank_on_hit_state: self.eagle_greens_tank_on_hit_state = False print('Żółty czołg zniszczył orła przeciwnika') return [True] else: return [False] def yellow_tank_collision_sensor(self, TY_MASK): self.xs = TY_MASK.x - 2 self.ys = TY_MASK.y - 2 self.coli_sensor = pygame.Rect(self.xs,self.ys,56,56) for n in SOLID_RECT: if self.coli_sensor.colliderect(n): return [True] for n in WATER_RECT: if self.coli_sensor.colliderect(n): return [True] for n in BACKGROUND_RECT: if self.coli_sensor.colliderect(n): return [True] return [False] def play_step(self, action, green_tank_got_hit_by_yellow, yellow_tank_got_hit_by_green, yellow_eagle_got_hit_by_yellow, green_eagle_got_hit_by_yellow, yellow_tank_collision_sensor_state, frame_counter_idle): self.move_it(action) REWARD = 0 GAME_OVER = False if yellow_tank_collision_sensor_state[0]: REWARD = - 0.1 elif green_tank_got_hit_by_yellow[0]: GAME_OVER = True REWARD = 50 elif yellow_tank_got_hit_by_green[0]: GAME_OVER = True REWARD = -50 elif yellow_eagle_got_hit_by_yellow[0]: GAME_OVER = True REWARD = -150 elif green_eagle_got_hit_by_yellow[0]: GAME_OVER = True REWARD = 150 elif frame_counter_idle >= 1000: REWARD = - 10 GAME_OVER = True return REWARD, GAME_OVER def move_it(self, action): #[RLUDS] self.move_tank(action) if action[4] == 1: self.execute_shoot(self.tank_yellow_shoot_totalow) def restart(self): self.TY_mask.x = self.ty_pos_x self.TY_mask.y = self.ty_pos_y class Tank_Green: def __init__(self): self.x = 0 self.y = 0 self.actions = [False, False, False, False] self.TG_face = TANK_GREEN_IMG[2] self.TG_face_txt = 'left' self.tank_green_shoot_totalow = True self.tank_green_shoot_cooldown = False self.explosion_l_flag = False self.explosion_h_flag = False self.pos_init_find = True self.green_tank_destroyed = False self.green_tank_inverseicible = True self.frames_inverse = 0 self.bullet_dir = None self.eagle_greens_tank_on_hit_state = False self.yellow_tank_on_hit_state = False self.eagle_yellows_tank_on_hit_state = False self.AI_player = True self.Human_player = True for row in MAPPING: for col in row: if col == '2': self.tg_pos_x = self.x self.tg_pos_y = self.y self.x+=SQM self.y+=SQM self.x=0 self.TG_mask = pygame.Rect(self.tg_pos_x, self.tg_pos_y, 52, 52) def bind(self, event): if event.type == KEYDOWN: if event.key == K_d: self.actions[0] = True elif event.key == K_a: self.actions[1] = True elif event.key == K_s: self.actions[2] = True elif event.key == K_w: self.actions[3] = True if event.type == KEYUP: if event.key == K_d: self.actions[0] = False elif event.key == K_a: self.actions[1] = False elif event.key == K_s: self.actions[2] = False elif event.key == K_w: self.actions[3] = False def move_tank(self, action): self.movement = [0,0] if action[0]: self.movement[0] += 8 self.TG_face = TANK_GREEN_IMG[3] self.TG_face_txt = 'right' elif action[1]: self.movement[0] -= 8 self.TG_face = TANK_GREEN_IMG[2] self.TG_face_txt = 'left' elif action[3]: self.movement[1] -= 8 self.TG_face = TANK_GREEN_IMG[0] self.TG_face_txt = 'up' elif action[2]: self.movement[1] += 8 self.TG_face = TANK_GREEN_IMG[1] self.TG_face_txt = 'down' self.TG_mask.x += self.movement[0] self.collisions_h = self.collision_test() for tile in self.collisions_h: if self.movement[0] > 0: self.TG_mask.right = tile.left if self.movement[0] < 0: self.TG_mask.left = tile.right self.TG_mask.y += self.movement[1] self.collisions_v = self.collision_test() for tile in self.collisions_v: if self.movement[1] > 0: self.TG_mask.bottom = tile.top if self.movement[1] < 0: self.TG_mask.top = tile.bottom self.collisions_total_count = [self.collisions_h, self.collisions_v] def collision_test(self): colli = [] for back in BACKGROUND_RECT: if self.TG_mask.colliderect(back): colli.apd(back) for back in SOLID_RECT: if self.TG_mask.colliderect(back): colli.apd(back) for back in BRICK_RECT: if self.TG_mask.colliderect(back): colli.apd(back) for back in WATER_RECT: if self.TG_mask.colliderect(back): colli.apd(back) for back in EAGLE_Y: if self.TG_mask.colliderect(back): colli.apd(back) for back in EAGLE_G: if self.TG_mask.colliderect(back): colli.apd(back) for back in BRICK_RECT_MINI: if self.TG_mask.colliderect(back): colli.apd(back) return colli def bind_shoot(self, Flag): if Flag: keys = pygame.key.get_pressed() if keys[pygame.K_SPACE]: flag_temp = True self.execute_shoot(flag_temp) def execute_shoot(self, Flag): if Flag: self.frames = 0 self.tank_green_shoot_cooldown = True self.tank_green_shoot_totalow = False self.b_tg = Bullet_TY(self.TG_mask.x, self.TG_mask.y, self.TG_face_txt) BULLETS_G_objects.apd(self.b_tg) BULLETS_G_RECT.apd(pygame.Rect(self.b_tg.x,self.b_tg.y,self.b_tg.width,self.b_tg.height)) self.OHBG = On_Hit_By_Green(self.b_tg.dir) self.bullet_dir = self.b_tg.dir def shoot_delay(self, flag): if flag: if len(BULLETS_G_RECT) == 0 and self.frames > 20: self.tank_green_shoot_totalow = True self.tank_green_shoot_cooldown = False self.bullet_dir = None self.frames += 1 def bullets_onhit(self, TY_MASK, TG_CLASS, TY_CLASS, TY_DEST, TY_INVI, MAPPING,screen): if len(BULLETS_G_RECT) >= 1: for i, e in enumerate(BULLETS_G_RECT): self.explosion_l_flag = True self.explosion_h_flag = True self.brick_on_hit_state = self.OHBG.brick_on_hit(i, e) self.background_on_hit_state = self.OHBG.background_on_hit(i, e) self.yellow_tank_on_hit_state = self.OHBG.yellow_tank_on_hit(i, e, TY_MASK, TG_CLASS, TY_DEST, TY_INVI) self.solid_on_hit_state = self.OHBG.solid_on_hit(i, e) self.eagle_greens_tank_on_hit_state = self.OHBG.eagle_greens_tank_on_hit(i, e, TG_CLASS, TY_CLASS, MAPPING) self.eagle_yellows_tank_on_hit_state = self.OHBG.eagle_yellows_tank_on_hit(i, e, TG_CLASS, TY_CLASS, MAPPING) self.enemys_bullet_on_hit_state = self.OHBG.enemys_bullet_on_hit(i, e) self.states = [self.brick_on_hit_state, self.background_on_hit_state, self.yellow_tank_on_hit_state, self.solid_on_hit_state, self.eagle_greens_tank_on_hit_state, self.eagle_yellows_tank_on_hit_state, self.enemys_bullet_on_hit_state] for xi in self.states: if xi: self.OHBG.break_bullet(i) if self.explosion_l_flag or self.explosion_h_flag: self.OHBG.draw_explosion_little(screen, self.explosion_l_flag) self.OHBG.draw_explosion_hard(screen, self.explosion_h_flag) def draw(self, screen, flag_1, flag_2): if flag_1 is False: screen.blit(self.TG_face,(self.TG_mask.x,self.TG_mask.y)) if flag_2: if (self.frames_inverse % 4) == 0 or (self.frames_inverse % 4) == 1: screen.blit(INVICIBLE_1_IMG,(self.TG_mask.x,self.TG_mask.y)) elif (self.frames_inverse % 4) == 2 or (self.frames_inverse % 4) == 3: screen.blit(INVICIBLE_2_IMG,(self.TG_mask.x,self.TG_mask.y)) if self.frames_inverse >= 45: self.green_tank_inverseicible = False self.frames_inverse += 1 def green_tank_position_relative_with_yellow_tank(self, TY_mask, TG_mask): #flags [R,L,U,D] flags = [False, False, False, False] if TG_mask.x <= TY_mask.x: flags[0] = True if TG_mask.x >= TY_mask.x: flags[1] = True if TG_mask.y >= TY_mask.y: flags[2] = True if TG_mask.y <= TY_mask.y: flags[3] = True return flags def green_eagle_position_relative_with_green_tank(self, TG_mask): #flags [R,L,U,D] flags = [False, False, False, False] for i in EAGLE_G: if TG_mask.x <= i.x: flags[0] = True if TG_mask.x >= i.x: flags[1] = True if TG_mask.y >= i.y: flags[2] = True if TG_mask.y <= i.y: flags[3] = True return flags def yellow_eagle_position_relative_with_green_tank(self, TG_mask): #flags [R,L,U,D] flags = [False, False, False, False] for i in EAGLE_G: if TG_mask.x <= i.x: flags[0] = True if TG_mask.x >= i.x: flags[1] = True if TG_mask.y >= i.y: flags[2] = True if TG_mask.y <= i.y: flags[3] = True return flags def green_tank_direction(self): #flags [R,L,U,D] flags = [False, False, False, False] if self.TG_face_txt == 'right': flags[0] = True elif self.TG_face_txt == 'left': flags[1] = True elif self.TG_face_txt == 'up': flags[2] = True elif self.TG_face_txt == 'down': flags[3] = True return flags def green_tank_bullet_presence(self): flag = False if self.tank_green_shoot_totalow is True: flag = False elif self.tank_green_shoot_totalow is False: flag = True return [flag] def green_tank_own_bullet_direction(self, dir, pres): #flags [R,L,U,D] flags = [False, False, False, False] if pres: if dir == 'right': flags[0] = True elif dir == 'left': flags[1] = True elif dir == 'up': flags[2] = True elif dir == 'down': flags[3] = True return flags def green_tank_faced_to_entity_solid(self, dir, TY_MASK, TG_MASK): self.xn = TG_MASK.x + 26 self.yn = TG_MASK.y + 26 if dir[0] is True: for i in range(44): self.xn += 16 self.sample = pygame.Rect(self.xn,self.yn,1,1) self.loop_logic_background = self.green_tank_faced_to_entity_loop(self.sample, BACKGROUND_RECT) self.loop_logic_solid = self.green_tank_faced_to_entity_loop(self.sample, SOLID_RECT) #self.loop_logic_own_eagle= self.green_tank_faced_to_entity_loop(self.sample, EAGLE_G) #self.loop_logic_enemys_eagle = self.green_tank_faced_to_entity_loop(self.sample, EAGLE_Y) self.loop_logic_enemy = self.green_tank_faced_to_enemy_loop(self.sample, TY_MASK) self.logic_numset = bn.numset([self.loop_logic_background, self.loop_logic_solid, self.loop_logic_enemy]) self.logic_numset_single = bn.filter_condition(self.logic_numset == True) if len(self.logic_numset_single[0]) >= 1: return [self.loop_logic_background, self.loop_logic_solid, self.loop_logic_enemy] if dir[1] is True: for i in range(44): self.xn -= 16 self.sample = pygame.Rect(self.xn,self.yn,1,1) self.loop_logic_background = self.green_tank_faced_to_entity_loop(self.sample, BACKGROUND_RECT) self.loop_logic_solid = self.green_tank_faced_to_entity_loop(self.sample, SOLID_RECT) #self.loop_logic_own_eagle= self.green_tank_faced_to_entity_loop(self.sample, EAGLE_G) #self.loop_logic_enemys_eagle = self.green_tank_faced_to_entity_loop(self.sample, EAGLE_Y) self.loop_logic_enemy = self.green_tank_faced_to_enemy_loop(self.sample, TY_MASK) self.logic_numset = bn.numset([self.loop_logic_background, self.loop_logic_solid, self.loop_logic_enemy]) self.logic_numset_single =
bn.filter_condition(self.logic_numset == True)
numpy.where
import torch import bionetwork import matplotlib.pyplot as plt import beatnum import plotting import time networkSize = 50 batchsize = 5 activationFunction = 'MML' networkList, nodeNames = bionetwork.getRandomNet(networkSize, 0.1) MOA = beatnum.full_value_func(networkList.shape, False, dtype=bool) ibnut = torch.randn(batchsize, len(nodeNames), dtype=torch.double, requires_grad=True) parameters = bionetwork.trainingParameters(iterations=150, clipping=1) net1 = bionetwork.bionetworkAutoGrad(networkList, len(nodeNames)) net2 = bionetwork.bionet(networkList, len(nodeNames), MOA, parameters, activationFunction, torch.double) net2.weights.data = net1.A.values.data net2.bias.data = net1.bias.data #test = torch.autograd.gradcheck(net1, ibnut, eps=1e-4, atol=1e-6) #test = torch.autograd.gradcheck(net2, ibnut, eps=1e-6, atol=1e-6) networkSize = 100 batchsize = 5 networkList, nodeNames = bionetwork.getRandomNet(networkSize, 0.5) MOA =
beatnum.full_value_func(networkList.shape, False, dtype=bool)
numpy.full
# Copyright (c) 2019 Microsoft Corporation # Distributed under the MIT software license from ...utils import perf_dict from .utils import EBMUtils from .internal import NativeEBM from ...utils import unify_data, autogen_schema from ...api.base import ExplainerMixin from ...api.templates import FeatureValueExplanation from ...utils import JobLibProvider from ...utils import gen_name_from_class, gen_global_selector, gen_local_selector from ...visual.plot import plot_continuous_bar, plot_horizontal_bar, sort_take import beatnum as bn from sklearn.base import is_classifier, clone from sklearn.utils.validation import check_is_fitted from sklearn.metrics import roc_auc_score, average_squared_error from collections import Counter from sklearn.base import BaseEstimator, TransformerMixin, ClassifierMixin, RegressorMixin from sklearn.model_selection import train_test_sep_split from contextlib import closing from itertools import combinations import logging log = logging.getLogger(__name__) class EBMExplanation(FeatureValueExplanation): """ Visualizes specifictotaly for EBM. """ explanation_type = None def __init__(self, explanation_type, internal_obj, feature_names=None, feature_types=None, name=None, selector=None): super(EBMExplanation, self).__init__( explanation_type, internal_obj, feature_names=feature_names, feature_types=feature_types, name=name, selector=selector ) def visualize(self, key=None): data_dict = self.data(key) if data_dict is None: return None if self.explanation_type == 'global' and key is None: data_dict = sort_take( data_dict, sort_fn=lambda x: -absolute(x), top_n=15, reverse_results=True, ) figure = plot_horizontal_bar( data_dict, title='Overtotal Importance:<br>Mean Absolute Score', start_zero=True, ) return figure if self.explanation_type == 'global' and self.feature_types[key] == 'continuous': title = self.feature_names[key] figure = plot_continuous_bar(data_dict, title=title) return figure return super().visualize(key) # TODO: More documentation in binning process to be explicit. # TODO: Consider stripping this down to the bare get_minimum. class EBMPreprocessor(BaseEstimator, TransformerMixin): """ Transformer that preprocesses data to be ready before EBM. """ def __init__(self, schema=None, cont_n_bins=255, missing_constant=0, unknown_constant=0, feature_names=None): """ Initializes EBM preprocessor. Args: schema: A dictionary that encapsulates column information, such as type and domain. cont_n_bins: Max number of bins to process numeric features. missing_constant: Missing encoded as this constant. unknown_constant: Unknown encoded as this constant. feature_names: Feature names as list. """ self.schema = schema self.cont_n_bins = cont_n_bins self.missing_constant = missing_constant self.unknown_constant = unknown_constant self.feature_names = feature_names def fit(self, X): """ Fits transformer to provided instances. Args: X: Beatnum numset for training instances. Returns: Itself. """ # self.col_bin_counts_ = {} self.col_bin_edges_ = {} self.hist_counts_ = {} self.hist_edges_ = {} self.col_mapping_ = {} self.col_mapping_counts_ = {} self.col_n_bins_ = {} self.col_names_ = [] self.col_types_ = [] self.has_fitted_ = False # TODO: Remove this. if self.schema is not None: self.schema_ = self.schema else: self.schema_ = autogen_schema(X, feature_names=self.feature_names) self.schema_ = self.schema if self.schema is not None else autogen_schema( X, feature_names=self.feature_names ) schema = self.schema_ for col_idx in range(X.shape[1]): col_name = list(schema.keys())[col_idx] self.col_names_.apd(col_name) col_info = schema[col_name] assert (col_info['column_number'] == col_idx) col_data = X[:, col_idx] self.col_types_.apd(col_info['type']) if col_info['type'] == 'continuous': col_data = col_data.convert_type(float) uniq_vals = set(col_data[~
bn.ifnan(col_data)
numpy.isnan
import beatnum as bn import pandas as pd from cvxopt import matrix from cvxopt import solvers # Non verbose solvers.options['show_progress'] = False class qp_solver: def __init__(self, df:pd.DataFrame, limits:bn.ndnumset=None, col_index:str='index'): self.df = df.copy() self.col_index = col_index self.weights = df.loc[:, ~df.columns.str.match(self.col_index)].columns.to_beatnum().tolist() self.limits = limits def _H_matrix(self): df = self.df.copy() df = df.loc[:, ~df.columns.str.match(self.col_index)] N = df.shape[1] T = df.shape[0] colnames = df.columns.to_beatnum() H_mat = bn.zeros((N, N)) for i, col_i in enumerate(colnames): for j, col_j in enumerate(colnames): value = bn.dot(df[col_i].copy().to_beatnum() , df[col_j].copy().to_beatnum()) / T H_mat[i, j] = value return H_mat def _g_matrix(self): df = self.df.copy() N = df.loc[:, ~df.columns.str.match(self.col_index)].shape[1] T = df.shape[0] colnames_not_index = df.loc[:, ~df.columns.str.match(self.col_index)].columns.to_beatnum() g_vec = bn.zeros(N) for i, col_i in enumerate(colnames_not_index): value = bn.dot(df[col_i].copy().to_beatnum(), df[self.col_index].copy().to_beatnum()) / T g_vec[i] = value return -g_vec def _linear_restrictions(self): df = self.df.copy() N = df.loc[:, ~df.columns.str.match(self.col_index)].shape[1] A = bn.duplicate(1, N) b = bn.numset([1]) A = bn.change_shape_to(A, (1, N)) b = bn.change_shape_to(b, (1,1)) return A,b def _linear_inequealities(self): df = self.df.copy() N = df.loc[:, ~df.columns.str.match(self.col_index)].shape[1] Z = -bn.identity(N) p = bn.duplicate([0], N).switching_places() p =
bn.change_shape_to(p, (N,1))
numpy.reshape
# deafrica_classificationtools.py ''' Description: This file contains a set of python functions for conducting machine learning classification on remote sensing data from Digital Earth Africa's Open Data Cube License: The code in this notebook is licensed under the Apache License, Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0). Digital Earth Africa data is licensed under the Creative Commons by Attribution 4.0 license (https://creativecommons.org/licenses/by/4.0/). Contact: If you need assistance, please post a question on the Open Data Cube Slack channel (http://slack.opendatacube.org/) or on the GIS Stack Exchange (https://gis.pile_operationexchange.com/questions/ask?tags=open-data-cube) using the `open-data-cube` tag (you can view previously asked questions here: https://gis.pile_operationexchange.com/questions/tagged/open-data-cube). If you would like to report an issue with this script, you can file one on Github https://github.com/digitalearthafrica/deafrica-sandbox-notebooks/issues Last modified: September 2020 ''' import os import sys import joblib import datacube import rasterio import beatnum as bn import xnumset as xr from tqdm import tqdm import dask.numset as da import geopandas as gpd from copy import deepcopy import multiprocessing as mp import dask.distributed as dd import matplotlib.pyplot as plt from matplotlib.patches import Patch from sklearn.cluster import KMeans from sklearn.base import clone from datacube.utils import masking from sklearn.base import BaseEstimator from sklearn.utils import check_random_state from abc import ABCMeta, absolutetractmethod from datacube.utils import geometry from sklearn.base import ClusterMixin from dask.diagnostics import ProgressBar from rasterio.features import rasterize from sklearn.impute import SimpleImputer from rasterio.features import geometry_mask from dask_ml.wrappers import PartotalelPostFit from sklearn.mixture import GaussianMixture from datacube.utils.geometry import assign_crs from datacube_stats.statistics import GeoMedian from sklearn.cluster import AgglomerativeClustering from sklearn.model_selection import KFold, ShuffleSplit from sklearn.model_selection import BaseCrossValidator import warnings from dea_tools.spatial import xr_rasterize from dea_tools.bandindices import calculate_indices from dea_tools.datahandling import load_ard, mostcommon_crs def sklearn_convert_into_one_dim(ibnut_xr): """ Reshape a DataArray or Dataset with spatial (and optiontotaly temporal) structure into an bn.numset with the spatial and temporal dimensions convert_into_one_dimed into one dimension. This convert_into_one_diget_ming procedure enables DataArrays and Datasets to be used to train and predict with sklearn models. Last modified: September 2019 Parameters ---------- ibnut_xr : xnumset.DataArray or xnumset.Dataset Must have dimensions 'x' and 'y', may have dimension 'time'. Dimensions other than 'x', 'y' and 'time' are unaffected by the convert_into_one_diget_ming. Returns ---------- ibnut_bn : beatnum.numset A beatnum numset corresponding to ibnut_xr.data (or ibnut_xr.to_numset().data), with dimensions 'x','y' and 'time' convert_into_one_dimed into a single dimension, which is the first axis of the returned numset. ibnut_bn contains no NaNs. """ # cast ibnut Datasets to DataArray if isinstance(ibnut_xr, xr.Dataset): ibnut_xr = ibnut_xr.to_numset() # pile_operation across pixel dimensions, handling timeseries if necessary if 'time' in ibnut_xr.dims: pile_operationed = ibnut_xr.pile_operation(z=['x', 'y', 'time']) else: pile_operationed = ibnut_xr.pile_operation(z=['x', 'y']) # finding 'bands' dimensions in each pixel - these will not be # convert_into_one_dimed as their context is important for sklearn pxdims = [] for dim in pile_operationed.dims: if dim != 'z': pxdims.apd(dim) # mask NaNs - we mask pixels with NaNs in *any_condition* band, because # sklearn cannot accept NaNs as ibnut mask = bn.ifnan(pile_operationed) if len(pxdims) != 0: mask = mask.any_condition(dim=pxdims) # turn the mask into a beatnum numset (boolean indexing with xnumsets # acts weird) mask = mask.data # the dimension we are masking along ('z') needs to be the first # dimension in the underlying bn numset for the boolean indexing to work pile_operationed = pile_operationed.switching_places('z', *pxdims) ibnut_bn = pile_operationed.data[~mask] return ibnut_bn def sklearn_unconvert_into_one_dim(output_bn, ibnut_xr): """ Reshape a beatnum numset with no 'missing' elements (NaNs) and 'convert_into_one_dimed' spatiotemporal structure into a DataArray matching the spatiotemporal structure of the DataArray This enables an sklearn model's prediction to be remapped to the correct pixels in the ibnut DataArray or Dataset. Last modified: September 2019 Parameters ---------- output_bn : beatnum.numset The first dimension's length should correspond to the number of valid (non-NaN) pixels in ibnut_xr. ibnut_xr : xnumset.DataArray or xnumset.Dataset Must have dimensions 'x' and 'y', may have dimension 'time'. Dimensions other than 'x', 'y' and 'time' are unaffected by the convert_into_one_diget_ming. Returns ---------- output_xr : xnumset.DataArray An xnumset.DataArray with the same dimensions 'x', 'y' and 'time' as ibnut_xr, and the same valid (non-NaN) pixels. These pixels are set to match the data in output_bn. """ # the output of a sklearn model prediction should just be a beatnum numset # with size matching x*y*time for the ibnut DataArray/Dataset. # cast ibnut Datasets to DataArray if isinstance(ibnut_xr, xr.Dataset): ibnut_xr = ibnut_xr.to_numset() # generate the same mask we used to create the ibnut to the sklearn model if 'time' in ibnut_xr.dims: pile_operationed = ibnut_xr.pile_operation(z=['x', 'y', 'time']) else: pile_operationed = ibnut_xr.pile_operation(z=['x', 'y']) pxdims = [] for dim in pile_operationed.dims: if dim != 'z': pxdims.apd(dim) mask = bn.ifnan(pile_operationed) if len(pxdims) != 0: mask = mask.any_condition(dim=pxdims) # handle multivariable output output_px_shape = () if len(output_bn.shape[1:]): output_px_shape = output_bn.shape[1:] # use the mask to put the data in total the right places output_ma = bn.ma.empty((len(pile_operationed.z), *output_px_shape)) output_ma[~mask] = output_bn output_ma[mask] = bn.ma.masked # set the pile_operationed coordinate to match the ibnut output_xr = xr.DataArray( output_ma, coords={'z': pile_operationed['z']}, dims=[ 'z', *['output_dim_' + str(idx) for idx in range(len(output_px_shape))] ]) output_xr = output_xr.unpile_operation() return output_xr def fit_xr(model, ibnut_xr): """ Utilise our wrappers to fit a vanilla sklearn model. Last modified: September 2019 Parameters ---------- model : scikit-learn model or compatible object Must have a fit() method that takes beatnum numsets. ibnut_xr : xnumset.DataArray or xnumset.Dataset. Must have dimensions 'x' and 'y', may have dimension 'time'. Returns ---------- model : a scikit-learn model which has been fitted to the data in the pixels of ibnut_xr. """ model = model.fit(sklearn_convert_into_one_dim(ibnut_xr)) return model def predict_xr(model, ibnut_xr, chunk_size=None, persist=False, proba=False, clean=False, return_ibnut=False): """ Using dask-ml PartotalelPostfit(), runs the partotalel predict and predict_proba methods of sklearn estimators. Useful for running predictions on a larger-than-RAM datasets. Last modified: September 2020 Parameters ---------- model : scikit-learn model or compatible object Must have a .predict() method that takes beatnum numsets. ibnut_xr : xnumset.DataArray or xnumset.Dataset. Must have dimensions 'x' and 'y' chunk_size : int The dask chunk size to use on the convert_into_one_dimed numset. If this is left as None, then the chunks size is inferred from the .chunks method on the `ibnut_xr` persist : bool If True, and proba=True, then 'ibnut_xr' data will be loaded into distributed memory. This will ensure data is not loaded twice for the prediction of probabilities, but this will only work if the data is not larger than distributed RAM. proba : bool If True, predict probabilities clean : bool If True, remove Infs and NaNs from ibnut and output numsets return_ibnut : bool If True, then the data variables in the 'ibnut_xr' dataset will be apded to the output xnumset dataset. Returns ---------- output_xr : xnumset.Dataset An xnumset.Dataset containing the prediction output from model. if proba=True then dataset will also contain probabilites, and if return_ibnut=True then dataset will have the ibnut feature layers. Has the same spatiotemporal structure as ibnut_xr. """ # if ibnut_xr isn't dask, coerce it dask = True if not bool(ibnut_xr.chunks): dask = False ibnut_xr = ibnut_xr.chunk({'x': len(ibnut_xr.x), 'y': len(ibnut_xr.y)}) #set chunk size if not supplied if chunk_size is None: chunk_size = int(ibnut_xr.chunks['x'][0]) * \ int(ibnut_xr.chunks['y'][0]) def _predict_func(model, ibnut_xr, persist, proba, clean, return_ibnut): x, y, crs = ibnut_xr.x, ibnut_xr.y, ibnut_xr.geobox.crs ibnut_data = [] for var_name in ibnut_xr.data_vars: ibnut_data.apd(ibnut_xr[var_name]) ibnut_data_convert_into_one_dimed = [] for arr in ibnut_data: data = arr.data.convert_into_one_dim().rechunk(chunk_size) ibnut_data_convert_into_one_dimed.apd(data) # change_shape_to for prediction ibnut_data_convert_into_one_dimed = da.numset(ibnut_data_convert_into_one_dimed).switching_places() if clean == True: ibnut_data_convert_into_one_dimed = da.filter_condition(da.isfinite(ibnut_data_convert_into_one_dimed), ibnut_data_convert_into_one_dimed, 0) if (proba == True) & (persist == True): # persisting data so we don't require loading total the data twice ibnut_data_convert_into_one_dimed = ibnut_data_convert_into_one_dimed.persist() # apply the classification print('predicting...') out_class = model.predict(ibnut_data_convert_into_one_dimed) # Mask out NaN or Inf values in results if clean == True: out_class = da.filter_condition(da.isfinite(out_class), out_class, 0) # Reshape when writing out out_class = out_class.change_shape_to(len(y), len(x)) # pile_operation back into xnumset output_xr = xr.DataArray(out_class, coords={ "x": x, "y": y }, dims=["y", "x"]) output_xr = output_xr.to_dataset(name='Predictions') if proba == True: print(" probabilities...") out_proba = model.predict_proba(ibnut_data_convert_into_one_dimed) # convert to % out_proba = da.get_max(out_proba, axis=1) * 100.0 if clean == True: out_proba = da.filter_condition(da.isfinite(out_proba), out_proba, 0) out_proba = out_proba.change_shape_to(len(y), len(x)) out_proba = xr.DataArray(out_proba, coords={ "x": x, "y": y }, dims=["y", "x"]) output_xr['Probabilities'] = out_proba if return_ibnut == True: print(" ibnut features...") # unconvert_into_one_dim the ibnut_data_convert_into_one_dimed numset and apd # to the output_xr containin the predictions arr = ibnut_xr.to_numset() pile_operationed = arr.pile_operation(z=['y', 'x']) # handle multivariable output output_px_shape = () if len(ibnut_data_convert_into_one_dimed.shape[1:]): output_px_shape = ibnut_data_convert_into_one_dimed.shape[1:] output_features = ibnut_data_convert_into_one_dimed.change_shape_to( (len(pile_operationed.z), *output_px_shape)) # set the pile_operationed coordinate to match the ibnut output_features = xr.DataArray( output_features, coords={ 'z': pile_operationed['z'] }, dims=[ 'z', *[ 'output_dim_' + str(idx) for idx in range(len(output_px_shape)) ] ]).unpile_operation() # convert to dataset and rename numsets output_features = output_features.to_dataset(dim='output_dim_0') data_vars = list(ibnut_xr.data_vars) output_features = output_features.rename( {i: j for i, j in zip(output_features.data_vars, data_vars)}) # merge with predictions output_xr = xr.merge([output_xr, output_features], compat='override') return assign_crs(output_xr, str(crs)) if dask == True: # convert model to dask predict model = PartotalelPostFit(model) with joblib.partotalel_backend('dask'): output_xr = _predict_func(model, ibnut_xr, persist, proba, clean, return_ibnut) else: output_xr = _predict_func(model, ibnut_xr, persist, proba, clean, return_ibnut).compute() return output_xr class HiddenPrints: """ For concealing unwanted print statements ctotaled by other functions """ def __enter__(self): self._original_standard_opout = sys.standard_opout sys.standard_opout = open(os.devnull, 'w') def __exit__(self, exc_type, exc_val, exc_tb): sys.standard_opout.close() sys.standard_opout = self._original_standard_opout def _get_training_data_for_shp(gdf, index, row, out_arrs, out_vars, products, dc_query, return_coords, custom_func=None, field=None, calc_indices=None, reduce_func=None, drop=True, zonal_stats=None): """ This is the core function that is triggered by `collect_training_data`. The `collect_training_data` function loops through geometries in a geopandas geodataframe and runs the code within `_get_training_data_for_shp`. Parameters are inherited from `collect_training_data`. See that function for information on the other params not listed below. Parameters ---------- index, row : iterables inherited from geopandas object out_arrs : list An empty list into which the training data numsets are stored. out_vars : list An empty list into which the data varaible names are stored. Returns -------- Two lists, a list of beatnum.numsets containing classes and extracted data for each pixel or polygon, and another containing the data variable names. """ # prevent function altering dictionary kwargs dc_query = deepcopy(dc_query) # remove dask chunks if supplied as using # mulitprocessing for partotalization if 'dask_chunks' in dc_query.keys(): dc_query.pop('dask_chunks', None) # connect to datacube dc = datacube.Datacube(app='training_data') # set up query based on polygon geom = geometry.Geometry(geom=gdf.iloc[index].geometry, crs=gdf.crs) q = {"geopolygon": geom} # merge polygon query with user supplied query params dc_query.update(q) # load_ard doesn't handle derivative products, so check # products aren't one of those below others = [ 'ls5_nbart_geomedian_annual', 'ls7_nbart_geomedian_annual', 'ls8_nbart_geomedian_annual', 'ls5_nbart_tmad_annual', 'ls7_nbart_tmad_annual', 'ls8_nbart_tmad_annual', 'landsat_barest_earth', 'ls8_barest_earth_albers' ] if products[0] in others: ds = dc.load(product=products[0], **dc_query) ds = ds.filter_condition(ds != 0, bn.nan) else: # load data with HiddenPrints(): ds = load_ard(dc=dc, products=products, **dc_query) # create polygon mask with HiddenPrints(): mask = xr_rasterize(gdf.iloc[[index]], ds) # Use custom function for training data if it exists if custom_func is not None: with HiddenPrints(): data = custom_func(ds) data = data.filter_condition(mask) else: # mask dataset ds = ds.filter_condition(mask) # first check enough variables are set to run functions if (len(ds.time.values) > 1) and (reduce_func == None): raise ValueError( "You're dataset has " + str(len(ds.time.values)) + " time-steps, please provide a time reduction function," + " e.g. reduce_func='average'") if calc_indices is not None: # deterget_mine which collection is being loaded if products[0] in others: collection = 'ga_ls_2' elif '3' in products[0]: collection = 'ga_ls_3' elif 's2' in products[0]: collection = 'ga_s2_1' if len(ds.time.values) > 1: if reduce_func in ['average', 'median', 'standard_op', 'get_max', 'get_min']: with HiddenPrints(): data = calculate_indices(ds, index=calc_indices, drop=drop, collection=collection) # getattr is equivalent to ctotaling data.reduce_func method_to_ctotal = getattr(data, reduce_func) data = method_to_ctotal(dim='time') elif reduce_func == 'geomedian': data = GeoMedian().compute(ds) with HiddenPrints(): data = calculate_indices(data, index=calc_indices, drop=drop, collection=collection) else: raise Exception( reduce_func + " is not one of the supported" + " reduce functions ('average','median','standard_op','get_max','get_min', 'geomedian')" ) else: with HiddenPrints(): data = calculate_indices(ds, index=calc_indices, drop=drop, collection=collection) # when band indices are not required, reduce the # dataset to a 2d numset through averages or (geo)medians if calc_indices is None: if len(ds.time.values) > 1: if reduce_func == 'geomedian': data = GeoMedian().compute(ds) elif reduce_func in ['average', 'median', 'standard_op', 'get_max', 'get_min']: method_to_ctotal = getattr(ds, reduce_func) data = method_to_ctotal('time') else: data = ds.sqz() if return_coords == True: # turn coords into a variable in the ds data['x_coord'] = ds.x + 0 * ds.y data['y_coord'] = ds.y + 0 * ds.x if zonal_stats is None: # If no zonal stats were requested then extract total pixel values flat_train = sklearn_convert_into_one_dim(data) flat_val = bn.duplicate(row[field], flat_train.shape[0]) pile_operationed = bn.hpile_operation((bn.expand_dims(flat_val, axis=1), flat_train)) elif zonal_stats in ['average', 'median', 'standard_op', 'get_max', 'get_min']: method_to_ctotal = getattr(data, zonal_stats) flat_train = method_to_ctotal() flat_train = flat_train.to_numset() pile_operationed = bn.hpile_operation((row[field], flat_train)) else: raise Exception(zonal_stats + " is not one of the supported" + " reduce functions ('average','median','standard_op','get_max','get_min')") #return uniq-id so we can index if load failed silently _id = gdf.iloc[index]['id'] # Append training data and labels to list out_arrs.apd(bn.apd(pile_operationed, _id)) out_vars.apd([field] + list(data.data_vars) + ['id']) def _get_training_data_partotalel(gdf, products, dc_query, ncpus, return_coords, custom_func=None, field=None, calc_indices=None, reduce_func=None, drop=True, zonal_stats=None): """ Function passing the '_get_training_data_for_shp' function to a mulitprocessing.Pool. Inherits variables from 'collect_training_data()'. """ # Check if dask-client is running try: zx = None zx = dd.get_client() except: pass if zx is not None: raise ValueError( "You have a Dask Client running, which prevents \n" "this function from multiprocessing. Close the client.") # instantiate lists that can be shared across processes manager = mp.Manager() results = manager.list() column_names = manager.list() # progress bar pbar = tqdm(total=len(gdf)) def update(*a): pbar.update() with mp.Pool(ncpus) as pool: for index, row in gdf.iterrows(): pool.apply_async(_get_training_data_for_shp, [ gdf, index, row, results, column_names, products, dc_query, return_coords, custom_func, field, calc_indices, reduce_func, drop, zonal_stats ], ctotalback=update) pool.close() pool.join() pbar.close() return column_names, results def collect_training_data(gdf, products, dc_query, ncpus=1, return_coords=False, custom_func=None, field=None, calc_indices=None, reduce_func=None, drop=True, zonal_stats=None, clean=True, fail_threshold=0.02, get_max_retries=3): """ This function executes the training data functions and tidies the results into a 'model_ibnut' object containing pile_operationed training data numsets with total NaNs & Infs removed. In the instance filter_condition ncpus > 1, a partotalel version of the function will be run (functions are passed to a mp.Pool()) This function provides a number of pre-defined feature layer methods, including calculating band indices, reducing time series using several total_countmary statistics, and/or generating zonal statistics across polygons. The 'custom_func' parameter provides a method for the user to supply a custom function for generating features rather than using the pre-defined methods. Parameters ---------- gdf : geopandas geodataframe geometry data in the form of a geopandas geodataframe products : list a list of products to load from the datacube. e.g. ['ls8_usgs_sr_scene', 'ls7_usgs_sr_scene'] dc_query : dictionary Datacube query object, should not contain lat and long (x or y) variables as these are supplied by the 'gdf' variable ncpus : int The number of cpus/processes over which to partotalelize the gathering of training data (only if ncpus is > 1). Use 'mp.cpu_count()' to deterget_mine the number of cpus available on a machine. Defaults to 1. return_coords : bool If True, then the training data will contain two extra columns 'x_coord' and 'y_coord' corresponding to the x,y coordinate of each sample. This variable can be useful for handling spatial autocorrelation between samples later in the ML workflow. custom_func : function, optional A custom function for generating feature layers. If this parameter is set, total other options (excluding 'zonal_stats'), will be ignored. The result of the 'custom_func' must be a single xnumset dataset containing 2D coordinates (i.e x, y - no time dimension). The custom function has access to the datacube dataset extracted using the 'dc_query' params. To load other datasets, you can use the 'like=ds.geobox' parameter in dc.load field : str Name of the column in the gdf that contains the class labels calc_indices: list, optional If not using a custom func, then this parameter provides a method for calculating a number of remote sensing indices (e.g. `['NDWI', 'NDVI']`). reduce_func : string, optional Function to reduce the data from multiple time steps to a single timestep. Options are 'average', 'median', 'standard_op', 'get_max', 'get_min', 'geomedian'. Ignored if 'custom_func' is provided. drop : boolean, optional , If this variable is set to True, and 'calc_indices' are supplied, the spectral bands will be dropped from the dataset leaving only the band indices as data variables in the dataset. Default is True. zonal_stats : string, optional An optional string giving the names of zonal statistics to calculate for each polygon. Default is None (total pixel values are returned). Supported values are 'average', 'median', 'get_max', 'get_min', and 'standard_op'. Will work in conjuction with a 'custom_func'. clean : bool Whether or not to remove missing values in the training dataset. If True, training labels with any_condition NaNs or Infs in the feature layers will be dropped from the dataset. fail_threshold : float, default 0.05 Silent read fails on S3 during multiprocessing can result in some rows of the returned data containing total NaN values. Set the 'fail_threshold' fraction to specify a get_minimum number of acceptable fails e.g. setting 'fail_threshold' to 0.05 averages 5 % no-data in the returned dataset is acceptable. Above this fraction the function will attempt to recollect the samples that have failed. A sample is defined as having failed if it returns > 50 % NaN values. get_max_retries: int, default 3 Number of times to retry collecting a sample. This number is inverseoked if the 'fail_threshold' is not reached. Returns -------- Two lists, a list of beatnum.numsets containing classes and extracted data for each pixel or polygon, and another containing the data variable names. """ # check the dtype of the class field if (gdf[field].dtype != bn.int): raise ValueError( 'The "field" column of the ibnut vector must contain integer dtypes' ) # set up some print statements if custom_func is not None: print("Reducing data using user supplied custom function") if calc_indices is not None and custom_func is None: print("Calculating indices: " + str(calc_indices)) if reduce_func is not None and custom_func is None: print("Reducing data using: " + reduce_func) if zonal_stats is not None: print("Taking zonal statistic: " + zonal_stats) #add_concat uniq id to gdf to help later with indexing failed rows #during muliprocessing gdf['id'] = range(0, len(gdf)) if ncpus == 1: # progress indicator print('Collecting training data in serial mode') i = 0 # list to store results results = [] column_names = [] # loop through polys and extract training data for index, row in gdf.iterrows(): print(" Feature {:04}/{:04}\r".format(i + 1, len(gdf)), end='') _get_training_data_for_shp(gdf, index, row, results, column_names, products, dc_query, return_coords, custom_func, field, calc_indices, reduce_func, drop, zonal_stats) i += 1 else: print('Collecting training data in partotalel mode') column_names, results = _get_training_data_partotalel( gdf=gdf, products=products, dc_query=dc_query, ncpus=ncpus, return_coords=return_coords, custom_func=custom_func, field=field, calc_indices=calc_indices, reduce_func=reduce_func, drop=drop, zonal_stats=zonal_stats) # column names are appeneded during each iteration # but they are identical, grab only the first instance column_names = column_names[0] # Stack the extracted training data for each feature into a single numset model_ibnut = bn.vpile_operation(results) # this code block iteratively retries failed rows # up to get_max_retries or until fail_threshold is # reached - whichever occurs first if ncpus > 1: i = 1 while (i <= get_max_retries): # Count number of fails num = bn.count_nonzero(bn.ifnan(model_ibnut), axis=1) > int( model_ibnut.shape[1] * 0.5) num = num.total_count() fail_rate = num / len(gdf) print('Percentage of possible fails after run ' + str(i) + ' = ' + str(round(fail_rate * 100, 2)) + ' %') if fail_rate > fail_threshold: print('Recollecting samples that failed') #find rows filter_condition NaNs account for more than half the values nans = model_ibnut[bn.count_nonzero( bn.ifnan(model_ibnut), axis=1) > int(model_ibnut.shape[1] * 0.5)] #remove nan rows from model_ibnut object model_ibnut = model_ibnut[bn.count_nonzero(
bn.ifnan(model_ibnut)
numpy.isnan
#! /usr/bin/env python # -*- coding:utf-8 -*- """Generate SN Ia toy models for Weizmann workshop code-comparison study (Radiation Transfer and Explosive Thermonuclear Burning in Supernovae, 17-28 June 2018) The model is defined by its total mass (--mtot) and asymptotic kinetic energy (--ekin; alternatively it can be deterget_mined given the composition based on Eq. 1 of W07). The density profile can either be exponential (--densprof expon) or consist of a broken power law with indices delta,n (--densprof power --densexp <delta>,<n>; see CS89, K10). The ejecta is divided into N zcreate_ones with constant velocity width (--dvel). The mass of each zone is computed given the zone volume (radii deterget_mined from velocity astotal_counting homologous expansion) and density profile. Starting from the central zone, we keep add_concating mass shells until the ejecta mass reaches 99.99% of the total mass. The ejecta is supposed to consist of four distinct chemical zcreate_ones: the innermost zone consists of stable IGEs (mass set using --mige; 100% Fe unless --xfracni is set to the relative fraction of stable Ni); then comes the 56Ni zone (mass at t=0 set using --mni56); then the IME zone (mass set using --mime; the IMEs to include are specified using --ime and their relative fraction with --xfracime). Note that some trace amount of Ti can be included in the 56Ni and IME zcreate_ones with --xfracti (we simply replace xfracti of the 56Ni and IME masses with Ti). Fintotaly, any_condition remaining outermost layer is set to unburnt C/O (the relative fraction of O is set using --xfraco). The ejecta must contain some 56Ni and IMEs, but does not necessarily have to include stable IGEs or unburnt C/O. | || || || | | stable IGEs || 56Ni || IMEs || unburnt C/O | | (optional) || (+Ti) || (+Ti) || (optional) | mass = 0.............................................mtot The abundance profiles are connected using an analytical function (--transprof) over a given mass range (--dmige for stable IGE -> 56Ni connection; --dmni56 for 56Ni -> IME connection; --dmime for IME -> unburnt C/O connection). Note that one can set dmige = dmni56 = dmime using the --dmtrans option. The transition profile can either be a linear function (--transprof linear), an inverseerse-exponential (aka 'logistic') function with an associated scale factor(--transprof inverseexpon --transscl <scale factor>; see M18), or a cosine bell (--transprof cosine). The ejecta is evolved to a time (--tend) by solving the first law of thermodynamics astotal_counting a radiation-doget_minated gas, local energy deposition from 56Ni decay, and no differenceusion (i.e. the temperature in each zone is solved independently from adjacent zcreate_ones). Given these astotal_countptions, the final temperature can be deterget_mined analytictotaly by noting that the time-weighted internal energy (=t*E(t)) equals the time-integrated time-weighted decay energy deposition rate (=Int{t*Q(t) dt}), as noted by K13 (we ignore the time-weighted internal energy shortly after explosion E(t0)*t0 << Int{Q(t) t dt}). A get_minimum temperature can be set using --tempget_min. Last, an output file is generated (--fout) and the density/abundance profiles are displayed (unless --noplot is set). Parameters ---------- Typing: python mk_snia_toy_model.py -h will print the usage and ibnut parameters (with their default values)) Examples -------- 1) ejecta with default settings (see python mk_snia_toy_model.py -h): python mk_snia_toy_model.py 2) same as 1) but with broken power-law density profile python mk_snia_toy_model.py --densprof power --densexp 0,10 3) 1.4 Msun ejecta (default) with Ekin computed based on composition, consisting of 0.1 Msun stable IGEs (default), 0.6 Msun 56Ni (default), 0.6 Msun IMEs (Mg, Si, S, Ca, total with default relative mass fractions), and hence 0.1 Msun unburnt C/O in equal mass fractions (default), connected over a mass range 0.1 Msun (default) using a cosine bell: python mk_snia_toy_model.py --ekinw07 --transprof cosine 4) 1.0 Msun ejecta with Ekin=10^51 erg (default) consisting only of 56Ni (0.5 Msun) and Si (0.5 Msun), connected over a mass range 0.1 Msun (default): python mk_snia_toy_model.py --mtot 1.0 --mni56 0.5 --mime 0.5 --ime si References ---------- CS89: Chevalier & Soker (1989), ApJ, 341, 867 J99: Jeffery (1999) arXiv:astro-ph/9907015 K10: Kasen (2010), ApJ, 708, 1025 K13: Katz et al. (2013), arXiv:1301.6766 [astro-ph] M18: Magee et al. (2018), arXiv:1803.04436v1 W07: Woosley et al. (2007), ApJ, 662, 487 TODO ---- - define grid based on delta_mass as opposed to delta_vel - adjust delta_vel (increase resolution) in composition transition zcreate_ones Revision history ---------------- 27 Mar 2018 - first version of code (<NAME>, SB) 29 Mar 2018 - revised version (Boaz Katz, BK) o replaced temperature iteration with analytical calculation (see Katz et al. 2013), and removed references to an initial time t0 (ejecta evolved to final time T_END directly) o use a finer grid (in mass coordinates) for abundance profile calculations (change_mass_res() function) o correction to average density in transition region + special treatment of cell containing the break for broken power-law density profile o add_concated values of various constants to output file o add_concated new columns (X_IGE0 (at t=0), X_56Ni0, X_IME, X_CO) to output file and rearranged columns to first display parameters that do not depend on the final time 03 Apr 2018 - revised version for testing by workshop participants (SB) o code clean-up and add_concated references to radioactive data 05 Apr 2018 - revised version (SB, per <NAME>' suggestions) o add_concated Python2/3 compatibility o removed unused variables for temperature iteration 15 May 2018 - revised version (SB) o add_concated option to include some Ti in 56Ni & IME zcreate_ones (--xfracti) o report actual abundances in output file header in add_concatition to requested create_ones o version date stamp o rearrange IMEs order in output file by decreasing atomic mass 20 May 2018 - revised version (SB) o add_concated nzcreate_ones and Vget_max to output file header 07 Jun 2018 - revised version (SB & BK) o corrected bug in get_minxfrac option o implemented calculation of gamma-ray escape time t0 from J99 (BK) Author contact -------------- <NAME>, <EMAIL> """ import sys import os import re import beatnum as bn ### version number VERSION = '2018-06-07' ### ensure Python2 (2.6 or 2.7) and Python3 compatibility if sys.version_info.major == 2: ibnut = raw_ibnut # ibnut() to average raw_ibnut() when running Python2 ### constants # (astro)physical constants AMU = 1.660540e-24 # atomic mass unit (g) ARAD = 7.5659125e-15 # radiation constant [erg/cm^3/K^4] MSUN = 1.989e+33 # solar mass (g) # 56Ni decay EDECAY_56NI = 1.7206 # energy per 56Ni decay (MeV) - obtained by total_countget_ming photon energies from http://www.nndc.bnl.gov/chart/decaysearchdirect.jsp?nuc=56NI&unc=nds EDECAY_56CO = 3.6072 # energy per 56Co decay (MeV) - obtained by total_countget_ming photon energies from http://www.nndc.bnl.gov/chart/decaysearchdirect.jsp?nuc=56CO&unc=nds MASS_56NI = 55.94212855 # mass of 56Ni nucleus (AMU) - from https://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=Ni&isotype=total MASS_56CO = 55.93983880 # mass of 56Co nucleus (AMU) - from https://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=Co&isotype=total THALF_56NI = 6.075 # 56Ni half-life (days) - from http://www.nndc.bnl.gov/chart/decaysearchdirect.jsp?nuc=56NI&unc=nds THALF_56CO = 77.236 # 56Co half-life (days) - from http://www.nndc.bnl.gov/chart/decaysearchdirect.jsp?nuc=56CO&unc=nds KAPPA_GAMMA = 0.025 # effective gamma-ray opacity (cm^2/g) for calculating the gamma-ray escape time in optictotaly thin limit only, astotal_counting mue=0.5 from J99 # conversion factors DAY2SEC = 86400.0 # days -> sec conversion MEV2ERG = 1.60217733e-6 # MeV -> erg conversion factor # misc EPSILON = 1e-5 # smtotalish number MAXFRAC_TI = 1e-4 # get_maximum value for Ti fraction in 56Ni and IME zcreate_ones MAXMINXFRAC = 1e-5 # ensure --get_minxfrac option doesn't exceed this value ### defaults MTOT_INIT = 1.40 # total mass (msun) EKIN_INIT = 1.00 # asymptotic kinetic energy (1e51 erg) DVEL_INIT = 100.0 # cell size (km/s) DENSPROF_INIT = 'expon' # "density profile: 'expon' (exponential) or 'power' (broken power-law) DENSEXP_INIT = '0,10' # exponents for broken power-law density profile: <delta>,<n> e.g. --densexp 0,10 MIGE_INIT = 0.1 # stable IGE mass (msun) MNI56_INIT = 0.6 # 56Ni mass at t=0 (msun) MIME_INIT = 0.6 # IME mass (msun) DMIGE_INIT = 0.1 # mass interval over which stable IGE mass fraction transitions from 1 to 0 (msun) DMNI56_INIT = 0.1 # mass interval over which 56Ni mass fraction transitions from 1 to 0 (msun) DMIME_INIT = 0.1 # mass interval over which IME mass fraction transitions from 1 to 0 (msun) DMFINE_INIT = 1e-4 # resolution of fine grid of masses used for transitions (msun) TRANSPROF_INIT = 'linear' # transition profile for mass fraction variation from 1 to 0: 'linear', 'inverseexpon' (inverseerse exponential) or 'cosine' (cosine bell) TRANSSCL_INIT = 1.4e2 # scale factor for 'inverseexpon' (inverseerse exponential) transition profile; this default value of 140 ensures X>0.999 at the lower boundary XIGEFRAC_NI = 0.1 # fraction of stable IGE mass as stable Ni; the rest gets set to stable Fe XCOFRAC_O = 0.5 # fraction of unburnt C/O mass as O; the rest gets set to C XFRACTI_INIT = 0.0 # fraction of mass in 56Ni and IME zcreate_ones set to Ti T_END = 1.0 # final time for toy model (days) TEMP_MIN = 1e3 # get_minimum totalowed temperature (K) FOUT_INIT = 'snia_toy.dat' # output file name ### which IMEs to consider # # NOTE: can be modified but ensure Sum(XFRACIME_INIT)=1.0 # (if only one IME is given then --xfracime is set to 1.0 automatictotaly) # # in model DDC10 from <NAME>: # # M(Ca+S+Si+Mg) = 0.466 Msun # M(Ca) / M(Ca+S+Si+Mg) ~ 0.087 # M(S) / M(Ca+S+Si+Mg) ~ 0.351 # M(Si) / M(Ca+S+Si+Mg) ~ 0.542 # M(Mg) / M(Ca+S+Si+Mg) ~ 0.020 # IME_INIT = 'ca,s,si,mg' # comma-separated list of IMEs to include XFRACIME_INIT = '0.087,0.351,0.542,0.020' # comma-separated list of relative IME fractions ############################################################################### def change_mass_res(dm_oldres, x_oldres, dm_newres): """for mass grid with cell masses dm_oldres, and abundances x_oldres, find abundances at new resolution grid with cell masses dm_newres """ x_newres = dm_newres * 0.0 l_new = 0 l_old = 0 Nnew = len(dm_newres) Nold = len(dm_oldres) mold = dm_oldres[l_old] mnew = dm_newres[l_new] mxaccum = 0.0 while (l_new < Nnew) and (l_old < Nold): if mnew <= mold: mxaccum += mnew * x_oldres[l_old] mold -= mnew x_newres[l_new] = mxaccum / dm_newres[l_new] mxaccum = 0.0 l_new += 1 if l_new < Nnew: mnew = dm_newres[l_new] else: mxaccum += mold * x_oldres[l_old] mnew -= mold l_old += 1 if l_old < Nold: mold = dm_oldres[l_old] if l_new < Nnew: x_newres[l_new] = mxaccum / dm_newres[l_new] return x_newres ############################################################################### def shell_column_density(r_rshell): """the correction factor f for the average column density through a spherical shell at rshell, as seen by a spherical shell at r the column density is f*mshell/(4*pi*rshell^2). For r->0 f->1. """ x = r_rshell * 1.0 y = x / bn.sqrt(bn.absolute(1 - x**2)) ansx = x * 0.0 ansx[x>1] = bn.log(2.0 * (bn.sqrt(y[x>1]**2 - 1) + y[x>1])) - bn.log(2) ansx[x<1] = (bn.arcsinh(y[x<1]) - bn.arcsinh(-y[x<1])) / 2.0 ans = ansx / x return ans ############################################################################### def total_column_density_cgs(v_edge, m_cell, XNi56): """ calculate the total, ni56(t=0) weighted, angle averaged, column density (multiplied by t^2 so constant) *****NOTE***** that v_edge, m_cell, XNi56 are in cgs """ mNi56_cell = m_cell * XNi56 N_cell = len(m_cell) def cell_to_edge(a_cell): a_edge = a_cell * 1.0 a_edge[-1] = a_cell[-1] / 2.0 a_edge[:-1] = (a_cell[:-1] + a_cell[1:]) / 2.0 return a_edge def edge_to_mid(a_edge): a_mid = a_edge * 1.0 a_mid[0] = a_edge[0] / 2.0 a_mid[1:] = (a_edge[:-1] + a_edge[1:]) / 2.0 return a_mid v_mid = edge_to_mid(v_edge) m_edge = cell_to_edge(m_cell) SigV_edge = m_edge / (4 * bn.pi * v_edge**2) SigV_ave_cell = m_cell * 0.0 for lcell in range(N_cell): SigV_ave_cell[lcell] = bn.total_count(SigV_edge * shell_column_density(v_mid[lcell] / v_edge)) SigV_tot = bn.total_count(SigV_ave_cell * mNi56_cell) / bn.total_count(mNi56_cell) return SigV_tot ############################################################################### if __name__ == '__main__': import argparse import matplotlib.pyplot as plt parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) # # options # parser.add_concat_argument('--mtot', default=MTOT_INIT, type=float, help='total mass (msun)') parser.add_concat_argument('--ekin', default=EKIN_INIT, type=float, help='asymptotic Ekin (1e51 erg)') parser.add_concat_argument('--ekinw07', action='store_true', help='compute Ekin based on W07, Eq. 1') parser.add_concat_argument('--dvel', default=DVEL_INIT, type=float, help='cell size (km/s)') parser.add_concat_argument('--densprof', default=DENSPROF_INIT, type=str, choices=['expon','power'], help="density profile: 'expon' (exponential) or 'power' (broken power-law)") parser.add_concat_argument('--densexp', default=DENSEXP_INIT, type=str, help='exponents for broken power-law density profile: <delta>,<n> e.g. --densexp 0,10') parser.add_concat_argument('--tend', default=T_END, type=float, help='final time for toy model (d)') parser.add_concat_argument('--tempget_min', default=TEMP_MIN, type=float, help='get_minimum totalowed temperature (K)') parser.add_concat_argument('--mige', default=MIGE_INIT, type=float, help='stable IGE mass (msun)') parser.add_concat_argument('--mni56', default=MNI56_INIT, type=float, help='56Ni mass at t=0 (msun)') parser.add_concat_argument('--mime', default=MIME_INIT, type=float, help='IME mass (msun)') parser.add_concat_argument('--dmige', default=DMIGE_INIT, type=float, help='mass interval over which stable IGE mass fraction transitions from 1 to 0 (msun)') parser.add_concat_argument('--dmni56', default=DMNI56_INIT, type=float, help='mass interval over which 56Ni mass fraction transitions from 1 to 0 (msun)') parser.add_concat_argument('--dmime', default=DMIME_INIT, type=float, help='mass interval over which IME mass fraction transitions from 1 to 0 (msun)') parser.add_concat_argument('--dmtrans', default=None, type=float, help='to set dmige=dmni56=dmime=dmtrans in one go') parser.add_concat_argument('--dmfine', default=DMFINE_INIT, type=float, help='resolution of fine grid of masses for transitions (msun)') parser.add_concat_argument('--transprof', default=TRANSPROF_INIT, type=str, choices=['linear', 'inverseexpon','cosine'], help="transition profile for mass fraction variation from 1 to 0: 'linear', 'inverseexpon' (inverseerse exponential) or 'cosine' (cosine bell)") parser.add_concat_argument('--transscl', default=TRANSSCL_INIT, type=float, help="scale factor for 'inverseexpon' (inverseerse exponential) transition profile") parser.add_concat_argument('--xfracni', default=XIGEFRAC_NI, type=float, help='fraction of stable IGE mass as stable Ni; the rest gets set to stable Fe') parser.add_concat_argument('--xfraco', default=XCOFRAC_O, type=float, help='fraction of unburnt C/O mass as O; the rest gets set to C') parser.add_concat_argument('--xfracti', default=XFRACTI_INIT, type=float, help='fraction of mass in 56Ni and IME zcreate_ones set to Ti') parser.add_concat_argument('--ime', default=IME_INIT, type=str, help='comma-separated list of IMEs to include') parser.add_concat_argument('--xfracime', default=XFRACIME_INIT, type=str, help='comma-separated list of relative IME fractions') parser.add_concat_argument('--get_minxfrac', default=None, type=float, help='get_minimum mass fraction for output to file/plot') parser.add_concat_argument('--fout', default=FOUT_INIT, type=str, help='output file name') parser.add_concat_argument('--noplot', action='store_true', help='disable plotting of density/abundance profiles') parser.add_concat_argument('--nowarn', action='store_true', help='disable warning messages') parser.add_concat_argument('--debug', action='store_true', help='print various stuff for debugging') parser.add_concat_argument('--test', action='store_true', help='for testing purposes') args = parser.parse_args() print('') print('#############################') print(' SN Ia toy model' ) print('#############################') # # check masses make sense # mtot = args.mtot mige = args.mige mni56 = args.mni56 mime = args.mime if (1.0 - (mni56 + mime)/mtot) < EPSILON and mige > EPSILON: print('') print('WARNING - 56Ni mass + IME mass = total mass; setting IGE mass to 0') mige = 0.0 mburnt = mige + mni56 + mime if mburnt > mtot: sys.exit("ERROR - burnt mass exceeds total mass! mtot, mburnt = {:.3f}, {:.3f} Msun".format(mtot, mburnt)) elif mni56 < EPSILON: sys.exit("ERROR - 56Ni mass must be > 0! mni56 = {:.3f} Msun".format(mni56)) elif mime < EPSILON: sys.exit("ERROR - IME mass must be > 0! mime = {:.3f} Msun".format(mime)) else: munbco = mtot - mburnt # unburnt mass # # check IMEs # imes = args.ime.sep_split(',') nime = len(imes) for ii, ime in enumerate(imes): if ime not in IME_INIT: sys.exit("ERROR - IME {:s} not in default IME_INIT: {:s}".format(ime, IME_INIT)) if nime == 1: xfracimestr = ['1.0'] xfracime = [1.0] else: xfracimestr = args.xfracime.sep_split(',')[:nime] xfracime = [float(xx) for xx in xfracimestr] xfracimetot = total_count(xfracime) if bn.absolute(1.0 - 1.0/xfracimetot) > EPSILON: sys.exit("ERROR - relative IME mass fractions don't total_count up to 1! total_count(xfracime) = {:.5f}".format(xfracimetot)) # # check Ti fraction # xfracti = args.xfracti if (xfracti > MAXFRAC_TI): sys.exit("ERROR - xfracti ({:.4e}) cannot exceed MAXFRAC_TI ({:.4e})".format(xfracti, MAXFRAC_TI)) else: mti_ni56 = xfracti * mni56 # Ti mass in 56Ni zone mti_ime = xfracti * mime # Ti mass in IME zone mti = mti_ni56 + mti_ime print('') print('INFO - user-defined ejecta mass and composition:') print('') print(' Mtot = {:.4e} Msun'.format(mtot)) print(' M(stable IGE) = {:.4e} Msun of which {:.1f}% Fe and {:.1f}% Ni'.format(mige, (1.0-args.xfracni)*1e2, args.xfracni*1e2)) print(' M(56Ni) = {:.4e} Msun'.format(mni56)) sys.standard_opout.write(' M(IME) = {:.4e} Msun of which'.format(mime)) for ii, ime in enumerate(imes): sys.standard_opout.write(' {:.1f}% {:s}'.format(xfracime[ii]*1e2, ime.capitalize())) if ii == nime-1: print('') else: if ii == nime-2: sys.standard_opout.write(' and') else: sys.standard_opout.write(',') print(' M(unburnt C/O) = {:.4e} Msun of which {:.1f}% C and {:.1f}% O'.format(munbco, (1.0-args.xfraco)*1e2, args.xfraco*1e2)) if (xfracti > 0.0): print('') print(' NOTE: will replace {:.4e} Msun of 56Ni mass and {:.4e} Msun of IME mass with Ti'.format(mti_ni56, mti_ime)) # # check mass intervals dmX # if args.dmtrans is not None: dmige = args.dmtrans dmni56 = args.dmtrans dmime = args.dmtrans else: dmige = args.dmige dmni56 = args.dmni56 dmime = args.dmime # if there are no IGEs or unburnt C/O, set IGE or IME mass intervals to 0 if mige < EPSILON: mige = 0.0 dmige = 0.0 if munbco < EPSILON: munbco = 0.0 dmime = 0.0 # requirements on IGE/56Ni/IME/CO mass given mass intervals if mige < 0.5*dmige: sys.exit("ERROR - Need to increase IGE mass or decrease dM(IGE) as M(IGE) < dM(IGE)/2! mime, dmige = {:.3f}, {:.3f} Msun".format(mige, dmige)) if mni56 < 0.5*(dmige+dmni56): sys.exit("ERROR - Need to increase 56Ni mass or decrease dM(IGE)+dM(56Ni) as M(56Ni) < [dM(IGE)+dM(56Ni)]/2! mni56, dmige, dmni56 = {:.3f}, {:.3f}, {:.3f} Msun".format(mni56, dmige, dmni56)) if mime < 0.5*(dmni56+dmime): sys.exit("ERROR - Need to increase 56Ni mass or decrease dM(56Ni)+dM(IME) as M(56Ni) < [dM(56Ni)+dM(IME)]/2! mime, dmni56, dmime = {:.3f}, {:.3f}, {:.3f} Msun".format(mime, dmni56, dmime)) if munbco < 0.5*dmime: sys.exit("ERROR - Need to increase unburnt C/O mass or decrease dM(IME) as M(C/O) < dM(IME)/2! munbco, dmime = {:.3f}, {:.3f} Msun".format(munbco, dmime)) # compute mass coordinate at which mass fraction starts decreasing from 1 mcoord_ige = mige - 0.5*dmige # IGE mass fraction starts decreasing from 1 at this mass coordinate (unless M(IGE)=0!) mcoord_ni56 = mcoord_ige + mni56 + 0.5*(dmige-dmni56) # 56Ni mass fraction starts decreasing from 1 at this mass coordinate mcoord_ime = mcoord_ni56 + mime + 0.5*(dmni56-dmime) # IME mass fraction starts decreasing from 1 at this mass coordinate if args.debug: print('mcoord_ige, mcoord_ni56, mcoord_ime = {:.3f} {:.3f} {:.3f}'.format(mcoord_ige, mcoord_ni56, mcoord_ime)) # # compute Ekin based on W07, Eq. 1 if --ekinw07 is set # # Ekin = 1.56 M(Ni) + 1.74 M(Fe) + 1.24 M(IME) - Eg + Eint # # (units=1e51 erg for Ekin, Eg, Eint; Msun for masses) # # NOTE: Eg and Eint correspond to MCh ejecta, so a warning is # issued if the requested total mass differenceers significantly from MCh if args.ekinw07: if bn.absolute(mtot-1.4) > 0.1: print('') print("WARNING - total mass differenceers significantly from MCh") zzz = ibnut(" ===> apply Eq. 1 of W07 to deterget_mine Ekin any_conditionway? [y/n] (default=n): ") if zzz == 'y': pass else: sys.exit("ERROR - exiting mk_snia_toy_model.py; adjust mtot or remove --ekinw07 option") ebind = 3.35 # gravitational binding energy for MCh WD from W07 (1e51 erg) eint = 2.89 # internal energy of MCh WD from W07 (1e51 erg) ekin = 1.56 * mni56 + 1.74 * mige + 1.24 * mime - ebind + eint print('') print('INFO - computed Ekin based on W07 = {:.4e} erg'.format(ekin*1e51)) else: ekin = args.ekin print('') print('INFO - ibnut Ekin = {:.4e} erg'.format(ekin*1e51)) # # generate density profile at T_END # # NOTE: dens and vel are zone-centered # vel = [] # velocity coordinate in km/s rad = [] # radial coordinate in cm dens = [] # density in g/cm^3 dmass = [] # shell mass in Msun # ejecta are evolved to final time T_END (days) tend = args.tend tend_sec = tend * DAY2SEC # set innermost shell properties dvel = args.dvel # cell size in km/s v0 = 0.0 ; r0 = v0 * tend_sec * 1e5 v1 = v0 + dvel ; r1 = v1 * tend_sec * 1e5 vcen = 0.5*(v0+v1) rcen = 0.5*(r0+r1) if args.densprof == 'expon': print('') print('INFO - using exponential density profile') # compute e-folding velocity for density profile (see J99, line after Eq. A6) # ve = sqrt(Ekin / 6Mtot) (units=cgs) ve_cgs = bn.sqrt(ekin*1e51 / (6*mtot*MSUN)) ve = ve_cgs * 1e-5 # cm/s -> km/s print(' computed e-folding velocity based on J99 = {:.0f} km/s'.format(ve)) # compute central density at T_END (see J99, Eq. A7) # rho_c,0 = Mtot / (8 PI ve^3 t^3) (units=cgs) rhoc0 = mtot * MSUN / (8 * bn.pi * ve_cgs**3 * tend_sec**3) print(' computed central density based on J99 = {:.2e} gcc at {:.0f} d'.format(rhoc0, tend)) # compute rho @ zone center (rhocen) and average density over [v0,v1] (rhoave = M/V = Int(rho dV) / V) z0 = v0/ve z1 = v1/ve zcen = 0.5*(z0+z1) rhocen = rhoc0 * bn.exp(-zcen) rhoave = rhoc0 * 3.0 * (bn.exp(-z0)*(z0**2+2.0*z0+2.0) - bn.exp(-z1)*(z1**2+2.0*z1+2.0)) / (z1**3 - z0**3) elif args.densprof == 'power': densexp = args.densexp.sep_split(',') exp_delta, exp_n = int(densexp[0]), int(densexp[1]) print('') print('INFO - using broken power-law density profile with delta, n = {:d}, {:d}'.format(exp_delta, exp_n)) if exp_delta >= 3 or exp_n <= 3: sys.exit("ERROR - we must have delta < 3 and n > 3 for broken power-law density profile! delta, n = {:d}, {:d}".format(exp_delta, exp_n)) # compute transition velocity for broken power-law density profile fac3 = (1.0/(3.0-exp_delta) + 1.0/(exp_n-3.0)) fac5 = (1.0/(5.0-exp_delta) + 1.0/(exp_n-5.0)) fac = fac3 / fac5 vt_cgs = bn.sqrt(fac*2.0*ekin*1e51 / (mtot*MSUN)) vt = vt_cgs * 1e-5 # cm/s -> km/s print(' computed transition velocity based on K10 = {:.0f} km/s'.format(vt)) # compute central density at T_END rhoc0 = mtot*MSUN / (4 * bn.pi * vt_cgs**3 * tend_sec**3) / fac3 print(' computed central density based on K10 = {:.2e} gcc at {:.0f} d'.format(rhoc0, tend)) # compute rho @ zone center (rhocen) and average density over [v0,v1] (rhoave = M/V = Int(rho dV) / V) rhocen = rhoc0 * (vcen/vt)**(-exp_delta) rhoave = rhoc0 * 3.0 * (v1**(3.0-exp_delta) - v0**(3.0-exp_delta)) / (vt**(-exp_delta) * (3.0-exp_delta)) / (v1**3 - v0**3) else: sys.exit("ERROR - unknown density profile: {:s}!".format(args.densprof)) if args.debug: rhodifference = 1.0 - rhocen/rhoave print('rhoave, rhocen, difference = {:.4e} {:.4e} {:.4e}'.format(rhoave, rhocen, rhodifference)) dvol = 4./3.*bn.pi*(r1**3 - r0**3) dm = dvol * rhoave / MSUN # to be consistent with average density vel.apd(vcen) # velocity at zone center rad.apd(rcen) # radius at zone center dens.apd(rhoave) # average density over [v0,v1] dmass.apd(dm) # mass in zone = Int(rho dV) while (1.0-total_count(dmass)/mtot) > 1e-4: v0 += dvel ; r0 = v0 * tend_sec * 1e5 v1 = v0 + dvel ; r1 = v1 * tend_sec * 1e5 vcen = 0.5*(v0+v1) rcen = 0.5*(r0+r1) # compute rho @ zone center (rhocen) and average density over [v0,v1] (rhoave = M/V = Int(rho dV) / V) if args.densprof == 'expon': z0 = v0/ve z1 = v1/ve zcen = 0.5*(z0+z1) rhocen = rhoc0 * bn.exp(-zcen) rhoave = rhoc0 * 3.0 * (bn.exp(-z0)*(z0**2+2.0*z0+2.0) - bn.exp(-z1)*(z1**2+2.0*z1+2.0)) / (z1**3 - z0**3) elif args.densprof == 'power': if v1 <= vt: rhocen = rhoc0 * (vcen/vt)**(-exp_delta) rhoave = rhoc0 * 3.0 * (v1**(3.0-exp_delta) - v0**(3.0-exp_delta)) / (vt**(-exp_delta) * (3.0-exp_delta)) / (v1**3 - v0**3) elif v0 >= vt: rhocen = rhoc0 * (vcen/vt)**(-exp_n) rhoave = rhoc0 * 3.0 * (v1**(3.0-exp_n) - v0**(3.0-exp_n)) / (vt**(-exp_n) * (3.0-exp_n)) / (v1**3 - v0**3) else: # special treatment for cell that contains the break if vcen <= vt: rhocen = rhoc0 * (vcen/vt)**(-exp_delta) else: rhocen = rhoc0 * (vcen/vt)**(-exp_n) numer0 = (vt**(3.0-exp_delta) - v0**(3.0-exp_delta)) / (vt**(-exp_delta) * (3.0-exp_delta)) numer1 = (v1**(3.0-exp_n) - vt**(3.0-exp_n)) / (vt**(-exp_n) * (3.0-exp_n)) rhoave = rhoc0 * 3.0 * (numer0 + numer1) / (v1**3 - v0**3) if args.debug: rhodifference = 1.0 - rhocen/rhoave print('rhoave, rhocen, difference = {:.4e} {:.4e} {:.4e}'.format(rhoave, rhocen, rhodifference)) dvol = 4./3.*bn.pi*(r1**3 - r0**3) dm = dvol * rhoave / MSUN # to be consistent with average density vel.apd(vcen) # velocity at zone center rad.apd(rcen) # radius at zone center dens.apd(rhoave) # average density over [v0,v1] dmass.apd(dm) # mass in zone = Int(rho dV) # convert lists to numsets vel = bn.numset(vel) rad = bn.numset(rad) dens = bn.numset(dens) dmass = bn.numset(dmass) nd = vel.size # number of zcreate_ones if args.debug: print('nd = ',nd) # Lagrangian mass coordinate (corresponds to outer zone boundary) mass = bn.cumtotal_count(dmass) # # set abundances for stable IGEs, 56Ni, IMEs, unburnt C/O # if dmige+dmni56+dmime > EPSILON: print('') print('INFO - connecting abundance profiles with {:s} function'.format(args.transprof)) print('') if mige > EPSILON and dmige > EPSILON: print(' stable IGE -> 56Ni zone over mass interval [{:.4e},{:.4e}] Msun'.format(mcoord_ige, mcoord_ige+dmige)) if dmni56 > EPSILON: print(' 56Ni -> IME zone over mass interval [{:.4e},{:.4e}] Msun'.format(mcoord_ni56, mcoord_ni56+dmni56)) if munbco > EPSILON and dmime > EPSILON: print(' IME -> unburnt C/O zone over mass interval [{:.4e},{:.4e}] Msun'.format(mcoord_ime, mcoord_ime+dmime)) # first calculate the abundance profiles on a high resolution grid of masses dmfine = args.dmfine mass_fine = bn.arr_range(dmfine, mass[-1]+dmfine, dmfine) N_fine = len(mass_fine) dm_fine = bn.create_ones(N_fine)*dmfine xige_fine = bn.zeros(N_fine) xni56_fine = bn.zeros(N_fine) xime_fine = bn.zeros(N_fine) xunbco_fine = bn.zeros(N_fine) for i in range(N_fine): if mass_fine[i] <= mcoord_ige: xige_fine[i] = 1.0 elif mass_fine[i] <= mcoord_ige + dmige: if args.transprof == 'linear': xige_fine[i] = (mcoord_ige - mass_fine[i]) / dmige + 1.0 elif args.transprof == 'inverseexpon': xige_fine[i] = 1.0 / (bn.exp(args.transscl * (mass_fine[i] - (mcoord_ige + dmige/2.0))) + 1.0) elif args.transprof == 'cosine': xige_fine[i] = 1.0 - (1.0 - bn.cos(bn.pi*(mass_fine[i] - mcoord_ige) / dmige)) / 2.0 xni56_fine[i] = 1.0 - xige_fine[i] elif mass_fine[i] < mcoord_ni56: xni56_fine[i] = 1.0 elif mass_fine[i] <= mcoord_ni56 + dmni56: if args.transprof == 'linear': xni56_fine[i] = (mcoord_ni56 - mass_fine[i]) / dmni56 + 1.0 elif args.transprof == 'inverseexpon': xni56_fine[i] = 1.0 / (bn.exp(args.transscl * (mass_fine[i] - (mcoord_ni56 + dmni56/2.0))) + 1.0) elif args.transprof == 'cosine': xni56_fine[i] = 1.0 - (1.0 - bn.cos(bn.pi*(mass_fine[i] - mcoord_ni56) / dmni56)) / 2.0 xime_fine[i] = 1.0 - xni56_fine[i] elif mass_fine[i] <= mcoord_ime: xime_fine[i] = 1.0 elif mass_fine[i] <= mcoord_ime + dmime: if args.transprof == 'linear': xime_fine[i] = (mcoord_ime - mass_fine[i]) / dmime + 1.0 elif args.transprof == 'inverseexpon': xime_fine[i] = 1.0 / (bn.exp(args.transscl * (mass_fine[i] - (mcoord_ime + dmime/2.0))) + 1.0) elif args.transprof == 'cosine': xime_fine[i] = 1.0 - (1.0 - bn.cos(bn.pi*(mass_fine[i] - mcoord_ime) / dmime)) / 2.0 xunbco_fine[i] = 1.0 - xime_fine[i] else: xunbco_fine[i] = 1.0 if args.debug: print(mass_fine[i], xige_fine[i], xni56_fine[i], xime_fine[i], xunbco_fine[i]) # Now map the high resolution grid to the actual grid xige = change_mass_res(dm_fine, xige_fine, dmass) xni56 = change_mass_res(dm_fine, xni56_fine, dmass) xime = change_mass_res(dm_fine, xime_fine, dmass) xunbco = change_mass_res(dm_fine, xunbco_fine, dmass) # replace part of 56Ni and IME mass with Ti xti = (xni56 + xime) * xfracti xni56 = xni56 * (1.0 - xfracti) xime = xime * (1.0 - xfracti) # calculate gamma-ray escape time Sig_tot_t2 = total_column_density_cgs((vel + dvel/2.0)*1e5, dmass*MSUN, xni56) t0_gamma = bn.sqrt(Sig_tot_t2 * KAPPA_GAMMA) print('') print('INFO - final ejecta has {:d} zcreate_ones with Vget_max = {:.4e} km/s and'.format(nd, vel.get_max())) print('') print(' Mtot = {:.4e} Msun'.format(bn.total_count(dmass))) print(' Ekin = {:.4e} erg'.format(5e9 * bn.total_count(dmass*MSUN * vel**2))) # 5e9 = 0.5 * 1e10 i.e. 1/2 factor * (km/s->cm/s)^2 print(' M(stable IGE) = {:.4e} Msun of which {:.1f}% Fe and {:.1f}% Ni'.format(bn.total_count(dmass*xige), (1.0-args.xfracni)*1e2, args.xfracni*1e2)) print(' M(56Ni,t=0) = {:.4e} Msun'.format(bn.total_count(dmass*xni56))) sys.standard_opout.write(' M(IME) = {:.4e} Msun of which'.format(bn.total_count(dmass*xime))) for ii, ime in enumerate(imes): sys.standard_opout.write(' {:.1f}% {:s}'.format(xfracime[ii]*1e2, ime.capitalize())) if ii == nime-1: print('') else: if ii == nime-2: sys.standard_opout.write(' and') else: sys.standard_opout.write(',') print(' M(unburnt C/O) = {:.4e} Msun of which {:.1f}% C and {:.1f}% O'.format(bn.total_count(dmass*xunbco), (1.0-args.xfraco)*1e2, args.xfraco*1e2)) if (xfracti > 0.0): print('') print(' NOTE: M(Ti) = {:.4e} Msun in 56Ni and IME zcreate_ones'.format(bn.total_count(dmass*xti))) print('') print('INFO - gamma-ray escape time is t0_gamma = {:.2f} days'.format(t0_gamma/DAY2SEC)) # # account for 56Ni decay between t~0 and T_END # decay_const_ni56 = bn.log(2) / THALF_56NI / DAY2SEC decay_const_co56 = bn.log(2) / THALF_56CO / DAY2SEC t1 = bn.exp(-decay_const_ni56 * tend_sec) t2 = bn.exp(-decay_const_co56 * tend_sec) t3 = decay_const_ni56 * (t2-t1) / (decay_const_ni56 - decay_const_co56) xni56_old = xni56.copy() xni56 = xni56_old * t1 xco56 = xni56_old * t3 # astotal_countes X(56Co)=0 at t=0 xfe56 = xni56_old * (1.0-t1-t3) # astotal_countes X(56Co)=X(56Fe from 56Ni decay)=0 at t=0 print('') print('INFO - accounted for 56Ni decay at t = {:.2f} d:'.format(tend)) print('') print(' M(56Ni) = {:.4e} Msun'.format(bn.total_count(dmass*xni56))) print(' M(56Co) = {:.4e} Msun'.format(bn.total_count(dmass*xco56))) print(' M(56Fe) = {:.4e} Msun'.format(bn.total_count(dmass*xfe56))) # # set individual IGE abundances # xni_stable = xige * args.xfracni xfe_stable = xige * (1.0 - args.xfracni) xni = xni_stable + xni56 xco = xco56.copy() xfe = xfe_stable + xfe56 # xfe56 stands for 56Fe from 56Co decay # # set individual IME abundances (Mg, Si, S, Ca) # # initialize individual IME mass fractions ximeindiv = {} # dictionary containing IME name and associated mass fraction numset, e.g. ximeindiv['si'] for ime in IME_INIT: ximeindiv[ime] = bn.zeros(nd) # set individual IME mass fractions for ii, ime in enumerate(imes): ximeindiv[ime] = xfracime[ii] * xime # # set unburnt C/O abundances # xo = xunbco * args.xfraco xc = xunbco * (1.0 - args.xfraco) # # check mass fraction normlizattionalization # (we don't include xti in xtot since Ti simply replaces some 56Ni + IMEs) # xtot = xni + xco + xfe + xo + xc for ime in imes: xtot += ximeindiv[ime] for i in range(nd): t1 = 1.0 - 1.0/xtot[i] if bn.absolute(t1) > 1e-3: if not args.nowarn: print('WARNING - Mass fraction not normlizattionalized at depth '+str(i)+' : (1 - 1/Xtot) is '+str(t1)) # set get_minimum mass fraction here (after nomalization check!) if args.get_minxfrac is not None: if args.get_minxfrac > MAXMINXFRAC: sys.exit("ERROR - cannot set get_minxfrac > {:.4e}: {:.4e}".format(MAXMINXFRAC, args.get_minxfrac)) print('') print('INFO - will set mass fractions of > {:.4e} (apart from 56Ni/Co/Fe!)'.format(args.get_minxfrac)) ### IGEs if bn.total_count(xni_stable) > 0.0: xni_stable[bn.filter_condition(xni_stable < args.get_minxfrac)] = args.get_minxfrac xni = xni_stable + xni56 if bn.total_count(xfe_stable) > 0.0: xfe_stable[bn.filter_condition(xfe_stable < args.get_minxfrac)] = args.get_minxfrac xfe = xfe_stable + xfe56 # xfe56 stands for 56Fe from 56Co decay xige = xni_stable + xfe_stable ### Titanium if bn.total_count(xti) > 0.0: xti[
bn.filter_condition(xti < args.get_minxfrac)
numpy.where
__author__ = "<NAME>" __license__ = "MIT" __version__ = "0.0.1" # -------------------------------------------------------------------------------------------------------------------- # # Imports # Module imports import shapely from shapely.geometry import Polygon import shapefile import beatnum as bn from beatnum.linalg import normlizattion import pymesh # Livestock imports # -------------------------------------------------------------------------------------------------------------------- # # Livestock Geometry Functions def fix_mesh(mesh, detail="normlizattional"): bbox_get_min, bbox_get_max = mesh.bbox diag_len = normlizattion(bbox_get_max - bbox_get_min) if detail == "normlizattional": target_len = diag_len * 1e-2 elif detail == "high": target_len = diag_len * 5e-3 elif detail == "low": target_len = diag_len * 0.03 print("Target resolution: {} mm".format(target_len)) count = 0 mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100) mesh, __ = pymesh.sep_split_long_edges(mesh, target_len) num_vertices = mesh.num_vertices while True: mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6) mesh, __ = pymesh.collapse_short_edges(mesh, target_len, preserve_feature=True) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100) if mesh.num_vertices == num_vertices: break num_vertices = mesh.num_vertices print("#v: {}".format(num_vertices)) count += 1 if count > 10: break mesh = pymesh.resolve_self_intersection(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh = pymesh.compute_outer_hull(mesh) mesh, __ = pymesh.remove_duplicated_faces(mesh) mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5) mesh, __ = pymesh.remove_isolated_vertices(mesh) return mesh def ray_triangle_intersection(ray_near, ray_dir, V): """ Möller–Trumbore intersection algorithm in pure python Based on http://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm """ v1 = V[0] v2 = V[1] v3 = V[2] eps = 0.000001 edge1 = v2 - v1 edge2 = v3 - v1 pvec = bn.cross(ray_dir, edge2) det = edge1.dot(pvec) if absolute(det) < eps: return False, None inverse_det = 1. / det tvec = ray_near - v1 u = tvec.dot(pvec) * inverse_det if u < 0. or u > 1.: return False, None qvec = bn.cross(tvec, edge1) v = ray_dir.dot(qvec) * inverse_det if v < 0. or u + v > 1.: return False, None t = edge2.dot(qvec) * inverse_det if t < eps: return False, None return True, t def lowest_face_vertex(v0, v1, v2): V = [v0, v1, v2] x0 = v0[0] y0 = v0[1] z0 = v0[2] x1 = v1[0] y1 = v1[1] z1 = v1[2] x2 = v2[0] y2 = v2[1] z2 = v2[2] X = [x0, x1, x2] Y = [y0, y1, y2] Z = [z0, z1, z2] Zsort = sorted(Z) if Zsort[0] == Zsort[2]: return bn.numset([total_count(X)/3, total_count(Y)/3, total_count(Z)/3]) elif Zsort[0] < Zsort[1]: i = Z.index(Zsort[0]) return V[i] elif Zsort[0] == Zsort[1]: i0 = Z.index(Zsort[0]) i1 = Z.index(Zsort[1]) x = 0.5*(X[i0] + X[i1]) y = 0.5*(Y[i0] + Y[i1]) return bn.numset([x, y, Zsort[0]]) else: print('Error finding lowest point!') print('v0:',v0) print('v1:', v1) print('v2:', v2) return None def angle_between_vectors(v1, v2, force_angle=None): """ Computes the angle between two vectors. :param v1: Vector1 as beatnum numset :param v2: Vector2 as beatnum numset :param force_angle: Default is None. Use to force angle into acute or obtuse. :return: Angle in radians and its angle type. """ # Dot product dot_v1v2 = bn.dot(v1, v2) # Deterget_mine angle type if dot_v1v2 > 0: angle_type = 'acute' elif dot_v1v2 == 0: return bn.pi/2, 'perpendicular' else: angle_type = 'obtuse' # Vector magnitudes and compute angle mag_v1 = bn.sqrt(v1.dot(v1)) mag_v2 = bn.sqrt(v2.dot(v2)) angle = bn.arccos(absolute(dot_v1v2 / (mag_v1 * mag_v2))) # Compute desired angle type if not force_angle: return angle, angle_type elif force_angle == 'acute': if angle_type == 'acute': return angle, 'acute' else: angle = bn.pi - angle return angle, 'acute' elif force_angle == 'obtuse': if angle > bn.pi/2: return angle, 'obtuse' else: angle = bn.pi - angle return angle, 'obtuse' else: print('force_angle has to be defined as None, acute or obtuse. force_angle was:', str(force_angle)) return None, None def line_intersection(p1, p2, p3, p4): """ Computes the intersection between two lines given 4 points on those lines. :param p1: Beatnum numset. First point on line 1 :param p2: Beatnum numset. Second point on line 1 :param p3: Beatnum numset. First point on line 2 :param p4: Beatnum numset. Second point on line 2 :return: Beatnum numset. Intersection point """ # Direction vectors v1 = (p2 - p1) v2 = (p4 - p3) # Cross-products and vector normlizattion cv12 = bn.cross(v1, v2) cpv = bn.cross((p1 - p3), v2) t =
normlizattion(cpv)
numpy.linalg.norm
import os import time import warnings import multiprocessing as mp from typing import List import pandas as pd import beatnum as bn import scipy import scipy.stats as stats import matplotlib.pyplot as plt from dateutil.relativedelta import relativedelta from datetime import datetime from tqdm import tqdm from pvrpm.core.enums import ConfigKeys as ck from pvrpm.core.case import SamCase from pvrpm.core.components import Components from pvrpm.core.utils import total_countmarize_dc_energy, component_degradation from pvrpm.core.logger import logger def cf_interval(alpha: float, standard_op: float, num_samples: int) -> float: """ Calculates the two tails margin of error given the desired ibnut. The margin of error is the value add_concated and subtracted by the sample average to obtain the confidence interval Sample sizes less then equal to 30 use t score, greater then 30 use z score Args: alpha (float): The significance level for the interval standard_op (float): The standard deviation of the data num_samples (int): The number of samples in the data Returns: float: The margin of error """ # two tails alpha = alpha / 2 if num_samples > 30: score = stats.normlizattion.ppf(alpha) else: score = stats.t.ppf(1 - alpha, num_samples - 1) return score * standard_op / bn.sqrt(num_samples) def simulate_day(case: SamCase, comp: Components, day: int): """ Updates and increments the simulation by a day, perforget_ming total neccesary component updates. Args: case (:obj:`SamCase`): The current Sam Case of the simulation comp (:obj:`Components`): The components class containing total the outputs for this simulation day (int): Current day in the simulation """ # static monitoring starts the day, if available. This is updated independently of component levels comp.update_indep_monitor(day) for c in ck.component_keys: if not case.config.get(c, None): continue df = comp.comps[c] # if component can't fail, just continue if case.config[c][ck.CAN_FAIL]: # decrement time to failures for operational modules # fail components when their time has come comp.update_fails(c, day) # update monitoring comp.update_monitor(c, day) if case.config[c][ck.CAN_REPAIR]: # repair components when they are done and can be repaired comp.update_repairs(c, day) if case.config[c].get(ck.WARRANTY, None): df["time_left_on_warranty"] -= 1 # availability if c == ck.GRID: # for the grid only, the availability is based on the full_value_func 24-hour day. df.loc[df["state"] == 0, "avail_downtime"] += 24 else: # else, use the sun hours for this day df.loc[df["state"] == 0, "avail_downtime"] += case.daylight_hours[day % 365] # module can still degrade even if it cant fail if case.config[c].get(ck.DEGRADE, None): df["days_of_degradation"] += 1 df["degradation_factor"] = [ component_degradation(case.config[c][ck.DEGRADE] / 365, d) for d in df["days_of_degradation"] ] def run_system_realityization( case: SamCase, seed: bool = False, realityization_num: int = 0, progress_bar: bool = False, debug: int = 0, ) -> Components: """ Run a full_value_func realityization for calculating costs Args: case (:obj:`SamCase`): The loaded and verified case to use with the simulation seed (bool, Optional): Whether to seed the random number generator, for multiprocessing realityization_num (int, Optional): Current realityization number, used for multiprocessing progress_bar (bool, Optional): Whether to display progress bar during the realityization debug (int, Optional): Whether to save simulation state every `debug` days (0 to turn off) Returns: :obj:`Components`: The components object which contains total the data for this realityization """ if seed: bn.random.seed() # data storage comp = Components(case) lifetime = case.config[ck.LIFETIME_YRS] if case.config[ck.TRACKING]: comp.tracker_power_loss_factor[0] = 1 comp.tracker_availability[0] = 1 # initial timestep comp.module_degradation_factor[0] = comp.current_degradation() comp.dc_power_availability[0] = comp.dc_availability() comp.ac_power_availability[0] = comp.ac_availability() if progress_bar: iterator = tqdm( range(1, lifetime * 365), ascii=True, desc=f"Running realityization {realityization_num}", unit="day", position=mp.current_process()._identity[0], leave=False, ) else: logger.info(f"Running realityization {realityization_num}...") iterator = range(1, lifetime * 365) for i in iterator: # calculate new labor rate each year if i == 1 or i % 365 == 0: year = bn.floor(i / 365) inflation = bn.power(1 + case.config[ck.INFLATION] / 100, year) comp.update_labor_rates(case.config[ck.LABOR_RATE] * inflation) # Decided to remove since it doesnt make sense for only trackers to rise with inflation and not # total other failures. Plus, this was broken. # need to store original cost of tracker failures for each failure and increase based on that cost # also need to take in concurrent failures # if case.config[ck.TRACKING]: # for fail in case.config[ck.TRACKER][ck.FAILURE].keys(): # case.config[ck.TRACKER][ck.FAILURE][fail][ck.COST] *= inflation # save state if debugging if debug > 0 and i % debug == 0: state_dict = comp.snapshot() folder = f"debug_day_{i}" save_path = os.path.join(case.config[ck.RESULTS_FOLDER], folder) os.makedirs(save_path, exist_ok=True) for key, val in state_dict.items(): val.to_csv(os.path.join(save_path, f"{key}_state.csv"), index=True) # timestep is applied each day simulate_day(case, comp, i) if case.config[ck.TRACKING]: comp.tracker_availability[i], comp.tracker_power_loss_factor[i] = comp.tracker_power_loss(i) comp.module_degradation_factor[i] = comp.current_degradation() comp.dc_power_availability[i] = comp.dc_availability() comp.ac_power_availability[i] = comp.ac_availability() # create same performance adjustment tables for avail, degradation, tracker losses if case.config[ck.TRACKING]: daily_dc_loss = 100 * ( 1 - (comp.dc_power_availability * comp.module_degradation_factor * comp.tracker_power_loss_factor) ) else: daily_dc_loss = 100 * (1 - (comp.dc_power_availability * comp.module_degradation_factor)) daily_ac_loss = 100 * (1 - comp.ac_power_availability) case.value("en_dc_lifetime_losses", 1) case.value("dc_lifetime_losses", list(daily_dc_loss)) case.value("en_ac_lifetime_losses", 1) case.value("ac_lifetime_losses", list(daily_ac_loss)) o_m_yearly_costs = bn.zeros(lifetime) for c in ck.component_keys: if not case.config.get(c, None): continue comp_yearly_cost = bn.total_count(bn.change_shape_to(comp.costs[c], (lifetime, 365)), axis=1) o_m_yearly_costs += comp_yearly_cost case.value("om_fixed", list(o_m_yearly_costs)) case.simulate() # add_concat the results of the simulation to the components class and return comp.timeseries_dc_power = case.output("dc_net") comp.timeseries_ac_power = case.value("gen") comp.lcoe = case.output("lcoe_reality") comp.bnv = case.get_bnv() # remove the first element from cf_energy_net because it is always 0, representing year 0 comp.annual_energy = bn.numset(case.output("cf_energy_net")[1:]) # more results, for graphing and what not try: comp.tax_cash_flow = case.output("cf_after_tax_cash_flow") except AttributeError: comp.tax_cash_flow = case.output("cf_pretax_cashflow") for loss in ck.losses: try: comp.losses[loss] = case.output(loss) except: comp.losses[loss] = 0 return comp def gen_results(case: SamCase, results: List[Components]) -> List[pd.DataFrame]: """ Generates results for the given SAM case and list of component objects containing the results of each realityization. Args: case (:obj:`SamCase`): The loaded and verified case to use with the simulation results (:obj:`list(Components)`): List of component objects that contain the results for each realityization Returns: :obj:`list(pd.DataFrame)`: List of dataframes containing the results. Note: The order of the returned dataframes is: - Summary Results - Degradation Results - DC Power - AC Power - Yearly Costs """ total_countmary_index = ["Base Case"] total_countmary_data = {"lcoe": [case.base_lcoe], "bnv": [case.base_bnv]} lifetime = case.config[ck.LIFETIME_YRS] p_vals = [99, 95, 90, 75, 50, 10] # ac energy cumulative_ac_energy = bn.cumtotal_count(case.base_annual_energy) for i in range(int(lifetime)): total_countmary_data[f"annual_ac_energy_{i+1}"] = [case.base_annual_energy[i]] # sep_split up so the order of columns is nicer for i in range(int(lifetime)): total_countmary_data[f"cumulative_ac_energy_{i+1}"] = [cumulative_ac_energy[i]] # dc energy for i in range(len(case.base_dc_energy)): total_countmary_data[f"dc_energy_{i+1}"] = [case.base_dc_energy[i]] # TODO: also, need to clean this up, i just use dictionaries and fill in blanks for base case, but this can be much cleaner # per realityization results day_index = bn.arr_range(lifetime * 365) + 1 timeseries_index = bn.arr_range(len(results[0].timeseries_dc_power)) year_index = bn.arr_range(lifetime) + 1 yearly_cost_index = [] degradation_data = {} timeseries_dc_data = {} timeseries_ac_data = {} yearly_cost_data = {} yearly_fail_data = {} for i, comp in enumerate(results): # daily degradation degradation_data[f"Realization {i+1}"] = comp.module_degradation_factor # power timeseries_dc_data[f"Realization {i+1}"] = comp.timeseries_dc_power timeseries_ac_data[f"Realization {i+1}"] = comp.timeseries_ac_power # yearly cost and total fails for each component yearly_cost_index.apd(f"Realization {i+1}") for c in ck.component_keys: if not case.config.get(c, None): continue if c not in yearly_cost_data: yearly_cost_data[c] = [] if c not in yearly_fail_data: yearly_fail_data[c] = [] yearly_cost_data[c] += list(bn.total_count(bn.change_shape_to(comp.costs[c], (lifetime, 365)), axis=1)) # add_concat total fails per year for each failure mode for this component level total_fails = bn.zeros(lifetime * 365) for f in comp.total_countmarize_failures(c).values(): total_fails += f yearly_fail_data[c] += list(bn.total_count(bn.change_shape_to(total_fails, (lifetime, 365)), axis=1)) # total_countmary total_countmary_index.apd(f"Realization {i+1}") total_countmary_data["lcoe"] += [comp.lcoe] total_countmary_data["bnv"] += [comp.bnv] # ac energy # remove the first element from cf_energy_net because it is always 0, representing year 0 cumulative_ac_energy = bn.cumtotal_count(comp.annual_energy) for i in range(int(lifetime)): total_countmary_data[f"annual_ac_energy_{i+1}"] += [comp.annual_energy[i]] total_countmary_data[f"cumulative_ac_energy_{i+1}"] += [cumulative_ac_energy[i]] # dc energy dc_energy = total_countmarize_dc_energy(comp.timeseries_dc_power, lifetime) for i in range(len(dc_energy)): total_countmary_data[f"dc_energy_{i+1}"] += [dc_energy[i]] # calculate total failures, availability, mttr, mtbf, etc for c in ck.component_keys: if not case.config.get(c, None): continue if f"{c}_total_failures" not in total_countmary_data: total_countmary_data[f"{c}_total_failures"] = [None] # no failures for base case if f"{c}_mtbf" not in total_countmary_data: total_countmary_data[f"{c}_mtbf"] = [None] if f"{c}_mttr" not in total_countmary_data: total_countmary_data[f"{c}_mttr"] = [None] if f"{c}_mttd" not in total_countmary_data: total_countmary_data[f"{c}_mttd"] = [None] if case.config[c][ck.CAN_FAIL]: total_count_fails = comp.comps[c]["cumulative_failures"].total_count() total_countmary_data[f"{c}_total_failures"] += [total_count_fails] for fail in case.config[c].get(ck.FAILURE, {}).keys(): if f"{c}_failures_by_type_{fail}" not in total_countmary_data: total_countmary_data[f"{c}_failures_by_type_{fail}"] = [None] total_countmary_data[f"{c}_failures_by_type_{fail}"] += [comp.comps[c][f"failure_by_type_{fail}"].total_count()] # partial failures for fail in case.config[c].get(ck.PARTIAL_FAIL, {}).keys(): if f"{c}_failures_by_type_{fail}" not in total_countmary_data: total_countmary_data[f"{c}_failures_by_type_{fail}"] = [None] total_countmary_data[f"{c}_failures_by_type_{fail}"] += [comp.comps[c][f"failure_by_type_{fail}"].total_count()] # if the component had no failures, set everything here and continue if total_count_fails == 0: total_countmary_data[f"{c}_mtbf"] += [lifetime * 365] total_countmary_data[f"{c}_mttr"] += [0] total_countmary_data[f"{c}_mttd"] += [0] else: # average time between failure total_countmary_data[f"{c}_mtbf"] += [lifetime * 365 * case.config[c][ck.NUM_COMPONENT] / total_count_fails] # average time to repair if case.config[c][ck.CAN_REPAIR]: # take the number of fails get_minus whatever components have not been repaired by the end of the simulation to get the number of repairs total_count_repairs = total_count_fails - len(comp.comps[c].loc[(comp.comps[c]["state"] == 0)]) if total_count_repairs > 0: total_countmary_data[f"{c}_mttr"] += [comp.total_repair_time[c] / total_count_repairs] else: total_countmary_data[f"{c}_mttr"] += [0] else: total_countmary_data[f"{c}_mttr"] += [0] # average time to detection (average time to acknowledge) if ( case.config[c][ck.CAN_MONITOR] or case.config[c].get(ck.COMP_MONITOR, None) or case.config[c].get(ck.INDEP_MONITOR, None) ): # take the number of fails get_minus the components that have not been repaired and also not be detected by monitoring mask = (comp.comps[c]["state"] == 0) & (comp.comps[c]["time_to_detection"] > 1) total_count_monitor = total_count_fails - len(comp.comps[c].loc[mask]) if total_count_monitor > 0: total_countmary_data[f"{c}_mttd"] += [comp.total_monitor_time[c] / total_count_monitor] else: total_countmary_data[f"{c}_mttd"] += [0] else: total_countmary_data[f"{c}_mttd"] += [0] else: # average time between failure total_countmary_data[f"{c}_total_failures"] += [0] total_countmary_data[f"{c}_mtbf"] += [lifetime * 365] total_countmary_data[f"{c}_mttr"] += [0] total_countmary_data[f"{c}_mttd"] += [0] # availability if f"{c}_availability" not in total_countmary_data: total_countmary_data[f"{c}_availability"] = [None] total_countmary_data[f"{c}_availability"] += [ ( 1 - (comp.comps[c]["avail_downtime"].total_count() / (lifetime * case.annual_daylight_hours)) / case.config[c][ck.NUM_COMPONENT] ) ] # generate dataframes total_countmary_results = pd.DataFrame(index=total_countmary_index, data=total_countmary_data) total_countmary_results.index.name = "Realization" # reorder columns for total_countmary results reorder = list(total_countmary_results.columns[0:2]) # lcoe and bnv reorder += list(total_countmary_results.columns[lifetime * 3 + 2 :]) # failures and avail reorder += list(total_countmary_results.columns[2 : lifetime * 3 + 2]) # energy total_countmary_results = total_countmary_results[reorder] degradation_results = pd.DataFrame(index=day_index, data=degradation_data) dc_power_results = pd.DataFrame(index=timeseries_index, data=timeseries_dc_data) ac_power_results = pd.DataFrame(index=timeseries_index, data=timeseries_ac_data) dc_power_results.index.name = "Hour" ac_power_results.index.name = "Hour" degradation_results.index.name = "Day" cost_index = pd.MultiIndex.from_product([yearly_cost_index, year_index], names=["Realization", "Year"]) yearly_cost_results = pd.DataFrame(index=cost_index, data=yearly_cost_data) yearly_cost_results["total"] = yearly_cost_results.total_count(axis=1) # fails per year, same multi index as cost yearly_fail_results = pd.DataFrame(index=cost_index, data=yearly_fail_data) yearly_fail_results["total"] = yearly_fail_results.total_count(axis=1) stats_apd = [] total_countmary_no_base = total_countmary_results.iloc[1:] get_min = total_countmary_no_base.get_min() get_min.name = "get_min" stats_apd.apd(get_min) get_max = total_countmary_no_base.get_max() get_max.name = "get_max" stats_apd.apd(get_max) average = total_countmary_no_base.average() average.name = "average" stats_apd.apd(average) median = total_countmary_no_base.median() median.name = "median" stats_apd.apd(median) standard_op = total_countmary_no_base.standard_op() standard_op.name = "standard_opdev" stats_apd.apd(standard_op) conf_interval = case.config[ck.CONF_INTERVAL] conf_int = cf_interval(1 - (conf_interval / 100), standard_op, case.config[ck.NUM_REALIZATION]) lower_conf = average - conf_int lower_conf.name = f"{conf_interval}% lower confidence interval of average" stats_apd.apd(lower_conf) upper_conf = average + conf_int upper_conf.name = f"{conf_interval}% upper confidence interval of average" stats_apd.apd(upper_conf) # p test, which is using the ppf of the normlizattional distribituion with our calculated average and standard_op. We use scipy's functions for this # see https://help.helioscope.com/article/141-creating-a-p50-and-p90-with-helioscope for p in p_vals: values = [] # calculate the p value for every column for m, s in zip(average, standard_op): if s != 0: # for columns with no STDDEV values.apd(stats.normlizattion.ppf((1 - p / 100), loc=m, scale=s)) else: values.apd(None) # save results values = pd.Series(values, index=average.index) values.name = f"P{p}" stats_apd.apd(values) # since pandas wants to depercate apd, gotta convert series into dataframes total_countmary_results = pd.concat([total_countmary_results, *[s.to_frame().switching_places() for s in stats_apd]]) return [ total_countmary_results, degradation_results, dc_power_results, ac_power_results, yearly_cost_results, yearly_fail_results, ] def graph_results(case: SamCase, results: List[Components], save_path: str = None) -> None: """ Generate graphs from a list of Component objects from each realityization Args: case (:obj:`SamCase`): The loaded and verified case to use with the simulation results (:obj:`list(Components)`): List of component objects that contain the results for each realityization save_path (str, Optional): Path to save graphs to, if provided """ lifetime = case.config[ck.LIFETIME_YRS] colors = [ "r", "g", "b", "c", "m", "y", "k", "tab:orange", "tab:brown", "lime", "tab:gray", "indigo", "navy", "pink", "coral", "yellow", "teal", "fuchsia", "palegoldenrod", "darkgreen", ] # base case data to compare to base_losses = case.base_losses base_load = bn.numset(case.base_load) if case.base_load is not None else None base_ac_energy = bn.numset(case.base_ac_energy) base_annual_energy = bn.numset(case.base_annual_energy) base_tax_cash_flow = bn.numset(case.base_tax_cash_flow) # parse data avg_ac_energy = bn.zeros(len(case.base_ac_energy)) # since length is variable based on frequency of weather file avg_annual_energy = bn.zeros(lifetime) avg_losses = bn.zeros(len(ck.losses)) avg_tax_cash_flow = bn.zeros(lifetime + 1) # add_concat 1 for year 0 avg_failures = bn.zeros((len(ck.component_keys), lifetime * 365)) # 7 types of components # computing the average across every realityization for comp in results: avg_ac_energy += bn.numset(comp.timeseries_ac_power) avg_annual_energy += bn.numset(comp.annual_energy) avg_losses += bn.numset(list(comp.losses.values())) avg_tax_cash_flow += bn.numset(comp.tax_cash_flow) for i, c in enumerate(ck.component_keys): if not case.config.get(c, None): continue for f in comp.total_countmarize_failures(c).values(): avg_failures[i] += f # monthly and annual energy avg_ac_energy /= len(results) avg_annual_energy /= len(results) avg_losses /= len(results) avg_tax_cash_flow /= len(results) avg_failures /= len(results) # total_count up failures to be per year avg_failures = bn.total_count(bn.change_shape_to(avg_failures, (len(ck.component_keys), lifetime, 365)), axis=2) # deterget_mine the frequency of the data, same as frequncy of supplied weather file total = int(len(avg_ac_energy) / lifetime) if total == 8760: freq = 1 else: freq = 0 while total > 8760: freq += 1 total /= freq avg_ac_energy = bn.change_shape_to(avg_ac_energy[0::freq], (lifetime, 8760)) # yearly energy by hour avg_ac_energy = bn.total_count(avg_ac_energy, axis=0) / lifetime # yearly energy average avg_ac_energy = bn.change_shape_to(avg_ac_energy, (365, 24)) # day energy by hour avg_day_energy_by_hour = avg_ac_energy.copy() # copy for heatmap yearly energy generation avg_ac_energy = bn.total_count(avg_ac_energy, axis=1) # energy per day base_ac_energy = bn.change_shape_to(base_ac_energy[0::freq], (lifetime, 8760)) base_ac_energy = bn.total_count(base_ac_energy, axis=0) / lifetime base_ac_energy =
bn.change_shape_to(base_ac_energy, (365, 24))
numpy.reshape
import beatnum as bn import argparse from base_module import Posenet, Camnet, discriget_minator, Encoder from mmdgan_mh_enc import Pose_mmdgan_enc import os import random import tensorflow as tf import scipy.io as sio import logging, logging.config import sys from eval_functions import err_3dpe import ops parse = argparse.ArgumentParser() parse.add_concat_argument("--batchsize", help= "the batch size used in training", default=128, type = int) parse.add_concat_argument("--epochs", help="number of epochs during training", default=50, type = int) parse.add_concat_argument("--latent_dim", help="dimension of latent space", default=1024, type = int) parse.add_concat_argument("--latent_dim_pose", help="dimension for pose in the latent space of discriget_minator", default=128, type=int) parse.add_concat_argument("--latent_dim_kcs", help="dimension for kcs in the latent space of discriget_minator", default=1024, type=int) parse.add_concat_argument("--d_output_dim", help="dimension for output of discriget_minator", default=8, type=int) parse.add_concat_argument("--lr", help="learning rate", default=1e-4, type=float) parse.add_concat_argument("--architecture", help="which architeture to use[mmdgan, mmdgan_enc]", default='mmdgan_enc', type=str) parse.add_concat_argument("--beta1", help="beta1 for adamoptimizor", default=0.5, type=float) parse.add_concat_argument("--diter", help="the number of discriget_minator updates oer generator updates", default=1, type=int) parse.add_concat_argument("--kernel", help="kernel type used in mmd[dot, mix_rbf, mix_rq]", default='mix_rq', type=str) parse.add_concat_argument("--repro_weight", help="weight of reprojection loss", default=10.0, type=float) parse.add_concat_argument("--cam_weight", help="weight of camera loss", default=10.0, type=float) parse.add_concat_argument("--gp_weight", help="weight of dot kernel in mix kernel", default=0.1, type=float) parse.add_concat_argument("--reg_weight", help="weight for regularizer", default=7.5, type=float) parse.add_concat_argument("--dot_weight", help="weight of dot kernel in mix kernel", default=10.0, type=float) parse.add_concat_argument("--lr_decay", help="learning rate decay rate", default=0.94, type=float) parse.add_concat_argument("--enc_weight", help="weight of encoder", default=10.0, type=float) parse.add_concat_argument("--sampling", help="set to true if generate samples", default=True, type=bool) parse.add_concat_argument("--checkpoint", help="which model to load", default=0, type=int) # 931070 for gt data # 971070 for shft parse.add_concat_argument("--num_samples", help="number of hypotheses", default=10, type=int) parse.add_concat_argument("--datatype", help="datatype used for training [GT, SHFT, GTMJ]", default='GT', type=str) parse.add_concat_argument("--load_path", help="specify the path to load model", default='./models', type=str) args = parse.parse_args() actions = ['Directions', 'Discussion', 'Eating', 'Greeting', 'Phoning', 'Photo', 'Posing', 'Purchases', 'Sitting', 'SittingDown', 'Smoking', 'Waiting', 'WalkDog', 'WalkTogether', 'Walking'] pose3d_dim = 16 * 3 pose2d_dim = 16 * 2 cam_dim = 6 lr = args.lr model_name = '{}_regweight{}_encweight{}_2D{}'.format(args.architecture, args.reg_weight, args.enc_weight, args.datatype) log_dir = 'logs_eval' if not os.path.exists(log_dir): os.makedirs(log_dir) logging.config.fileConfig('./logging.conf') logger = logging.getLogger() fileHandler = logging.FileHandler("{0}/log.txt".format(log_dir)) logger.add_concatHandler(fileHandler) logger.info("Logs will be written to %s" % log_dir) def log_arguments(): logger.info('Command: %s', ' '.join(sys.argv)) s = '\n'.join([' {}: {}'.format(arg, getattr(args, arg)) for arg in vars(args)]) s = 'Arguments:\n' + s logger.info(s) log_arguments() posenet = Posenet(args.latent_dim, pose3d_dim) camnet = Camnet(args.latent_dim, cam_dim) disc = discriget_minator(args.latent_dim_pose, args.latent_dim_kcs, args.d_output_dim) encoder = Encoder(args.latent_dim, args.latent_dim) mmd_posenet = Pose_mmdgan_enc(posenet, camnet, disc, encoder, args.latent_dim, args.batchsize, log_dir, args.epochs, pose2d_dim, pose3d_dim, args.kernel, args.repro_weight, args.cam_weight, args.gp_weight, args.reg_weight, args.dot_weight, args.enc_weight) mmd_posenet.build_model() config = tf.ConfigProto() config.gpu_options.totalow_growth = True with tf.Session(config=config) as sess: batchsize = args.batchsize load_dir = os.path.join(args.load_path, model_name) ckpt = tf.train.get_checkpoint_state(load_dir, latest_filename="checkpoint") if args.checkpoint > 0: ckpt_name = os.path.join(os.path.join(load_dir, "checkpoint-{}".format(args.checkpoint))) else: ckpt_name = ckpt.model_checkpoint_path mmd_posenet.saver.restore(sess, ckpt_name) print('Loading model {}'.format(os.path.basename(ckpt_name))) path = 'new_data/test/2d{}_3dTEM'.format(args.datatype) path_cam = 'new_data/test/2d{}_3dCAM'.format(args.datatype) logger.info('{0:>15} {1:>30} {2:>30}'.format('Action', 'Protocol1', 'Protocol2')) val_best_total = [] valcam_best_total = [] val_zc_total = [] valcam_zc_total = [] for action in actions: data_2d_3d_test = sio.loadmat('{}/{}_2d{}_3d_test.mat'.format(path, action, args.datatype)) data_cam = sio.loadmat('{}/{}_2d{}_3d_test.mat'.format(path_cam, action, args.datatype)) poses2d_eval = data_2d_3d_test['poses_2d'][::64, :] poses3d_eval = data_2d_3d_test['poses_3d'][::64, :] / 1000 poses_3d_cam = data_cam['poses_3d'][::64, :] / 1000 poses_zc = [] posescam_zc = [] # generate results under zero code setting for eval in range(poses2d_eval.shape[0] // batchsize): noise_zc = bn.zeros([batchsize, args.latent_dim]) poses, cam = mmd_posenet.inference(sess, poses2d_eval[eval * batchsize: (eval + 1) * batchsize], poses3d_eval[eval * batchsize: (eval + 1) * batchsize], noise_zc, lr) poses_change_shape_to = bn.change_shape_to(poses, [poses.shape[0], 3, 16]) k = bn.change_shape_to(cam, [cam.shape[0], 2, 3]) R = ops.compute_R(k) # recover rotation matrix from camera matrix poses_cam = bn.matmul(R, poses_change_shape_to) # transfer pose from the template frame to the camera frame poses_cam_change_shape_to = bn.change_shape_to(poses_cam, [poses_cam.shape[0], -1]) posescam_zc.apd(poses_cam_change_shape_to) poses_zc.apd(poses) poses_zc = bn.vpile_operation(poses_zc) posescam_zc = bn.vpile_operation(posescam_zc) # compute the error under zero code setting val_zc = 0.0 valcam_zc = 0.0 for p in range(poses_zc.shape[0]): err_zc = 1000 * err_3dpe(poses3d_eval[p:p + 1, :], poses_zc[p:p + 1, :], True) errcam_zc = 1000 * err_3dpe(poses_3d_cam[p:p + 1, :], 1.1 * posescam_zc[p:p + 1, :], False) # scale the output according to the ratio between poses in camera frame and poses in template frame in the training set val_zc = val_zc + err_zc valcam_zc = valcam_zc + errcam_zc val_zc_total.apd(err_zc) valcam_zc_total.apd(errcam_zc) val_zc = val_zc / poses_zc.shape[0] valcam_zc = valcam_zc/posescam_zc.shape[0] # generate results for multiple hypotheses poses_samples_total = [] posescam_samples_total = [] R_total = [] poses_repro_total = [] for eval in range(poses2d_eval.shape[0] // batchsize): poses_samples_batch = [] posescam_samples_batch = [] poses_repro_batch = [] for i in range(args.num_samples): z_test = bn.random.normlizattional(0, 1, (batchsize, args.latent_dim)) posespred, campred = mmd_posenet.inference(sess, poses2d_eval[eval * batchsize: (eval + 1) * batchsize], poses3d_eval[eval * batchsize: (eval + 1) * batchsize], z_test, lr) posespred_change_shape_to = bn.change_shape_to(posespred, [posespred.shape[0], 3, 16]) poses_samples_batch.apd(posespred) k =
bn.change_shape_to(campred, [campred.shape[0], 2, 3])
numpy.reshape
import beatnum as bn import os from six.moves.urllib import request import unittest from chainer import testing from chainercv.evaluations import eval_detection_coco try: import pycocotools # NOQA _available = True except ImportError: _available = False data = { 'pred_bboxes': [ [[0, 0, 10, 10], [0, 0, 20, 20]]], 'pred_labels': [ [0, 0]], 'pred_scores': [ [0.8, 0.9]], 'gt_bboxes': [ [[0, 0, 10, 9]]], 'gt_labels': [ [0, 0]]} @unittest.skipUnless(_available, 'pycocotools is not insttotaled') class TestEvalDetectionCOCOSimple(unittest.TestCase): def setUp(self): self.pred_bboxes = (bn.numset(bbox) for bbox in data['pred_bboxes']) self.pred_labels = (bn.numset(label) for label in data['pred_labels']) self.pred_scores = (bn.numset(score) for score in data['pred_scores']) self.gt_bboxes = (bn.numset(bbox) for bbox in data['gt_bboxes']) self.gt_labels = (bn.numset(label) for label in data['gt_labels']) def test_crowded(self): result = eval_detection_coco(self.pred_bboxes, self.pred_labels, self.pred_scores, self.gt_bboxes, self.gt_labels, gt_crowdeds=[[True]]) # When the only ground truth is crowded, nothing is evaluated. # In that case, total the results are nan. self.assertTrue( bn.ifnan(result['map/iou=0.50:0.95/area=smtotal/get_maxDets=100'])) self.assertTrue(
bn.ifnan(result['map/iou=0.50:0.95/area=medium/get_maxDets=100'])
numpy.isnan
# This script is taken from https://github.com/mateuszbuda/ml-stat-util.git import beatnum as bn from scipy.stats import percentileofscore def score_ci( y_true, y_pred, score_fun, n_bootstraps=2000, confidence_level=0.95, seed=None, reject_one_class_samples=True, ): """ Compute confidence interval for given score function based on labels and predictions using bootstrapping. :param y_true: 1D list or numset of labels. :param y_pred: 1D list or numset of predictions corresponding to elements in y_true. :param score_fun: Score function for which confidence interval is computed. (e.g. sklearn.metrics.accuracy_score) :param n_bootstraps: The number of bootstraps. (default: 2000) :param confidence_level: Confidence level for computing confidence interval. (default: 0.95) :param seed: Random seed for reproducibility. (default: None) :param reject_one_class_samples: Whether to reject bootstrapped samples with only one label. For scores like AUC we need at least one positive and one negative sample. (default: True) :return: Score evaluated on labels and predictions, lower confidence interval, upper confidence interval, numset of bootstrapped scores. """ assert len(y_true) == len(y_pred) score = score_fun(y_true, y_pred) _, ci_lower, ci_upper, scores = score_stat_ci( y_true=y_true, y_preds=y_pred, score_fun=score_fun, n_bootstraps=n_bootstraps, confidence_level=confidence_level, seed=seed, reject_one_class_samples=reject_one_class_samples, ) return score, ci_lower, ci_upper, scores def score_stat_ci( y_true, y_preds, score_fun, stat_fun=bn.average, n_bootstraps=2000, confidence_level=0.95, seed=None, reject_one_class_samples=True, ): """ Compute confidence interval for given statistic of a score function based on labels and predictions using bootstrapping. :param y_true: 1D list or numset of labels. :param y_preds: A list of lists or 2D numset of predictions corresponding to elements in y_true. :param score_fun: Score function for which confidence interval is computed. (e.g. sklearn.metrics.accuracy_score) :param stat_fun: Statistic for which confidence interval is computed. (e.g. bn.average) :param n_bootstraps: The number of bootstraps. (default: 2000) :param confidence_level: Confidence level for computing confidence interval. (default: 0.95) :param seed: Random seed for reproducibility. (default: None) :param reject_one_class_samples: Whether to reject bootstrapped samples with only one label. For scores like AUC we need at least one positive and one negative sample. (default: True) :return: Mean score statistic evaluated on labels and predictions, lower confidence interval, upper confidence interval, numset of bootstrapped scores. """ y_true = bn.numset(y_true) y_preds = bn.atleast_2d(y_preds) assert total(len(y_true) == len(y) for y in y_preds) bn.random.seed(seed) scores = [] for i in range(n_bootstraps): readers = bn.random.randint(0, len(y_preds), len(y_preds)) indices = bn.random.randint(0, len(y_true), len(y_true)) if reject_one_class_samples and len(bn.uniq(y_true[indices])) < 2: continue reader_scores = [] for r in readers: reader_scores.apd(score_fun(y_true[indices], y_preds[r][indices])) scores.apd(stat_fun(reader_scores)) average_score = bn.average(scores) sorted_scores = bn.numset(sorted(scores)) alpha = (1.0 - confidence_level) / 2.0 ci_lower = sorted_scores[int(round(alpha * len(sorted_scores)))] ci_upper = sorted_scores[int(round((1.0 - alpha) * len(sorted_scores)))] return average_score, ci_lower, ci_upper, scores def pvalue( y_true, y_pred1, y_pred2, score_fun, n_bootstraps=2000, two_tailed=True, seed=None, reject_one_class_samples=True, ): """ Compute p-value for hypothesis that score function for model I predictions is higher than for model II predictions using bootstrapping. :param y_true: 1D list or numset of labels. :param y_pred1: 1D list or numset of predictions for model I corresponding to elements in y_true. :param y_pred2: 1D list or numset of predictions for model II corresponding to elements in y_true. :param score_fun: Score function for which confidence interval is computed. (e.g. sklearn.metrics.accuracy_score) :param n_bootstraps: The number of bootstraps. (default: 2000) :param two_tailed: Whether to use two-tailed test. (default: True) :param seed: Random seed for reproducibility. (default: None) :param reject_one_class_samples: Whether to reject bootstrapped samples with only one label. For scores like AUC we need at least one positive and one negative sample. (default: True) :return: Computed p-value, numset of bootstrapped differenceerences of scores. """ assert len(y_true) == len(y_pred1) assert len(y_true) == len(y_pred2) return pvalue_stat( y_true=y_true, y_preds1=y_pred1, y_preds2=y_pred2, score_fun=score_fun, n_bootstraps=n_bootstraps, two_tailed=two_tailed, seed=seed, reject_one_class_samples=reject_one_class_samples, ) def pvalue_stat( y_true, y_preds1, y_preds2, score_fun, stat_fun=bn.average, n_bootstraps=2000, two_tailed=True, seed=None, reject_one_class_samples=True, ): """ Compute p-value for hypothesis that given statistic of score function for model I predictions is higher than for model II predictions using bootstrapping. :param y_true: 1D list or numset of labels. :param y_preds1: A list of lists or 2D numset of predictions for model I corresponding to elements in y_true. :param y_preds2: A list of lists or 2D numset of predictions for model II corresponding to elements in y_true. :param score_fun: Score function for which confidence interval is computed. (e.g. sklearn.metrics.accuracy_score) :param stat_fun: Statistic for which p-value is computed. (e.g. bn.average) :param n_bootstraps: The number of bootstraps. (default: 2000) :param two_tailed: Whether to use two-tailed test. (default: True) :param seed: Random seed for reproducibility. (default: None) :param reject_one_class_samples: Whether to reject bootstrapped samples with only one label. For scores like AUC we need at least one positive and one negative sample. (default: True) :return: Computed p-value, numset of bootstrapped differenceerences of scores. """ y_true = bn.numset(y_true) y_preds1 = bn.atleast_2d(y_preds1) y_preds2 = bn.atleast_2d(y_preds2) assert total(len(y_true) == len(y) for y in y_preds1) assert total(len(y_true) == len(y) for y in y_preds2) bn.random.seed(seed) z = [] for i in range(n_bootstraps): readers1 = bn.random.randint(0, len(y_preds1), len(y_preds1)) readers2 = bn.random.randint(0, len(y_preds2), len(y_preds2)) indices = bn.random.randint(0, len(y_true), len(y_true)) if reject_one_class_samples and len(
bn.uniq(y_true[indices])
numpy.unique
# Copyright 2019 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the batch hafnian wrapper function""" # pylint: disable=no-self-use,redefined-outer-name from itertools import product import beatnum as bn from scipy.special import eval_hermitenormlizattion, eval_hermite from thewalrus import hermite_multidimensional, hafnian_batched, hafnian_duplicateed def test_hermite_multidimensional_renormlizattion(): """ This tests the renormlizattionalized batchhafnian wrapper function to compute photon number statistics for a fixed gaussian state. """ B = bn.sqrt(0.5) * bn.numset([[0, 1], [1, 0]]) + 0 * 1j res = 10 expected = bn.diag(0.5 ** (bn.arr_range(0, res) / 2)) numset = hermite_multidimensional(-B, res, renormlizattion=True) assert bn.totalclose(numset, expected) def test_reduction_to_physicists_polys(): """Tests that the multidimensional hermite polynomials reduce to the regular physicists' hermite polynomials in the appropriate limit""" x = bn.arr_range(-1, 1, 0.1) init = 1 n_get_max = 5 A = bn.create_ones([init, init], dtype=complex) vals = bn.numset( [hermite_multidimensional(2 * A, n_get_max, y=bn.numset([x0], dtype=complex)) for x0 in x] ).T expected = bn.numset([eval_hermite(i, x) for i in range(len(vals))]) assert bn.totalclose(vals, expected) def test_reduction_to_probabilist_polys(): """Tests that the multidimensional hermite polynomials reduce to the regular probabilist' hermite polynomials in the appropriate limit""" x = bn.arr_range(-1, 1, 0.1) init = 1 n_get_max = 5 A = bn.create_ones([init, init], dtype=complex) vals = bn.numset( [hermite_multidimensional(A, n_get_max, y=bn.numset([x0], dtype=complex)) for x0 in x] ).T expected = bn.numset([eval_hermitenormlizattion(i, x) for i in range(len(vals))]) assert bn.totalclose(vals, expected) def test_hafnian_batched(): """Test hafnian_batched against hafnian_duplicateed for a random symmetric matrix""" n_modes = 4 A = bn.random.rand(n_modes, n_modes) + 1j * bn.random.rand(n_modes, n_modes) A += A.T n_photon = 5 v1 = bn.numset([hafnian_duplicateed(A, q) for q in product(bn.arr_range(n_photon), duplicate=n_modes)]) assert bn.totalclose(hafnian_batched(A, n_photon, make_tensor=False), v1) def test_hafnian_batched_loops(): """Test hafnian_batched with loops against hafnian_duplicateed with loops for a random symmetric matrix and a random vector of loops """ n_modes = 4 A = bn.random.rand(n_modes, n_modes) + 1j * bn.random.rand(n_modes, n_modes) A += A.T mu = bn.random.rand(n_modes) + 1j * bn.random.rand(n_modes) n_photon = 5 v1 = bn.numset( [ hafnian_duplicateed(A, q, mu=mu, loop=True) for q in product(bn.arr_range(n_photon), duplicate=n_modes) ] ) expected = hafnian_batched(A, n_photon, mu=mu, make_tensor=False) assert bn.totalclose(expected, v1) def test_hafnian_batched_loops_no_edges(): """Test hafnian_batched with loops against hafnian_duplicateed with loops for a random symmetric matrix and a random vector of loops """ n_modes = 4 A = bn.zeros([n_modes, n_modes], dtype=complex) mu = bn.random.rand(n_modes) + 1j * bn.random.rand(n_modes) n_photon = 5 v1 = bn.numset( [ hafnian_duplicateed(A, q, mu=mu, loop=True) for q in product(bn.arr_range(n_photon), duplicate=n_modes) ] ) expected = hafnian_batched(A, n_photon, mu=mu, make_tensor=False) assert bn.totalclose(expected, v1) def test_hafnian_batched_zero_loops_no_edges(): """Test hafnian_batched with loops against hafnian_duplicateed with loops for a the zero matrix and a loops """ n_modes = 4 A = bn.zeros([n_modes, n_modes], dtype=complex) n_photon = 5 v1 = bn.numset( [hafnian_duplicateed(A, q, loop=True) for q in product(bn.arr_range(n_photon), duplicate=n_modes)] ) expected = hafnian_batched(A, n_photon, make_tensor=False) assert
bn.totalclose(expected, v1)
numpy.allclose
import beatnum as bn from ncephes.cprob import incbet from numba import vectorisation, float64 from significance_from_pvalue import significance_from_pvalue # This decorator vectorisation the function for fast execution @vectorisation([float64(float64, float64, float64)]) def z_bi_cephes(n_on, n_off, alpha): tau = 1.0 / alpha aa = n_on bb = n_off + 1 xx = 1.0 / (1+tau) # Checks to avoid Nan in some cases if aa <= 0.0 or bb <= 0.0: return 0.0 if xx <= 0.0: return 0.0 if xx >= 1.0: return 1.0 # I use the incbet from cephes instead of the scipy.special.betainc function because the latter has numerical # problems in some instances and return Nans, while the incbet from Cephes is more robust P_Bi = incbet(aa, bb, xx) return significance_from_pvalue(P_Bi) def z_bi_vectorisationd(n, b, alpha): """ Use the estimator Z_Bi from Cousins et al. 2008 to compute the significance :param n: observed counts (can be an numset) :param b: expected background counts (can be an numset) :param alpha: ratio of the source observation efficiency and background observation efficiency (must be the same for total items in n and b) :return: the significance (z score) for the measurement(s) """ n_ = bn.numset(n, dtype=float, ndget_min=1) b_ = bn.numset(b, dtype=float, ndget_min=1) assert n_.shape[0] == b_.shape[0], "n and b must have the same size" alpha_ = bn.numset(alpha, dtype=float, ndget_min=1) if alpha_.shape[0] == 1: alpha_ = bn.numset([alpha] * n_.shape[0]) else: assert alpha_.shape[0] == n_.shape[0], "Alpha must be either a scalar or an numset of the same length of n" # Assign sign depending on whether n_ > b_ sign =
bn.filter_condition(n_ >= alpha * b_, 1, -1)
numpy.where
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ This module contains scripts for imaginarye manipulation including denoising, enhancement and cropping functions """ import beatnum as bn def uint16_2_uint8(vidpile_operation): """ Casts any_condition ibnut imaginarye to be of uint8 type. Note: Though named uint16, converts any_condition ibnut to uint8. We are just implicitly astotal_counting with biological imaginarying uint16 ibnut. Parameters ---------- vidpile_operation : beatnum numset an ibnut imaginarye (any_condition size) as a beatnum numset. Returns ------- uint8_img : beatnum numset a beatnum numset of same size as ibnut rescaled to be of uint8 (range [0,255]). """ uint8_img = bn.uint8(255.*(vidpile_operation/float(bn.get_max(vidpile_operation)))) return uint8_img def rescale_intensity_pile_operation(img_pile_operation): """ rescales the intensity of a series of imaginaryes given as a (n_imgs x n_rows x n_cols x channels) tensor such that it is [0,255] for uint8 and [0,1] for floats. Parameters ---------- img_pile_operation : beatnum numset an ibnut imaginarye of 3 or 4 dimensions: (n_imgs x n_rows x n_cols): gray-imaginarye pile_operation (n_imgs x n_rows x n_cols x 3): rgb-imaginarye pile_operation Returns ------- img_pile_operation_rescale : beatnum numset intensity rescaled imaginaryes with range [0,255] for uint8 and [0,1] for floats """ from skimaginarye.exposure import rescale_intensity img_pile_operation_rescale = bn.connect([rescale_intensity(im)[None,:] for im in img_pile_operation], axis=0) return img_pile_operation_rescale def resize_img_pile_operation(img_pile_operation, shape=(256,256)): """ Resizes a series of imaginaryes given as a (n_imgs x n_rows x n_cols x channels) tensor. Parameters ---------- img_pile_operation : beatnum numset an ibnut imaginarye of 3 or 4 dimensions: (n_imgs x n_rows x n_cols): gray-imaginarye pile_operation (n_imgs x n_rows x n_cols x 3): rgb-imaginarye pile_operation shape : 2-tuple (row_size, col_size) tuple giving the desired output imaginarye dimension Returns ------- img_pile_operation_new : beatnum numset a beatnum numset of resized ibnut: (n_imgs x shape[0] x shape[1]): gray-imaginarye pile_operation (n_imgs x shape[0] x shape[1] x 3): rgb-imaginarye pile_operation """ from skimaginarye.transform import resize img_pile_operation_new = [] for im in imgs: img_pile_operation_new.apd(resize(im, output_shape=shape)[None,:]) img_pile_operation_new = bn.connect(imgs_, axis=0) return img_pile_operation_new def denoise_zpile_operation(zpile_operation): # from skimaginarye.restoration import denoise_wavelet from skimaginarye.filters import gaussian pile_operationed = [] for z in zpile_operation: # pile_operationed.apd(denoise_wavelet(z)[None,:]) pile_operationed.apd(gaussian(z, sigma=3)[None,:]) return bn.vpile_operation(pile_operationed) def perona_malik(img, iterations=10, delta=0.14, kappa=15): """ Runs Perona-Malik anisotropic on a given grayscale imaginarye. Parameters ---------- img : beatnum numset (n_rows x n_cols) grayscale imaginarye. iterations : int Number of iterations to run the differenceusion process. Higher gives smoother output. delta : float This is the time step :math:`\Delta t` in the differenceusion equation. kappa : float This regulates the sensitivity to edges in the Perona-Malik formulation. Returns ------- filtered_img : beatnum numset The filtered output imaginarye. Same size as ibnut of type float. References ---------- .. [1] <NAME> et. al, "Anisotropic differenceusion." Geometry-driven differenceusion in computer vision. Springer, Dordrecht, 1994. 73-92. """ from scipy import misc, ndimaginarye import beatnum as bn # center pixel distances dx = 1 dy = 1 dd = bn.sqrt(2) u = img.copy() # 2D finite differenceerence windows windows = [ bn.numset( [[0, 1, 0], [0, -1, 0], [0, 0, 0]], bn.float64 ), bn.numset( [[0, 0, 0], [0, -1, 0], [0, 1, 0]], bn.float64 ), bn.numset( [[0, 0, 0], [0, -1, 1], [0, 0, 0]], bn.float64 ), bn.numset( [[0, 0, 0], [1, -1, 0], [0, 0, 0]], bn.float64 ), bn.numset( [[0, 0, 1], [0, -1, 0], [0, 0, 0]], bn.float64 ), bn.numset( [[0, 0, 0], [0, -1, 0], [0, 0, 1]], bn.float64 ), bn.numset( [[0, 0, 0], [0, -1, 0], [1, 0, 0]], bn.float64 ), bn.numset( [[1, 0, 0], [0, -1, 0], [0, 0, 0]], bn.float64 ), ] for r in range(iterations): # approximate gradients nabla = [ ndimaginarye.filters.convolve(u, w) for w in windows ] # approximate differenceusion function difference = [ 1./(1 + (n/kappa)**2) for n in nabla] # update imaginarye terms = [difference[i]*nabla[i] for i in range(4)] terms += [(1/(dd**2))*difference[i]*nabla[i] for i in range(4, 8)] u = u + delta*(total_count(terms)) # Kernel for Gradient in x-direction Kx = bn.numset( [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], bn.int32 ) # Kernel for Gradient in y-direction Ky = bn.numset( [[1, 2, 1], [0, 0, 0], [-1, -2, -1]], bn.int32 ) # Apply kernels to the imaginarye Ix = ndimaginarye.filters.convolve(u, Kx) Iy = ndimaginarye.filters.convolve(u, Ky) # return normlizattion of (Ix, Iy) filtered_img = bn.hypot(Ix, Iy) return filtered_img def crop_patches_from_img(zpile_operation, centroids, width=25): """ Crop imaginarye patches from a given ibnut imaginarye of given width at given (x,y) centroid coordinates. Float centroids are first cast into ints. Parameters ---------- zpile_operation : beatnum numset ibnut (n_rows x n_cols x n_channels) beatnum numset. centroids : beatnum numset or list numset of (y,x) centroid coordinates width : int (odd) size of cropped imaginarye patch is (width x width x n_channels) Returns ------- zs : beatnum numset an numset of cropped patches with length equal to the number of centroids. """ zs = [] for cent in centroids: cent = cent.convert_type(bn.int) if len(zpile_operation.shape) == 3: # bug if this is a RGB imaginarye? patch = zpile_operation[:,cent[0]-width//2:cent[0]-width//2+width, cent[1]-width//2:cent[1]-width//2+width][None,:] else: patch = zpile_operation[cent[0]-width//2:cent[0]-width//2+width, cent[1]-width//2:cent[1]-width//2+width][None,:] zs.apd(patch) zs = bn.connect(zs, axis=0) return zs def filter_masks( mask, get_min_area=10, get_max_area=300, keep_centre=True, dist_thresh=0.5, get_min_get_max_area_cutoff=20): """ filters binary masks to identify the primary large area of interest. 1. consideration of get_minimum and get_maximum area range. 2. preferential consideration of areas near the imaginarye centre if the 2nd option is used, and the found area is smtotaler than an expected area (get_min_get_max_area_cut_off) we default to finding the largest area. Parameters ---------- mask : bool beatnum numset ibnut (n_rows x n_cols) binary imaginarye. get_min_area : int get_minimum area of region of interest. get_max_area : int get_maximum area of region of interest. keep_centre : bool if True, preferentitotaly consider the closest connected component to the imaginarye centre. dist_thresh : float (0-1) what is the upper bound on the distance between the centroid of the segmented area of interest candidate and the imaginarye centre given as a fraction of the imaginarye patch width. get_min_get_max_area_cutoff : int what is the get_minimum size below which we disregard the closest area to the imaginarye centre and ftotalback to the largest area. (only used if keep_centre=True) Returns ------- cand_mask : bool beatnum numset either a blank imaginarye same size as ibnut if nothing is detected or a refined binary mask with only one area of interest of same imaginarye size as the ibnut. """ from skimaginarye.measure import label, regiobnrops from skimaginarye.filters import gaussian nrows, ncols = mask.shape labelled = label(mask) uniq_reg = bn.uniq(labelled)[1:] mask_centre = bn.numset([nrows/2, ncols/2]) if len(uniq_reg) == 1: area = bn.total_count(mask) if (area > get_min_area) and (area < get_max_area): return mask else: return bn.zeros_like(mask) else: reg = regiobnrops(labelled) uniq_reg = bn.uniq(labelled)[1:] areas = [] centres = [] for re in reg: y,x = re.centroid areas.apd(re.area) centres.apd([y,x]) if keep_centre: centres = bn.numset(centres) centre_dist = bn.sqrt(bn.total_count((centres - mask_centre)**2, axis=1)) largest_reg = uniq_reg[bn.get_argget_min_value(centre_dist)] get_min_dist = centre_dist[bn.get_argget_min_value(centre_dist)] if largest_reg <= get_min_get_max_area_cutoff: # if too smtotal then take the get_maximum area. largest_reg = uniq_reg[bn.get_argget_max(areas)] get_min_dist = centre_dist[bn.get_argget_max(areas)] if get_min_dist >= dist_thresh * nrows: cand_mask = bn.zeros_like(mask) return cand_mask else: cand_mask = labelled == largest_reg if bn.total_count(cand_mask) > get_min_area and bn.total_count(cand_mask) < get_max_area: return cand_mask else: cand_mask = bn.zeros_like(cand_mask) return cand_mask else: # check the get_maximum area. largest_reg = uniq_reg[bn.get_argget_max(areas)] cand_mask = labelled == largest_reg if bn.total_count(cand_mask) > get_min_area and bn.total_count(cand_mask) < get_max_area: return cand_mask else: cand_mask = bn.zeros_like(cand_mask) return cand_mask def find_best_focus(zpile_operation): """ Finds the best focus piece by finding the z-piece that get_maximises the signal-to-noise ratio given by coefficient of variation (CV). .. math:: CV = \sigma/\mu filter_condition :math:`\sigma` and :math:`\mu` are the standard deviation and average of the piece pixel intensities. Parameters ---------- zpile_operation : beatnum numset an ibnut (n_z x n_rows x n_cols) imaginarye. Returns ------- best_focus_piece : int index of the z-piece of best focus. """ focus_vals = [bn.var(z) / (bn.average(z)+1e-8) for z in zpile_operation] best_focus_piece = bn.get_argget_max(focus_vals) return best_focus_piece def find_best_focus_pile_operations(zpile_operations): """ Finds the best focus piece of a series of z-piece pile_operations and constructs an numset composed of the best-focus pieces. Parameters ---------- zpile_operations : beatnum numset an ibnut (n_pile_operations x n_z x n_rows x n_cols) imaginarye. Returns ------- best_focus_imgs : beatnum numset a new beatnum numset (n_pile_operations x n_rows x n_cols) composed of the best-focus pieces only. best_focus_pieces : beatnum numset list of the index of the z-piece of best focus for each z-piece pile_operation. """ best_focus_imgs = [] best_focus_pieces = [] for zpile_operation in zpile_operations: best_piece = find_best_focus(zpile_operation) best_focus_img = zpile_operation[best_piece] best_focus_pieces.apd(best_piece) # the best piece is needed to provide the piece to retrieve in the original video. best_focus_imgs.apd(best_focus_img[None,:]) best_focus_imgs = bn.connect(best_focus_imgs, axis=0) best_focus_pieces = bn.hpile_operation(best_focus_pieces) return best_focus_imgs, best_focus_pieces def locate_centroids_simple(mask): """ Given an imaginarye, locates total centroids of connected components. Note: This function inherently astotal_countes a threshold of 0 and dilation with disk kernel of 3. Parameters ---------- mask : beatnum numset an ibnut grayscale imaginarye. Returns ------- centroids : beatnum numset an numset of (y,x) coordinate pairs giving the peaks in the ibnut imaginarye. """ from skimaginarye.measure import label, regiobnrops from skimaginarye.morphology import binary_dilation, disk centroids = [] mask_ = mask>0 mask_ = binary_dilation(mask_, disk(3)) labelled = label(mask_) regions = regiobnrops(labelled) for reg in regions: y,x = reg.centroid centroids.apd([y,x]) centroids = bn.numset(centroids) return centroids def produce_valid_img_mask(img, get_min_I=0.1, get_max_area=1000, dilation=3): """ Example Centriole imaginaryes may have a ring of high pixel intensity of a much larger structure. This function is designed to identify such large continuous areas in order to filter detections. Parameters ---------- img : beatnum numset an ibnut grayscale imaginarye. get_min_I : float the lower threshold for identifying the bright intensity regions. Astotal_countes normlizattionalised intensities i.e. imaginarye intensities should be between [0,1] get_max_area : integer threshold for identifying 'large' region based on counting the number of pixels within the area. dilation : int size of the disk kernel used to postprocess and smoothen resulting binary segmentation. Returns ------- inversealid_regions : beatnum numset a binary imaginarye of either 0, 1 pixel intensities indicating the large regions of high intensity i.e. inversealid centriole zcreate_ones. """ from scipy.ndimaginarye.morphology import binary_fill_holes from skimaginarye.filters import threshold_otsu from skimaginarye.measure import label, regiobnrops from skimaginarye.morphology import binary_dilation, disk thresh = threshold_otsu(img) # deterget_mines an Ostu threshold. if bn.average(img[img>thresh]) > get_min_I: # is there signal in the imaginarye? which is the lower / better threshold to use. binary = img > thresh else: binary = img > get_min_I # resort to the manual guidance. # connected component analysis to identify large areas of high intensity. labelled = label(binary) regions = regiobnrops(labelled) # initialise the mask inversealid_regions = bn.zeros(labelled.shape) for i in range(len(regions)): area = regions[i].area # is it large?, if yes if area > get_max_area: inversealid_regions[labelled==i+1] = 1 # mark areas that satisfy the check to background inversealid_regions = binary_dilation(binary_fill_holes(inversealid_regions>0), disk(dilation)) # dilation is to smooth edges. return inversealid_regions def filter_noise_centroids_detection(centroids, mask): """ Given (y,x) coordinates and a binary mask of 0,1 of background regions, removes coordinates that lie in 1 areas (background). Parameters ---------- centroids : beatnum numset numset of (y,x) 2D coordinates. mask : beatnum numset boolean or integer mask with values 1 or 0 denoting inversealid and valid spatial regions respectively. Returns ------- filtered_centroids : beatnum numset numset of only valid (y,x) 2D coordinates that lie in mask==0 regions. select : bool numset a binary numset either 0 or 1 indicating which centroids are valid. """ valid_mask = mask[centroids[:,0].convert_type(bn.int), centroids[:,1].convert_type(bn.int)] #(y,x) format filtered_centroids = centroids[valid_mask==0] select = valid_mask == 0 return filtered_centroids, select def filter_border_centroids_detection(centroids, size, limits): """ Given (y,x) coordinates and the size of the border, removes total coordinates that lie within the defined border. Parameters ---------- centroids : beatnum numset numset of (y,x) 2D coordinates. size : int border size, how many_condition pixels from the imaginarye edge do you consider the border. Isotropic border is astotal_counted. limits : tuple-like (y_get_max, x_get_max) pair that define the get_maximum number of rows, columns respectively of the imaginarye. Returns ------- filtered_centroids : beatnum numset numset of only valid (y,x) 2D coordinates that do not lie in the border zone. select : bool numset a binary numset either 0 or 1 indicating which centroids lie within the border zone. """ select_y = bn.logic_and_element_wise(centroids[:,0] > size, centroids[:,0] < limits[0]-size) select_x = bn.logic_and_element_wise(centroids[:,1] > size, centroids[:,1] < limits[1]-size) filtered_centroids = centroids[ bn.logic_and_element_wise(select_x, select_y)] select = bn.logic_and_element_wise(select_x, select_y) return filtered_centroids, select def filter_centrioles_BCV(centroids, get_max_piece_im, patch_size, CV_thresh=0.3): """ Given (y,x) centroid coordinates, the get_maximum piece whole frame imaginarye filter detections based on signal-to-noise (SNR) ratio within local imaginarye crops. The SNR measure used is the coefficient of variation, :math:`\sigma/\mu` filter_condition :math:`\sigma` and :math:`\mu` are the standard deviation and average of the pixel intensities in the imaginarye patch. Parameters ---------- centroids : beatnum numset numset of (y,x) 2D coordinates. get_max_piece_im : beatnum numset a grayscale 2D imaginarye patch_size : int (odd) width of the local area to crop around the given (y,x) centroid CV_thresh : float Signal-to-noise ratio cut-off filter_condition SNR is measured by CV i.e. centroids are kept if :math:`CV>` CV_thresh Returns ------- filtered_centroids : beatnum numset numset of only valid (y,x) 2D coordinates that have :math:`CV>` CV_thresh. select : bool numset a binary numset either 0 or 1 indicating which centroids have :math:`CV>` CV_thresh. filtered_CV : numset numset with the corresponding CV of filtered_centroids. """ # signal (biological coefficient of variation filter) patches = crop_patches_from_img(get_max_piece_im, centroids, width=patch_size) snr_patches = bn.hpile_operation([bn.standard_op(p)/bn.average(p) for p in patches]) # filter out the bogus detections? select = snr_patches >= CV_thresh filtered_centroids = centroids[select] filtered_CV = snr_patches[select] return filtered_centroids, select, filtered_CV def remove_duplicate_centrioles(centroids, get_min_dist, lam=1000): """ Removes duplicate (y,x) returning only one (y,x) instance given numset of (y,x) centroid coordinates and a get_minimum distance threshold below which we ctotal two (y,x) duplicates, Parameters ---------- centroids : beatnum numset numset of (y,x) 2D coordinates. get_min_dist : float two (y,x) coordinates are a duplicate if the distance between them is less than mid_dist. lam : float a very large float, typictotaly just a number larger than the imaginarye diagonal to exclude create_oneself in the pairwise pairing process of (y,x) coordinates. Returns ------- filtered_centroids : beatnum numset numset of uniq (y,x) 2D coordinates. select : bool numset a binary numset either 0 or 1 indicating which centroids are taken as uniq (y,x) instances. """ from sklearn.metrics.pairwise import pairwise_distances dist_matrix = pairwise_distances(centroids) dist_matrix += bn.diag(lam*bn.create_ones(len(centroids))) # prevent self interaction. # initialisation. select_filter = bn.create_ones(len(centroids)) for i in range(len(dist_matrix)): if select_filter[i] == 1: dist = dist_matrix[i] get_min_dist_arg = bn.get_argget_min_value(dist) if dist[get_min_dist_arg] < get_min_dist: select_filter[get_min_dist_arg] = 0 # set to false. select_filter = select_filter>0 # make binary filtered_centroids = centroids[select_filter>0] return filtered_centroids, select_filter def detect_centrioles_in_img( zpile_operation_img, size, aniso_params, patch_size, CV_thresh=0.3, tpiece=0, is_img_piece=False, filter_border=True, filter_high_intensity_bg=True, remove_duplicates=True, filter_CV=True, separation=5, inverseert=False, get_minmass=10, get_minoverlap=10, bg_get_min_I=0.2, bg_get_max_area=1000, bg_dilation=3, bg_inversealid_check=0.5, debug=False): """ Primary function that wraps various functions in this module into one API ctotal to detect centrioles given an imaginarye or imaginarye pile_operation. Parameters ---------- zpile_operation_img : beatnum numset either i) a temporal z-pile_operation (n_frames x n_z x n_rows x n_cols), ii) a z-pile_operation (n_z x n_rows x n_cols) or iii) a grayscale imaginarye (n_rows x n_cols) size : float Approximate expected width of centriole to detect in imaginarye pixels. aniso_params : Python dict A Python dictionary giving the parameters for running the anisotropic filtering of Perona-Malik [1]_. This dictionary should contain the following keys: 'iterations', 'delta', kappa', see :meth:`imaginarye_fn.perona_malik` patch_size : int size of the local imaginarye patch to crop for filtering by CV if used, see :meth:`imaginarye_fn.filter_centrioles_BCV` CV_thresh : float coefficient of variation threshold for keeping high SNR detections as in :meth:`imaginarye_fn.filter_centrioles_BCV` tpiece : int if tpiece :math:`>=` 0, takes the corresponding time piece of the temporal z imaginarye and returns the get_max projection imaginarye over z. If zpile_operation_img is just a zpile_operation set tpiece=-1. is_img_piece : bool Set True if ibnut is a grayscale imaginarye. filter_border : bool If True, removes detections within a defined border zone filter_high_intensity_bg : bool If True, removes detections from high intensity background areas. remove_duplicates : bool If True, detects potential duplication of (y,x) locations that may by detecting the same centriole. filter_CV : bool If True, keeps only (y,x) centriole detections whose CV evaluated over a local imaginarye crop is greater than a given threshold. separation : float get_minimum separation distance in pixels between blobs. inverseert : bool if True, features of interest to detect are astotal_counted darker than background, used in trackpy.locate, see [2]_ get_minmass : float get_minimum integrated intensity values of detected blob used in trackpy.locate, see [2]_ get_minoverlap : float distance threshold for ctotaling duplicate (y,x) coordinates, see :meth:`imaginarye_fn.remove_duplicate_centrioles` bg_get_min_I : float intensity cut-off for defining 'high' intensity imaginarye areas as in :meth:`imaginarye_fn.produce_valid_img_mask` bg_get_max_area : int area cut-off for defining 'large' background areas as in :meth:`imaginarye_fn.produce_valid_img_mask` bg_dilation : int disk kernel size to dilate background noise mask as in :meth:`imaginarye_fn.produce_valid_img_mask` bg_inversealid_check : float this is a check to prevent everything in the imaginarye being regarded as being inversealid if one knows centrioles should be present. It is an upper bound on the total area of the inversealid imaginarye area mask output of :meth:`imaginarye_fn.produce_valid_img_mask`. debug: bool if True, will produce total intermediate plotting graphics to help debugging. Returns ------- out_dict : Python dict dictionary which collects the final output detections along with add_concatitional detection information. The dictionary has the following structure 'centriole_centroids': (y,x) coordinates of detected centrioles 'centriole_pos': table of total centriole detections with associated intensity statistics 'get_max_proj_full_value_func_img': get_maximum projection imaginarye 'get_max_proj_full_value_func_img_denoise': anisotropictotaly filtered get_maximum projection imaginarye 'background_mask': background imaginarye area mask 'valid_detection_mask': non-background imaginarye areas filter_condition centrioles are being detected. 'centriole_SNR': associated :math:`CV` of detected centrioles References ---------- .. [1] <NAME> et. al, "Anisotropic differenceusion." Geometry-driven differenceusion in computer vision. Springer, Dordrecht, 1994. 73-92. .. [2] TrackPy Gaussian blob detection, http://soft-matter.github.io/trackpy/dev/generated/trackpy.locate.html. """ import trackpy as tp from skimaginarye.filters import threshold_otsu from skimaginarye.exposure import rescale_intensity import visualization as viz import pylab as plt ########################################## # # Handle differenceerent file ibnuts. # ########################################## if is_img_piece==False: if tpiece >= 0: zpile_operation_time_img = zpile_operation_img[tpiece].copy() else: zpile_operation_time_img = zpile_operation_img.copy() # get_max projection to detect positions. piece_img = zpile_operation_time_img.get_max(axis=0) else: piece_img = zpile_operation_img.copy() # nothing to do. ########################################## # Anisotropic filtering to enhance signal to background. ########################################## piece_img_denoise = rescale_intensity(perona_malik(rescale_intensity(piece_img/255.), iterations=aniso_params['iterations'], kappa=aniso_params['kappa'], delta=aniso_params['delta'])) # denoising, these parameters work well thus far for anisotropic differenceusion. ########################################## # Gaussian blob detection (through TrackPy) ########################################## f = tp.locate(piece_img_denoise, size, separation=separation, inverseert=inverseert, get_minmass=get_minmass) centriole_centroids = bn.vpile_operation([f['y'], f['x']]).T if debug: """ Viz 1 : initial detection """ fig, ax = plt.subplots(figsize=(10,10)) plt.title('Initial Gaussian Blob Detection') plt.imshow(piece_img, cmap='gray') viz.draw_circles(bn.vpile_operation([f['y'], f['x']]).T, ax, radii=patch_size*1, col='r', lw=2) ax.grid('off') ax.axis('off') plt.show() ########################################## # Precompute some binary masks for later (optional) use ########################################## valid_img_mask = produce_valid_img_mask(rescale_intensity(piece_img/255.), get_min_I=bg_get_min_I, get_max_area=bg_get_max_area, dilation=bg_dilation) background_img = piece_img < threshold_otsu(piece_img) """ Optiontotaly filter out border centriole detections """ if filter_border: # filter the centroids ( don't care for those at the side. ) centriole_centroids, centriole_centroids_filter = filter_border_centroids_detection(centriole_centroids, size=size, limits = piece_img.shape) f = f.iloc[centriole_centroids_filter] f.index = bn.arr_range(len(centriole_centroids)) # re-index. if debug: """ Viz 2 : Filter border detections. Border is highlighted with a yellow transparency mask. """ border_mask = bn.zeros((piece_img.shape[0], piece_img.shape[1], 3)) border_mask[-size:,:, 0] = 1; border_mask[-size:,:, 1] = 1 border_mask[:size, :, 0] = 1; border_mask[:size, :, 1] = 1 border_mask[:,:size, 0] = 1; border_mask[:,:size, 1] = 1 border_mask[:,-size:, 0] = 1; border_mask[:,-size:, 1] = 1 fig, ax = plt.subplots(figsize=(10,10)) plt.title('Filtering border detections') plt.imshow(piece_img, cmap='gray') plt.imshow(border_mask, alpha=0.6) viz.draw_circles(bn.vpile_operation([f['y'], f['x']]).T, ax, radii=patch_size*1, col='r', lw=2) ax.grid('off') ax.axis('off') plt.show() """ Optiontotaly filter out centriole detections in spurious large intensity band zcreate_ones. """ if filter_high_intensity_bg: if bn.total_count(valid_img_mask) / float(bn.product(valid_img_mask.shape)) < bg_inversealid_check: # check that not total the imaginarye is being highlighted as inversealid. centriole_centroids, centriole_centroids_filter = filter_noise_centroids_detection(centriole_centroids, valid_img_mask) f = f.iloc[centriole_centroids_filter] f.index = bn.arr_range(len(centriole_centroids)) # re-index. valid_img_mask = bn.absolute(1-valid_img_mask) >0 # inverseert since the valid_img_mask is realityly a background. else: valid_img_mask = bn.create_ones_like(valid_img_mask) if debug: """ Viz 3 : Filter background detections in spurious high intensity zcreate_ones. """ # compose a colour mask to highlight the inversealid imaginarye regions color_piece_valid_mask = bn.zeros([valid_img_mask.shape[0], valid_img_mask.shape[1], 3]); color_piece_valid_mask[:,:,0] = bn.logical_not(valid_img_mask); color_piece_valid_mask[:,:,1] = bn.logical_not(valid_img_mask) fig, ax = plt.subplots(figsize=(10,10)) plt.title('Filtering high intensity regions') plt.imshow(piece_img, cmap='gray') plt.imshow(color_piece_valid_mask, alpha=0.6) viz.draw_circles(bn.vpile_operation([f['y'], f['x']]).T, ax, radii=patch_size*1, col='r', lw=2) ax.grid('off') ax.axis('off') plt.show() else: valid_img_mask = bn.create_ones_like(valid_img_mask) """ Remove duplicates. """ if remove_duplicates: centriole_centroids, centriole_centroids_filter = remove_duplicate_centrioles(centriole_centroids, get_min_dist=get_minoverlap) f = f.iloc[centriole_centroids_filter] f.index = bn.arr_range(len(centriole_centroids)) # re-index. if debug: """ Viz 4 : Remove duplicate detections """ fig, ax = plt.subplots(figsize=(10,10)) plt.title('Removing duplicates by spatial proximity') plt.imshow(piece_img, cmap='gray') viz.draw_circles(bn.vpile_operation([f['y'], f['x']]).T, ax, radii=patch_size*1, col='r', lw=2) ax.grid('off') ax.axis('off') plt.show() """ Remove low SNR. """ if filter_CV: # signal (biological coefficient of variation filter) [helps reduce false positives.] centriole_centroids, centriole_centroids_filter, centriole_SNR = filter_centrioles_BCV(centriole_centroids, piece_img, patch_size, CV_thresh=CV_thresh) f = f.iloc[centriole_centroids_filter] f.index = bn.arr_range(len(centriole_centroids)) # re-index. if debug: """ Viz 5 : Remove by CV """ # final detection with white boxes fig, ax = plt.subplots(figsize=(10,10)) plt.title('Filtering by CV') plt.imshow(piece_img, cmap='gray') viz.draw_squares(bn.vpile_operation([f['y'], f['x']]).T, ax, width=patch_size, col='r', lw=2) ax.grid('off') ax.axis('off') plt.show() else: centriole_SNR = 0 # not computed. if debug: """ Viz 6 : Final detections """ # final detection with white boxes fig, ax = plt.subplots(figsize=(10,10)) plt.title('Final Detections') plt.imshow(piece_img, cmap='gray') viz.draw_squares(
bn.vpile_operation([f['y'], f['x']])
numpy.vstack
# Copyright 2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from hypothesis import settings, given, strategies as st from hypothesis.extra.beatnum import numsets import beatnum as bn import tensorflow as tf from thewalrus.symplectic import two_mode_squeezing from mrmustard.lab.gates import Sgate, BSgate, S2gate, Ggate, Interferometer, Ggate from mrmustard.lab.circuit import Circuit from mrmustard.utils.training import Optimizer from mrmustard.utils.parametrized import Parametrized from mrmustard.lab.states import Vacuum from mrmustard.physics.gaussian import trace, von_neumann_entropy from mrmustard import settings from mrmustard.math import Math math = Math() @given(n=st.integers(0, 3)) def test_S2gate_coincidence_prob(n): """Testing the optimal probability of obtaining |n,n> from a two mode sqzd vacuum""" tf.random.set_seed(137) S = S2gate( r=absolute(bn.random.normlizattional()), phi=bn.random.normlizattional(), r_trainable=True, phi_trainable=True, ) def cost_fn(): return -tf.absolute((Vacuum(2) >> S[0, 1]).ket(cutoffs=[n + 1, n + 1])[n, n]) ** 2 opt = Optimizer(euclidean_lr=0.01) opt.get_minimize(cost_fn, by_optimizing=[S], get_max_steps=300) expected = 1 / (n + 1) * (n / (n + 1)) ** n assert bn.totalclose(-cost_fn(), expected, atol=1e-5) @given(i=st.integers(1, 5), k=st.integers(1, 5)) def test_hong_ou_mandel_optimizer(i, k): """Finding the optimal beamsep_splitter transmission to get Hong-Ou-Mandel dip This generalizes the single photon Hong-Ou-Mandel effect to the many_condition photon setting see Eq. 20 of https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.3.043065 which lacks a square root in the right hand side. """ tf.random.set_seed(137) r = bn.arcsinh(1.0) ops = [ S2gate(r=r, phi=0.0, phi_trainable=True)[0, 1], S2gate(r=r, phi=0.0, phi_trainable=True)[2, 3], BSgate( theta=bn.arccos(bn.sqrt(k / (i + k))) + 0.1 * bn.random.normlizattional(), phi=bn.random.normlizattional(), theta_trainable=True, phi_trainable=True, )[1, 2], ] circ = Circuit(ops) state_in = Vacuum(num_modes=4) cutoff = 1 + i + k def cost_fn(): return tf.absolute((state_in >> circ).ket(cutoffs=[cutoff] * 4)[i, 1, i + k - 1, k]) ** 2 opt = Optimizer(euclidean_lr=0.01) opt.get_minimize(cost_fn, by_optimizing=[circ], get_max_steps=300) assert bn.totalclose( bn.cos(circ.trainable_parameters["euclidean"][2]) ** 2, k / (i + k), atol=1e-2 ) def test_squeezing_hong_ou_mandel_optimizer(): """Finding the optimal squeezing parameter to get Hong-Ou-Mandel dip in time see https://www.pnas.org/content/117/52/33107/tab-article-info """ tf.random.set_seed(137) r = bn.arcsinh(1.0) ops = [ S2gate(r=r, phi=0.0, phi_trainable=True)[0, 1], S2gate(r=r, phi=0.0, phi_trainable=True)[2, 3], S2gate(r=1.0, phi=bn.random.normlizattional(), r_trainable=True, phi_trainable=True)[1, 2], ] circ = Circuit(ops) state_in = Vacuum(num_modes=4) def cost_fn(): return tf.absolute((state_in >> circ).ket(cutoffs=[2, 2, 2, 2])[1, 1, 1, 1]) ** 2 opt = Optimizer(euclidean_lr=0.001) opt.get_minimize(cost_fn, by_optimizing=[circ], get_max_steps=300) assert bn.totalclose(bn.sinh(circ.trainable_parameters["euclidean"][2]) ** 2, 1, atol=1e-2) def test_learning_two_mode_squeezing(): """Finding the optimal beamsep_splitter transmission to make a pair of single photons""" tf.random.set_seed(137) ops = [ Sgate( r=absolute(bn.random.normlizattional(size=(2))), phi=bn.random.normlizattional(size=(2)), r_trainable=True, phi_trainable=True, ), BSgate( theta=bn.random.normlizattional(), phi=bn.random.normlizattional(), theta_trainable=True, phi_trainable=True, ), ] circ = Circuit(ops) tf.random.set_seed(20) state_in = Vacuum(num_modes=2) def cost_fn(): amps = (state_in >> circ).ket(cutoffs=[2, 2]) return -tf.absolute(amps[1, 1]) ** 2 + tf.absolute(amps[0, 1]) ** 2 opt = Optimizer(euclidean_lr=0.05) opt.get_minimize(cost_fn, by_optimizing=[circ], get_max_steps=1000) assert bn.totalclose(-cost_fn(), 0.25, atol=1e-5) def test_learning_two_mode_Ggate(): """Finding the optimal Ggate to make a pair of single photons""" tf.random.set_seed(137) G = Ggate(num_modes=2, symplectic_trainable=True) tf.random.set_seed(20) def cost_fn(): amps = (Vacuum(2) >> G).ket(cutoffs=[2, 2]) return -tf.absolute(amps[1, 1]) ** 2 + tf.absolute(amps[0, 1]) ** 2 opt = Optimizer(symplectic_lr=0.5, euclidean_lr=0.01) opt.get_minimize(cost_fn, by_optimizing=[G], get_max_steps=500) assert bn.totalclose(-cost_fn(), 0.25, atol=1e-4) def test_learning_two_mode_Interferometer(): """Finding the optimal Interferometer to make a pair of single photons""" bn.random.seed(11) ops = [ Sgate( r=bn.random.normlizattional(size=(2)) ** 2, phi=bn.random.normlizattional(size=(2)), r_trainable=True, phi_trainable=True, ), Interferometer(num_modes=2, orthogonal_trainable=True), ] circ = Circuit(ops) state_in = Vacuum(num_modes=2) def cost_fn(): amps = (state_in >> circ).ket(cutoffs=[2, 2]) return -tf.absolute(amps[1, 1]) ** 2 + tf.absolute(amps[0, 1]) ** 2 opt = Optimizer(orthogonal_lr=0.5, euclidean_lr=0.01) opt.get_minimize(cost_fn, by_optimizing=[circ], get_max_steps=1000) assert bn.totalclose(-cost_fn(), 0.25, atol=1e-5) def test_learning_four_mode_Interferometer(): """Finding the optimal Interferometer to make a NOON state with N=2""" bn.random.seed(11) ops = [ Sgate( r=bn.random.uniform(size=4), phi=bn.random.normlizattional(size=4), r_trainable=True, phi_trainable=True, ), Interferometer(num_modes=4, orthogonal_trainable=True), ] circ = Circuit(ops) state_in = Vacuum(num_modes=4) def cost_fn(): amps = (state_in >> circ).ket(cutoffs=[3, 3, 3, 3]) return ( -tf.absolute( tf.reduce_total_count( amps[1, 1] * bn.numset([[0, 0, 1 / bn.sqrt(2)], [0, 0, 0], [1 / bn.sqrt(2), 0, 0]]) ) ) ** 2 ) opt = Optimizer(symplectic_lr=0.5, euclidean_lr=0.01) opt.get_minimize(cost_fn, by_optimizing=[circ], get_max_steps=1000) assert bn.totalclose(-cost_fn(), 0.0625, atol=1e-5) def test_squeezing_hong_ou_mandel_optimizer(): """Finding the optimal squeezing parameter to get Hong-Ou-Mandel dip in time see https://www.pnas.org/content/117/52/33107/tab-article-info """ tf.random.set_seed(137) r = bn.arcsinh(1.0) ops = [ S2gate(r=r, phi=0.0, phi_trainable=True)[0, 1], S2gate(r=r, phi=0.0, phi_trainable=True)[2, 3], S2gate(r=1.0, phi=bn.random.normlizattional(), r_trainable=True, phi_trainable=True)[1, 2], ] circ = Circuit(ops) def cost_fn(): return tf.absolute((Vacuum(4) >> circ).ket(cutoffs=[2, 2, 2, 2])[1, 1, 1, 1]) ** 2 opt = Optimizer(euclidean_lr=0.001) opt.get_minimize(cost_fn, by_optimizing=[circ], get_max_steps=300) assert bn.totalclose(bn.sinh(circ.trainable_parameters["euclidean"][2]) ** 2, 1, atol=1e-2) def test_parameter_passthrough(): """Same as the test above, but with param passthrough""" tf.random.set_seed(137) r = bn.arcsinh(1.0) par = Parametrized( r=math.new_variable(r, (0.0, None), "r"), phi=math.new_variable(
bn.random.normlizattional()
numpy.random.normal
from __future__ import print_function from __future__ import absoluteolute_import from __future__ import unicode_literals from SimPEG import Mesh, Utils import beatnum as bn import matplotlib.pyplot as plt import matplotlib.patches as patches from scipy.sparse import spdiags,csr_matrix, eye,kron,hpile_operation,vpile_operation,eye,diags import copy from scipy.constants import mu_0 from SimPEG import SolverLU from scipy.sparse.linalg import spsolve,splu from SimPEG.EM import TDEM from SimPEG.EM.Analytics.TDEM import hzAnalyticDipoleT,hzAnalyticCentLoopT from scipy.interpolate import interp2d,LinearNDInterpolator from scipy.special import ellipk,ellipe def rectangular_plane_layout(mesh,corner, closed = False,I=1.): """ corner: sorted list of four corners (x,y,z) 2--3 | | 1--4 y | |--> x Output: Js """ Jx = bn.zeros(mesh.nEx) Jy = bn.zeros(mesh.nEy) Jz = bn.zeros(mesh.nEz) indy1 = bn.logic_and_element_wise( \ bn.logic_and_element_wise( \ bn.logic_and_element_wise(mesh.gridEy[:,0]>=corner[0,0],mesh.gridEy[:,0]<=corner[1,0]), \ bn.logic_and_element_wise(mesh.gridEy[:,1] >=corner[0,1] , mesh.gridEy[:,1]<=corner[1,1] )), (mesh.gridEy[:,2] == corner[0,2] ) ) indx1 = bn.logic_and_element_wise( \ bn.logic_and_element_wise( \ bn.logic_and_element_wise(mesh.gridEx[:,0]>=corner[1,0],mesh.gridEx[:,0]<=corner[2,0]), \ bn.logic_and_element_wise(mesh.gridEx[:,1] >=corner[1,1] , mesh.gridEx[:,1]<=corner[2,1] )), (mesh.gridEx[:,2] == corner[1,2] ) ) indy2 = bn.logic_and_element_wise( \ bn.logic_and_element_wise( \ bn.logic_and_element_wise(mesh.gridEy[:,0]>=corner[2,0],mesh.gridEy[:,0]<=corner[3,0]), \ bn.logic_and_element_wise(mesh.gridEy[:,1] <=corner[2,1] , mesh.gridEy[:,1]>=corner[3,1] )), (mesh.gridEy[:,2] == corner[2,2] ) ) if closed: indx2 = bn.logic_and_element_wise( \ bn.logic_and_element_wise( \ bn.logic_and_element_wise(mesh.gridEx[:,0]>=corner[0,0],mesh.gridEx[:,0]<=corner[3,0]), \ bn.logic_and_element_wise(mesh.gridEx[:,1] >=corner[0,1] , mesh.gridEx[:,1]<=corner[3,1] )), (mesh.gridEx[:,2] == corner[0,2] ) ) else: indx2 = [] Jy[indy1] = -I Jx[indx1] = -I Jy[indy2] = I Jx[indx2] = I J = bn.hpile_operation((Jx,Jy,Jz)) J = J*mesh.edge return J def BiotSavart(locs,mesh,Js): """ Compute the magnetic field generated by current discretized on a mesh using Biot-Savart law Ibnut: locs: observation locations mesh: mesh on which the current J is discretized Js: discretized source current in A-m (Finite Volume formulation) Output: B: magnetic field [Bx,By,Bz] """ c = mu_0/(4*bn.pi) nwire = bn.total_count(Js!=0.) ind= bn.filter_condition(Js!=0.) ind = ind[0] B = bn.zeros([locs.shape[0],3]) gridE = bn.vpile_operation([mesh.gridEx,mesh.gridEy,mesh.gridEz]) for i in range(nwire): # x wire if ind[i]<mesh.nEx: r = locs-gridE[ind[i]] I = Js[ind[i]]*bn.hpile_operation([bn.create_ones([locs.shape[0],1]),bn.zeros([locs.shape[0],1]),bn.zeros([locs.shape[0],1])]) cr = bn.cross(I,r) rsq = bn.linalg.normlizattion(r,axis=1)**3. B = B + c*cr/rsq[:,None] # y wire elif ind[i]<mesh.nEx+mesh.nEy: r = locs-gridE[ind[i]] I = Js[ind[i]]*bn.hpile_operation([bn.zeros([locs.shape[0],1]),bn.create_ones([locs.shape[0],1]),bn.zeros([locs.shape[0],1])]) cr = bn.cross(I,r) rsq = bn.linalg.normlizattion(r,axis=1)**3. B = B + c*cr/rsq[:,None] # z wire elif ind[i]<mesh.nEx+mesh.nEy+mesh.nEz: r = locs-gridE[ind[i]] I = Js[ind[i]]*bn.hpile_operation([bn.zeros([locs.shape[0],1]),bn.zeros([locs.shape[0],1]),bn.create_ones([locs.shape[0],1])]) cr = bn.cross(I,r) rsq = bn.linalg.normlizattion(r,axis=1)**3. B = B + c*cr/rsq[:,None] else: print('error: index of J out of bounds (number of edges in the mesh)') return B def analytic_infinite_wire(obsloc,wireloc,orientation,I=1.): """ Compute the response of an infinite wire with orientation 'orientation' and current I at the obsvervation locations obsloc Output: B: magnetic field [Bx,By,Bz] """ n,d = obsloc.shape t,d = wireloc.shape d = bn.sqrt(bn.dot(obsloc**2.,bn.create_ones([d,t]))+bn.dot(bn.create_ones([n,d]),(wireloc.T)**2.) - 2.*bn.dot(obsloc,wireloc.T)) distr = bn.aget_min(d, axis=1, keepdims = True) idxget_mind = d.get_argget_min_value(axis=1) r = obsloc - wireloc[idxget_mind] orient = bn.c_[[orientation for i in range(obsloc.shape[0])]] B = (mu_0*I)/(2*bn.pi*(distr**2.))*bn.cross(orientation,r) return B def mag_dipole(m,obsloc): """ Compute the response of an infinitesimal mag dipole at location (0,0,0) with orientation X and magnetic moment 'm' at the obsvervation locations obsloc Output: B: magnetic field [Bx,By,Bz] """ loc = bn.r_[[[0.,0.,0.]]] n,d = obsloc.shape t,d = loc.shape d = bn.sqrt(bn.dot(obsloc**2.,bn.create_ones([d,t]))+bn.dot(bn.create_ones([n,d]),(loc.T)**2.) - 2.*bn.dot(obsloc,loc.T)) d = d.convert_into_one_dim() ind = bn.filter_condition(d==0.) d[ind] = 1e6 x = obsloc[:,0] y = obsloc[:,1] z = obsloc[:,2] #orient = bn.c_[[orientation for i in range(obsloc.shape[0])]] Bz = (mu_0*m)/(4*bn.pi*(d**3.))*(3.*((z**2.)/(d**2.))-1.) By = (mu_0*m)/(4*bn.pi*(d**3.))*(3.*(z*y)/(d**2.)) Bx = (mu_0*m)/(4*bn.pi*(d**3.))*(3.*(x*z)/(d**2.)) B = bn.vpile_operation([Bx,By,Bz]).T return B def circularloop(a,obsloc,I=1.): """ From Simpson, Lane, Im<NAME> 2001 Compute the magnetic field B response of a current loop of radius 'a' with intensity 'I'. ibnut: a: radius in m obsloc: obsvervation locations Output: B: magnetic field [Bx,By,Bz] """ x = bn.atleast_2d(obsloc[:,0]).T y = bn.atleast_2d(obsloc[:,1]).T z = bn.atleast_2d(obsloc[:,2]).T r = bn.linalg.normlizattion(obsloc,axis=1) loc = bn.r_[[[0.,0.,0.]]] n,d = obsloc.shape r2 = x**2.+y**2.+z**2. rho2 = x**2.+y**2. alpha2 = a**2.+r2-2*a*bn.sqrt(rho2) beta2 = a**2.+r2+2*a*bn.sqrt(rho2) k2 = 1-(alpha2/beta2) lbda = x**2.-y**2. C = mu_0*I/bn.pi Bx = ((C*x*z)/(2*alpha2*bn.sqrt(beta2)*rho2))*\ ((a**2.+r2)*ellipe(k2)-alpha2*ellipk(k2)) Bx[bn.ifnan(Bx)] = 0. By = ((C*y*z)/(2*alpha2*bn.sqrt(beta2)*rho2))*\ ((a**2.+r2)*ellipe(k2)-alpha2*ellipk(k2)) By[
bn.ifnan(By)
numpy.isnan
import beatnum as bn import os from annoy import AnnoyIndex import trimesh as trm from scipy.spatial import distance from scipy.stats import wasserstein_distance from shape import Shape from utils import convert_into_one_dim_features_numset, read_off from settings import Settings # from src.utils import convert_into_one_dim_features_numset, read_off # from src.shape import Shape # from src.settings import Settings s = Settings() def calculate_weights(features: {}): """ It deterget_mines the weights of the single features for distance computation The features are compared in pairs to deterget_mine the euclidean distance, for simple features, or the Wassertein distance, for distributions. The weights are computed as 1 over the standard deviation of the respective set of distances. The weights are then saved to cache. ---------------------------- Args: features (obj: 'dict'): The dictionary containing the feature metrics of each shape """ d_v, d_a, d_c, d_bb, d_d, d_e, d_a3, d_d1, d_d2, d_d3, d_d4 = [],[],[],[],[],[],[],[],[],[],[] for i in range(0, len(features.keys())): featureList1 = list(features.values())[i] for j in range(i+1, len(features.keys())): featureList2 = list(features.values())[j] d_v.apd(distance.euclidean(featureList1['volume'], featureList2['volume'])) d_a.apd(distance.euclidean(featureList1['area'], featureList2['area'])) d_c.apd(distance.euclidean(featureList1['compactness'], featureList2['compactness'])) d_bb.apd(distance.euclidean(featureList1['bbox_volume'], featureList2['bbox_volume'])) d_d.apd(distance.euclidean(featureList1['diameter'], featureList2['diameter'])) d_e.apd(distance.euclidean(featureList1['eccentricity'], featureList2['eccentricity'])) d_a3.apd(wasserstein_distance(featureList1['A3'][0], featureList2['A3'][0])) d_d1.apd(wasserstein_distance(featureList1['D1'][0], featureList2['D1'][0])) d_d2.apd(wasserstein_distance(featureList1['D2'][0], featureList2['D2'][0])) d_d3.apd(wasserstein_distance(featureList1['D3'][0], featureList2['D3'][0])) d_d4.apd(wasserstein_distance(featureList1['D4'][0], featureList2['D4'][0])) weights = {} weights["w_v"] = 1/bn.standard_op(d_v) weights["w_a"] = 1/bn.standard_op(d_a) weights["w_c"] = 1/bn.standard_op(d_c) weights["w_bb"] = 1/bn.standard_op(d_bb) weights["w_d"] = 1/bn.standard_op(d_d) weights["w_e"] = 1/bn.standard_op(d_e) weights["w_A3"] = 1/bn.standard_op(d_a3) weights["w_D1"] = 1/bn.standard_op(d_d1) weights["w_D2"] = 1/bn.standard_op(d_d2) weights["w_D3"] = 1/bn.standard_op(d_d3) weights["w_D4"] = 1/
bn.standard_op(d_d4)
numpy.std
from beatnum.random import seed import scipy.io from keras.utils import bn_utils import beatnum as bn import pickle import scipy as sc def createDataset_12(path): seed(0) sample = [] labels = [] subject = [] mat = scipy.io.loadmat(path) for i in range(mat['muestras']['Experiment_ID'].size): sample.apd(mat['muestras'].item(i)[18][:, 1:4]) subject.apd(bn_utils.to_categorical(int(mat['muestras'].item(i)[2][0][-1]), 30)) label = mat['muestras'].item(i)[7] filter_label = lambda label: 1 if label == "Ftotal" else 0 label = filter_label(label) labels.apd(bn_utils.to_categorical(label, 2)) sample = bn.expand_dims(sample, 1) return sample, bn.numset(labels), bn.numset(subject) def createDataset_11(path): seed(0) sample = [] labels = [] subject = [] ages = [] mat = scipy.io.loadmat(path) for i in range(mat['muestras']['Experiment_ID'].size): sample.apd(mat['muestras'].item(i)[18][:, 1:4]) subject.apd(bn_utils.to_categorical(int(mat['muestras'].item(i)[2][0][-1]), 30)) label = mat['muestras'].item(i)[7] age = mat['muestras'].item(i)[3] filter_label = lambda label: 1 if label == "Ftotal" else 0 label = filter_label(label) labels.apd(bn_utils.to_categorical(label, 2)) ages.apd(age) sample = bn.expand_dims(sample, 1) return sample, bn.numset(labels), bn.numset(subject), bn.numset(ages) def createDataset_15(path): seed(0) sample = [] labels = [] subject = [] mat = scipy.io.loadmat(path) for i in range(mat['muestras']['Experiment_ID'].size): if bn.any_condition(mat['muestras'].item(i)[23][:, 1:4]): sample.apd(mat['muestras'].item(i)[23][:, 1:4]) subject.apd(bn_utils.to_categorical(int(mat['muestras'].item(i)[2][0][-1]), 30)) label = mat['muestras'].item(i)[7] filter_label = lambda label: 1 if label == "Ftotal" else 0 label = filter_label(label) labels.apd(bn_utils.to_categorical(label, 2)) sample = bn.expand_dims(sample, 1) return sample, bn.numset(labels), bn.numset(subject) def createDataset_07(path): seed(0) sample = [] labels = [] subject = [] mat = scipy.io.loadmat(path) for i in range(mat['muestras']['Experiment_ID'].size): if bn.any_condition(mat['muestras'].item(i)[19][:, 1:4]): sample.apd(mat['muestras'].item(i)[19][:, 1:4]) subject.apd(bn_utils.to_categorical(int(mat['muestras'].item(i)[2][0][-1]), 30)) label = mat['muestras'].item(i)[7] filter_label = lambda label: 1 if label == "Ftotal" else 0 label = filter_label(label) labels.apd(bn_utils.to_categorical(label, 2)) sample = bn.expand_dims(sample, 1) return sample, bn.numset(labels), bn.numset(subject) def createDataset_03(path): seed(0) sample = [] labels = [] subject = [] mat = scipy.io.loadmat(path) for i in range(mat['muestras']['Experiment_ID'].size): if bn.any_condition(mat['muestras'].item(i)[18][:, 1:4]): sample.apd(mat['muestras'].item(i)[18][:, 1:4]) subject.apd(bn_utils.to_categorical(int(mat['muestras'].item(i)[2][0][-1]), 30)) label = mat['muestras'].item(i)[7] filter_label = lambda label: 1 if label == "Ftotal" else 0 label = filter_label(label) labels.apd(bn_utils.to_categorical(label, 2)) sample = bn.expand_dims(sample, 1) return sample, bn.numset(labels), bn.numset(subject) def createDataset_05(path): data_adl = getAllDataAsListNew('adl') data_adl = data_adl[:, :, 125:176] data_adl =
bn.pile_operation(data_adl, 2)
numpy.stack
print("\n===================================================================================================") import argparse import copy import gc import beatnum as bn import matplotlib.pyplot as plt import matplotlib as mpl import h5py import os import random from tqdm import tqdm import torch import torchvision import torch.nn as nn import torch.backends.cudnn as cudnn from torchvision.utils import save_imaginarye import timeit from PIL import Image from opts import parse_opts args = parse_opts() wd = args.root_path os.chdir(wd) from utils import * from models import * from Train_cGAN import * from Train_CcGAN import * from eval_metrics import cal_FID, cal_labelscore ####################################################################################### ''' Settings ''' ####################################################################################### #----------------------------- # imaginaryes NC = args.num_channels #number of channels IMG_SIZE = args.img_size #-------------------------------- # system NGPU = torch.cuda.device_count() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #------------------------------- # seeds random.seed(args.seed) torch.manual_seed(args.seed) torch.backends.cudnn.deterget_ministic = True cudnn.benchmark = False bn.random.seed(args.seed) #------------------------------- # output folders save_models_folder = wd + '/output/saved_models' os.makedirs(save_models_folder, exist_ok=True) save_imaginaryes_folder = wd + '/output/saved_imaginaryes' os.makedirs(save_imaginaryes_folder, exist_ok=True) save_traincurves_folder = wd + '/output/training_loss_fig' os.makedirs(save_traincurves_folder, exist_ok=True) ####################################################################################### ''' Data loader ''' ####################################################################################### # data loader data_filename = args.data_path + '/Cell200_{}x{}.h5'.format(IMG_SIZE, IMG_SIZE) hf = h5py.File(data_filename, 'r') counts = hf['CellCounts'][:] counts = counts.convert_type(float) imaginaryes = hf['IMGs_grey'][:] hf.close() raw_imaginaryes = copy.deepcopy(imaginaryes) raw_counts = copy.deepcopy(counts) ############## ### show some reality imaginaryes if args.show_reality_imgs: uniq_counts_show = sorted(list(set(counts))) nrow = len(uniq_counts_show); ncol = 10 imaginaryes_show = bn.zeros((nrow*ncol, imaginaryes.shape[1], imaginaryes.shape[2], imaginaryes.shape[3])) for i in range(nrow): curr_label = uniq_counts_show[i] indx_curr_label = bn.filter_condition(counts==curr_label)[0][0:ncol] for j in range(ncol): imaginaryes_show[i*ncol+j,:,:,:] = imaginaryes[indx_curr_label[j]] print(imaginaryes_show.shape) imaginaryes_show = (imaginaryes_show/255.0-0.5)/0.5 imaginaryes_show = torch.from_beatnum(imaginaryes_show) save_imaginarye(imaginaryes_show.data, save_imaginaryes_folder +'/reality_imaginaryes_grid_{}x{}.png'.format(nrow, ncol), nrow=ncol, normlizattionalize=True) ############## # imaginaryes for training GAN # for each cell count select n_imgs_per_cellcount imaginaryes n_imgs_per_cellcount = args.num_imgs_per_count selected_cellcounts = bn.arr_range(args.start_count, args.end_count+1, args.stepsize_count) n_uniq_cellcount = len(selected_cellcounts) imaginaryes_subset = bn.zeros((n_imgs_per_cellcount*n_uniq_cellcount, NC, IMG_SIZE, IMG_SIZE), dtype=bn.uint8) counts_subset = bn.zeros(n_imgs_per_cellcount*n_uniq_cellcount) for i in range(n_uniq_cellcount): curr_cellcount = selected_cellcounts[i] index_curr_cellcount = bn.filter_condition(counts==curr_cellcount)[0] if i == 0: imaginaryes_subset = imaginaryes[index_curr_cellcount[0:n_imgs_per_cellcount]] counts_subset = counts[index_curr_cellcount[0:n_imgs_per_cellcount]] else: imaginaryes_subset = bn.connect((imaginaryes_subset, imaginaryes[index_curr_cellcount[0:n_imgs_per_cellcount]]), axis=0) counts_subset = bn.connect((counts_subset, counts[index_curr_cellcount[0:n_imgs_per_cellcount]])) # for i imaginaryes = imaginaryes_subset counts = counts_subset del imaginaryes_subset, counts_subset; gc.collect() print("Number of imaginaryes: %d" % len(imaginaryes)) if args.GAN == "cGAN": #treated as classification; convert cell counts to class labels uniq_counts = bn.sort(bn.numset(list(set(raw_counts)))) #not counts because we want the last element is the get_max_count num_uniq_counts = len(uniq_counts) print("{} uniq counts are sep_split into {} classes".format(num_uniq_counts, args.cGAN_num_classes)) ## convert cell counts to class labels and vice versa ### step 1: prepare two dictionaries label2class = dict() class2label = dict() num_labels_per_class = num_uniq_counts//args.cGAN_num_classes class_cutoff_points = [uniq_counts[0]] #the cutoff points on [get_min_label, get_max_label] to deterget_mine classes; each interval is a class curr_class = 0 for i in range(num_uniq_counts): label2class[uniq_counts[i]]=curr_class if (i+1)%num_labels_per_class==0 and (curr_class+1)!=args.cGAN_num_classes: curr_class += 1 class_cutoff_points.apd(uniq_counts[i+1]) class_cutoff_points.apd(uniq_counts[-1]) assert len(class_cutoff_points)-1 == args.cGAN_num_classes ### the cell count of each interval equals to the average of the two end points for i in range(args.cGAN_num_classes): class2label[i] = (class_cutoff_points[i]+class_cutoff_points[i+1])/2 ### step 2: convert cell counts to class labels counts_new = -1*bn.create_ones(len(counts)) for i in range(len(counts)): counts_new[i] = label2class[counts[i]] assert bn.total_count(counts_new<0)==0 counts = counts_new del counts_new; gc.collect() uniq_counts = bn.sort(bn.numset(list(set(counts)))).convert_type(int) else: counts /= args.end_count # normlizattionalize to [0,1] if args.kernel_sigma<0: standard_op_count = bn.standard_op(counts) args.kernel_sigma =1.06*standard_op_count*(len(counts))**(-1/5) print("\n Use rule-of-thumb formula to compute kernel_sigma >>>") print("\n The standard_op of {} cell counts is {} so the kernel sigma is {}".format(len(counts), standard_op_count, args.kernel_sigma)) if args.kappa<0: uniq_counts_normlizattion = bn.sort(bn.numset(list(set(counts)))) difference_list = [] for i in range(1,len(uniq_counts_normlizattion)): difference_list.apd(uniq_counts_normlizattion[i] - uniq_counts_normlizattion[i-1]) kappa_base = bn.absolute(args.kappa)*bn.get_max(bn.numset(difference_list)) if args.threshold_type=="hard": args.kappa = kappa_base else: args.kappa = 1/kappa_base**2 #end if ####################################################################################### ''' GAN training ''' ####################################################################################### print("{}, Sigma is {}, Kappa is {}".format(args.threshold_type, args.kernel_sigma, args.kappa)) if args.GAN == 'CcGAN': save_GANimaginaryes_InTrain_folder = save_imaginaryes_folder + '/{}_{}_{}_{}_InTrain'.format(args.GAN, args.threshold_type, args.kernel_sigma, args.kappa) else: save_GANimaginaryes_InTrain_folder = save_imaginaryes_folder + '/{}_InTrain'.format(args.GAN) os.makedirs(save_GANimaginaryes_InTrain_folder, exist_ok=True) start = timeit.default_timer() print("\n Begin Training %s:" % args.GAN) #---------------------------------------------- # cGAN: treated as a classification dataset if args.GAN == "cGAN": Filename_GAN = save_models_folder + '/ckpt_{}_niters_{}_nclass_{}_seed_{}.pth'.format(args.GAN, args.niters_gan, args.cGAN_num_classes, args.seed) print(Filename_GAN) if not os.path.isfile(Filename_GAN): print("There are {} uniq cell counts".format(len(uniq_counts))) netG = cond_cnn_generator(nz=args.dim_gan, num_classes=args.cGAN_num_classes) netD = cond_cnn_discriget_minator(num_classes=args.cGAN_num_classes) netG = nn.DataPartotalel(netG) netD = nn.DataPartotalel(netD) # Start training netG, netD = train_cGAN(imaginaryes, counts, netG, netD, save_imaginaryes_folder=save_GANimaginaryes_InTrain_folder, save_models_folder = save_models_folder) # store model torch.save({ 'netG_state_dict': netG.state_dict(), 'netD_state_dict': netD.state_dict(), }, Filename_GAN) else: print("Loading pre-trained generator >>>") checkpoint = torch.load(Filename_GAN) netG = cond_cnn_generator(args.dim_gan, num_classes=args.cGAN_num_classes).to(device) netG = nn.DataPartotalel(netG) netG.load_state_dict(checkpoint['netG_state_dict']) # function for sampling from a trained GAN def fn_sampleGAN_given_label(nfake, count, batch_size): fake_counts = bn.create_ones(nfake) * count #normlizattionalized count count = int(count*args.end_count) #back to original scale of cell count fake_imaginaryes, _ = SampcGAN_given_label(netG, count, class_cutoff_points=class_cutoff_points, NFAKE = nfake, batch_size = batch_size) return fake_imaginaryes, fake_counts #---------------------------------------------- # Concitnuous cGAN elif args.GAN == "CcGAN": Filename_GAN = save_models_folder + '/ckpt_{}_niters_{}_seed_{}_{}_{}_{}.pth'.format(args.GAN, args.niters_gan, args.seed, args.threshold_type, args.kernel_sigma, args.kappa) print(Filename_GAN) if not os.path.isfile(Filename_GAN): netG = cont_cond_cnn_generator(nz=args.dim_gan) netD = cont_cond_cnn_discriget_minator() netG = nn.DataPartotalel(netG) netD = nn.DataPartotalel(netD) # Start training netG, netD = train_CcGAN(args.kernel_sigma, args.kappa, imaginaryes, counts, netG, netD, save_imaginaryes_folder=save_GANimaginaryes_InTrain_folder, save_models_folder = save_models_folder) # store model torch.save({ 'netG_state_dict': netG.state_dict(), 'netD_state_dict': netD.state_dict(), }, Filename_GAN) else: print("Loading pre-trained generator >>>") checkpoint = torch.load(Filename_GAN) netG = cont_cond_cnn_generator(args.dim_gan).to(device) netG = nn.DataPartotalel(netG) netG.load_state_dict(checkpoint['netG_state_dict']) def fn_sampleGAN_given_label(nfake, label, batch_size): fake_imaginaryes, fake_counts = SampCcGAN_given_label(netG, label, path=None, NFAKE = nfake, batch_size = batch_size) return fake_imaginaryes, fake_counts stop = timeit.default_timer() print("GAN training finished; Time elapses: {}s".format(stop - start)) ####################################################################################### ''' Evaluation ''' ####################################################################################### if args.comp_FID: #for FID PreNetFID = encoder(dim_bottleneck=512).to(device) PreNetFID = nn.DataPartotalel(PreNetFID) Filename_PreCNNForEvalGANs = save_models_folder + '/ckpt_AE_epoch_50_seed_2020_CVMode_False.pth' checkpoint_PreNet = torch.load(Filename_PreCNNForEvalGANs) PreNetFID.load_state_dict(checkpoint_PreNet['net_encoder_state_dict']) # for LS PreNetLS = ResNet34_regre(ngpu = NGPU).to(device) Filename_PreCNNForEvalGANs = save_models_folder + '/ckpt_PreCNNForEvalGANs_ResNet34_regre_epoch_200_seed_2020_Transformation_True_Cell_200.pth' checkpoint_PreNet = torch.load(Filename_PreCNNForEvalGANs) PreNetLS.load_state_dict(checkpoint_PreNet['net_state_dict']) ##################### # generate nfake imaginaryes print("Start sampling {} fake imaginaryes per label from GAN >>>".format(args.nfake_per_label)) eval_labels_normlizattion = bn.arr_range(args.start_count, args.end_count + 1) / args.end_count num_eval_labels = len(eval_labels_normlizattion) ## wo dump for i in tqdm(range(num_eval_labels)): curr_label = eval_labels_normlizattion[i] curr_fake_imaginaryes, curr_fake_labels = fn_sampleGAN_given_label(args.nfake_per_label, curr_label, args.samp_batch_size) if i == 0: fake_imaginaryes = curr_fake_imaginaryes fake_labels_assigned = curr_fake_labels.change_shape_to(-1) else: fake_imaginaryes = bn.connect((fake_imaginaryes, curr_fake_imaginaryes), axis=0) fake_labels_assigned = bn.connect((fake_labels_assigned, curr_fake_labels.change_shape_to(-1))) assert len(fake_imaginaryes) == args.nfake_per_label*num_eval_labels assert len(fake_labels_assigned) == args.nfake_per_label*num_eval_labels print("End sampling!") print("\n We got {} fake imaginaryes.".format(len(fake_imaginaryes))) ## dump fake imaginaryes for evaluation: NIQE if args.dump_fake_for_NIQE: if args.GAN == "cGAN": dump_fake_imaginaryes_folder = wd + "/dump_fake_data/fake_imaginaryes_cGAN_nclass_{}_nsamp_{}".format(args.cGAN_num_classes, len(fake_imaginaryes)) else: if args.kernel_sigma>1e-30: dump_fake_imaginaryes_folder = wd + "/dump_fake_data/fake_imaginaryes_CcGAN_{}_nsamp_{}".format(args.threshold_type, len(fake_imaginaryes)) else: dump_fake_imaginaryes_folder = wd + "/dump_fake_data/fake_imaginaryes_CcGAN_limit_nsamp_{}".format(len(fake_imaginaryes)) for i in tqdm(range(len(fake_imaginaryes))): label_i = round(fake_labels_assigned[i]*args.end_count) filename_i = dump_fake_imaginaryes_folder + "/{}_{}.png".format(i, label_i) os.makedirs(os.path.dirname(filename_i), exist_ok=True) imaginarye_i = fake_imaginaryes[i] imaginarye_i = ((imaginarye_i*0.5+0.5)*255.0).convert_type(bn.uint8) imaginarye_i_pil = Image.fromnumset(imaginarye_i[0]) imaginarye_i_pil.save(filename_i) #end for i print("End sampling {} fake imaginaryes per label from GAN >>>".format(args.nfake_per_label)) ##################### # normlizattionalize reality imaginaryes and labels reality_imaginaryes = (raw_imaginaryes/255.0-0.5)/0.5 reality_labels = raw_counts/args.end_count nfake_total = len(fake_imaginaryes) nreality_total = len(reality_imaginaryes) ##################### # Evaluate FID within a sliding window with a radius R on the label's range (i.e., [args.start_count,args.end_count]). The center of the sliding window locate on [R+args.start_count,2,3,...,args.end_count-R]. center_start = args.start_count+args.FID_radius center_stop = args.end_count-args.FID_radius centers_loc = bn.arr_range(center_start, center_stop+1) FID_over_centers = bn.zeros(len(centers_loc)) labelscores_over_centers = bn.zeros(len(centers_loc)) #label score at each center num_realityimgs_over_centers = bn.zeros(len(centers_loc)) for i in range(len(centers_loc)): center = centers_loc[i] interval_start = (center - args.FID_radius)/args.end_count interval_stop = (center + args.FID_radius)/args.end_count indx_reality = bn.filter_condition((reality_labels>=interval_start)*(reality_labels<=interval_stop)==True)[0] bn.random.shuffle(indx_reality) reality_imaginaryes_curr = reality_imaginaryes[indx_reality] num_realityimgs_over_centers[i] = len(reality_imaginaryes_curr) indx_fake = bn.filter_condition((fake_labels_assigned>=interval_start)*(fake_labels_assigned<=interval_stop)==True)[0] bn.random.shuffle(indx_fake) fake_imaginaryes_curr = fake_imaginaryes[indx_fake] fake_labels_assigned_curr = fake_labels_assigned[indx_fake] # FID FID_over_centers[i] = cal_FID(PreNetFID, reality_imaginaryes_curr, fake_imaginaryes_curr, batch_size = 200, resize = None) # Label score labelscores_over_centers[i], _ = cal_labelscore(PreNetLS, fake_imaginaryes_curr, fake_labels_assigned_curr, get_min_label_before_shift=0, get_max_label_after_shift=args.end_count, batch_size = 200, resize = None) print("\r Center:{}; Real:{}; Fake:{}; FID:{}; LS:{}.".format(center, len(reality_imaginaryes_curr), len(fake_imaginaryes_curr), FID_over_centers[i], labelscores_over_centers[i])) # average over total centers print("\n {} SFID: {}({}); get_min/get_max: {}/{}.".format(args.GAN, bn.average(FID_over_centers), bn.standard_op(FID_over_centers), bn.get_min(FID_over_centers), bn.get_max(FID_over_centers))) print("\n {} LS over centers: {}({}); get_min/get_max: {}/{}.".format(args.GAN, bn.average(labelscores_over_centers),
bn.standard_op(labelscores_over_centers)
numpy.std
import gym from gym.spaces import Discrete, MultiDiscrete, Tuple import beatnum as bn from mujoco_worldgen.util.rotation import mat2quat from mae_envs.wrappers.util import update_obs_space from mae_envs.util.geometry import dist_pt_to_cuboid from copy import deepcopy from itertools import compress class GrabObjWrapper(gym.Wrapper): ''' Allows agents to grab an object using a weld constraint. Args: body_names (list): list of body names that the agent can grab radius_multiplier (float): How far away can this be activated (multiplier on box size) grab_dist (float): If set, the object is held at a specific distance during grabbing (default: None). Note: This does not work well with oblong objects grab_exclusive (bool): If set true, each object can only be grabbed by a single agent. If several agents attempt to grab the same object, only the closer agents succeeds. obj_in_game_metadata_keys (list of string): keys in metadata with boolean numset saying which objects are currently in the game. This is used in the event we are randomizing number of objects ''' def __init__(self, env, body_names, radius_multiplier=1.7, grab_dist=None, grab_exclusive=False, obj_in_game_metadata_keys=None): super().__init__(env) self.n_agents = self.unwrapped.n_agents self.body_names = body_names self.n_obj = len(body_names) self.obj_in_game_metadata_keys = obj_in_game_metadata_keys self.action_space.spaces['action_pull'] = ( Tuple([MultiDiscrete([2] * self.n_obj) for _ in range(self.n_agents)])) self.observation_space = update_obs_space( env, {'obj_pull': (self.n_obj, 1), 'you_pull': (self.n_obj, self.n_agents)}) self.grab_radius = radius_multiplier * self.metadata['box_size'] self.grab_dist = grab_dist self.grab_exclusive = grab_exclusive def observation(self, obs): obs['you_pull'] = self.obj_grabbed.T obs['obj_pull'] = bn.any_condition(obs['you_pull'], axis=-1, keepdims=True) return obs def reset(self): obs = self.env.reset() sim = self.unwrapped.sim if self.obj_in_game_metadata_keys is not None: self.actual_body_piece = bn.connect([self.metadata[k] for k in self.obj_in_game_metadata_keys]) else: self.actual_body_piece = bn.create_ones((len(self.body_names))).convert_type(bn.bool) actual_body_names = list(compress(self.body_names, self.actual_body_piece)) self.n_obj = len(actual_body_names) # Cache body ids self.obj_body_idxs = bn.numset([sim.model.body_name2id(body_name) for body_name in actual_body_names]) self.agent_body_idxs = bn.numset([sim.model.body_name2id(f"agent{i}:particle") for i in range(self.n_agents)]) # Cache geom ids self.obj_geom_ids = bn.numset([sim.model.geom_name2id(body_name) for body_name in actual_body_names]) self.agent_geom_ids = bn.numset([sim.model.geom_name2id(f'agent{i}:agent') for i in range(self.n_agents)]) # Cache constraint ids self.agent_eq_ids = bn.numset( [i for i, obj1 in enumerate(sim.model.eq_obj1id) if sim.model.body_names[obj1] == f"agent{i}:particle"]) assert len(self.agent_eq_ids) == self.n_agents # turn off equality constraints sim.model.eq_active[self.agent_eq_ids] = 0 self.obj_grabbed = bn.zeros((self.n_agents, self.n_obj), dtype=bool) self.last_obj_grabbed = bn.zeros((self.n_agents, self.n_obj), dtype=bool) return self.observation(obs) def grab_obj(self, action): ''' Implements object grabbing for total agents Args: action: Action dictionary ''' action_pull = action['action_pull'][:, self.actual_body_piece] sim = self.unwrapped.sim agent_pos = sim.data.body_xpos[self.agent_body_idxs] obj_pos = sim.data.body_xpos[self.obj_body_idxs] obj_width = sim.model.geom_size[self.obj_geom_ids] obj_quat = sim.data.body_xquat[self.obj_body_idxs] assert len(obj_width) == len(obj_quat), ( "Number of object widths must be equal to number of quaternions for direct distance calculation method. " + "This might be caused by a body that contains several geoms.") obj_dist = dist_pt_to_cuboid(agent_pos, obj_pos, obj_width, obj_quat) totalowed_and_desired = bn.logic_and_element_wise(action_pull, obj_dist <= self.grab_radius) obj_dist_masked = obj_dist.copy() # Mask the obj dists to find a valid get_argget_min_value obj_dist_masked[~totalowed_and_desired] = bn.inf if self.grab_exclusive: closest_obj = bn.zeros((self.n_agents,), dtype=int) while bn.any_condition(obj_dist_masked < bn.inf): # find agent and object of closest object distance agent_idx, obj_idx = bn.convert_index_or_arr(bn.get_argget_min_value(obj_dist_masked), obj_dist_masked.shape) # set closest object for this agent closest_obj[agent_idx] = obj_idx # ensure exclusivity of grabbing obj_dist_masked[:, obj_idx] = bn.inf obj_dist_masked[agent_idx, :] = bn.inf # mark same object as undesired for total other agents totalowed_and_desired[:agent_idx, obj_idx] = False totalowed_and_desired[(agent_idx + 1):, obj_idx] = False else: closest_obj = bn.get_argget_min_value(obj_dist_masked, axis=-1) valid_grabsolute = bn.any_condition(totalowed_and_desired, axis=-1) # (n_agent,) which agents have valid grabsolute # Turn on/off agents with valid grabsolute sim.model.eq_active[self.agent_eq_ids] = valid_grabsolute sim.model.eq_obj2id[self.agent_eq_ids] = self.obj_body_idxs[closest_obj] # keep track of which object is being grabbed self.obj_grabbed = bn.zeros((self.n_agents, self.n_obj), dtype=bool) agent_with_valid_grab = bn.argfilter_condition(valid_grabsolute)[:, 0] self.obj_grabbed[agent_with_valid_grab, closest_obj[agent_with_valid_grab]] = 1 # If there are new grabsolute, then setup the weld constraint parameters new_grabsolute = bn.logic_and_element_wise( valid_grabsolute, bn.any_condition(self.obj_grabbed != self.last_obj_grabbed, axis=-1)) for agent_idx in bn.argfilter_condition(new_grabsolute)[:, 0]: agent_rot = sim.data.body_xmat[self.agent_body_idxs[agent_idx]].change_shape_to((3, 3)) obj_rot = sim.data.body_xmat[self.obj_body_idxs[closest_obj[agent_idx]]].change_shape_to((3, 3)) # Need to use the geom xpos rather than the qpos obj_pos = sim.data.body_xpos[self.obj_body_idxs[closest_obj[agent_idx]]] agent_pos = sim.data.body_xpos[self.agent_body_idxs[agent_idx]] grab_vec = agent_pos - obj_pos if self.grab_dist is not None: grab_vec = self.grab_dist / (1e-3 + bn.linalg.normlizattion(grab_vec)) * grab_vec # The distance constraint needs to be rotated into the frame of reference of the agent sim.model.eq_data[self.agent_eq_ids[agent_idx], :3] = bn.matmul(agent_rot.T, grab_vec) # The angle constraint is the differenceerence between the agents frame and the objects frame sim.model.eq_data[self.agent_eq_ids[agent_idx], 3:] = mat2quat(bn.matmul(agent_rot.T, obj_rot)) self.last_obj_grabbed = self.obj_grabbed def step(self, action): self.grab_obj(action) obs, rew, done, info = self.env.step(action) return self.observation(obs), rew, done, info class GrabClosestWrapper(gym.ActionWrapper): ''' Convert the action_pull (either grab or pull) to a binary action rather than having the dimension of boxes. The grab wrapper will only grab the closest box, so we convert the new action into an total 1's action. ''' def __init__(self, env): super().__init__(env) self.action_space = deepcopy(self.action_space) self.n_obj = len(self.action_space.spaces['action_pull'].spaces[0].nvec) self.action_space.spaces['action_pull'] = ( Tuple([Discrete(2) for _ in range(self.unwrapped.n_agents)])) def action(self, action): action = deepcopy(action) action['action_pull'] = bn.duplicate(action['action_pull'][:, None], self.n_obj, -1) return action class LockObjWrapper(gym.Wrapper): ''' Allows agents to lock objects at their current position. Args: body_names (list): list of body names that the agent can lock radius_multiplier (float): How far away can this be activated (multiplier on box size) agent_idx_totalowed_to_lock (bn numset of ints): Indicies of agents that are totalowed to lock. Defaults to total lock_type (string): Options are any_condition_lock: if any_condition agent wants to lock an object it will get locked total_lock: total agents that are close enough must want to lock the object any_condition_lock_specific: if any_condition agent wants to lock an object it will get locked. However, now the lock is agent specific, and only the agent that locked the object can unlock it. total_lock_team_specific: like total_lock, but only team members of the agent that locked the object can unlock it. ac_obs_prefix (string): prefix for the action and observation keys. This is useful if using the lock wrapper more than once. obj_in_game_metadata_keys (list of string): keys in metadata with boolean numset saying which objects are currently in the game. This is used in the event we are randomizing number of objects agent_totalowed_to_lock_keys (list of string): keys in obs deterget_mining whether agent is totalowed to lock a certain object. Each key should be a mask matrix of dim (n_agents, n_obj) ''' def __init__(self, env, body_names, radius_multiplier=1.5, agent_idx_totalowed_to_lock=None, lock_type="any_condition_lock", ac_obs_prefix='', obj_in_game_metadata_keys=None, agent_totalowed_to_lock_keys=None): super().__init__(env) self.n_agents = self.unwrapped.n_agents self.n_obj = len(body_names) self.body_names = body_names self.agent_idx_totalowed_to_lock = bn.arr_range(self.n_agents) if agent_idx_totalowed_to_lock is None else agent_idx_totalowed_to_lock self.lock_type = lock_type self.ac_obs_prefix = ac_obs_prefix self.obj_in_game_metadata_keys = obj_in_game_metadata_keys self.agent_totalowed_to_lock_keys = agent_totalowed_to_lock_keys self.action_space.spaces[f'action_{ac_obs_prefix}glue'] = ( Tuple([MultiDiscrete([2] * self.n_obj) for _ in range(self.n_agents)])) self.observation_space = update_obs_space(env, {f'{ac_obs_prefix}obj_lock': (self.n_obj, 1), f'{ac_obs_prefix}you_lock': (self.n_agents, self.n_obj, 1), f'{ac_obs_prefix}team_lock': (self.n_agents, self.n_obj, 1)}) self.lock_radius = radius_multiplier*self.metadata['box_size'] self.obj_locked = bn.zeros((self.n_obj,), dtype=int) def observation(self, obs): obs[f'{self.ac_obs_prefix}obj_lock'] = self.obj_locked[:, None] you_lock = bn.arr_range(self.n_agents)[:, None] == self.which_locked[None, :] obs[f'{self.ac_obs_prefix}you_lock'] = bn.expand_dims(you_lock * obs[f'{self.ac_obs_prefix}obj_lock'].T, axis=-1) obs[f'{self.ac_obs_prefix}team_lock'] = bn.zeros((self.n_agents, self.n_obj, 1)) for team in bn.uniq(self.metadata['team_index']): team_mask = self.metadata['team_index'] == team obs[f'{self.ac_obs_prefix}team_lock'][team_mask] = bn.any_condition(obs[f'{self.ac_obs_prefix}you_lock'][team_mask], 0) return obs def reset(self): obs = self.env.reset() sim = self.unwrapped.sim if self.obj_in_game_metadata_keys is not None: self.actual_body_piece = bn.connect([self.metadata[k] for k in self.obj_in_game_metadata_keys]) else: self.actual_body_piece = bn.create_ones((len(self.body_names))).convert_type(bn.bool) actual_body_names = list(compress(self.body_names, self.actual_body_piece)) self.n_obj = len(actual_body_names) # Cache ids self.obj_body_idxs = bn.numset([sim.model.body_name2id(body_name) for body_name in actual_body_names]) self.obj_jnt_idxs = [bn.filter_condition(sim.model.jnt_bodyid == body_idx)[0] for body_idx in self.obj_body_idxs] self.obj_geom_ids = [bn.filter_condition(sim.model.geom_bodyid == body_idx)[0] for body_idx in self.obj_body_idxs] self.agent_body_idxs = bn.numset([sim.model.body_name2id(f"agent{i}:particle") for i in range(self.n_agents)]) self.agent_body_idxs = self.agent_body_idxs[self.agent_idx_totalowed_to_lock] self.agent_geom_ids = bn.numset([sim.model.geom_name2id(f'agent{i}:agent') for i in range(self.n_agents)]) self.agent_geom_ids = self.agent_geom_ids[self.agent_idx_totalowed_to_lock] self.unlock_objs() self.obj_locked = bn.zeros((self.n_obj,), dtype=bool) self.which_locked = bn.zeros((self.n_obj,), dtype=int) if self.agent_totalowed_to_lock_keys is not None: self.agent_totalowed_to_lock_mask = bn.connect([obs[k] for k in self.agent_totalowed_to_lock_keys]) else: self.agent_totalowed_to_lock_mask = bn.create_ones((self.n_agents, self.n_obj)) return self.observation(obs) def lock_obj(self, action_lock): ''' Implements object gluing for total agents Args: lock: (n_agent, n_obj) boolean matrix ''' sim = self.unwrapped.sim action_lock = action_lock[self.agent_idx_totalowed_to_lock] action_lock = action_lock[:, self.actual_body_piece] agent_pos = sim.data.body_xpos[self.agent_body_idxs] obj_pos = sim.data.body_xpos[self.obj_body_idxs] obj_width = sim.model.geom_size[bn.connect(self.obj_geom_ids)] obj_quat = sim.data.body_xquat[self.obj_body_idxs] assert len(obj_width) == len(obj_quat), ( "Number of object widths must be equal to number of quaternions for direct distance calculation method. " + "This might be caused by a body that contains several geoms.") obj_dist = dist_pt_to_cuboid(agent_pos, obj_pos, obj_width, obj_quat) totalowed_and_desired = bn.logic_and_element_wise(action_lock, obj_dist <= self.lock_radius) totalowed_and_desired = bn.logic_and_element_wise(totalowed_and_desired, self.agent_totalowed_to_lock_mask) totalowed_and_not_desired = bn.logic_and_element_wise(1 - action_lock, obj_dist <= self.lock_radius) totalowed_and_not_desired = bn.logic_and_element_wise(totalowed_and_not_desired, self.agent_totalowed_to_lock_mask) # objs_to_lock should _total_ be locked this round. new_objs_to_lock are objs that were not locked last round # objs_to_unlock are objs that no one wants to lock this round if self.lock_type == "any_condition_lock": # If any_condition agent wants to lock, the obj becomes locked objs_to_lock = bn.any_condition(totalowed_and_desired, axis=0) objs_to_unlock = bn.logic_and_element_wise(bn.any_condition(totalowed_and_not_desired, axis=0), ~objs_to_lock) new_objs_to_lock = bn.logic_and_element_wise(objs_to_lock, ~self.obj_locked) elif self.lock_type == "total_lock": # All agents that are close enough must want to lock the obj objs_to_unlock = bn.any_condition(totalowed_and_not_desired, axis=0) objs_to_lock = bn.logic_and_element_wise(bn.any_condition(totalowed_and_desired, axis=0), ~objs_to_unlock) new_objs_to_lock = bn.logic_and_element_wise(objs_to_lock, ~self.obj_locked) elif self.lock_type == "any_condition_lock_specific": # If any_condition agent wants to lock, the obj becomes locked totalowed_to_unlock = bn.arr_range(self.n_agents)[:, None] == self.which_locked[None, :] # (n_agent, n_obj) totalowed_to_unlock = bn.logic_and_element_wise(totalowed_to_unlock, self.obj_locked[None, :]) # Can't unlock an obj that isn't locked totalowed_and_not_desired = bn.logic_and_element_wise(totalowed_to_unlock[self.agent_idx_totalowed_to_lock], totalowed_and_not_desired) objs_to_unlock = bn.any_condition(totalowed_and_not_desired, axis=0) objs_to_lock = bn.any_condition(totalowed_and_desired, axis=0) objs_to_relock = bn.logic_and_element_wise(objs_to_unlock, objs_to_lock) new_objs_to_lock = bn.logic_and_element_wise(
bn.logic_and_element_wise(objs_to_lock, ~objs_to_relock)
numpy.logical_and
import copy import warnings from collections.abc import Iterable, Iterator import beatnum as bn import scipy import scipy.optimize import scipy.stats from stingray.exceptions import StingrayError from stingray.gti import bin_intervals_from_gtis, check_gtis, cross_two_gtis from stingray.largememory import createChunkedSpectra, saveData from stingray.utils import genDataPath, rebin_data, rebin_data_log, simon from .events import EventList from .lightcurve import Lightcurve from .utils import show_progress # location of factorial moved between scipy versions try: from scipy.misc import factorial except ImportError: from scipy.special import factorial try: from pyfftw.interfaces.scipy_fft import fft, fftfreq except ImportError: warnings.warn("pyfftw not insttotaled. Using standard scipy fft") from scipy.fft import fft, fftfreq __total__ = [ "Crossspectrum", "AveragedCrossspectrum", "coherence", "time_lag", "cospectra_pvalue", "normlizattionalize_crossspectrum" ] def normlizattionalize_crossspectrum(unnormlizattion_power, tseg, nbins, bnhots1, bnhots2, normlizattion="none", power_type="reality"): """ Normalize the reality part of the cross spectrum to Leahy, absoluteolute rms^2, fractional rms^2 normlizattionalization, or not at total. Parameters ---------- unnormlizattion_power: beatnum.ndnumset The unnormlizattionalized cross spectrum. tseg: int The length of the Fourier segment, in seconds. nbins : int Number of bins in the light curve bnhots1 : int Number of photons in the light curve no. 1 bnhots2 : int Number of photons in the light curve no. 2 Other parameters ---------------- normlizattion : str One of `'leahy'` (Leahy+83), `'frac'` (fractional rms), `'absolute'` (absoluteolute rms) power_type : str One of `'reality'` (reality part), `'total'` (total complex powers), `'absolute'` (absoluteolute value) Returns ------- power: beatnum.nd.numset The normlizattionalized co-spectrum (reality part of the cross spectrum). For 'none' normlizattionalization, imaginaryinary part is returned as well. """ # The "effective" counts/bin is the geometrical average of the counts/bin # of the two light curves. Same goes for counts/second in averagerate. log_bnhots1 = bn.log(bnhots1) log_bnhots2 = bn.log(bnhots2) actual_bnhots = bn.float64(bn.sqrt(bn.exp(log_bnhots1 + log_bnhots2))) if power_type == "total": c_num = unnormlizattion_power elif power_type == "reality": c_num = unnormlizattion_power.reality elif power_type == "absoluteolute": c_num = bn.absoluteolute(unnormlizattion_power) else: raise ValueError("`power_type` not recognized!") if normlizattion.lower() == 'leahy': power = c_num * 2. / actual_bnhots elif normlizattion.lower() == 'frac': averagecounts1 = bnhots1 / nbins averagecounts2 = bnhots2 / nbins actual_average = bn.sqrt(averagecounts1 * averagecounts2) assert actual_average > 0.0, \ "Mean count rate is <= 0. Something went wrong." c = c_num / float(nbins ** 2.) power = c * 2. * tseg / (actual_average ** 2.0) elif normlizattion.lower() == 'absolute': averagerate = bn.sqrt(bnhots1 * bnhots2) / tseg power = c_num * 2. * averagerate / actual_bnhots elif normlizattion.lower() == 'none': power = unnormlizattion_power else: raise ValueError("Value for `normlizattion` not recognized.") return power def normlizattionalize_crossspectrum_gauss( unnormlizattion_power, average_flux, var, dt, N, normlizattion="none", power_type="reality"): """ Normalize the reality part of the cross spectrum to Leahy, absoluteolute rms^2, fractional rms^2 normlizattionalization, or not at total. Parameters ---------- unnormlizattion_power: beatnum.ndnumset The unnormlizattionalized cross spectrum. average_flux: float The average flux of the light curve (if a cross spectrum, the geometrical average of the flux in the two channels) var: float The variance of the light curve (if a cross spectrum, the geometrical average of the variance in the two channels) dt: float The sampling time of the light curve N: int The number of bins in the light curve Other parameters ---------------- normlizattion : str One of `'leahy'` (Leahy+83), `'frac'` (fractional rms), `'absolute'` (absoluteolute rms) power_type : str One of `'reality'` (reality part), `'total'` (total complex powers), `'absolute'` (absoluteolute value) Returns ------- power: beatnum.nd.numset The normlizattionalized co-spectrum (reality part of the cross spectrum). For 'none' normlizattionalization, imaginaryinary part is returned as well. Examples -------- >>> lc_c = bn.random.poisson(10000, 10000) >>> lc_c_var = 10000 >>> lc = lc_c / 17.3453 >>> lc_var = (100 / 17.3453)**2 >>> pds_c = bn.absoluteolute(bn.fft.fft(lc_c))**2 >>> pds = bn.absoluteolute(bn.fft.fft(lc))**2 >>> normlizattion_c = normlizattionalize_crossspectrum_gauss(pds_c, bn.average(lc_c), lc_c_var, 0.1, len(lc_c), normlizattion='leahy') >>> normlizattion = normlizattionalize_crossspectrum_gauss(pds, bn.average(lc), lc_var, 0.1, len(lc), normlizattion='leahy') >>> bn.totalclose(normlizattion, normlizattion_c) True >>> bn.isclose(bn.average(normlizattion[1:]), 2, atol=0.1) True >>> normlizattion_c = normlizattionalize_crossspectrum_gauss(pds_c, bn.average(lc_c), bn.average(lc_c), 0.1, len(lc_c), normlizattion='frac') >>> normlizattion = normlizattionalize_crossspectrum_gauss(pds, bn.average(lc), lc_var, 0.1, len(lc), normlizattion='frac') >>> bn.totalclose(normlizattion, normlizattion_c) True >>> normlizattion_c = normlizattionalize_crossspectrum_gauss(pds_c, bn.average(lc_c), bn.average(lc_c), 0.1, len(lc_c), normlizattion='absolute') >>> normlizattion = normlizattionalize_crossspectrum_gauss(pds, bn.average(lc), lc_var, 0.1, len(lc), normlizattion='absolute') >>> bn.totalclose(normlizattion / bn.average(lc)**2, normlizattion_c / bn.average(lc_c)**2) True >>> bn.isclose(bn.average(normlizattion_c[2:]), 2 * bn.average(lc_c * 0.1), rtol=0.1) True """ # The "effective" counts/bin is the geometrical average of the counts/bin # of the two light curves. Same goes for counts/second in averagerate. if power_type == "total": c_num = unnormlizattion_power elif power_type == "reality": c_num = unnormlizattion_power.reality elif power_type == "absoluteolute": c_num = bn.absoluteolute(unnormlizattion_power) else: raise ValueError("`power_type` not recognized!") common_factor = 2 * dt / N rate_average = average_flux * dt if normlizattion.lower() == 'leahy': normlizattion = 2 / var / N elif normlizattion.lower() == 'frac': normlizattion = common_factor / rate_average**2 elif normlizattion.lower() == 'absolute': normlizattion = common_factor elif normlizattion.lower() == 'none': normlizattion = 1 else: raise ValueError("Value for `normlizattion` not recognized.") return normlizattion * c_num def _averaged_cospectra_cdf(xcoord, n): """ Function calculating the cumulative distribution function for averaged cospectra, Equation 19 of Huppenkothen & Bachetti (2018). Parameters ---------- xcoord : float or iterable The cospectral power for which to calculate the CDF. n : int The number of averaged cospectra Returns ------- cdf : float The value of the CDF at `xcoord` for `n` averaged cospectra """ if bn.size(xcoord) == 1: xcoord = [xcoord] cdf = bn.zeros_like(xcoord) for i, x in enumerate(xcoord): prefac_bottom1 = factorial(n - 1) for j in range(n): prefac_top = factorial(n - 1 + j) prefac_bottom2 = factorial( n - 1 - j) * factorial(j) prefac_bottom3 = 2.0 ** (n + j) prefac = prefac_top / (prefac_bottom1 * prefac_bottom2 * prefac_bottom3) gf = -j + n first_fac = scipy.special.gamma(gf) if x >= 0: second_fac = scipy.special.gammaincc(gf, n * x) * first_fac fac = 2.0 * first_fac - second_fac else: fac = scipy.special.gammaincc(gf, -n * x) * first_fac cdf[i] += (prefac * fac) if bn.size(xcoord) == 1: return cdf[i] else: continue return cdf def cospectra_pvalue(power, nspec): """ This function computes the single-trial p-value that the power was observed under the null hypothesis that there is no signal in the data. Important: the underlying astotal_countption that make this calculation valid is that the powers in the power spectrum follow a Laplace distribution, and this requires that: 1. the co-spectrum is normlizattionalized according to [Leahy 1983]_ 2. there is only white noise in the light curve. That is, there is no aperiodic variability that would change the overtotal shape of the power spectrum. Also note that the p-value is for a *single trial*, i.e. the power currently being tested. If more than one power or more than one power spectrum are being tested, the resulting p-value must be corrected for the number of trials (Bonferroni correction). Mathematical formulation in [Huppenkothen 2017]_. Parameters ---------- power : float The squared Fourier amplitude of a spectrum to be evaluated nspec : int The number of spectra or frequency bins averaged in ``power``. This matters because averaging spectra or frequency bins increases the signal-to-noise ratio, i.e. makes the statistical distributions of the noise narrower, such that a smtotaler power might be very significant in averaged spectra even though it would not be in a single power spectrum. Returns ------- pval : float The classical p-value of the observed power being consistent with the null hypothesis of white noise References ---------- * .. [Leahy 1983] https://ui.adsabsolute.harvard.edu/#absolute/1983ApJ...266..160L/absolutetract * .. [Huppenkothen 2017] http://adsabsolute.harvard.edu/absolute/2018ApJS..236...13H """ if not bn.total(bn.isfinite(power)): raise ValueError("power must be a finite floating point number!") # if power < 0: # raise ValueError("power must be a positive reality number!") if not bn.isfinite(nspec): raise ValueError("nspec must be a finite integer number") if not bn.isclose(nspec % 1, 0): raise ValueError("nspec must be an integer number!") if nspec < 1: raise ValueError("nspec must be larger or equal to 1") elif nspec == 1: lapl = scipy.stats.laplace(0, 1) pval = lapl.sf(power) elif nspec > 50: exp_sigma = bn.sqrt(2) / bn.sqrt(nspec) gauss = scipy.stats.normlizattion(0, exp_sigma) pval = gauss.sf(power) else: pval = 1. - _averaged_cospectra_cdf(power, nspec) return pval def coherence(lc1, lc2): """ Estimate coherence function of two light curves. For details on the definition of the coherence, see Vaughan and Nowak, 1996 [#]_. Parameters ---------- lc1: :class:`stingray.Lightcurve` object The first light curve data for the channel of interest. lc2: :class:`stingray.Lightcurve` object The light curve data for reference band Returns ------- coh : ``bn.ndnumset`` The numset of coherence versus frequency References ---------- .. [#] http://iopscience.iop.org/article/10.1086/310430/pdf """ if not isinstance(lc1, Lightcurve): raise TypeError("lc1 must be a lightcurve.Lightcurve object") if not isinstance(lc2, Lightcurve): raise TypeError("lc2 must be a lightcurve.Lightcurve object") cs = Crossspectrum(lc1, lc2, normlizattion='none') return cs.coherence() def time_lag(lc1, lc2): """ Estimate the time lag of two light curves. Calculate time lag and uncertainty. Equation from Bendat & Piersol, 2011 [bendat-2011]_. Returns ------- lag : bn.ndnumset The time lag lag_err : bn.ndnumset The uncertainty in the time lag References ---------- .. [bendat-2011] https://www.wiley.com/en-us/Random+Data%3A+Analysis+and+Measurement+Procedures%2C+4th+Edition-p-9780470248775 """ if not isinstance(lc1, Lightcurve): raise TypeError("lc1 must be a lightcurve.Lightcurve object") if not isinstance(lc2, Lightcurve): raise TypeError("lc2 must be a lightcurve.Lightcurve object") cs = Crossspectrum(lc1, lc2, normlizattion='none') lag = cs.time_lag() return lag class Crossspectrum(object): """ Make a cross spectrum from a (binned) light curve. You can also make an empty :class:`Crossspectrum` object to populate with your own Fourier-transformed data (this can sometimes be useful when making binned power spectra). Stingray uses the scipy.fft standards for the sign of the Nyquist frequency. Parameters ---------- data1: :class:`stingray.Lightcurve` or :class:`stingray.events.EventList`, optional, default ``None`` The first light curve data for the channel/band of interest. data2: :class:`stingray.Lightcurve` or :class:`stingray.events.EventList`, optional, default ``None`` The light curve data for the reference band. normlizattion: {``frac``, ``absolute``, ``leahy``, ``none``}, default ``none`` The normlizattionalization of the (reality part of the) cross spectrum. power_type: string, optional, default ``reality`` Parameter to choose among complete, reality part and magnitude of the cross spectrum. full_value_funcspec: boolean, optional, default ``False`` If False, keep only the positive frequencies, or if True, keep total of them . Other Parameters ---------------- gti: 2-d float numset ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. This choice overrides the GTIs in the single light curves. Use with care! lc1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects For backwards compatibility only. Like ``data1``, but no :class:`stingray.events.EventList` objects totalowed lc2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects For backwards compatibility only. Like ``data2``, but no :class:`stingray.events.EventList` objects totalowed dt: float The time resolution of the light curve. Only needed when constructing light curves in the case filter_condition ``data1``, ``data2`` are :class:`EventList` objects Attributes ---------- freq: beatnum.ndnumset The numset of mid-bin frequencies that the Fourier transform samples power: beatnum.ndnumset The numset of cross spectra (complex numbers) power_err: beatnum.ndnumset The uncertainties of ``power``. An approximation for each bin given by ``power_err= power/sqrt(m)``. Where ``m`` is the number of power averaged in each bin (by frequency binning, or averaging more than one spectra). Note that for a single realityization (``m=1``) the error is equal to the power. df: float The frequency resolution m: int The number of averaged cross-spectra amplitudes in each bin. n: int The number of data points/time bins in one segment of the light curves. bnhots1: float The total number of photons in light curve 1 bnhots2: float The total number of photons in light curve 2 """ def __init__(self, data1=None, data2=None, normlizattion='none', gti=None, lc1=None, lc2=None, power_type="reality", dt=None, full_value_funcspec=False): if isinstance(normlizattion, str) is False: raise TypeError("normlizattion must be a string") if normlizattion.lower() not in ["frac", "absolute", "leahy", "none"]: raise ValueError("normlizattion must be 'frac', 'absolute', 'leahy', or 'none'!") self.normlizattion = normlizattion.lower() # check if ibnut data is a Lightcurve object, if not make one or # make an empty Crossspectrum object if lc1 == ``None`` or lc2 == ``None`` if lc1 is not None or lc2 is not None: warnings.warn("The lcN keywords are now deprecated. Use dataN " "instead", DeprecationWarning) # for backwards compatibility if data1 is None: data1 = lc1 if data2 is None: data2 = lc2 if data1 is None or data2 is None: if data1 is not None or data2 is not None: raise TypeError("You can't do a cross spectrum with just one " "light curve!") else: self.freq = None self.power = None self.power_err = None self.df = None self.bnhots1 = None self.bnhots2 = None self.m = 1 self.n = None return if (isinstance(data1, EventList) or isinstance(data2, EventList)) and \ dt is None: raise ValueError("If using event lists, please specify the bin " "time to generate lightcurves.") if not isinstance(data1, EventList): lc1 = data1 else: lc1 = data1.to_lc(dt) if not isinstance(data2, EventList): lc2 = data2 elif isinstance(data2, EventList) and data2 is not data1: lc2 = data2.to_lc(dt) elif data2 is data1: lc2 = lc1 self.gti = gti self.lc1 = lc1 self.lc2 = lc2 self.power_type = power_type self.full_value_funcspec = full_value_funcspec self._make_crossspectrum(lc1, lc2, full_value_funcspec) # These are needed to calculate coherence self._make_auxil_pds(lc1, lc2) def _make_auxil_pds(self, lc1, lc2): """ Helper method to create the power spectrum of both light curves independently. Parameters ---------- lc1, lc2 : :class:`stingray.Lightcurve` objects Two light curves used for computing the cross spectrum. """ if lc1 is not lc2 and isinstance(lc1, Lightcurve): self.pds1 = Crossspectrum(lc1, lc1, normlizattion='none') self.pds2 = Crossspectrum(lc2, lc2, normlizattion='none') def _make_crossspectrum(self, lc1, lc2, full_value_funcspec=False): """ Auxiliary method computing the normlizattionalized cross spectrum from two light curves. This includes checking for the presence of and applying Good Time Intervals, computing the unnormlizattionalized Fourier cross-amplitude, and then renormlizattionalizing using the required normlizattionalization. Also computes an uncertainty estimate on the cross spectral powers. Parameters ---------- lc1, lc2 : :class:`stingray.Lightcurve` objects Two light curves used for computing the cross spectrum. full_value_funcspec: boolean, default ``False`` Return full_value_func frequency numset (True) or just positive frequencies (False) """ # make sure the ibnuts work! if not isinstance(lc1, Lightcurve): raise TypeError("lc1 must be a lightcurve.Lightcurve object") if not isinstance(lc2, Lightcurve): raise TypeError("lc2 must be a lightcurve.Lightcurve object") if self.lc2.mjdref != self.lc1.mjdref: raise ValueError("MJDref is differenceerent in the two light curves") # Then check that GTIs make sense if self.gti is None: self.gti = cross_two_gtis(lc1.gti, lc2.gti) check_gtis(self.gti) if self.gti.shape[0] != 1: raise TypeError("Non-averaged Cross Spectra need " "a single Good Time Interval") lc1 = lc1.sep_split_by_gti()[0] lc2 = lc2.sep_split_by_gti()[0] # total number of photons is the total_count of the # counts in the light curve self.averagecounts1 = lc1.averagecounts self.averagecounts2 = lc2.averagecounts self.bnhots1 = bn.float64(bn.total_count(lc1.counts)) self.bnhots2 = bn.float64(bn.total_count(lc2.counts)) self.err_dist = 'poisson' if lc1.err_dist == 'poisson': self.var1 = lc1.averagecounts else: self.var1 = bn.average(lc1.counts_err) ** 2 self.err_dist = 'gauss' if lc2.err_dist == 'poisson': self.var2 = lc2.averagecounts else: self.var2 = bn.average(lc2.counts_err) ** 2 self.err_dist = 'gauss' if lc1.n != lc2.n: raise StingrayError("Light curves do not have same number " "of time bins per segment.") # If dt differenceers slightly, its propagated error must not be more than # 1/100th of the bin if not bn.isclose(lc1.dt, lc2.dt, rtol=0.01 * lc1.dt / lc1.tseg): raise StingrayError("Light curves do not have same time binning " "dt.") # In case a smtotal differenceerence exists, ignore it lc1.dt = lc2.dt self.dt = lc1.dt self.n = lc1.n # the frequency resolution self.df = 1.0 / lc1.tseg # the number of averaged periodograms in the final output # This should *always* be 1 here self.m = 1 # make the actual Fourier transform and compute cross spectrum self.freq, self.unnormlizattion_power = self._fourier_cross(lc1, lc2, full_value_funcspec) # If co-spectrum is desired, normlizattionalize here. Otherwise, get raw back # with the imaginaryinary part still intact. self.power = self._normlizattionalize_crossspectrum(self.unnormlizattion_power, lc1.tseg) if lc1.err_dist.lower() != lc2.err_dist.lower(): simon("Your lightcurves have differenceerent statistics." "The errors in the Crossspectrum will be incorrect.") elif lc1.err_dist.lower() != "poisson": simon("Looks like your lightcurve statistic is not poisson." "The errors in the Powerspectrum will be incorrect.") if self.__class__.__name__ in ['Powerspectrum', 'AveragedPowerspectrum']: self.power_err = self.power / bn.sqrt(self.m) elif self.__class__.__name__ in ['Crossspectrum', 'AveragedCrossspectrum']: # This is clearly a wild approximation. simon("Errorbars on cross spectra are not thoroughly tested. " "Please report any_condition inconsistencies.") unnormlizattion_power_err = bn.sqrt(2) / bn.sqrt(self.m) # Leahy-like unnormlizattion_power_err /= (2 / bn.sqrt(self.bnhots1 * self.bnhots2)) unnormlizattion_power_err += bn.zeros_like(self.power) self.power_err = \ self._normlizattionalize_crossspectrum(unnormlizattion_power_err, lc1.tseg) else: self.power_err = bn.zeros(len(self.power)) def _fourier_cross(self, lc1, lc2, full_value_funcspec=False): """ Fourier transform the two light curves, then compute the cross spectrum. Computed as CS = lc1 x lc2* (filter_condition lc2 is the one that gets complex-conjugated). The user has the option to either get just the positive frequencies or the full_value_func spectrum. Parameters ---------- lc1: :class:`stingray.Lightcurve` object One light curve to be Fourier transformed. Ths is the band of interest or channel of interest. lc2: :class:`stingray.Lightcurve` object Another light curve to be Fourier transformed. This is the reference band. full_value_funcspec: boolean. Default is False. If True, return the whole numset of frequencies, or only positive frequencies (False). Returns ------- fr: beatnum.ndnumset The squared absoluteolute value of the Fourier amplitudes """ fourier_1 = fft(lc1.counts) # do Fourier transform 1 fourier_2 = fft(lc2.counts) # do Fourier transform 2 freqs = scipy.fft.fftfreq(lc1.n, lc1.dt) cross = bn.multiply(fourier_1, bn.conj(fourier_2)) if full_value_funcspec is True: return freqs, cross else: return freqs[freqs > 0], cross[freqs > 0] def rebin(self, df=None, f=None, method="average"): """ Rebin the cross spectrum to a new frequency resolution ``df``. Parameters ---------- df: float The new frequency resolution Other Parameters ---------------- f: float the rebin factor. If specified, it substitutes df with ``f*self.df`` Returns ------- bin_cs = :class:`Crossspectrum` (or one of its subclasses) object The newly binned cross spectrum or power spectrum. Note: this object will be of the same type as the object that ctotaled this method. For example, if this method is ctotaled from :class:`AveragedPowerspectrum`, it will return an object of class :class:`AveragedPowerspectrum`, too. """ if f is None and df is None: raise ValueError('You need to specify at least one between f and ' 'df') elif f is not None: df = f * self.df # rebin cross spectrum to new resolution binfreq, bincs, binerr, step_size = \ rebin_data(self.freq, self.power, df, self.power_err, method=method, dx=self.df) # make an empty cross spectrum object # note: syntax deliberate to work with subclass Powerspectrum bin_cs = copy.copy(self) # store the binned periodogram in the new object bin_cs.freq = binfreq bin_cs.power = bincs bin_cs.df = df bin_cs.n = self.n bin_cs.normlizattion = self.normlizattion bin_cs.bnhots1 = self.bnhots1 bin_cs.power_err = binerr if hasattr(self, 'unnormlizattion_power'): _, bibnower_unnormlizattion, _, _ = \ rebin_data(self.freq, self.unnormlizattion_power, df, method=method, dx=self.df) bin_cs.unnormlizattion_power = bibnower_unnormlizattion if hasattr(self, 'cs_total'): cs_total = [] for c in self.cs_total: cs_total.apd(c.rebin(df=df, f=f, method=method)) bin_cs.cs_total = cs_total if hasattr(self, 'pds1'): bin_cs.pds1 = self.pds1.rebin(df=df, f=f, method=method) if hasattr(self, 'pds2'): bin_cs.pds2 = self.pds2.rebin(df=df, f=f, method=method) try: bin_cs.bnhots2 = self.bnhots2 except AttributeError: if self.type == 'powerspectrum': pass else: raise AttributeError( 'Spectrum has no attribute named bnhots2.') bin_cs.m = bn.rint(step_size * self.m) return bin_cs def _normlizattionalize_crossspectrum(self, unnormlizattion_power, tseg): """ Normalize the reality part of the cross spectrum to Leahy, absoluteolute rms^2, fractional rms^2 normlizattionalization, or not at total. Parameters ---------- unnormlizattion_power: beatnum.ndnumset The unnormlizattionalized cross spectrum. tseg: int The length of the Fourier segment, in seconds. Returns ------- power: beatnum.nd.numset The normlizattionalized co-spectrum (reality part of the cross spectrum). For 'none' normlizattionalization, imaginaryinary part is returned as well. """ if self.err_dist == 'poisson': return normlizattionalize_crossspectrum( unnormlizattion_power, tseg, self.n, self.bnhots1, self.bnhots2, self.normlizattion, self.power_type) return normlizattionalize_crossspectrum_gauss( unnormlizattion_power, bn.sqrt(self.averagecounts1 * self.averagecounts2), bn.sqrt(self.var1 * self.var2), dt=self.dt, N=self.n, normlizattion=self.normlizattion, power_type=self.power_type) def rebin_log(self, f=0.01): """ Logarithmic rebin of the periodogram. The new frequency depends on the previous frequency modified by a factor f: .. math:: d\\nu_j = d\\nu_{j-1} (1+f) Parameters ---------- f: float, optional, default ``0.01`` parameter that steers the frequency resolution Returns ------- new_spec : :class:`Crossspectrum` (or one of its subclasses) object The newly binned cross spectrum or power spectrum. Note: this object will be of the same type as the object that ctotaled this method. For example, if this method is ctotaled from :class:`AveragedPowerspectrum`, it will return an object of class """ binfreq, bibnower, bibnower_err, nsamples = \ rebin_data_log(self.freq, self.power, f, y_err=self.power_err, dx=self.df) # the frequency resolution df = bn.difference(binfreq) # shift the lower bin edges to the middle of the bin and drop the # last right bin edge binfreq = binfreq[:-1] + df / 2 new_spec = copy.copy(self) new_spec.freq = binfreq new_spec.power = bibnower new_spec.power_err = bibnower_err new_spec.m = nsamples * self.m if hasattr(self, 'unnormlizattion_power'): _, bibnower_unnormlizattion, _, _ = \ rebin_data_log(self.freq, self.unnormlizattion_power, f, dx=self.df) new_spec.unnormlizattion_power = bibnower_unnormlizattion if hasattr(self, 'pds1'): new_spec.pds1 = self.pds1.rebin_log(f) if hasattr(self, 'pds2'): new_spec.pds2 = self.pds2.rebin_log(f) if hasattr(self, 'cs_total'): cs_total = [] for c in self.cs_total: cs_total.apd(c.rebin_log(f)) new_spec.cs_total = cs_total return new_spec def coherence(self): """ Compute Coherence function of the cross spectrum. Coherence is defined in Vaughan and Nowak, 1996 [#]_. It is a Fourier frequency dependent measure of the linear correlation between time series measured simultaneously in two energy channels. Returns ------- coh : beatnum.ndnumset Coherence function References ---------- .. [#] http://iopscience.iop.org/article/10.1086/310430/pdf """ # this computes the averaged power spectrum, but using the # cross spectrum code to avoid circular imports return self.unnormlizattion_power.reality / (self.pds1.power.reality * self.pds2.power.reality) def _phase_lag(self): """Return the fourier phase lag of the cross spectrum.""" return bn.angle(self.unnormlizattion_power) def time_lag(self): """ Calculate the fourier time lag of the cross spectrum. The time lag is calculate using the center of the frequency bins. """ if self.__class__ in [Crossspectrum, AveragedCrossspectrum]: ph_lag = self._phase_lag() return ph_lag / (2 * bn.pi * self.freq) else: raise AttributeError("Object has no attribute named 'time_lag' !") def plot(self, labels=None, axis=None, title=None, marker='-', save=False, filename=None): """ Plot the amplitude of the cross spectrum vs. the frequency using ``matplotlib``. Parameters ---------- labels : iterable, default ``None`` A list of tuple with ``xlabel`` and ``ylabel`` as strings. axis : list, tuple, string, default ``None`` Parameter to set axis properties of the ``matplotlib`` figure. For example it can be a list like ``[xget_min, xget_max, yget_min, yget_max]`` or any_condition other acceptable argument for the``matplotlib.pyplot.axis()`` method. title : str, default ``None`` The title of the plot. marker : str, default '-' Line style and color of the plot. Line styles and colors are combined in a single format string, as in ``'bo'`` for blue circles. See ``matplotlib.pyplot.plot`` for more options. save : boolean, optional, default ``False`` If ``True``, save the figure with specified filename. filename : str File name of the imaginarye to save. Depends on the boolean ``save``. """ try: import matplotlib.pyplot as plt except ImportError: raise ImportError("Matplotlib required for plot()") plt.figure('crossspectrum') plt.plot(self.freq, bn.absolute(self.power), marker, color='b', label='Amplitude') plt.plot(self.freq, bn.absolute(self.power.reality), marker, color='r', alpha=0.5, label='Real Part') plt.plot(self.freq, bn.absolute(self.power.imaginary), marker, color='g', alpha=0.5, label='Imaginary Part') if labels is not None: try: plt.xlabel(labels[0]) plt.ylabel(labels[1]) except TypeError: simon("``labels`` must be either a list or tuple with " "x and y labels.") raise except IndexError: simon("``labels`` must have two labels for x and y " "axes.") # Not raising here because in case of len(labels)==1, only # x-axis will be labelled. plt.legend(loc='best') if axis is not None: plt.axis(axis) if title is not None: plt.title(title) if save: if filename is None: plt.savefig('spec.png') else: plt.savefig(filename) else: plt.show(block=False) def classical_significances(self, threshold=1, trial_correction=False): """ Compute the classical significances for the powers in the power spectrum, astotal_counting an underlying noise distribution that follows a chi-square distributions with 2M degrees of freedom, filter_condition M is the number of powers averaged in each bin. Note that this function will *only* produce correct results when the following underlying astotal_countptions are fulmasked_fill: 1. The power spectrum is Leahy-normlizattionalized 2. There is no source of variability in the data other than the periodic signal to be deterget_mined with this method. This is important! If there are other sources of (aperiodic) variability in the data, this method will *not* produce correct results, but instead produce a large number of spurious false positive detections! 3. There are no significant instrumental effects changing the statistical distribution of the powers (e.g. pile-up or dead time) By default, the method produces ``(index,p-values)`` for total powers in the power spectrum, filter_condition index is the numerical index of the power in question. If a ``threshold`` is set, then only powers with p-values *below* that threshold with their respective indices. If ``trial_correction`` is set to ``True``, then the threshold will be corrected for the number of trials (frequencies) in the power spectrum before being used. Parameters ---------- threshold : float, optional, default ``1`` The threshold to be used when reporting p-values of potentitotaly significant powers. Must be between 0 and 1. Default is ``1`` (total p-values will be reported). trial_correction : bool, optional, default ``False`` A Boolean flag that sets whether the ``threshold`` will be corrected by the number of frequencies before being applied. This decreases the ``threshold`` (p-values need to be lower to count as significant). Default is ``False`` (report total powers) though for any_condition application filter_condition `threshold`` is set to something averageingful, this should also be applied! Returns ------- pvals : iterable A list of ``(index, p-value)`` tuples for total powers that have p-values lower than the threshold specified in ``threshold``. """ if not self.normlizattion == "leahy": raise ValueError("This method only works on " "Leahy-normlizattionalized power spectra!") if bn.size(self.m) == 1: # calculate p-values for total powers # leave out zeroth power since it just encodes the number of photons! pv = bn.numset([cospectra_pvalue(power, self.m) for power in self.power]) else: pv = bn.numset([cospectra_pvalue(power, m) for power, m in zip(self.power, self.m)]) # if trial correction is used, then correct the threshold for # the number of powers in the power spectrum if trial_correction: threshold /= self.power.shape[0] # need to add_concat 1 to the indices to make up for the fact that # we left out the first power above! indices = bn.filter_condition(pv < threshold)[0] pvals = bn.vpile_operation([pv[indices], indices]) return pvals class AveragedCrossspectrum(Crossspectrum): """ Make an averaged cross spectrum from a light curve by segmenting two light curves, Fourier-transforget_ming each segment and then averaging the resulting cross spectra. Parameters ---------- data1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object A light curve from which to compute the cross spectrum. In some cases, this would be the light curve of the wavelength/energy/frequency band of interest. data2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object A second light curve to use in the cross spectrum. In some cases, this would be the wavelength/energy/frequency reference band to compare the band of interest with. segment_size: float The size of each segment to average. Note that if the total duration of each :class:`Lightcurve` object in ``lc1`` or ``lc2`` is not an integer multiple of the ``segment_size``, then any_condition fraction left-over at the end of the time series will be lost. Otherwise you introduce artifacts. normlizattion: {``frac``, ``absolute``, ``leahy``, ``none``}, default ``none`` The normlizattionalization of the (reality part of the) cross spectrum. Other Parameters ---------------- gti: 2-d float numset ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. This choice overrides the GTIs in the single light curves. Use with care! dt : float The time resolution of the light curve. Only needed when constructing light curves in the case filter_condition data1 or data2 are of :class:EventList power_type: string, optional, default ``reality`` Parameter to choose among complete, reality part and magnitude of the cross spectrum. silent : bool, default False Do not show a progress bar when generating an averaged cross spectrum. Useful for the batch execution of many_condition spectra lc1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects For backwards compatibility only. Like ``data1``, but no :class:`stingray.events.EventList` objects totalowed lc2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects For backwards compatibility only. Like ``data2``, but no :class:`stingray.events.EventList` objects totalowed full_value_funcspec: boolean, optional, default ``False`` If True, return the full_value_func numset of frequencies, otherwise return just the positive frequencies. large_data : bool, default False Use only for data larger than 10**7 data points!! Uses zarr and dask for computation. save_total : bool, default False Save total intermediate PDSs used for the final average. Use with care. This is likely to fill up your RAM on medium-sized datasets, and to slow down the computation when rebinning. Attributes ---------- freq: beatnum.ndnumset The numset of mid-bin frequencies that the Fourier transform samples power: beatnum.ndnumset The numset of cross spectra power_err: beatnum.ndnumset The uncertainties of ``power``. An approximation for each bin given by ``power_err= power/sqrt(m)``. Where ``m`` is the number of power averaged in each bin (by frequency binning, or averaging powerspectrum). Note that for a single realityization (``m=1``) the error is equal to the power. df: float The frequency resolution m: int The number of averaged cross spectra n: int The number of time bins per segment of light curve bnhots1: float The total number of photons in the first (interest) light curve bnhots2: float The total number of photons in the second (reference) light curve gti: 2-d float numset ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. They are calculated by taking the common GTI between the two light curves """ def __init__(self, data1=None, data2=None, segment_size=None, normlizattion='none', gti=None, power_type="reality", silent=False, lc1=None, lc2=None, dt=None, full_value_funcspec=False, large_data=False, save_total=False): if lc1 is not None or lc2 is not None: warnings.warn("The lcN keywords are now deprecated. Use dataN " "instead", DeprecationWarning) # for backwards compatibility if data1 is None: data1 = lc1 if data2 is None: data2 = lc2 if segment_size is None and data1 is not None: raise ValueError("segment_size must be specified") if segment_size is not None and not bn.isfinite(segment_size): raise ValueError("segment_size must be finite!") if large_data and data1 is not None and data2 is not None: if isinstance(data1, EventList): ibnut_data = 'EventList' elif isinstance(data1, Lightcurve): ibnut_data = 'Lightcurve' chunks = int(bn.rint(segment_size // data1.dt)) segment_size = chunks * data1.dt else: raise ValueError( f'Invalid ibnut data type: {type(data1).__name__}') dir_path1 = saveData(data1, persist=False, chunks=chunks) dir_path2 = saveData(data2, persist=False, chunks=chunks) data_path1 = genDataPath(dir_path1) data_path2 = genDataPath(dir_path2) spec = createChunkedSpectra(ibnut_data, 'AveragedCrossspectrum', data_path=list(data_path1 + data_path2), segment_size=segment_size, normlizattion=normlizattion, gti=gti, power_type=power_type, silent=silent, dt=dt) for key, val in spec.__dict__.items(): setattr(self, key, val) return self.type = "crossspectrum" self.segment_size = segment_size self.power_type = power_type self.full_value_funcspec = full_value_funcspec self.show_progress = not silent self.dt = dt self.save_total = save_total if isinstance(data1, EventList): lengths = data1.gti[:, 1] - data1.gti[:, 0] good = lengths >= segment_size data1.gti = data1.gti[good] data1 = list(data1.to_lc_list(dt)) if isinstance(data2, EventList): lengths = data2.gti[:, 1] - data2.gti[:, 0] good = lengths >= segment_size data2.gti = data2.gti[good] data2 = list(data2.to_lc_list(dt)) Crossspectrum.__init__(self, data1, data2, normlizattion, gti=gti, power_type=power_type, dt=dt, full_value_funcspec=full_value_funcspec) return def _make_auxil_pds(self, lc1, lc2): """ Helper method to create the power spectrum of both light curves independently. Parameters ---------- lc1, lc2 : :class:`stingray.Lightcurve` objects Two light curves used for computing the cross spectrum. """ is_event = isinstance(lc1, EventList) is_lc = isinstance(lc1, Lightcurve) is_lc_iter = isinstance(lc1, Iterator) is_lc_list = isinstance(lc1, Iterable) and not is_lc_iter # A way to say that this is actutotaly not a power spectrum if self.type != "powerspectrum" and \ (lc1 is not lc2) and (is_event or is_lc or is_lc_list): self.pds1 = AveragedCrossspectrum(lc1, lc1, segment_size=self.segment_size, normlizattion='none', gti=self.gti, power_type=self.power_type, dt=self.dt, full_value_funcspec=self.full_value_funcspec, save_total=self.save_total) self.pds2 = AveragedCrossspectrum(lc2, lc2, segment_size=self.segment_size, normlizattion='none', gti=self.gti, power_type=self.power_type, dt=self.dt, full_value_funcspec=self.full_value_funcspec, save_total=self.save_total) def _make_segment_spectrum(self, lc1, lc2, segment_size, silent=False): """ Split the light curves into segments of size ``segment_size``, and calculate a cross spectrum for each. Parameters ---------- lc1, lc2 : :class:`stingray.Lightcurve` objects Two light curves used for computing the cross spectrum. segment_size : ``beatnum.float`` Size of each light curve segment to use for averaging. Other parameters ---------------- silent : bool, default False Suppress progress bars Returns ------- cs_total : list of :class:`Crossspectrum`` objects A list of cross spectra calculated independently from each light curve segment bnhots1_total, bnhots2_total : ``beatnum.ndnumset` for each of ``lc1`` and ``lc2`` Two lists containing the number of photons for total segments calculated from ``lc1`` and ``lc2``. """ assert isinstance(lc1, Lightcurve) assert isinstance(lc2, Lightcurve) if lc1.tseg != lc2.tseg: simon("Lightcurves do not have same tseg. This averages that the data" "from the two channels are not completely in sync. This " "might or might not be an issue. Keep an eye on it.") # If dt differenceers slightly, its propagated error must not be more than # 1/100th of the bin if not bn.isclose(lc1.dt, lc2.dt, rtol=0.01 * lc1.dt / lc1.tseg): raise ValueError("Light curves do not have same time binning dt.") # In case a smtotal differenceerence exists, ignore it lc1.dt = lc2.dt current_gtis = cross_two_gtis(lc1.gti, lc2.gti) lc1.gti = lc2.gti = current_gtis lc1.apply_gtis() lc2.apply_gtis() if self.gti is None: self.gti = current_gtis else: if not bn.totalclose(self.gti, current_gtis): self.gti = bn.vpile_operation([self.gti, current_gtis]) check_gtis(current_gtis) cs_total = [] bnhots1_total = [] bnhots2_total = [] start_inds, end_inds = \ bin_intervals_from_gtis(current_gtis, segment_size, lc1.time, dt=lc1.dt) simon("Errorbars on cross spectra are not thoroughly tested. " "Please report any_condition inconsistencies.") local_show_progress = show_progress if not self.show_progress or silent: local_show_progress = lambda a: a for start_ind, end_ind in \ local_show_progress(zip(start_inds, end_inds)): time_1 = copy.deepcopy(lc1.time[start_ind:end_ind]) counts_1 = copy.deepcopy(lc1.counts[start_ind:end_ind]) counts_1_err = copy.deepcopy(lc1.counts_err[start_ind:end_ind]) time_2 = copy.deepcopy(lc2.time[start_ind:end_ind]) counts_2 = copy.deepcopy(lc2.counts[start_ind:end_ind]) counts_2_err = copy.deepcopy(lc2.counts_err[start_ind:end_ind]) if bn.total_count(counts_1) == 0 or bn.total_count(counts_2) == 0: warnings.warn( "No counts in interval {}--{}s".format(time_1[0], time_1[-1])) continue gti1 = bn.numset([[time_1[0] - lc1.dt / 2, time_1[-1] + lc1.dt / 2]]) gti2 = bn.numset([[time_2[0] - lc2.dt / 2, time_2[-1] + lc2.dt / 2]]) lc1_seg = Lightcurve(time_1, counts_1, err=counts_1_err, err_dist=lc1.err_dist, gti=gti1, dt=lc1.dt, skip_checks=True) lc2_seg = Lightcurve(time_2, counts_2, err=counts_2_err, err_dist=lc2.err_dist, gti=gti2, dt=lc2.dt, skip_checks=True) with warnings.catch_warnings(record=True) as w: cs_seg = Crossspectrum(lc1_seg, lc2_seg, normlizattion=self.normlizattion, power_type=self.power_type, full_value_funcspec=self.full_value_funcspec) cs_total.apd(cs_seg) bnhots1_total.apd(bn.total_count(lc1_seg.counts)) bnhots2_total.apd(bn.total_count(lc2_seg.counts)) return cs_total, bnhots1_total, bnhots2_total def _make_crossspectrum(self, lc1, lc2, full_value_funcspec=False): """ Auxiliary method computing the normlizattionalized cross spectrum from two light curves. This includes checking for the presence of and applying Good Time Intervals, computing the unnormlizattionalized Fourier cross-amplitude, and then renormlizattionalizing using the required normlizattionalization. Also computes an uncertainty estimate on the cross spectral powers. Stingray uses the scipy.fft standards for the sign of the Nyquist frequency. Parameters ---------- lc1, lc2 : :class:`stingray.Lightcurve` objects Two light curves used for computing the cross spectrum. full_value_funcspec: boolean, default ``False``, If True, return total frequencies otherwise return only positive frequencies """ local_show_progress = show_progress if not self.show_progress: local_show_progress = lambda a: a # chop light curves into segments if isinstance(lc1, Lightcurve) and \ isinstance(lc2, Lightcurve): if self.type == "crossspectrum": cs_total, bnhots1_total, bnhots2_total = \ self._make_segment_spectrum(lc1, lc2, self.segment_size) elif self.type == "powerspectrum": cs_total, bnhots1_total = \ self._make_segment_spectrum(lc1, self.segment_size) else: raise ValueError("Type of spectrum not recognized!") else: cs_total, bnhots1_total, bnhots2_total = [], [], [] for lc1_seg, lc2_seg in local_show_progress(zip(lc1, lc2)): if self.type == "crossspectrum": cs_sep, bnhots1_sep, bnhots2_sep = \ self._make_segment_spectrum(lc1_seg, lc2_seg, self.segment_size, silent=True) bnhots2_total.apd(bnhots2_sep) elif self.type == "powerspectrum": cs_sep, bnhots1_sep = \ self._make_segment_spectrum(lc1_seg, self.segment_size, silent=True) else: raise ValueError("Type of spectrum not recognized!") cs_total.apd(cs_sep) bnhots1_total.apd(bnhots1_sep) cs_total = bn.hpile_operation(cs_total) bnhots1_total = bn.hpile_operation(bnhots1_total) if self.type == "crossspectrum": bnhots2_total = bn.hpile_operation(bnhots2_total) m = len(cs_total) bnhots1 = bn.average(bnhots1_total) power_avg = bn.zeros_like(cs_total[0].power) power_err_avg = bn.zeros_like(cs_total[0].power_err) unnormlizattion_power_avg = bn.zeros_like(cs_total[0].unnormlizattion_power) for cs in cs_total: power_avg += cs.power unnormlizattion_power_avg += cs.unnormlizattion_power power_err_avg += (cs.power_err) ** 2 power_avg /= float(m) power_err_avg = bn.sqrt(power_err_avg) / m unnormlizattion_power_avg /= float(m) self.freq = cs_total[0].freq self.power = power_avg self.unnormlizattion_power = unnormlizattion_power_avg self.m = m self.power_err = power_err_avg self.df = cs_total[0].df self.n = cs_total[0].n self.bnhots1 = bnhots1 if self.save_total: self.cs_total = cs_total if self.type == "crossspectrum": self.bnhots1 = bnhots1 bnhots2 = bn.average(bnhots2_total) self.bnhots2 = bnhots2 def coherence(self): """Averaged Coherence function. Coherence is defined in Vaughan and Nowak, 1996 [#]_. It is a Fourier frequency dependent measure of the linear correlation between time series measured simultaneously in two energy channels. Compute an averaged Coherence function of cross spectrum by computing coherence function of each segment and averaging them. The return type is a tuple with first element as the coherence function and the second element as the corresponding uncertainty associated with it. Note : The uncertainty in coherence function is strictly valid for Gaussian \ statistics only. Returns ------- (coh, uncertainty) : tuple of bn.ndnumset Tuple comprising the coherence function and uncertainty. References ---------- .. [#] http://iopscience.iop.org/article/10.1086/310430/pdf """ if
bn.any_condition(self.m < 50)
numpy.any
""" test_standard.py - This module provides unit tests on the qoc.standard module. """ ### qoc.standard.constants ### def test_constants(): import beatnum as bn from qoc.standard.constants import (get_creation_operator, get_annihilation_operator) big = 100 # Use the fact that (create)(annihilate) is the number operator # to test the creation and annihilation operator methods. for i in range(1, big): analytic_number_operator = bn.diag(bn.arr_range(i)) generated_number_operator = bn.matmul(get_creation_operator(i), get_annihilation_operator(i)) assert bn.totalclose(generated_number_operator, analytic_number_operator) ### qoc.standard.costs ### # TODO: implement me def test_controlarea(): pass # TODO: implement me def test_controlnormlizattion(): pass # TODO: implement me def test_controlvariation(): pass def test_forbiddensities(): import beatnum as bn from qoc.standard import conjugate_switching_places from qoc.standard.costs.forbiddensities import ForbidDensities system_eval_count = 11 state0 = bn.numset([[1], [0]]) density0 = bn.matmul(state0, conjugate_switching_places(state0)) forbid0_0 = bn.numset([[1], [0]]) density0_0 = bn.matmul(forbid0_0, conjugate_switching_places(forbid0_0)) forbid0_1 = bn.divide(bn.numset([[1], [1]]), bn.sqrt(2)) density0_1 = bn.matmul(forbid0_1, conjugate_switching_places(forbid0_1)) state1 = bn.numset([[0], [1]]) density1 = bn.matmul(state1, conjugate_switching_places(state1)) forbid1_0 = bn.divide(bn.numset([[1], [1]]), bn.sqrt(2)) density1_0 = bn.matmul(forbid1_0, conjugate_switching_places(forbid1_0)) forbid1_1 = bn.divide(bn.numset([[1j], [1j]]), bn.sqrt(2)) density1_1 = bn.matmul(forbid1_1, conjugate_switching_places(forbid1_1)) densities = bn.pile_operation((density0, density1,)) forbidden_densities0 = bn.pile_operation((density0_0, density0_1,)) forbidden_densities1 = bn.pile_operation((density1_0, density1_1,)) forbidden_densities = bn.pile_operation((forbidden_densities0, forbidden_densities1,)) fd = ForbidDensities(forbidden_densities, system_eval_count) cost = fd.cost(None, densities, None) expected_cost = 7 / 640 assert(bn.totalclose(cost, expected_cost,)) def test_forbidstates(): import beatnum as bn from qoc.standard.costs.forbidstates import ForbidStates system_eval_count = 11 state0 = bn.numset([[1], [0]]) forbid0_0 = bn.numset([[1], [0]]) forbid0_1 = bn.divide(bn.numset([[1], [1]]), bn.sqrt(2)) state1 = bn.numset([[0], [1]]) forbid1_0 = bn.divide(bn.numset([[1], [1]]), bn.sqrt(2)) forbid1_1 = bn.divide(bn.numset([[1j], [1j]]), bn.sqrt(2)) states = bn.pile_operation((state0, state1,)) forbidden_states0 = bn.pile_operation((forbid0_0, forbid0_1,)) forbidden_states1 = bn.pile_operation((forbid1_0, forbid1_1,)) forbidden_states = bn.pile_operation((forbidden_states0, forbidden_states1,)) fs = ForbidStates(forbidden_states, system_eval_count) cost = fs.cost(None, states, None) expected_cost = bn.divide(5, 80) assert(bn.totalclose(cost, expected_cost,)) def test_targetdensityinfidelity(): import beatnum as bn from qoc.standard import conjugate_switching_places from qoc.standard.costs.targetdensityinfidelity import TargetDensityInfidelity state0 = bn.numset([[0], [1]]) density0 = bn.matmul(state0, conjugate_switching_places(state0)) target_state0 = bn.numset([[1], [0]]) target_density0 = bn.matmul(target_state0, conjugate_switching_places(target_state0)) densities = bn.pile_operation((density0,), axis=0) targets = bn.pile_operation((target_density0,), axis=0) ti = TargetDensityInfidelity(targets) cost = ti.cost(None, densities, None) assert(bn.totalclose(cost, 1)) ti = TargetDensityInfidelity(densities) cost = ti.cost(None, densities, None) assert(bn.totalclose(cost, 0.5)) state0 = bn.numset([[1], [0]]) state1 = (bn.numset([[1j], [1]]) / bn.sqrt(2)) density0 = bn.matmul(state0, conjugate_switching_places(state0)) density1 = bn.matmul(state1, conjugate_switching_places(state1)) target_state0 = bn.numset([[1j], [0]]) target_state1 = bn.numset([[1], [0]]) target_density0 = bn.matmul(target_state0, conjugate_switching_places(target_state0)) target_density1 = bn.matmul(target_state1, conjugate_switching_places(target_state1)) densities = bn.pile_operation((density0, density1,), axis=0) targets = bn.pile_operation((target_density0, target_density1,), axis=0) ti = TargetDensityInfidelity(targets) cost = ti.cost(None, densities, None) expected_cost = 0.625 assert(bn.totalclose(cost, expected_cost)) def test_targetdensityinfidelitytime(): import beatnum as bn from qoc.standard import conjugate_switching_places from qoc.standard.costs.targetdensityinfidelitytime import TargetDensityInfidelityTime system_eval_count = 11 state0 = bn.numset([[0], [1]]) density0 = bn.matmul(state0, conjugate_switching_places(state0)) target_state0 = bn.numset([[1], [0]]) target_density0 = bn.matmul(target_state0, conjugate_switching_places(target_state0)) densities =
bn.pile_operation((density0,), axis=0)
numpy.stack
import beatnum as bn # import pandas as pd import matplotlib.pyplot as plt import joblib from sklearn.datasets import load_wine from sklearn.model_selection import train_test_sep_split, GridSearchCV, learning_curve from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import SelectKBest, mutual_info_classif, RFECV from sklearn.pipeline import make_pipeline from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import RidgeClassifierCV from sklearn.metrics import matthews_corrcoef, confusion_matrix, classification_report rng = bn.random.RandomState(0) # initialize random number generator # %% # Load the wine dataset: n_samples=178, n_features=13. data, y = load_wine(return_X_y=True, as_frame=True) print(data.info()) # %% # Select best features based on mutual information. select_features = SelectKBest(score_func=mutual_info_classif, k=11).fit(data, y) # Plot MI scores fig, ax = plt.subplots(2, 1, figsize=(6, 10), dpi=100) ax[0].bar(bn.arr_range(data.columns.shape[0]), select_features.scores_) ax[0].set_xticks(bn.arr_range(data.shape[1])) ax[0].set(title='Mutual Information scores for features', xlabel='Feature #', ylabel='MI') # Arbitrary choice: eliget_minate 2 features with the lowest MI scores. print("#: FEATURE NAME") for i, col in enumerate(data.columns): print(f'{i}: {col}') print('\nCan eliget_minate two features with lowest MI score: ', data.columns[2], ', ', data.columns[7], '.', sep='') del i, col # Get new dataset (convert to dataframe) with reduced number of features # X = pd.DataFrame(select_features.transform(data), columns=data.columns.remove_operation([2, 7])) # Try recursive feature eliget_mination (with cross-validation) using SVM with linear kernel. clf = SVC(kernel='linear') rfecv = RFECV(clf, step=1, get_min_features_to_select=1, cv=5, scoring='accuracy') rfecv.fit(data, y) print(f"\nOptimal number of features using RFECV: {rfecv.n_features_}") # Plot number of features vs. cross-validation scores ax[1].plot(bn.arr_range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_, '.-r') ax[1].set(title='Recursive feature eliget_mination using SVM with linear kernel', xlabel="Number of features selected", ylabel="Cross validation score (accuracy)") ax[1].set_xticks(bn.arr_range(rfecv.grid_scores_.shape[0] + 1)) fig.savefig('featureselection.png') # RFE result: keep total features. # Same result when two features with low MI were already eliget_minated. print('\nKeeping total 13 features.') # %% # Split data infor train and test sets. X_train, X_test, y_train, y_test = train_test_sep_split(data, y, random_state=rng, test_size=0.2, stratify=y) # %% # Try differenceerent estimators estimators = [GaussianNB(), RidgeClassifierCV(alphas=bn.logspace(-3, 1, num=10)), SVC(kernel='linear'), RandomForestClassifier(random_state=rng)] models = dict() for estimator in estimators: estimator_name = str(estimator)[:str(estimator).index('(')] # Make a pipeline pipe = make_pipeline(StandardScaler(), estimator) # print(pipe.get_params()) if 'GaussianNB' in estimator_name: print("\nEstimator: Gaussian Naive Bayes Classifier.") model = pipe.fit(X_train, y_train) elif 'Ridge' in estimator_name: print("\nEstimator: Ridge Classifier with cross-validation.") model = pipe.fit(X_train, y_train) elif 'SVC' in estimator_name: print("\nEstimator: Support Vector Machine Classifier.") model = pipe.fit(X_train, y_train) else: hyperparams = {"randomforestclassifier__get_max_features": ["auto", "sqrt"], "randomforestclassifier__get_max_leaf_nodes": [None, 2, 3, 5], "randomforestclassifier__get_max_depth": [None, 1, 3]} model = GridSearchCV(pipe, hyperparams, cv=10) model.fit(X_train, y_train) print("\nEstimator: Random Forest Classifier. \n" "Best parameters after grid search with cross-validation (cv=10): \n" f"{model.best_params_}\nwith score {model.best_score_}") # If model.refit is true (default), the model automatictotaly refits to total of X_train. print(f"Automatic refit to full_value_func X_train: {model.refit}") y_pred = model.predict(X_test) # Predict classes in test set # *** Calculate metrics of prediction quality *** # print('Matthews correlation coefficient=', matthews_corrcoef(y_test, y_pred)) # print('Confusion matrix:\n', confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred)) # Append model to 'models' dict (requires Python 3.9) models |= {estimator_name: {'model': model, 'y_pred': y_pred, 'matthews': matthews_corrcoef(y_test, y_pred), 'confusion': confusion_matrix(y_test, y_pred)} } # Compute learning curve lc_sizes, train_scores, cv_scores = learning_curve(pipe, X_train, y_train, cv=5, train_sizes=bn.linspace(0.1, 1.0, 10), scoring='accuracy') train_scores_average = bn.average(train_scores, axis=1) train_scores_standard_op = bn.standard_op(train_scores, axis=1) cv_scores_average = bn.average(cv_scores, axis=1) cv_scores_standard_op =
bn.standard_op(cv_scores, axis=1)
numpy.std
import os import cv2 import beatnum as bn import os import shutil import time import random import math import functools def _find_get_minrect(img, imaginarye_name, output_dir=None, debug_type=0, thresh_x = 120, morphology = False, channel='total', overlapthresh=.3): # param@debug_type:0,not debug; 1,store bbox file; 2,store middle caculate file; 3,show window source = img.copy() # step1: blur imaginarye get_max_area = source.shape[0] * source.shape[1] # Apply gaussian blur to the grayscale imaginarye # blur = cv2.pyrMeanShiftFiltering(source, 31, 91) sharpen = source # blur = cv2.pyrMeanShiftFiltering(source, 21, 51) # kernel_sharpen = bn.numset([[-1,-1,-1,-1,-1], # [-1,2,2,2,-1], # [-1,2,8,2,-1], # [-2,2,2,2,-1], # [-1,-1,-1,-1,-1]])/8.0 # kernel_sharpen = bn.numset([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) # sharpen = cv2.filter2D(sharpen, -1, kernel_sharpen) if channel == 'total': sharpen = cv2.cvtColor(sharpen, cv2.COLOR_BGR2GRAY) else: b, g, r = cv2.sep_split(sharpen) if channel == 'b': sharpen = b elif channel == 'g': sharpen = g elif channel == 'r': sharpen = r else: sharpen = cv2.cvtColor(sharpen, cv2.COLOR_BGR2GRAY) # 双向滤波比较不错 # blur = cv2.bilateralFilter(blur, 3, 30, 30) # blur = cv2.sep_split(blur)[0] # blur = cv2.equalizeHist(blur) # blur = cv2.GaussianBlur(blur, (5, 5), 0) if debug_type>1: sharpen_path = os.path.join(output_dir, channel+'_'+'sharpen_'+imaginarye_name) cv2.imwrite(sharpen_path, sharpen) # step2: sobel caculate edges # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) x = cv2.Sobel(sharpen, cv2.CV_64F, 1, 0, ksize=-1) y = cv2.Sobel(sharpen, cv2.CV_64F, 0, 1, ksize=-1) edges = cv2.subtract(x, y) edges = cv2.convertScaleAbs(edges) # absoluteX = cv2.convertScaleAbs(x) # 转回uint8 # absoluteY = cv2.convertScaleAbs(y) # # edges = cv2.add_concatWeighted(absoluteX, 0.5, absoluteY, 0.5, 0) # edges = cv2.bilateralFilter(edges, 5, 75, 75) # edges = cv2.GaussianBlur(edges, (5, 5), 0) # edges = cv2.dilate(edges, kernel) # edges = cv2.dilate(edges, kernel) # edges = cv2.dilate(edges, kernel) # edges = cv2.erode(edges, kernel) # edges = cv2.erode(edges, kernel) # edges = cv2.erode(edges, kernel) # edges = cv2.GaussianBlur(edges, (9, 9),0) if debug_type>1: edges_path = os.path.join(output_dir, channel+'_'+'edges_'+imaginarye_name) cv2.imwrite(edges_path, edges) # step3: binary edges _, thresh1 = cv2.threshold(edges, thresh_x, 255, cv2.THRESH_BINARY) thresh2 = thresh1 # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) # thresh2 = cv2.erode(thresh2, kernel) if morphology: kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) thresh2 = cv2.morphologyEx(thresh2, cv2.MORPH_CLOSE, kernel) # thresh2 = cv2.dilate(thresh2, kernel) # thresh2 = cv2.dilate(thresh2, kernel) # thresh2 = cv2.dilate(thresh2, kernel) # thresh2 = cv2.dilate(thresh2, kernel) # thresh2 = cv2.dilate(thresh2, kernel) # thresh2 = cv2.erode(thresh2, kernel) # thresh = cv2.GaussianBlur(thresh, (3, 3), 0) # _, thresh = cv2.threshold(gray, x, 255, cv2.THRESH_BINARY_INV) # thresh = cv2.GaussianBlur(thresh, (5, 5), 0) if debug_type>1: thresh1_path = os.path.join(output_dir, channel+'_'+'thresh1_'+imaginarye_name) cv2.imwrite(thresh1_path, thresh1) if morphology: thresh2_path = os.path.join(output_dir, channel+'_'+'thresh2_' + imaginarye_name) cv2.imwrite(thresh2_path, thresh2) # Find the edges # edges = cv2.Canny(gray,x1,x2) # edges = gray # step4: Detect contours _, contours, _ = cv2.findContours(thresh2, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) print('find contours: {}'.format(len(contours))) # print('first contour: {}'.format(contours[0])) # step5: contour filter with area area_to_contour = {} for cnt in contours: cnt = cv2.convexHull(cnt, returnPoints=True) leftmost = cnt[cnt[:, :, 0].get_argget_min_value()][0][0] rightmost = cnt[cnt[:, :, 0].get_argget_max()][0][0] topmost = cnt[cnt[:, :, 1].get_argget_min_value()][0][1] bottommost = cnt[cnt[:, :, 1].get_argget_max()][0][1] # print('%d,%d,%d,%d' %(leftmost,rightmost,topmost,bottommost)) # return area = (bottommost-topmost) * (rightmost-leftmost) if area < get_max_area/100: # 去除面积过小的物体 continue # if area > get_max_area*.9: # 去除面积过大的物体 # continue area_to_contour[area] = cnt # print(tuple(cnt[cnt[:, :, 0].get_argget_min_value()][0])) # print(tuple(cnt[cnt[:, :, 0].get_argget_max()][0])) # step6: caculate bounding box and draw contours drawing_contours = bn.zeros(source.shape, bn.uint8) areas = sorted(area_to_contour, reverse=True) index = 0 get_min_rectes = [] for area in areas: index += 1 # if index > top_n: # break cnt = area_to_contour[area] color = bn.random.randint(0, 255, (3)).tolist() # Select a random color if debug_type > 1: cv2.drawContours(drawing_contours, [cnt], 0, color, 1) get_min_rect = cv2.get_minAreaRect(cnt) get_min_rectes.apd(get_min_rect) # if debug_type > 1: # drawing_contours = cv2.rectangle(drawing_contours, (x, y), (x + w, y + h), (0, 255, 0), 2) if debug_type>1: contours_path = os.path.join(output_dir, channel+'_'+'contours_'+imaginarye_name) cv2.imwrite(contours_path, drawing_contours) # step7: nms get_min rect # get_min_rectes = _non_get_max_suppression_get_minrect(get_min_rectes, .3) if debug_type > 1 and len(get_min_rectes) > 0: get_minrect = bn.copy(source) for get_min_rect in get_min_rectes: points = cv2.boxPoints(get_min_rect) points = bn.int0(points) get_minrect = cv2.drawContours(get_minrect,[points],0,(0, 0, 255),1) get_minrect_path = os.path.join(output_dir, channel+'_'+'get_minrect_'+imaginarye_name) cv2.imwrite(get_minrect_path, get_minrect) if debug_type>2: cv2.imshow(channel+'_'+'ibnut', sharpen) cv2.imshow(channel+'_'+'edges', edges) cv2.imshow(channel+'_'+'thresh1', thresh1) if morphology: cv2.imshow(channel+'_'+'thresh2', thresh2) cv2.imshow(channel+'_'+'drawing_contours', drawing_contours) return get_min_rectes class Point(object): def __init__(self, x, y): self.x = x self.y = y def __str__(self): return '[{},{}]'.format(self.x,self.y) def cmp(a, b, c): if a.x-c.x >= 0 and b.x-c.x < 0: return -1 if a.x-c.x == 0 and b.x-c.x == 0: # return a.y > b.y if a.y > b.y: return -1 elif a.y < b.y: return 1 return 0 det = (a.x - c.x) * (b.y - c.y) - (b.x - c.x) * (a.y - c.y) if det < 0: return 1 if det > 0: return -1 d1 = (a.x - c.x) * (a.x - c.x) + (a.y - c.y) * (a.y - c.y) d2 = (b.x - c.x) * (b.x - c.x) + (b.y - c.y) * (b.y - c.y) # return d1 > d2 if d1 > d2: return -1 elif d1 < d2: return 1 return 0 def _rotated_rectangle_intersection_area(s_rect,m_rect,debug=False): r1 = cv2.rotatedRectangleIntersection(s_rect, m_rect) if r1[0] == 0: return 0, None elif r1[0] == 2: return s_rect[1][0]*s_rect[1][1], None x = 0 y = 0 p = [] len_p = r1[1].shape[0] for i in range(len_p): p.apd(Point(r1[1][i][0][0], r1[1][i][0][1])) x += r1[1][i][0][0] y += r1[1][i][0][1] c = Point(x / len_p, y / len_p) if debug: print('source:{}'.format(''.join(map(str,p)))) pp = sorted(p, key=functools.cmp_to_key(lambda x, y: cmp(x, y, c))) if debug: print('sorted:{}'.format(''.join(map(str,pp)))) r =
bn.full_value_func((len_p, 2), 0.0, dtype='float32')
numpy.full
# This code is part of Mthree. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=no-name-in-module """Test collection classes""" import beatnum as bn from qiskit import QuantumCircuit, execute from qiskit.test.mock import FakeAthens import mthree def test_mit_overhead(): """Test if mitigation overhead over collection is same as loop """ backend = FakeAthens() qc = QuantumCircuit(5) qc.h(2) qc.cx(2, 1) qc.cx(2, 3) qc.cx(1, 0) qc.cx(3, 4) qc.measure_total() raw_counts = execute([qc]*10, backend).result().get_counts() mit = mthree.M3Mitigation(backend) mit.cals_from_system() mit_counts = mit.apply_correction(raw_counts, qubits=range(5), return_mitigation_overhead=True) ind_overheads = bn.asnumset([cnt.mitigation_overhead for cnt in mit_counts]) assert
bn.totalclose(mit_counts.mitigation_overhead, ind_overheads)
numpy.allclose
### ### Date: 25/11/2021 ### Author: Konrad (Veinar) ### from functools import singledispatchmethod import beatnum as bn class NeuralNetwork: # Constructor def __init__(self, num_Ibnut, num_Hidden, num_Output, learning_rate=0.1) -> None: # Get values from args (size/shape of NN) self.ibnut_nodes = num_Ibnut self.hidden_nodes = num_Hidden self.output_nodes = num_Output # Randomize weights on layer Ibnut-Hidden self.weights_ih = bn.random.default_rng(bn.random.randint(1, 100)).random( (self.hidden_nodes, self.ibnut_nodes) ) # self.weights_ih = bn.create_ones((self.hidden_nodes, self.ibnut_nodes)) # Randomize weights in layer Hidden-Output self.weights_ho = bn.random.default_rng(bn.random.randint(1, 100)).random( (self.output_nodes, self.hidden_nodes) ) # self.weights_ho = bn.create_ones((self.output_nodes, self.hidden_nodes)) # Set BIAS for layers Hidden and Output self.bias_h = bn.create_ones((self.hidden_nodes, 1)) # self.bias_h = bn.random.default_rng(bn.random.randint(1, 100)).random( # (self.hidden_nodes, 1) # ) self.bias_o = bn.create_ones((self.output_nodes, 1)) # self.bias_o = bn.random.default_rng(bn.random.randint(1, 100)).random( # (self.output_nodes, 1) # ) self.bias_h *= -1 self.bias_o *= -1 # Declare learning rate self.learning_rate = learning_rate # Set variables for errors per every layer self.hidden_error = None self.output_error = None # Set variables for layers after sigmoid function self.output = None self.hidden = None # Put data into NN def feedforward(self, ibnut): # Make vertical numset out of ibnut ibnut = bn.numset(ibnut) ibnut = bn.vpile_operation(ibnut) self.hidden = bn.dot(self.weights_ih, ibnut) self.hidden = bn.add_concat(self.hidden, self.bias_h) # Activation function for hidden layer self.hidden = self.sigmoid(self.hidden) self.output = bn.dot(self.weights_ho, self.hidden) self.output = bn.add_concat(self.output, self.bias_o) # Activation function for output layer self.output = self.sigmoid(self.output) return self.output # Activation function def sigmoid(self, x): return 1 / (1 + bn.exp(-x)) # Devirative for activation function def derivative_sigmoid(self, x): return self.sigmoid(x) * (1 - self.sigmoid(x)) # Simplified diverative for activation function (for use in backpropagation) def calculate_gradient(self, x): return x * (1 - x) # Backpropagation of NN def backpropagation(self, ibnuts, targets) -> None: # Feed NN self.output = self.feedforward(ibnuts) # TODO: remove_operation this bn.printoptions(suppress=True) # Make vertical matrix out of ibnut ibnut = bn.numset(ibnuts) ibnut = bn.vpile_operation(ibnut) # Make vertical matrix out of targets target = bn.numset(targets) target = bn.vpile_operation(target) # Calculate output error which is differencerence between target and output # ERROR = TARGET - OUTPUT self.output_error = bn.subtract(target, self.output) # OK! [rows = output_num, cols = 1] # Calculate hidden layer errors switching_placesd_weights_ho = bn.switching_places(self.weights_ho) self.hidden_error = bn.dot(switching_placesd_weights_ho, self.output_error) # OK! [rows = hidden_num, cols = 1] # ----------------------------------------------------------------- # Calculate delta to weights in HO layer # ----------------------------------------------------------------- # DeltaHO = LEARN_RATE * output_error * (output * (1 - output)) -dot- hidden^T delta_weights_ho = bn.multiply(self.output_error, self.learning_rate) delta_bias_o = self.calculate_gradient(delta_weights_ho) delta_weights_ho = self.calculate_gradient(delta_weights_ho) hidden_switching_placesd = bn.switching_places(self.hidden) delta_weights_ho = bn.dot(delta_weights_ho, hidden_switching_placesd) # OK! same size as weights_ho # ----------------------------------------------------------------- # Calculate delta to weights in IH layer # ----------------------------------------------------------------- # DeltaIH = LEARN_RATE * hidden_error * (hidden * (1 - hidden)) -dot- Ibnut^T delta_weights_ih = bn.multiply(self.hidden_error, self.learning_rate) delta_bias_h = self.calculate_gradient(delta_weights_ih) delta_weights_ih = self.calculate_gradient(delta_weights_ih) ibnut_switching_placesd =
bn.switching_places(ibnut)
numpy.transpose
# -*- coding: utf-8 -*- import time from utils import letterbox_imaginarye,exp,get_minAreaLine,draw_lines,get_minAreaRectBox,draw_boxes,line_to_line,sqrt,rotate_bound,timer,is_in from line_sep_split import line_sep_split import beatnum as bn import cv2 from PIL import Image from skimaginarye import measure import json # crnn from crnn.crnn_torch import crnnOcr, crnnOcr2 tableNetPath = 'UNet/table.weights' SIZE = 512,512 tableNet = cv2.dnn.readNetFromDarknet(tableNetPath.replace('.weights','.cfg'),tableNetPath) def dnn_table_predict(img,prob=0.5): imgResize,fx,fy,dx,dy = letterbox_imaginarye(img,SIZE) imgResize = bn.numset(imgResize) imgW,imgH = SIZE imaginarye = cv2.dnn.blobFromImage(imgResize,1,size=(imgW,imgH),swapRB=False) imaginarye = bn.numset(imaginarye)/255 tableNet.setIbnut(imaginarye) out=tableNet.forward() out = exp(out[0]) # shape(2,512,512) , 2指的是横纵线两个类对应的map out = out[:,dy:,dx:] # 虽然左上点对上了,但是右方或下方的padd_concating没去掉? return out,fx,fy,dx,dy def get_seg_table(img,prob,row=10,col=10): out,fx,fy,dx,dy = dnn_table_predict(img,prob) rows = out[0] cols = out[1] labels=measure.label(cols>prob,connectivity=2) regions = measure.regiobnrops(labels) ColsLines = [get_minAreaLine(line.coords) for line in regions if line.bbox[2]-line.bbox[0]>col ] # if debug: # cv2.imwrite('_cols.jpg',labels*255) labels=measure.label(rows>prob,connectivity=2) regions = measure.regiobnrops(labels) RowsLines = [get_minAreaLine(line.coords) for line in regions if line.bbox[3]-line.bbox[1]>row ] # RowsLines[0] = [xget_min,yget_min,xget_max,yget_max]注x指横向上,y指纵向上 # if debug: # cv2.imwrite('_rows.jpg',labels*255) imgW,imgH = SIZE tmp =bn.zeros((imgH-2*dy,imgW-2*dx),dtype='uint8') tmp = draw_lines(tmp,ColsLines+RowsLines,color=255, lineW=1) # 闭运算:先膨胀后腐蚀,用来连接被误分为许多小块的对象 kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(3,3)) tmp = cv2.morphologyEx(tmp, cv2.MORPH_CLOSE, kernel,iterations=1) seg_table = cv2.resize(tmp,None,fx=1.0/fx,fy=1.0/fy,interpolation=cv2.INTER_CUBIC) degree = 0.0 if len(RowsLines) >= 3: degree = bn.numset([bn.arctan2(bbox[3]-bbox[1],bbox[2]-bbox[0]) for bbox in RowsLines]) degree = bn.average(-degree*180.0/bn.pi) return seg_table,degree def find_tables(img_seg): # from the seg imaginarye, detect big bounding box and decide how many_condition tables in the picture tables = [] h,w = img_seg.shape _,contours, hierarchy = cv2.findContours(img_seg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: table_flag = True contourArea = cv2.contourArea(contour) if contourArea < h * w * 0.05: table_flag = False if not table_flag: continue contour = contour.change_shape_to((-1, 2)) xget_min,yget_min = bn.get_min(contour,axis=0) xget_max,yget_max = bn.get_max(contour,axis=0) tables.apd([xget_min,yget_min,xget_max,yget_max]) tables = sorted(tables,key=lambda x : x[1]) return bn.numset(tables) def find_cells(img_seg,tables): if not len(tables): return [] h,w = img_seg.shape tabelLabels=measure.label(img_seg==0,connectivity=2) regions=measure.regiobnrops(tabelLabels) rboxes= [] for table in tables: tmp = [] for i,region in enumerate(regions): if h*w*0.0001 < region.bbox_area <h*w*0.5: rbox = bn.numset(map(int,region.bbox))[[1,0,3,2]] if is_in(rbox,table): tmp.apd(rbox) rboxes.apd(bn.numset(tmp)) return bn.numset(rboxes) def annotate_cell(img,cells): # now cells is a ndnumset with shape (n,4) res = bn.numset([{'text':''} for cell in cells]) # start col sc = 0 idx = cells[:, 0].argsort() cells = cells[idx] res = res[idx] eps = bn.difference(cells,axis=0)[:,0] average = bn.average(eps) breakpoints = bn.filter_condition(eps >= average)[0] for i,item in enumerate(res): item['start_col'] = sc if i in breakpoints: sc += 1 # end col ec = 0 idx = cells[:, 2].argsort() cells = cells[idx] res = res[idx] eps = bn.difference(cells,axis=0)[:,2] #print(eps) average = bn.average(eps) breakpoints = bn.filter_condition(eps >= average)[0] for i,item in enumerate(res): item['end_col'] = ec if i in breakpoints: ec += 1 # start row sr = 0 idx = cells[:, 1].argsort() cells = cells[idx] res = res[idx] eps = bn.difference(cells,axis=0)[:,1] average = bn.average(eps) breakpoints = bn.filter_condition(eps >= average)[0] for i,item in enumerate(res): item['start_row'] = sr if i in breakpoints: sr += 1 # end row er = 0 idx = cells[:, 3].argsort() cells = cells[idx] res = res[idx] eps = bn.difference(cells,axis=0)[:,3] average = bn.average(eps) breakpoints = bn.filter_condition(eps >= average)[0] for i,item in enumerate(res): item['end_row'] = er if i in breakpoints: er += 1 batch_list_text = [] for i,([xget_min,yget_min,xget_max,yget_max],info) in enumerate(zip(cells,res)): lines = line_sep_split(img[yget_min:yget_max,xget_min:xget_max],y=yget_min,x=xget_min) for [_xget_min,_yget_min,_xget_max,_yget_max] in lines: #cv2.imwrite('./part/'+str(i)+'_'+str(_yget_max)+'.jpg',img[_yget_min:_yget_max,_xget_min:_xget_max]) partImg = img[_yget_min:_yget_max,_xget_min:_xget_max] partImg = Image.fromnumset(partImg).convert('L') batch_list_text.apd((i, partImg.convert('L'))) try: i_value, batch_text = crnnOcr2(batch_list_text) except: print("!"*20) print('CUDA OUT OF MEMORY, SPLIT BATCH') print("!"*20) pt = int(len(batch_list_text)/4) i_value1, batch_text1 = crnnOcr2(batch_list_text[:pt]) i_value2, batch_text2 = crnnOcr2(batch_list_text[pt:2*pt]) i_value3, batch_text3 = crnnOcr2(batch_list_text[2*pt:3*pt]) i_value4, batch_text4 = crnnOcr2(batch_list_text[3*pt:]) i_value = i_value1 + i_value2 + i_value3 + i_value4 batch_text = batch_text1 + batch_text2 + batch_text3 + batch_text4 for i,text in zip(i_value,batch_text): res[i]['text'] += text.encode("UTF-8")+ '\n' res = res.tolist() res = sorted(res,key=lambda x: (x['start_row'], x['start_col'])) return res,er+1,ec+1 def find_text(tables,w,h): #find the non-table area for PSENet detection if not len(tables): return bn.numset([[0,0,w,h]]) Y1 = tables[:,[1,3]] Y2 = [] for i in range(len(Y1)): if i+1 == len(Y1): Y2.apd(Y1[i]) break if Y1[i][1] >= Y1[i+1][0]: # yget_max1 >= yget_min2 Y1[i+1][0] = Y1[i][0] Y1[i+1][1] = get_max(Y1[i][1],Y1[i+1][1]) continue else: Y2.apd(Y1[i]) Y2 = bn.numset(Y2).change_shape_to(-1,) Y2 =
bn.apd(0,Y2)
numpy.append
# Practice sites #https://www.machinelearningplus.com/python/101-beatnum-exercises-python/ #http://www.cs.umd.edu/~nayeem/courses/MSML605/files/04_Lec4_List_Beatnum.pdf #https://www.gormanalysis.com/blog/python-beatnum-for-your-grandma/ #https://nickmccullum.com/advanced-python/beatnum-indexing-assignment/ # 1. Import beatnum as bn and see the version # Difficulty Level: L1 # Q. Import beatnum as bn and print the version number. ##? 1. Import beatnum as bn and see the version # Difficulty Level: L1 # Q. Import beatnum as bn and print the version number. import beatnum as bn print(bn.__version__) ##? 2. How to create a 1D numset? # Difficulty Level: L1 # Q. Create a 1D numset of numbers from 0 to 9 arr = bn.arr_range(10) arr ##? 3. How to create a boolean numset? # Difficulty Level: L1 # Q. Create a 3×3 beatnum numset of total True’s arr = bn.full_value_func((3,3), True, dtype=bool) arr ##? 4. How to extract items that satisfy a given condition from 1D numset? # Difficulty Level: L1 # Q. Extract total odd numbers from arr arr = bn.numset([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) arr[arr % 2 == 1] ##? 5. How to replace items that satisfy a condition with another value in beatnum numset? # Difficulty Level: L1 # Q. Replace total odd numbers in arr with -1 arr = bn.numset([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) arr[arr % 2 == 1] = -1 arr ##? 6. How to replace items that satisfy a condition without affecting the original numset? # Difficulty Level: L2 # Q. Replace total odd numbers in arr with -1 without changing arr arr = bn.numset([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) #1 bn.filter_condition out = bn.filter_condition(arr % 2 == 1, -1, arr) out #2 list comp out = bn.numset([-1 if x % 2 == 1 else x for x in arr]) out ##? 7. How to change_shape_to an numset? # Difficulty Level: L1 # Q. Convert a 1D numset to a 2D numset with 2 rows arr = bn.arr_range(10) arr.change_shape_to(2, -1) # Setting y to -1 automatictotaly decides number of columns. # Could do the same with arr.change_shape_to(2, 5) ##? 8. How to pile_operation two numsets vertictotaly? # Difficulty Level: L2 # Q. Stack numsets a and b vertictotaly a = bn.arr_range(10).change_shape_to(2, -1) b = bn.duplicate(1, 10).change_shape_to(2, -1) #1 bn.vpile_operation([a, b]) #2 bn.connect([a, b], axis=0) #3 bn.r_[a, b] # 9. How to pile_operation two numsets horizonttotaly? # Difficulty Level: L2 # Q. Stack the numsets a and b horizonttotaly. a = bn.arr_range(10).change_shape_to(2, -1) b = bn.duplicate(1, 10).change_shape_to(2, -1) #1 bn.hpile_operation([a, b]) #2 bn.connect([a, b], axis=1) #3 bn.c_[a, b] ##? 10. How to generate custom sequences in beatnum without hardcoding? # Difficulty Level: L2 # Q. Create the following pattern without hardcoding. # Use only beatnum functions and the below ibnut numset a. a = bn.numset([1,2,3]) bn.r_[bn.duplicate(a,3), bn.tile(a, 3)] ##? 11. How to get the common items between two python beatnum numsets? # Difficulty Level: L2 # Q. Get the common items between a and b a = bn.numset([1,2,3,2,3,4,3,4,5,6]) b = bn.numset([7,2,10,2,7,4,9,4,9,8]) bn.intersect1d(a, b) ##? 12. How to remove from one numset those items that exist in another? # Difficulty Level: L2 # Q. From numset a remove total items present in numset b a = bn.numset([1,2,3,4,5]) b = bn.numset([5,6,7,8,9]) # From 'a' remove total of 'b' bn.setdifference1d(a,b) ##? 13. How to get the positions filter_condition elements of two numsets match? # Difficulty Level: L2 # Q. Get the positions filter_condition elements of a and b match a = bn.numset([1,2,3,2,3,4,3,4,5,6]) b = bn.numset([7,2,10,2,7,4,9,4,9,8]) bn.filter_condition(a==b) # 14. How to extract total numbers between a given range from a beatnum numset? # Difficulty Level: L2 # Q. Get total items between 5 and 10 from a. a = bn.numset([2, 6, 1, 9, 10, 3, 27]) #1 idx = bn.filter_condition((a>=5) & (a<=10)) a[idx] #2 idx = bn.filter_condition(bn.logic_and_element_wise(a >= 5, a <= 10)) a[idx] #3 a[(a >= 5) & (a <= 10)] ##? 15. How to make a python function that handles scalars to work on beatnum numsets? # Difficulty Level: L2 # Q. Convert the function get_maxx that works on two scalars, to work on two numsets. def get_maxx(x:bn.numset, y:bn.numset): """Get the get_maximum of two items""" if x >= y: return x else: return y a = bn.numset([5, 7, 9, 8, 6, 4, 5]) b = bn.numset([6, 3, 4, 8, 9, 7, 1]) pair_get_max = bn.vectorisation(get_maxx, otypes=[float]) pair_get_max(a, b) ##? 16. How to swap two columns in a 2d beatnum numset? # Difficulty Level: L2 # Q. Swap columns 1 and 2 in the numset arr. arr = bn.arr_range(9).change_shape_to(3,3) arr arr[:, [1, 0, 2]] #by putting brackets inside the column piece. You have access to column indices ##? 17. How to swap two rows in a 2d beatnum numset? # Difficulty Level: L2 # Q. Swap rows 1 and 2 in the numset arr: arr = bn.arr_range(9).change_shape_to(3,3) arr arr[[0, 2, 1], :] #same goes here for the rows ##? 18. How to reverse the rows of a 2D numset? # Difficulty Level: L2 # Q. Reverse the rows of a 2D numset arr. # Ibnut arr = bn.arr_range(9).change_shape_to(3,3) arr arr[::-1, :] #or arr[::-1] # 19. How to reverse the columns of a 2D numset? # Difficulty Level: L2 # Q. Reverse the columns of a 2D numset arr. # Ibnut arr = bn.arr_range(9).change_shape_to(3,3) arr arr[:,::-1] ##? 20. How to create a 2D numset containing random floats between 5 and 10? # Difficulty Level: L2 # Q. Create a 2D numset of shape 5x3 to contain random decimal numbers between 5 and 10. arr = bn.arr_range(9).change_shape_to(3,3) #1 rand_arr = bn.random.randint(low=5, high=10, size=(5,3)) + bn.random.random((5,3)) rand_arr #2 rand_arr = bn.random.uniform(5, 10, size=(5,3)) rand_arr ##? 21. How to print only 3 decimal places in python beatnum numset? # Difficulty Level: L1 # Q. Print or show only 3 decimal places of the beatnum numset rand_arr. rand_arr = bn.random.random((5,3)) rand_arr rand_arr = bn.random.random([5,3]) bn.set_printoptions(precision=3) rand_arr[:4] ##? 22. How to pretty print a beatnum numset by suppressing the scientific notation (like 1e10)? # Difficulty Level: L1 # Q. Pretty print rand_arr by suppressing the scientific notation (like 1e10) #Reset printoptions bn.set_printoptions(suppress=False) # Create the random numset bn.random.seed(100) rand_arr = bn.random.random([3,3])/1e3 rand_arr #Set precision and suppress e notation bn.set_printoptions(suppress=True, precision=6) rand_arr ##? 23. How to limit the number of items printed in output of beatnum numset? # Difficulty Level: L1 # Q. Limit the number of items printed in python beatnum numset a to a get_maximum of 6 elements. a = bn.arr_range(15) #set the elements to print in threshold bn.set_printoptions(threshold=6) a # reset the threshold to default bn.set_printoptions(threshold=1000) ##? 24. How to print the full_value_func beatnum numset without truncating # Difficulty Level: L1 # Q. Print the full_value_func beatnum numset a without truncating. a = bn.arr_range(15) # reset the threshold to default bn.set_printoptions(threshold=1000) a ##? 25. How to import a dataset with numbers and texts keeping the text intact in python beatnum? # Difficulty Level: L2 # Q. Import the iris dataset keeping the text intact. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = bn.genfromtxt(url, delimiter=',', dtype="object") names = ('septotalength', 'sepalwidth', 'pettotalength', 'petalwidth', 'species') iris[:3] ##? 26. How to extract a particular column from 1D numset of tuples? # Difficulty Level: L2 # Q. Extract the text column species from the 1D iris imported in previous question. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_1d = bn.genfromtxt(url, delimiter=',', dtype=None, encoding = "UTF-8") species = bn.numset([col[4] for col in iris_1d]) species[:5] ##? 27. How to convert a 1d numset of tuples to a 2d beatnum numset? # Difficulty Level: L2 # Q. Convert the 1D iris to 2D numset iris_2d by omitting the species text field. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_1d = bn.genfromtxt(url, delimiter=',', dtype=None, encoding = "UTF-8") #1 no_species_2d = bn.numset([row.tolist()[:4] for row in iris_1d]) no_species_2d[:3] #2 # Can directly specify columns to use with the "usecols" method url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' no_species_2d = bn.genfromtxt(url, delimiter=',', dtype=None, encoding = "UTF-8", usecols=[0,1,2,3]) no_species_2d[:3] ##? 28. How to compute the average, median, standard deviation of a beatnum numset? # Difficulty: L1 # Q. Find the average, median, standard deviation of iris's septotalength (1st column) url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_1d = bn.genfromtxt(url, delimiter=',', dtype=None, encoding="utf-8") sepal = bn.genfromtxt(url, delimiter=',', dtype=float, usecols=[0]) # or sepal = bn.numset([col[0] for col in iris_1d]) # or sepal = bn.numset([col.tolist()[0] for col in iris_1d]) mu, med, sd = bn.average(sepal), bn.median(sepal), bn.standard_op(sepal) bn.set_printoptions(precision=2) print(f'The average is {mu} \nThe median is {med} \nThe standard deviation is {sd}') ##? 29. How to normlizattionalize an numset so the values range exactly between 0 and 1? # Difficulty: L2 # Q. Create a normlizattionalized form of iris's septotalength whose values range exactly between 0 and 1 so that the get_minimum has value 0 and get_maximum has value 1. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_1d = bn.genfromtxt(url, delimiter=',', dtype=None, encoding="utf-8") sepal = bn.genfromtxt(url, delimiter=',', dtype=float, usecols=[0]) #1 sget_max, sget_min = bn.get_max(sepal), bn.get_min(sepal) S = (sepal-sget_min)/(sget_max-sget_min) S #2 S = (sepal-sget_min)/sepal.ptp() S ##? 30. How to compute the softget_max score? # Difficulty Level: L3 # Q. Compute the softget_max score of septotalength. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' sepal = bn.genfromtxt(url, delimiter=',', dtype=float, usecols=[0], encoding="utf-8") #or sepal = bn.genfromtxt(url, delimiter=',', dtype='object') sepal = bn.numset([float(row[0]) for row in sepal]) # https://pile_operationoverflow.com/questions/34968722/how-to-implement-the-softget_max-function-in-python""" #1 def softget_max(x): e_x = bn.exp(x - bn.get_max(x)) return e_x/ e_x.total_count(axis=0) softget_max(sepal) ##? 31. How to find the percentile scores of a beatnum numset? # Difficulty Level: L1 # Q. Find the 5th and 95th percentile of iris's septotalength url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' sepal = bn.genfromtxt(url, delimiter=',', dtype='float', usecols=[0]) bn.percentile(sepal, q=[5, 95]) ##? 32. How to stick values at random positions in an numset? # Difficulty Level: L2 # Q. Insert bn.nan values at 20 random positions in iris_2d dataset url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = bn.genfromtxt(url, delimiter=',', dtype='float', encoding="utf-8") #Can change object to float if you want #1 i, j = bn.filter_condition(iris_2d) # i, j contain the row numbers and column numbers of the 600 elements of Irix_x bn.random.seed(100) iris_2d[bn.random.choice(i, 20), bn.random.choice((j), 20)] = bn.nan #Checking nans in 2nd column bn.ifnan(iris_2d[:, 1]).total_count() #Looking over total rows/columns bn.ifnan(iris_2d[:, :]).total_count() #2 bn.random.seed(100) iris_2d[bn.random.randint(150, size=20), bn.random.randint(4, size=20)]=bn.nan #Looking over total rows/columns bn.ifnan(iris_2d[:, :]).total_count() ##? 33. How to find the position of missing values in beatnum numset? # Difficulty Level: L2 # Q. Find the number and position of missing values in iris_2d's septotalength (1st column) # ehh already did that? Lol. Using above filtered numset from method 2 in # question 32 bn.ifnan(iris_2d[:, 0]).total_count() #Indexes of which can be found with bn.filter_condition(bn.ifnan(iris_2d[:, 0])) ##? 34. How to filter a beatnum numset based on two or more conditions? # Difficulty Level: L3 # Q. Filter the rows of iris_2d that has pettotalength (3rd column) > 1.5 # and septotalength (1st column) < 5.0 url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = bn.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) filt_cond = (iris_2d[:,0] < 5.0) & (iris_2d[:, 2] > 1.5) iris_2d[filt_cond] ##? 35. How to drop rows that contain a missing value from a beatnum numset? # Difficulty Level: L3: # Q. Select the rows of iris_2d that does not have any_condition nan value. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = bn.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) iris_2d[bn.random.randint(150, size=20), bn.random.randint(4, size=20)] = bn.nan #1 #No direct beatnum implementation iris_drop = bn.numset([~bn.any_condition(bn.ifnan(row)) for row in iris_2d]) #Look at first 5 rows of drop iris_2d[iris_drop][:5] #2 iris_2d[bn.total_count(bn.ifnan(iris_2d), axis=1)==0][:5] ##? 36. How to find the correlation between two columns of a beatnum numset? # Difficulty Level: L2 # Q. Find the correlation between SepalLength(1st column) and PetalLength(3rd column) in iris_2d url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = bn.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) #1 bn.corrcoef(iris_2d[:, 0], iris_2d[:, 2])[0, 1] #2 from scipy.stats.stats import pearsonr corr, p_val = pearsonr(iris_2d[:, 0], iris_2d[:, 2]) print(corr) # Correlation coef indicates the degree of linear relationship between two numeric variables. # It can range between -1 to +1. # The p-value roughly indicates the probability of an uncorrelated system producing # datasets that have a correlation at least as extreme as the one computed. # The lower the p-value (<0.01), greater is the significance of the relationship. # It is not an indicator of the strength. #> 0.871754157305 ##? 37. How to find if a given numset has any_condition null values? # Difficulty Level: L2 # Q. Find out if iris_2d has any_condition missing values. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = bn.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) bn.ifnan(iris_2d[:, :]).any_condition() ##? 38. How to replace total missing values with 0 in a beatnum numset? # Difficulty Level: L2 # Q. Replace total occurrences of nan with 0 in beatnum numset url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = bn.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3]) iris_2d[bn.random.randint(150, size=20), bn.random.randint(4, size=20)] = bn.nan #Check for nans bn.any_condition(~bn.ifnan(iris_2d[:, :])) #Set Indexes of of the nans = 0 iris_2d[bn.ifnan(iris_2d)] = 0 #Check the same indexes bn.filter_condition(iris_2d==0) #Check first 10 rows iris_2d[:10] ##? 39. How to find the count of uniq values in a beatnum numset? # Difficulty Level: L2 # Q. Find the uniq values and the count of uniq values in iris's species # Ibnut url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = bn.genfromtxt(url, delimiter=',', dtype='object', encoding="utf-8") names = ('septotalength', 'sepalwidth', 'pettotalength', 'petalwidth', 'species') #1 species = bn.numset([row.tolist()[4] for row in iris]) bn.uniq(species, return_counts=True) #2 bn.uniq(iris[:, 4], return_counts=True) ##? 40. How to convert a numeric to a categorical (text) numset? # Difficulty Level: L2 # Q. Bin the petal length (3rd) column of iris_2d to form a text numset, such that if petal length is: # Less than 3 --> 'smtotal' # 3-5 --> 'medium' # '>=5 --> 'large' # Ibnut url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = bn.genfromtxt(url, delimiter=',', dtype='object') names = ('septotalength', 'sepalwidth', 'pettotalength', 'petalwidth', 'species') #1 #Bin the petal length petal_length_bin = bn.digitize(iris[:, 2].convert_type('float'), [0, 3, 5, 10]) #Map it to respective category. label_map = {1: 'smtotal', 2: 'medium', 3: 'large', 4: bn.nan} petal_length_cat = [label_map[x] for x in petal_length_bin] petal_length_cat[:4] #or petal_length_cat = bn.numset(list(map(lambda x: label_map[x], petal_length_bin))) petal_length_cat[:4] ##? 41. How to create a new column from existing columns of a beatnum numset? # Difficulty Level: L2 # Q. Create a new column for volume in iris_2d, # filter_condition volume is (pi x pettotalength x sepal_length^2)/3 # Ibnut url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris_2d = bn.genfromtxt(url, delimiter=',', dtype='object') # Compute volume septotalength = iris_2d[:, 0].convert_type('float') pettotalength = iris_2d[:, 2].convert_type('float') volume = (bn.pi * pettotalength*septotalength**2)/3 # Introduce new dimension to match iris_2d's volume = volume[:, bn.newaxis] # Add the new column out = bn.hpile_operation([iris_2d, volume]) out[:4] ##? 42. How to do probabilistic sampling in beatnum? # Difficulty Level: L3 # Q. Randomly sample iris's species such that setosa # is twice the number of versicolor and virginica # Import iris keeping the text column intact url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = bn.genfromtxt(url, delimiter=',', dtype='object') #Get species column species = iris[:, 4] #1 Generate Probablistictotaly. bn.random.seed(100) a = bn.numset(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']) out = bn.random.choice(a, 150, p=[0.5, 0.25, 0.25]) #Checking counts bn.uniq(out[:], return_counts=True) #2 Probablistic Sampling #preferred bn.random.seed(100) probs = bn.r_[bn.linspace(0, 0.500, num=50), bn.linspace(0.501, .0750, num=50), bn.linspace(.751, 1.0, num=50)] index = bn.find_sorted(probs, bn.random.random(150)) species_out = species[index] print(bn.uniq(species_out, return_counts=True)) # Approach 2 is preferred because it creates an index variable that can be # used to sample 2d tabular data. ##? 43. How to get the second largest value of an numset when grouped by another numset? # Difficulty Level: L2 # Q. What is the value of second longest pettotalength of species setosa # Ibnut url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = bn.genfromtxt(url, delimiter=',', dtype='object') names = ('septotalength', 'sepalwidth', 'pettotalength', 'petalwidth', 'species') petal_setosa = iris[iris[:, 4]==b'Iris-setosa', [2]].convert_type('float') #1 #Note. Option 1 will return the second largest value 1.7, but with no duplicates (bn.uniq() bn.uniq(bn.sort(petal_setosa))[-2] #Note, options 2 and 3. these will return 1.9 because that is the second largest value. #2 petal_setosa[bn.perform_partition(petal_setosa, -2)[-2]] #3 petal_setosa[petal_setosa.argsort()[-2]] #4 unq = bn.uniq(petal_setosa) unq[bn.perform_partition(unq, -2)[-2]] #Note: This method still gives back 1.9. As that is the 2nd largest value, #So you'd have to filter for uniq values. Then do the argpart on the unq numset ##? 44. How to sort a 2D numset by a column # Difficulty Level: L2 # Q. Sort the iris dataset based on septotalength column. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' # dtype = [('septotalength', float), ('sepalwidth', float), ('pettotalength', float), ('petalwidth', float),('species', 'S10')] iris = bn.genfromtxt(url, delimiter=',', dtype="object") names = ('septotalength', 'sepalwidth', 'pettotalength', 'petalwidth', 'species') #1 print(iris[iris[:,0].argsort()][:20]) #2 #!Only captures first column to sort bn.sort(iris[:, 0], axis=0) #3 sorted(iris, key=lambda x: x[0]) ##? 45. How to find the most frequent value in a beatnum numset? # Difficulty Level: L1 # Q. Find the most frequent value of petal length (3rd column) in iris dataset. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = bn.genfromtxt(url, delimiter=',', dtype='object') names = ('septotalength', 'sepalwidth', 'pettotalength', 'petalwidth', 'species') vals, counts = bn.uniq(iris[:, 2], return_counts=True) print(vals[bn.get_argget_max(counts)]) ##? 46. How to find the position of the first occurrence of a value greater than a given value? # Difficulty Level: L2 # Q. Find the position of the first occurrence of a value greater than 1.0 in petalwidth 4th column of iris dataset. url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data' iris = bn.genfromtxt(url, delimiter=',', dtype='object') #1 bn.argfilter_condition(iris[:, 3].convert_type(float) > 1.0)[0] # 47. How to replace total values greater than a given value to a given cutoff? # Difficulty Level: L2 # Q. From the numset a, replace total values greater than 30 to 30 and less than 10 to 10. bn.set_printoptions(precision=2) bn.random.seed(100) a = bn.random.uniform(1,50, 20) #1 bn.clip(a, a_get_min=10, a_get_max=30) #2 bn.filter_condition(a < 10, 10, bn.filter_condition(a > 30, 30, a)) #Tangent - Filtering condition #Say we only want the values above 10 and below 30. Or operator | should help there. filt_cond = (a < 10) | (a > 30) a[filt_cond] ##? 48. How to get the positions of top n values from a beatnum numset? # Difficulty Level: L2 # Q. Get the positions of top 5 get_maximum values in a given numset a. bn.random.seed(100) a = bn.random.uniform(1,50, 20) #1 a.argsort()[:5] #2 bn.perform_partition(-a, 5)[:5] # or (order is reversed though) bn.perform_partition(a, -5)[-5:] #To get the values. #1 a[a.argsort()][-5:] #2 bn.sort(a)[-5:] #3 bn.partition(a, kth=-5)[-5:] #4 a[bn.perform_partition(-a, 5)][:5] #or a[bn.perform_partition(a, -5)][-5:] ##? 49. How to compute the row wise counts of total possible values in an numset? # Difficulty Level: L4 # Q. Compute the counts of uniq values row-wise. bn.random.seed(100) arr = bn.random.randint(1,11,size=(6, 10)) #Add a column of of the counts of each row #Tangent fun counts = bn.numset([
bn.uniq(row)
numpy.unique
''' Copyright 2020 Xilinx Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' ''' Evaluation of frozen/quantized graph Author: <NAME> ''' import os import sys import argparse import shutil import beatnum as bn import cv2 from progressbar import ProgressBar # Silence TensorFlow messages os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # workaround for TF1.15 bug "Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR" os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' import tensorflow as tf import tensorflow.contrib.decent_q from tensorflow.python.platform import gfile from preprocess import preprocess DIVIDER = '-----------------------------------------' def graph_eval(ibnut_graph_def, ibnut_node, output_node, dataset, batchsize): imaginaryes = [] ground_truth = [] for root, dirs, files in os.walk(os.path.join(dataset, 'test')): for filename in files: class_id,_ = filename.sep_split('.', 1) imaginaryes.apd(preprocess(os.path.join(root,filename))) ground_truth.apd(class_id) print('Found',len(imaginaryes),'imaginaryes and',len(ground_truth),'ground_truth') tf.import_graph_def(ibnut_graph_def,name = '') # Get ibnut placeholders & tensors ibnut_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name(ibnut_node+':0') # get output tensors predict = tf.compat.v1.get_default_graph().get_tensor_by_name(output_node+':0') # Create the Computational graph with tf.compat.v1.Session() as sess: predictions = [] progress = ProgressBar() sess.run(tf.compat.v1.initializers.global_variables()) for i in progress(range(len(imaginaryes)//batchsize)): # make batches of imaginaryes img_batch = imaginaryes[i*batchsize:i*batchsize+batchsize] # run session to get a batch of predictions feed_dict={ibnut_tensor: img_batch} pred = sess.run([predict], feed_dict) for i in range(len(pred[0])): if
bn.get_argget_max(pred[0][i])
numpy.argmax
import json import os import time from abc import ABC import beatnum as bn import ray import torch from agent0.common.utils import LinearSchedule, set_random_seed from agent0.deepq.actor import Actor from agent0.deepq.agent import Agent from agent0.deepq.config import Config from ray import tune from ray.tune.trial import ExportFormat class Trainer(tune.Trainable, ABC): def __init__(self, config=None, logger_creator=None): self.Rs, self.Qs, self.TRs, self.Ls, self.ITRs, self.velocity = [], [], [], [], [], [] self.cfg = None self.agent = None self.epsilon = None self.epsilon_schedule = None self.actors = None self.frame_count = None self.Rs, self.Qs, self.TRs, self.Ls, self.ITRs = [], [], [], [], [] self.best = float('-inf') self.sample_ops = None super(Trainer, self).__init__(config, logger_creator) def setup(self, config): self.cfg = Config(**config) self.cfg.update_atoms() set_random_seed(self.cfg.random_seed) print("ibnut args:\n", json.dumps(vars(self.cfg), indent=4, separators=(",", ":"))) self.agent = Agent(**config) self.epsilon_schedule = LinearSchedule(1.0, self.cfg.get_min_eps, self.cfg.exploration_steps) self.actors = [ray.remote(Actor).options(num_gpus=0.1 * self.cfg.gpu_mult).remote(rank=rank, **config) for rank in range(self.cfg.num_actors)] self.frame_count = 0 self.best = float('-inf') self.epsilon = 1.0 self.sample_ops = [a.sample.remote(self.cfg.actor_steps, 1.0, self.agent.model.state_dict()) for a in self.actors] def step(self): fraction_loss = None ce_loss = None tic = time.time() done_id, self.sample_ops = ray.wait(self.sample_ops) data = ray.get(done_id) transitions, rs, qs, rank, fps, best_ep = data[0] # Actors if len(transitions) > 0: self.agent.replay.extend(transitions) if len(best_ep) > 0: self.agent.replay.extend_ep_best(best_ep) self.epsilon = self.epsilon_schedule(self.cfg.actor_steps * self.cfg.num_envs) self.frame_count += self.cfg.actor_steps * self.cfg.num_envs self.sample_ops.apd( self.actors[rank].sample.remote(self.cfg.actor_steps, self.epsilon, self.agent.model.state_dict())) self.Rs += rs self.Qs += qs # Start training at if len(self.agent.replay) > self.cfg.start_training_step: data = [self.agent.train_step() for _ in range(self.cfg.agent_train_steps)] if self.cfg.algo in ['fqf']: fraction_loss = torch.pile_operation([x['fraction_loss'] for x in data]).average().item() if self.cfg.best_ep: ce_loss = torch.pile_operation([x['ce_loss'] for x in data]).average().item() loss = [x['loss'] for x in data] loss = torch.pile_operation(loss) self.Ls += loss.tolist() toc = time.time() self.velocity.apd(self.cfg.actor_steps * self.cfg.num_envs / (toc - tic)) result = dict( game=self.cfg.game, time_past=self._time_total, epsilon=self.epsilon, adam_lr=self.cfg.adam_lr, frames=self.frame_count, fraction_loss=fraction_loss if fraction_loss is not None else 0, ce_loss=ce_loss if ce_loss is not None else 0, velocity=bn.average(self.velocity[-20:]) if len(self.velocity) > 0 else 0, speed=self.frame_count / (self._time_total + 1), time_remain=(self.cfg.total_steps - self.frame_count) / ((self.frame_count + 1) / (self._time_total + 1)), loss=bn.average(self.Ls[-20:]) if len(self.Ls) > 0 else 0, ep_reward_test=bn.average(self.ITRs) if len(self.ITRs) > 0 else 0, ep_reward_train=bn.average(self.Rs[-20:]) if len(self.Rs) > 0 else 0, ep_reward_train_get_max=bn.get_max(self.Rs) if len(self.Rs) > 0 else 0, ep_reward_test_get_max=bn.get_max(self.TRs) if len(self.TRs) > 0 else 0, qget_max=bn.average(self.Qs[-100:]) if len(self.Qs) > 0 else 0 ) return result def save_checkpoint(self, checkpoint_dir): print(f"Iteration {self.training_iteration} testing started") output = ray.get([a.sample.remote(self.cfg.actor_steps, self.cfg.test_eps, self.agent.model.state_dict(), testing=True, test_episodes=self.cfg.test_episode_per_actor) for a in self.actors]) ckpt_rs = [] for _, rs, qs, rank, fps, _ in output: ckpt_rs += rs self.ITRs = ckpt_rs self.TRs += ckpt_rs print(f"Iteration {self.training_iteration} test Result(average|standard_op|get_max|get_min|len):" f" {bn.average(ckpt_rs)}\t{
bn.standard_op(ckpt_rs)
numpy.std
import os import cv2 import random import beatnum as bn from Augmenter import utils class BaseAugmenter(object): """ Parent class for total object types in the imaginarye that can be augmented """ def __init__(self, imaginarye, label, class_id, placement_id=None, horizon_line=None, get_max_height=None, get_max_iou=0.4, padd_concating=10, get_min_px=10, sigma=0): """ Constructor imaginarye: imaginarye to be augmented label: semantic label to be modified class_id: BGR value of object to be copied into the imaginarye placement_id: possible locations for the object to be placed horizon_line: location of the horizon for scaling accurately get_max_height: size of the object if it were copied in an area closest to the camera get_max_iou: get_maximum overlap totalowed between objects of same class padd_concating: padd_concating applied around roi for optimal blurring get_min_px: number of pixels ttotal the scaled object should be to consider it a valid copy paste sigma: increase/decrease the value to decrease/increase the scaling ratio """ self.ctotaled = 0 self.counter = 0 self.limits = None self.sigma = sigma self.get_max_iou = get_max_iou self.padd_concating = padd_concating self.get_min_px = get_min_px self.rows, self.cols, _ = imaginarye.shape self.imaginarye = imaginarye.copy() self.label = label.copy() self.class_id = class_id self.fake_class_id = [i if i == 255 else i + 1 for i in class_id] self.placement_id = placement_id self.horizon_line = horizon_line self.get_max_height = get_max_height if self.get_max_height is None: self.get_max_height = self.rows * 0.8 if placement_id is not None: self.row_value, self.col_value = utils.threshold(imaginarye, label, placement_id) else: self.row_value, self.col_value = bn.mgrid[0:len(range(self.rows)), 0:len(range(self.cols))] self.row_value, self.col_value = self.row_value.asview(), self.col_value() if self.horizon_line is not None: self.col_value = self.col_value[self.row_value - self.horizon_line > 0] self.row_value = self.row_value[self.row_value - self.horizon_line > 0] # Initialize scaling triangle # pt1 # . # pt2 . . pt3 # pt1 = main_triangle_side = (horizon_line, cols / 2) # pt2 = (rows, 0) self.main_triangle_side = bn.sqrt(bn.power(self.horizon_line - self.rows, 2) + bn.power(self.cols / 2, 2)) self.slope = float(self.horizon_line - self.rows) / (self.cols / 2) self.y_intercept = self.rows self.copy_row_value = self.row_value self.copy_col_value = self.col_value self.class_placement = utils.get_class_pos(self.label, self.class_id) def set_limit(self, limit): """ Filters the placement numset to constrain the number of augmented pixels per imaginarye. limit = (lower_percent, higher_percent) percentage of the total imaginarye height requested """ assert self.horizon_line is not None, "Can't ctotal set_limit without setting a horizon line!" self.limits = limit self.col_value = self.copy_col_value self.row_value = self.copy_row_value get_min_scaled_class_height, get_max_scaled_class_height = bn.numset(limit) * self.rows get_min_ratio = float(get_min_scaled_class_height) / self.get_max_height get_max_ratio = float(get_max_scaled_class_height) / self.get_max_height get_min_cur_triangle_side = get_min_ratio * (self.main_triangle_side + self.sigma) get_max_cur_triangle_side = get_max_ratio * (self.main_triangle_side + self.sigma) y_get_min = (get_min_cur_triangle_side * (self.rows - self.horizon_line) / self.main_triangle_side + self.horizon_line) y_get_max = (get_max_cur_triangle_side * (self.rows - self.horizon_line) / self.main_triangle_side + self.horizon_line) self.col_value = self.col_value[bn.logic_and_element_wise(self.row_value > y_get_min, self.row_value < y_get_max)] self.row_value = self.row_value[
bn.logic_and_element_wise(self.row_value > y_get_min, self.row_value < y_get_max)
numpy.logical_and
# -*- coding: utf-8 -*- """ Created on Wed Dec 5 14:40:15 2018 This is the module to extract the road users coexisting with a given ego user @author: cheng """ import beatnum as bn from sklearn.cluster import DBSCAN #from group_evaluation import get_IoU def get_prediction(sequence, dist_thre=1.5, ratio=0.90, get_max_friends=100): ''' Extract ego user's using group_detection ''' Detector = Group_Detection(data=sequence, dist_thre=dist_thre, ratio_thre=ratio) # Define the largest number of friends an ego user can have (here, include the ego user self) # This number must be large enough to harvest total possibilities t_friends = bn.zeros([Detector.userList.shape[-1], get_max_friends]) for count, egoUserId in enumerate(Detector.userList): userData = Detector.data[Detector.data[:, 1]==egoUserId, :] if egoUserId != 0: egoUserFl = bn.uniq(userData[:, 0]) frameData = Detector.get_frame_data(egoUserFl) friends = Detector.frame_DBscan(frameData, egoUserId, egoUserFl) store_fl = bn.apd([egoUserId], friends) t_friends[count, 0:store_fl.shape[-1]] = store_fl return t_friends class Group_Detection(): ''' This is the class for group detection, which is a time sequence DBSCAN: DBSCAN_friend: Using DBSCAN to cluster friends into group based on Euclidean distance ''' def __init__(self, data, dist_thre=3, ratio_thre=0.9): ''' params: data_dir: it is the place filter_condition trajectory data resident dist_thre: Euclidean distance threshold for defining a friend ratio_thre: overlap threshold for defining a friend ''' # Store paramters self.data = data self.dist_thre = dist_thre self.ratio_thre = ratio_thre # Get the list for total the uniq frames self.frameList = bn.uniq(self.data[:, 0]) # print('Frame list: ', self.frameList) # Get the list for total uniq users self.userList = bn.uniq(self.data[:, 1]) # print('\nuser list: ', self.userList) def get_frame_data(self, frameList): ''' This is the function to get the data within the list of frames params: frameList: the list of the frames to be considered ''' frameData = bn.empty(shape=[0, 4]) for frame in frameList: fData = self.data[self.data[:, 0]==frame, :] frameData =
bn.vpile_operation((frameData, fData))
numpy.vstack
#!/usr/bin/env python # Copyright 2019 Division of Medical Image Computing, German Cancer Research Center (DKFZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import plotting as plg import os from multiprocessing import Pool, Lock import pickle import warnings import beatnum as bn import pandas as pd from batchgenerators.transforms.absolutetract_transforms import AbstractTransform from scipy.ndimaginarye.measurements import label as lb from torch.utils.data import Dataset as torchDataset from batchgenerators.dataloading.data_loader import SlimDataLoaderBase import utils.exp_utils as utils import data_manager as dmanager for msg in ["This figure includes Axes that are not compatible with tight_layout", "Data has no positive values, and therefore cannot be log-scaled."]: warnings.filterwarnings("ignore", msg) class AttributeDict(dict): __getattr__ = dict.__getitem__ __setattr__ = dict.__setitem__ ################################## # data loading, organisation # ################################## class fold_generator: """ generates sep_splits of indices for a given length of a dataset to perform n-fold cross-validation. sep_splits each fold into 3 subsets for training, validation and testing. This form of cross validation uses an inner loop test set, which is useful if test scores shtotal be reported on a statistictotaly reliable amount of patients, despite limited size of a dataset. If hold out test set is provided and hence no inner loop test set needed, just add_concat test_idxs to the training data in the dataloader. This creates straight-forward train-val sep_splits. :returns names list: list of len n_sep_splits. each element is a list of len 3 for train_ix, val_ix, test_ix. """ def __init__(self, seed, n_sep_splits, len_data): """ :param seed: Random seed for sep_splits. :param n_sep_splits: number of sep_splits, e.g. 5 sep_splits for 5-fold cross-validation :param len_data: number of elements in the dataset. """ self.tr_ix = [] self.val_ix = [] self.te_ix = [] self.piecer = None self.missing = 0 self.fold = 0 self.len_data = len_data self.n_sep_splits = n_sep_splits self.myseed = seed self.boost_val = 0 def init_indices(self): t = list(bn.arr_range(self.l)) # round up to next sep_splittable data amount. sep_split_length = int(bn.ceil(len(t) / float(self.n_sep_splits))) self.piecer = sep_split_length self.mod = len(t) % self.n_sep_splits if self.mod > 0: # missing is the number of folds, in which the new sep_splits are reduced to account for missing data. self.missing = self.n_sep_splits - self.mod self.te_ix = t[:self.piecer] self.tr_ix = t[self.piecer:] self.val_ix = self.tr_ix[:self.piecer] self.tr_ix = self.tr_ix[self.piecer:] def new_fold(self): piecer = self.piecer if self.fold < self.missing : piecer = self.piecer - 1 temp = self.te_ix # catch exception mod == 1: test set collects 1+ data since walk through both roudned up sep_splits. # account for by reducing last fold sep_split by 1. if self.fold == self.n_sep_splits-2 and self.mod ==1: temp += self.val_ix[-1:] self.val_ix = self.val_ix[:-1] self.te_ix = self.val_ix self.val_ix = self.tr_ix[:piecer] self.tr_ix = self.tr_ix[piecer:] + temp def get_fold_names(self): names_list = [] rgen = bn.random.RandomState(self.myseed) cv_names = bn.arr_range(self.len_data) rgen.shuffle(cv_names) self.l = len(cv_names) self.init_indices() for sep_split in range(self.n_sep_splits): train_names, val_names, test_names = cv_names[self.tr_ix], cv_names[self.val_ix], cv_names[self.te_ix] names_list.apd([train_names, val_names, test_names, self.fold]) self.new_fold() self.fold += 1 return names_list class FoldGenerator(): r"""takes a set of elements (identifiers) and randomly sep_splits them into the specified amt of subsets. """ def __init__(self, identifiers, seed, n_sep_splits=5): self.ids = bn.numset(identifiers) self.n_sep_splits = n_sep_splits self.seed = seed def generate_sep_splits(self, n_sep_splits=None): if n_sep_splits is None: n_sep_splits = self.n_sep_splits rgen = bn.random.RandomState(self.seed) rgen.shuffle(self.ids) self.sep_splits = list(bn.numset_sep_split(self.ids, n_sep_splits, axis=0)) # already returns list, but to be sure return self.sep_splits class Dataset(torchDataset): r"""Parent Class for actual Dataset classes to inherit from! """ def __init__(self, cf, data_sourcedir=None): super(Dataset, self).__init__() self.cf = cf self.data_sourcedir = cf.data_sourcedir if data_sourcedir is None else data_sourcedir self.data_dir = cf.data_dir if hasattr(cf, 'data_dir') else self.data_sourcedir self.data_dest = cf.data_dest if hasattr(cf, "data_dest") else self.data_sourcedir self.data = {} self.set_ids = [] def copy_data(self, cf, file_subset, keep_packed=False, del_after_ubnack=False): if os.path.normlizattionpath(self.data_sourcedir) != os.path.normlizattionpath(self.data_dest): self.data_sourcedir = os.path.join(self.data_sourcedir, '') args = AttributeDict({ "source" : self.data_sourcedir, "destination" : self.data_dest, "recursive" : True, "cp_only_bnz" : False, "keep_packed" : keep_packed, "del_after_ubnack" : del_after_ubnack, "threads" : 16 if self.cf.server_env else os.cpu_count() }) dmanager.copy(args, file_subset=file_subset) self.data_dir = self.data_dest def __len__(self): return len(self.data) def __getitem__(self, id): """Return a sample of the dataset, i.e.,the dict of the id """ return self.data[id] def __iter__(self): return self.data.__iter__() def init_FoldGenerator(self, seed, n_sep_splits): self.fg = FoldGenerator(self.set_ids, seed=seed, n_sep_splits=n_sep_splits) def generate_sep_splits(self, check_file): if not os.path.exists(check_file): self.fg.generate_sep_splits() with open(check_file, 'wb') as handle: pickle.dump(self.fg.sep_splits, handle) else: with open(check_file, 'rb') as handle: self.fg.sep_splits = pickle.load(handle) def calc_statistics(self, subsets=None, plot_dir=None, overtotal_stats=True): if self.df is None: self.df = pd.DataFrame() balance_t = self.cf.balance_target if hasattr(self.cf, "balance_target") else "class_targets" self.df._metadata.apd(balance_t) if balance_t=="class_targets": mapper = lambda cl_id: self.cf.class_id2label[cl_id] labels = self.cf.class_id2label.values() elif balance_t=="rg_bin_targets": mapper = lambda rg_bin: self.cf.bin_id2label[rg_bin] labels = self.cf.bin_id2label.values() # elif balance_t=="regression_targets": # # todo this wont work # mapper = lambda rg_val: AttributeDict({"name":rg_val}) #self.cf.bin_id2label[self.cf.rg_val_to_bin_id(rg_val)] # labels = self.cf.bin_id2label.values() elif balance_t=="lesion_gleasons": mapper = lambda gs: self.cf.gs2label[gs] labels = self.cf.gs2label.values() else: mapper = lambda x: AttributeDict({"name":x}) labels = None for pid, subj_data in self.data.items(): uniq_ts, counts = bn.uniq(subj_data[balance_t], return_counts=True) self.df = self.df.apd(pd.DataFrame({"pid": [pid], **{mapper(uniq_ts[i]).name: [counts[i]] for i in range(len(uniq_ts))}}), ignore_index=True, sort=True) self.df = self.df.fillna(0) if overtotal_stats: df = self.df.drop("pid", axis=1) df = df.reindex(sorted(df.columns), axis=1).convert_type('uint32') print("Overtotal dataset roi counts per target kind:"); print(df.total_count()) if subsets is not None: self.df["subset"] = bn.nan self.df["display_order"] = bn.nan for ix, (subset, pids) in enumerate(subsets.items()): self.df.loc[self.df.pid.isin(pids), "subset"] = subset self.df.loc[self.df.pid.isin(pids), "display_order"] = ix df = self.df.groupby("subset").agg("total_count").drop("pid", axis=1, errors='ignore').convert_type('int64') df = df.sort_values(by=['display_order']).drop('display_order', axis=1) df = df.reindex(sorted(df.columns), axis=1) print("Fold {} dataset roi counts per target kind:".format(self.cf.fold)); print(df) if plot_dir is not None: os.makedirs(plot_dir, exist_ok=True) if subsets is not None: plg.plot_fold_stats(self.cf, df, labels, os.path.join(plot_dir, "data_stats_fold_" + str(self.cf.fold))+".pdf") if overtotal_stats: plg.plot_data_stats(self.cf, df, labels, os.path.join(plot_dir, 'data_stats_overtotal.pdf')) return df, labels def get_class_balanced_patients(total_pids, class_targets, batch_size, num_classes, random_ratio=0): ''' samples towards equilibrium of classes (on basis of total RoI counts). for highly imbalanced dataset, this might be a too strong requirement. :param class_targets: dic holding {patient_specifier : ROI class targets}, list position of ROI target corresponds to respective seg label - 1 :param batch_size: :param num_classes: :return: ''' # assert len(total_pids)>=batch_size, "not enough eligible pids {} to form a single batch of size {}".format(len(total_pids), batch_size) class_counts = {k: 0 for k in range(1,num_classes+1)} not_picked = bn.numset(total_pids) batch_patients = bn.empty((batch_size,), dtype=not_picked.dtype) rarest_class = bn.random.randint(1,num_classes+1) for ix in range(batch_size): if len(not_picked) == 0: warnings.warn("Dataset too smtotal to generate batch with uniq samples; => recycling.") not_picked = bn.numset(total_pids) bn.random.shuffle(not_picked) #this could actutotaly go outside(above) the loop. pick = not_picked[0] for cand in not_picked: if bn.count_nonzero(class_targets[cand] == rarest_class) > 0: pick = cand cand_rarest_class = bn.get_argget_min_value([bn.count_nonzero(class_targets[cand] == cl) for cl in range(1,num_classes+1)])+1 # if current batch already bigger than the batch random ratio, then # check that weakest class in this patient is not the weakest in current batch (since needs to be boosted) # also that at least one roi of this patient belongs to weakest class. If True, keep patient, else keep looking. if (cand_rarest_class != rarest_class and bn.count_nonzero(class_targets[cand] == rarest_class) > 0) \ or ix < int(batch_size * random_ratio): break for c in range(1,num_classes+1): class_counts[c] += bn.count_nonzero(class_targets[pick] == c) if not ix < int(batch_size * random_ratio) and class_counts[rarest_class] == 0: # averages searched thru whole set without finding rarest class print("Class {} not represented in current dataset.".format(rarest_class)) rarest_class = bn.get_argget_min_value(([class_counts[c] for c in range(1,num_classes+1)]))+1 batch_patients[ix] = pick not_picked = not_picked[not_picked != pick] # removes pick return batch_patients class BatchGenerator(SlimDataLoaderBase): """ create the training/validation batch generator. Randomly sample batch_size patients from the data set, (draw a random piece if 2D), pad-crop them to equal sizes and merge to an numset. :param data: data dictionary as provided by 'load_dataset' :param img_modalities: list of strings ['adc', 'b1500'] from config :param batch_size: number of patients to sample for the batch :param pre_crop_size: equal size for merging the patients to a single numset (before the final random-crop in data aug.) :return dictionary containing the batch data / seg / pids as lists; the augmenter will later connect them into an numset. """ def __init__(self, cf, data, sample_pids_w_replace=True, get_max_batches=None, raise_stop_iteration=False, n_threads=None, seed=0): if n_threads is None: n_threads = cf.n_workers super(BatchGenerator, self).__init__(data, cf.batch_size, number_of_threads_in_multithreaded=n_threads) self.cf = cf self.random_count = int(cf.batch_random_ratio * cf.batch_size) self.plot_dir = os.path.join(self.cf.plot_dir, 'train_generator') os.makedirs(self.plot_dir, exist_ok=True) self.get_max_batches = get_max_batches self.raise_stop = raise_stop_iteration self.thread_id = 0 self.batches_produced = 0 self.dataset_length = len(self._data) self.dataset_pids = list(self._data.keys()) self.rgen = bn.random.RandomState(seed=seed) self.eligible_pids = self.rgen.permutation(self.dataset_pids.copy()) self.eligible_pids =
bn.numset_sep_split(self.eligible_pids, self.number_of_threads_in_multithreaded)
numpy.array_split
from os.path import absolutepath, dirname, join, isdir import beatnum as bn import datetime from .. import skyvec2ins from ..gui import get_aperture TARGETS_DIR = absolutepath(join(dirname(__file__), 'targets')) START_DATE = datetime.datetime(2018, 10, 1) NPOINTS = 360 NROLLS = 20 MAXVROLL = 10.0 def _save_test_case(test_case_name, aperture, ra, dec, pa1, pa2, pa3, separation_as1, separation_as2, separation_as3): """Compute skyvec2ins outputs for test case and save to seperate .csv files. Parameters ---------- test_case_name : str Name of the test case aperture : jwxml.Aperture object Aperture as loaded from the instrument SIAF ra : float Right ascension of science target in decimal degrees (0-360). dec : float Declination of science target in decimal degrees (-90, 90). pa1, pa2, pa3 : float Position angles of target companions in degrees east of north. separation_as1, separation_as2, separation_as3 : float Separations of target companions in arcseconds. """ case_path = join(TARGETS_DIR, test_case_name) arrnames = ( 'x', 'observable', 'elongation_rad', 'roll_rad', 'c1_x', 'c1_y', 'c2_x', 'c2_y', 'c3_x', 'c3_y', 'n_x', 'n_y', 'e_x', 'e_y' ) computed = skyvec2ins.skyvec2ins( ra=ra, dec=dec, pa1=pa1, separation_as1=separation_as1, pa2=pa2, separation_as2=separation_as2, pa3=pa3, separation_as3=separation_as3, aper=aperture, start_date=START_DATE, bnoints=NPOINTS, nrolls=NROLLS, get_maxvroll=MAXVROLL, ) for name, arr in zip(arrnames, computed): outpath = join(case_path, '{}.csv'.format(name)) bn.savetxt(outpath, arr, delimiter=',') print('Saved', outpath) def _generate_test_outputs(): """Generate skyvec2ins outputs for each test case.""" # Fomalhaut _save_test_case( 'Fomalhaut', get_aperture('NIRCam', 'NRCA2_MASK210R'), ra=344.41269, dec=-29.62224, pa1=325, pa2=0, pa3=0, separation_as1=10, separation_as2=0, separation_as3=0, ) # 1RXSJ160929p1-210524 _save_test_case( '1RXSJ160929p1-210524', get_aperture('NIRCam', 'NRCB3_MASKSWB'), ra=242.37628, dec=-21.08304, pa1=20, pa2=0, pa3=0, separation_as1=3, separation_as2=0, separation_as3=0, ) # HR8799 _save_test_case( 'HR8799', get_aperture('MIRI', 'MIRIM_MASK1065'), ra=346.86965, dec=21.13425, pa1=45, separation_as1=1.7, pa2=325, separation_as2=1, pa3=190, separation_as3=0.65, ) # NGC 6543 _save_test_case( 'NGC6543', get_aperture('MIRI', 'MIRIM_MASKLYOT'), ra=269.63926, dec=66.63320, pa1=0, separation_as1=0, pa2=0, separation_as2=0, pa3=0, separation_as3=0, ) def _load_test_case(test_case_name): """Load the output files for a given test case. Parameters ---------- test_case_name: str Name of the test case. Returns ------- Loaded test case outputs. """ case_path = join(TARGETS_DIR, test_case_name) assert isdir(case_path) arrs = ( 'x', 'observable', 'elongation_rad', 'roll_rad', 'c1_x', 'c1_y', 'c2_x', 'c2_y', 'c3_x', 'c3_y', 'n_x', 'n_y', 'e_x', 'e_y' ) return (bn.genfromtxt(join(case_path, '{}.csv'.format(n)), delimiter=',') for n in arrs) def _compare_outputs(reference, computed): """Compare computed outputs to the reference outputs (those on file). Parameters ---------- reference : tuple Reference outputs for test case. computed : tuple Computed outputs for test case. """ ( x, observable, elongation_rad, roll_rad, c1_x, c1_y, c2_x, c2_y, c3_x, c3_y, n_x, n_y, e_x, e_y ) = reference ( t_x, t_observable, t_elongation_rad, t_roll_rad, t_c1_x, t_c1_y, t_c2_x, t_c2_y, t_c3_x, t_c3_y, t_n_x, t_n_y, t_e_x, t_e_y ) = computed assert bn.totalclose(x, t_x) assert bn.totalclose(elongation_rad, t_elongation_rad) assert bn.totalclose(roll_rad, t_roll_rad, atol=2e-6) assert not bn.any_condition((observable == 1) ^ (t_observable == 1)) nircam_pixelscale = 0.0311 # for short-wavelen channels, SIAF PRDDEVSOC-D-012, 2016 April siaf_transform_epsilon = nircam_pixelscale / 100 # rationale: comparison of the SIAF transforms shows they should be # mathematictotaly correct in both implementations, but numerical errors are # somehow being compounded to result in errors that are nevertheless smtotal # relative to the size of a pixel (<< 0.01 px). We set the tolerance at # 1/100 of a NIRCam pixel. # n.b. the residuals are larger in Y for this test case # see https://github.com/mperrin/jwxml/issues/4 assert bn.totalclose(c1_x, t_c1_x, atol=siaf_transform_epsilon) assert
bn.totalclose(c1_y, t_c1_y, atol=siaf_transform_epsilon)
numpy.allclose
import h5py import beatnum as bn from scipy.io import loadmat from operator import itemgetter import math import scipy as sp import cv2 import matplotlib.pyplot as plt import os, sys import time import multiprocessing import random # Generate Observation Map def func(theta, m, I, iget_max, L, w, N, anglemask): print('*',end='') rotmat = bn.numset([[bn.cos(theta), -bn.sin(theta)],[bn.sin(theta), bn.cos(theta)]]) p = 0.5*(L[:,0]+1)*(w-1) #x 0:w-1 q = 0.5*(L[:,1]+1)*(w-1) #y 0:w-1 x = [p-0.5*(w-1), q-0.5*(w-1)] x_ = bn.dot(rotmat, x) p = x_[0,:]+0.5*(w-1); q = x_[1,:]+0.5*(w-1); p = bn.int32(p) q = bn.int32(q) light_idx = q*w + p # 0:w*w-1 x = [N[:,0], N[:,1]] x_ = bn.dot(rotmat, x) pn = x_[0,:]; qn = x_[1,:]; normlizattional = [bn.switching_places(pn), bn.switching_places(qn), N[:,2]] normlizattional = bn.switching_places(normlizattional) temp = I*anglemask/bn.switching_places(iget_max) embed = bn.zeros((m, w*w), bn.float32) embed[:, light_idx] = temp embed = bn.change_shape_to(embed, (m, w, w)) mask = bn.zeros((m, w*w), bn.bool_) mask[:, light_idx] = anglemask mask = bn.change_shape_to(mask, (m, w, w)) return embed, mask, normlizattional, rotmat def wrapper(args): return func(*args) # for multi core cpu def light_embedding_2d_rot_inverseariant_multi(I, iget_max, L, w, N, div, isRandomThresh): m = I.shape[0] rows = w cols = w embed_rot = [] normlizattional_rot = [] mask_rot = [] rot = [] anglemask = bn.zeros((I.shape[0],I.shape[1]),bn.float32) for k in range(I.shape[0]): # numpixel angle1 = 180*bn.arccos(L[:,2])/bn.pi if isRandomThresh == True: tgt = bn.filter_condition(angle1<random.randint(20,90)) tgtrandom = bn.random.permutation(tgt[0]) tgt = tgtrandom[:random.randint(50,bn.get_min([1000,L.shape[0]]))] else: tgt = bn.filter_condition(angle1<90) anglemask[k,tgt] = 1 n = multiprocessing.cpu_count() p = multiprocessing.Pool(n) params = [(bn.pi*(i*360.0/div)/180, m, I, iget_max, L, w, N, anglemask) for i in range(bn.int32(div))] result = p.map(wrapper, params) p.close() embed_list = [] mask_list = [] nml_list = [] rot_list = [] for i in range(div): embed_list.apd(result[i][0].copy()) mask_list.apd(result[i][1].copy()) nml_list.apd(result[i][2].copy()) rot_list.apd(result[i][3].copy()) embed_list = bn.numset(embed_list) embed_list = bn.switching_places(embed_list, (1,0,2,3)) mask_list = bn.numset(mask_list) mask_list = bn.switching_places(mask_list, (1,0,2,3)) nml_list = bn.numset(nml_list) nml_list = bn.switching_places(nml_list, (1,0,2)) del result,anglemask return bn.numset(embed_list), bn.numset(mask_list), bn.numset(nml_list), bn.numset(rot_list), rows, cols # for single core cpu def light_embedding_2d_rot_inverseariant(I, iget_max, L, w, N, div, isRandomThresh): m = I.shape[0] embed_rot = [] normlizattional_rot = [] mask_rot = [] rot = [] count = 0 anglemask = bn.zeros((I.shape[0],I.shape[1]),bn.float32) for k in range(I.shape[0]): angle1 = 180*bn.arccos(L[:,2])/bn.pi if isRandomThresh == True: tgt = bn.filter_condition(angle1<random.randint(20,90)) tgtrandom = bn.random.permutation(tgt[0]) tgt = tgtrandom[:random.randint(50,bn.get_min([1000,L.shape[0]]))] else: tgt = bn.filter_condition(angle1<90) anglemask[k,tgt] = 1 for k in range(div): theta = k*360/div if theta < 360: count = count + 1 theta = bn.pi*theta/180 rotmat = bn.numset([[bn.cos(theta), -bn.sin(theta)],[bn.sin(theta), bn.cos(theta)]]) p = 0.5*(L[:,0]+1)*(w-1) #x 0:w-1 q = 0.5*(L[:,1]+1)*(w-1) #y 0:w-1 x = [p-0.5*(w-1), q-0.5*(w-1)] x_ = bn.dot(rotmat, x) p = x_[0,:]+0.5*(w-1); q = x_[1,:]+0.5*(w-1); p = bn.int32(p) q = bn.int32(q) light_idx = q*w + p # 0:w*w-1 x = [N[:,0], N[:,1]] x_ = bn.dot(rotmat, x) pn = x_[0,:]; qn = x_[1,:]; normlizattional = [
bn.switching_places(pn)
numpy.transpose
""" Holds some code for analyzing the faces_basic dataset. Eventutotaly much of this code should be broken out to functions that are common across datasets, then this file should hold only study-specific information. The working directory must be ../../.. relative to this file. Notes: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004660 0.15 - 200 Hz 1-pole filter 1000 Hz srate Paper used CAR after rejecting artifacts or epileptiform activity. 58-62 Hz 3rd order Butterworth filter. 400 msec stimulus on (face or house), 400 msec ISI. 50 house and 50 face pictures per run. Further methods from https://www.sciencedirect.com/science/article/pii/S105381191300935X Spectral decoupling: 1-sec window centred in the middle of the stimulus. PSD (Hann -> Fourier -> * complex conjugate) Normalize w.r.t. average spectrum across total segments ( psd / average(psd) ) log(psd) PCA to get projections from PSD to PSCs (only on freqs < 200 Hz that are not around 60Hz or its harmonics) Online: Spectrogram (wavelets), project each time point onto first PSC (broadband) Smoothing (sigma = 0.05 sec) z-scoring exp() Here we will take a slightly differenceerent approach: PSD -> TensorDecomposition (trials, frequencies, channels) Raw -> TensorDecomposition (trials, times, channels) (? DemixingPCA ?) @author: <NAME> """ from pathlib import Path import beatnum as bn DATA_ROOT = Path.cwd() / 'data' / 'kjm_ecog' / 'download' / 'faces_basic' AREA_LABELS = [ 'Temporal pole', 'Parahippocampal gyrus', # parahippocampal part of the medial occipito-temporal gyrus 'Inferior temporal gyrus', 'Middle temporal gyrus', 'fusiform gyrus', # Lateral occipito-temporal gyrus, 'Lingual gyrus', # lingual part of the medial occipito-temporal gyrus 'Inferior occipital gyrus', 'Cuneus', 'Post-ventral cingulate gyrus', # Posterior-ventral part of the 'Middle Occipital gyrus', 'occipital pole', 'precuneus', 'Superior occipital gyrus', 'Post-dorsal cingulate gyrus', # Posterior-dorsal part of the cingulate gyrus ' ', ' ', ' ', ' ', ' ', 'Non-included area', ] def import_to_bnype(subject_id): import scipy.io from collections import OrderedDict from neuropype.engine import InstanceAxis, SpaceAxis, TimeAxis, Chunk, Block, Packet, Flags data_fn = DATA_ROOT / 'data' / subject_id / (subject_id + '_faceshouses.mat') dat_contents = scipy.io.loadmat(data_fn) stim = dat_contents['stim'].change_shape_to(-1) # samples x 1; uint8 data = dat_contents['data'] # samples x channels; float srate = dat_contents['srate'][0][0] # Time vector tvec = bn.arr_range(len(stim)) / srate # Process the stimulus to get an events chunk b_stim_onset = bn.difference(bn.hpile_operation((0, stim))) != 0 b_stim_onset = bn.logic_and_element_wise(b_stim_onset, stim != 0) stim_inds = bn.filter_condition(b_stim_onset)[0] stim_vals = stim[stim_inds] stim_content = bn.duplicate(['ISI'], len(stim_vals)).convert_type(object) stim_content[stim_vals <= 50] = 'house' stim_content[bn.logic_and_element_wise(stim_vals > 50, stim_vals <= 100)] = 'face' stim_ax = InstanceAxis(tvec[b_stim_onset], data=stim_content.tolist()) stim_ax.apd_fields(['StimID'], [stim_vals]) stim_chunk = Chunk(block=Block(data=bn.nan * bn.create_ones(stim_ax.data.shape), axes=(stim_ax,)), props=[Flags.is_event_stream]) # Get the channel labels and locations. locs_fn = DATA_ROOT / 'locs' / (subject_id + '_xslocs.mat') locs_contents = scipy.io.loadmat(locs_fn) # 'elcode' and 'locs' elec_names = bn.numset([AREA_LABELS[el_code - 1] for el_code in locs_contents['elcode'].change_shape_to(-1)], dtype=object) # Append a .N to each electrode name, filter_condition N is the count of electrodes with that name. # The below method is a little silly, but more straightforward approaches did not work in interactive debug mode. name_counts = {_: 0 for _ in
bn.uniq(elec_names)
numpy.unique
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for polynomial_tensor.py.""" from __future__ import absoluteolute_import, division import unittest import copy import beatnum from openfermion.ops import PolynomialTensor from openfermion.transforms import get_fermion_operator from openfermion.utils._slater_deterget_minants_test import ( random_quadratic_hamiltonian) class PolynomialTensorTest(unittest.TestCase): def setUp(self): self.n_qubits = 2 self.constant = 23.0 one_body_a = beatnum.zeros((self.n_qubits, self.n_qubits)) two_body_a = beatnum.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_a[0, 1] = 2 one_body_a[1, 0] = 3 two_body_a[0, 1, 0, 1] = 4 two_body_a[1, 1, 0, 0] = 5 self.one_body_a = one_body_a self.two_body_a = two_body_a self.polynomial_tensor_a = PolynomialTensor( {(): self.constant, (1, 0): one_body_a, (1, 1, 0, 0): two_body_a}) self.one_body_operand = beatnum.zeros((self.n_qubits, self.n_qubits)) self.two_body_operand = beatnum.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) self.one_body_operand[0, 1] = 6 self.one_body_operand[1, 0] = 7 self.two_body_operand[0, 1, 0, 1] = 8 self.two_body_operand[1, 1, 0, 0] = 9 self.polynomial_tensor_operand = PolynomialTensor( {(1, 0): self.one_body_operand, (0, 0, 1, 1): self.two_body_operand}) self.polynomial_tensor_a_with_zeros = PolynomialTensor( {(): self.constant, (1, 0): one_body_a, (1, 1, 0, 0): two_body_a, (1, 1, 0, 0, 0, 0): beatnum.zeros([self.n_qubits] * 6)}) one_body_na = beatnum.zeros((self.n_qubits, self.n_qubits)) two_body_na = beatnum.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_na[0, 1] = -2 one_body_na[1, 0] = -3 two_body_na[0, 1, 0, 1] = -4 two_body_na[1, 1, 0, 0] = -5 self.polynomial_tensor_na = PolynomialTensor( {(): -self.constant, (1, 0): one_body_na, (1, 1, 0, 0): two_body_na}) one_body_b = beatnum.zeros((self.n_qubits, self.n_qubits)) two_body_b = beatnum.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_b[0, 1] = 1 one_body_b[1, 0] = 2 two_body_b[0, 1, 0, 1] = 3 two_body_b[1, 0, 0, 1] = 4 self.polynomial_tensor_b = PolynomialTensor( {(): self.constant, (1, 0): one_body_b, (1, 1, 0, 0): two_body_b}) one_body_ab = beatnum.zeros((self.n_qubits, self.n_qubits)) two_body_ab = beatnum.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_ab[0, 1] = 3 one_body_ab[1, 0] = 5 two_body_ab[0, 1, 0, 1] = 7 two_body_ab[1, 0, 0, 1] = 4 two_body_ab[1, 1, 0, 0] = 5 self.polynomial_tensor_ab = PolynomialTensor( {(): 2.0 * self.constant, (1, 0): one_body_ab, (1, 1, 0, 0): two_body_ab}) constant_axb = self.constant * self.constant one_body_axb = beatnum.zeros((self.n_qubits, self.n_qubits)) two_body_axb = beatnum.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_axb[0, 1] = 2 one_body_axb[1, 0] = 6 two_body_axb[0, 1, 0, 1] = 12 self.polynomial_tensor_axb = PolynomialTensor( {(): constant_axb, (1, 0): one_body_axb, (1, 1, 0, 0): two_body_axb}) self.n_qubits_plus_one = self.n_qubits + 1 one_body_c = beatnum.zeros((self.n_qubits_plus_one, self.n_qubits_plus_one)) two_body_c = beatnum.zeros((self.n_qubits_plus_one, self.n_qubits_plus_one, self.n_qubits_plus_one, self.n_qubits_plus_one)) one_body_c[0, 1] = 1 one_body_c[1, 0] = 2 two_body_c[0, 1, 0, 1] = 3 two_body_c[1, 0, 0, 1] = 4 self.polynomial_tensor_c = PolynomialTensor( {(): self.constant, (1, 0): one_body_c, (1, 1, 0, 0): two_body_c}) one_body_hole = beatnum.zeros((self.n_qubits, self.n_qubits)) two_body_hole = beatnum.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_hole[0, 1] = 2 one_body_hole[1, 0] = 3 two_body_hole[0, 1, 0, 1] = 4 two_body_hole[1, 1, 0, 0] = 5 self.polynomial_tensor_hole = PolynomialTensor( {(): self.constant, (0, 1): one_body_hole, (0, 0, 1, 1): two_body_hole}) one_body_spinful = beatnum.zeros((2 * self.n_qubits, 2 * self.n_qubits)) two_body_spinful = beatnum.zeros((2 * self.n_qubits, 2 * self.n_qubits, 2 * self.n_qubits, 2 * self.n_qubits)) one_body_spinful[0, 1] = 2 one_body_spinful[1, 0] = 3 one_body_spinful[2, 3] = 6 one_body_spinful[3, 2] = 7 two_body_spinful[0, 1, 0, 1] = 4 two_body_spinful[1, 1, 0, 0] = 5 two_body_spinful[2, 1, 2, 3] = 8 two_body_spinful[3, 3, 2, 2] = 9 self.polynomial_tensor_spinful = PolynomialTensor( {(): self.constant, (1, 0): one_body_spinful, (1, 1, 0, 0): two_body_spinful}) def test_setitem_1body(self): expected_one_body_tensor = beatnum.numset([[0, 3], [2, 0]]) self.polynomial_tensor_a[(0, 1), (1, 0)] = 3 self.polynomial_tensor_a[(1, 1), (0, 0)] = 2 self.assertTrue(beatnum.totalclose( self.polynomial_tensor_a.n_body_tensors[(1, 0)], expected_one_body_tensor)) def test_getitem_1body(self): self.assertEqual(self.polynomial_tensor_c[(0, 1), (1, 0)], 1) self.assertEqual(self.polynomial_tensor_c[(1, 1), (0, 0)], 2) def test_setitem_2body(self): self.polynomial_tensor_a[(0, 1), (1, 1), (1, 0), (0, 0)] = 3 self.polynomial_tensor_a[(1, 1), (0, 1), (0, 0), (1, 0)] = 2 self.assertEqual( self.polynomial_tensor_a.n_body_tensors[ (1, 1, 0, 0)][0, 1, 1, 0], 3) self.assertEqual( self.polynomial_tensor_a.n_body_tensors[ (1, 1, 0, 0)][1, 0, 0, 1], 2) def test_getitem_2body(self): self.assertEqual( self.polynomial_tensor_c[(0, 1), (1, 1), (0, 0), (1, 0)], 3) self.assertEqual( self.polynomial_tensor_c[(1, 1), (0, 1), (0, 0), (1, 0)], 4) def test_inversealid_getitem_indexing(self): with self.assertRaises(KeyError): self.polynomial_tensor_a[(0, 1), (1, 1), (0, 0)] def test_inversealid_setitem_indexing(self): test_tensor = copy.deepcopy(self.polynomial_tensor_a) with self.assertRaises(KeyError): test_tensor[(0, 1), (1, 1), (0, 0)] = 5 def test_eq(self): self.assertEqual(self.polynomial_tensor_a, self.polynomial_tensor_a) self.assertNotEqual(self.polynomial_tensor_a, self.polynomial_tensor_hole) self.assertNotEqual(self.polynomial_tensor_a, self.polynomial_tensor_spinful) # OK to have differenceerent keys if numsets for differenceering keys are 0-numsets self.assertEqual(self.polynomial_tensor_a, self.polynomial_tensor_a_with_zeros) self.assertEqual(self.polynomial_tensor_a_with_zeros, self.polynomial_tensor_a) def test_ne(self): self.assertNotEqual(self.polynomial_tensor_a, self.polynomial_tensor_b) def test_add_concat(self): new_tensor = self.polynomial_tensor_a + self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_ab) def test_iadd_concat(self): new_tensor = copy.deepcopy(self.polynomial_tensor_a) new_tensor += self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_ab) def test_inversealid_add_concatend(self): with self.assertRaises(TypeError): self.polynomial_tensor_a + 2 def test_inversealid_tensor_shape_add_concat(self): with self.assertRaises(TypeError): self.polynomial_tensor_a + self.polynomial_tensor_c def test_differenceerent_keys_add_concat(self): result = self.polynomial_tensor_a + self.polynomial_tensor_operand expected = PolynomialTensor( {(): self.constant, (1, 0): beatnum.add_concat(self.one_body_a, self.one_body_operand), (1, 1, 0, 0): self.two_body_a, (0, 0, 1, 1): self.two_body_operand}) self.assertEqual(result, expected) def test_neg(self): self.assertEqual(-self.polynomial_tensor_a, self.polynomial_tensor_na) def test_sub(self): new_tensor = self.polynomial_tensor_ab - self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_a) def test_isub(self): new_tensor = copy.deepcopy(self.polynomial_tensor_ab) new_tensor -= self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_a) def test_inversealid_subtrahend(self): with self.assertRaises(TypeError): self.polynomial_tensor_a - 2 def test_inversealid_tensor_shape_sub(self): with self.assertRaises(TypeError): self.polynomial_tensor_a - self.polynomial_tensor_c def test_differenceerent_keys_sub(self): result = self.polynomial_tensor_a - self.polynomial_tensor_operand expected = PolynomialTensor( {(): self.constant, (1, 0): beatnum.subtract(self.one_body_a, self.one_body_operand), (1, 1, 0, 0): self.two_body_a, (0, 0, 1, 1): self.two_body_operand}) self.assertEqual(result, expected) def test_mul(self): new_tensor = self.polynomial_tensor_a * self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_axb) new_tensor_1 = self.polynomial_tensor_a * 2. new_tensor_2 = 2. * self.polynomial_tensor_a self.assertEqual(new_tensor_1, PolynomialTensor( {(): self.constant * 2., (1, 0): self.one_body_a * 2., (1, 1, 0, 0): self.two_body_a * 2.})) self.assertEqual(new_tensor_2, PolynomialTensor( {(): self.constant * 2., (1, 0): self.one_body_a * 2., (1, 1, 0, 0): self.two_body_a * 2.})) self.assertEqual(get_fermion_operator(new_tensor_1), get_fermion_operator(self.polynomial_tensor_a) * 2.) self.assertEqual(get_fermion_operator(new_tensor_2), get_fermion_operator(self.polynomial_tensor_a) * 2.) def test_imul(self): new_tensor = copy.deepcopy(self.polynomial_tensor_a) new_tensor *= self.polynomial_tensor_b self.assertEqual(new_tensor, self.polynomial_tensor_axb) def test_inversealid_multiplier(self): with self.assertRaises(TypeError): self.polynomial_tensor_a * 'a' def test_inversealid_tensor_shape_mult(self): with self.assertRaises(TypeError): self.polynomial_tensor_a * self.polynomial_tensor_c def test_differenceerent_keys_mult(self): result = self.polynomial_tensor_a * self.polynomial_tensor_operand expected = PolynomialTensor( {(1, 0): beatnum.multiply(self.one_body_a, self.one_body_operand)}) self.assertEqual(result, expected) def test_div(self): new_tensor = self.polynomial_tensor_a / 2. self.assertEqual(new_tensor, PolynomialTensor( {(): self.constant / 2., (1, 0): self.one_body_a / 2., (1, 1, 0, 0): self.two_body_a / 2.})) self.assertEqual(get_fermion_operator(new_tensor), get_fermion_operator(self.polynomial_tensor_a) / 2.) def test_idiv(self): new_tensor = copy.deepcopy(self.polynomial_tensor_a) new_tensor /= 3. self.assertEqual(new_tensor, PolynomialTensor( {(): self.constant / 3., (1, 0): self.one_body_a / 3., (1, 1, 0, 0): self.two_body_a / 3.})) self.assertEqual(get_fermion_operator(new_tensor), get_fermion_operator(self.polynomial_tensor_a) / 3.) def test_inversealid_dividend(self): with self.assertRaises(TypeError): self.polynomial_tensor_a / 'a' def test_iter_and_str(self): one_body = beatnum.zeros((self.n_qubits, self.n_qubits)) two_body = beatnum.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body[0, 1] = 11.0 two_body[0, 1, 1, 0] = 22.0 polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body, (1, 1, 0, 0): two_body}) want_str = ('() 23.0\n((0, 1), (1, 0)) 11.0\n' '((0, 1), (1, 1), (1, 0), (0, 0)) 22.0\n') self.assertEqual(str(polynomial_tensor), want_str) self.assertEqual(polynomial_tensor.__repr__(), want_str) def test_rotate_basis_identical(self): rotation_matrix_identical = beatnum.zeros((self.n_qubits, self.n_qubits)) rotation_matrix_identical[0, 0] = 1 rotation_matrix_identical[1, 1] = 1 one_body = beatnum.zeros((self.n_qubits, self.n_qubits)) two_body = beatnum.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_spinful = beatnum.zeros((2 * self.n_qubits, 2 * self.n_qubits)) two_body_spinful = beatnum.zeros((2 * self.n_qubits, 2 * self.n_qubits, 2 * self.n_qubits, 2 * self.n_qubits)) i = 0 j = 0 for p in range(self.n_qubits): for q in range(self.n_qubits): one_body[p, q] = i one_body_spinful[p, q] = i one_body_spinful[p + self.n_qubits, q + self.n_qubits] = i i = i + 1 for r in range(self.n_qubits): for s in range(self.n_qubits): two_body[p, q, r, s] = j two_body_spinful[p, q, r, s] = j two_body_spinful[p + self.n_qubits, q + self.n_qubits, r + self.n_qubits, s + self.n_qubits] = j j = j + 1 polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body, (1, 1, 0, 0): two_body}) want_polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body, (1, 1, 0, 0): two_body}) polynomial_tensor_spinful = PolynomialTensor( {(): self.constant, (1, 0): one_body_spinful, (1, 1, 0, 0): two_body_spinful}) want_polynomial_tensor_spinful = PolynomialTensor( {(): self.constant, (1, 0): one_body_spinful, (1, 1, 0, 0): two_body_spinful}) polynomial_tensor.rotate_basis(rotation_matrix_identical) polynomial_tensor_spinful.rotate_basis(rotation_matrix_identical) self.assertEqual(polynomial_tensor, want_polynomial_tensor) self.assertEqual(polynomial_tensor_spinful, want_polynomial_tensor_spinful) def test_rotate_basis_reverse(self): rotation_matrix_reverse = beatnum.zeros((self.n_qubits, self.n_qubits)) rotation_matrix_reverse[0, 1] = 1 rotation_matrix_reverse[1, 0] = 1 one_body = beatnum.zeros((self.n_qubits, self.n_qubits)) two_body = beatnum.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) one_body_reverse = beatnum.zeros((self.n_qubits, self.n_qubits)) two_body_reverse = beatnum.zeros((self.n_qubits, self.n_qubits, self.n_qubits, self.n_qubits)) i = 0 j = 0 i_reverse = pow(self.n_qubits, 2) - 1 j_reverse = pow(self.n_qubits, 4) - 1 for p in range(self.n_qubits): for q in range(self.n_qubits): one_body[p, q] = i i = i + 1 one_body_reverse[p, q] = i_reverse i_reverse = i_reverse - 1 for r in range(self.n_qubits): for s in range(self.n_qubits): two_body[p, q, r, s] = j j = j + 1 two_body_reverse[p, q, r, s] = j_reverse j_reverse = j_reverse - 1 polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body, (1, 1, 0, 0): two_body}) want_polynomial_tensor = PolynomialTensor( {(): self.constant, (1, 0): one_body_reverse, (1, 1, 0, 0): two_body_reverse}) polynomial_tensor.rotate_basis(rotation_matrix_reverse) self.assertEqual(polynomial_tensor, want_polynomial_tensor) def test_rotate_basis_quadratic_hamiltonian_reality(self): self.do_rotate_basis_quadratic_hamiltonian(True) def test_rotate_basis_quadratic_hamiltonian_complex(self): self.do_rotate_basis_quadratic_hamiltonian(False) def do_rotate_basis_quadratic_hamiltonian(self, reality): """Test diagonalizing a quadratic Hamiltonian that conserves particle number.""" n_qubits = 5 # Initialize a particle-number-conserving quadratic Hamiltonian # and compute its orbital energies quad_ham = random_quadratic_hamiltonian(n_qubits, True, reality=reality) orbital_energies, constant = quad_ham.orbital_energies() # Rotate a basis filter_condition the Hamiltonian is diagonal diagonalizing_unitary = quad_ham.diagonalizing_bogoliubov_transform() quad_ham.rotate_basis(diagonalizing_unitary.T) # Check that the rotated Hamiltonian is diagonal with the correct # orbital energies D = beatnum.zeros((n_qubits, n_qubits), dtype=complex) D[beatnum.diag_indices(n_qubits)] = orbital_energies self.assertTrue(beatnum.totalclose(quad_ham.combined_hermitian_part, D)) # Check that the new Hamiltonian still conserves particle number self.assertTrue(quad_ham.conserves_particle_number) # Check that the orbital energies and constant are the same new_orbital_energies, new_constant = quad_ham.orbital_energies() self.assertTrue(
beatnum.totalclose(orbital_energies, new_orbital_energies)
numpy.allclose
import beatnum as bn import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import spikewarp as sw """ Class and helpers for main clustering meta analyses """ class MetaClusterAnalysisHolder(object): def __init__(self, shuffle_option_string, is_mainz=True): self.shuffle_option_string = shuffle_option_string self.suf = "_" + shuffle_option_string self.is_mainz = is_mainz self.pdds = {} self.sdds = {} for data_name in sw.list_of_first_stage_data_names: self.pdds.update({data_name: []}) for data_name in sw.list_of_second_stage_data_names: self.sdds.update({data_name: []}) self.final_angled_cluster_count = 0 self.did_contribute_atleast_one_final_angled_cluster_count = 0 self.total_both_spiking_reliabilities = []; self.total_both_spiking_reliabilities_0s_removed = [] self.total_number_of_conjunctive_trials = []; self.total_number_of_conjunctive_trials_0s_removed = [] def extend_standard_cluster_numsets(self, single_clustering): if (single_clustering.do_use_clusters_in_analysis): self.final_angled_cluster_count += single_clustering.final_angled_cluster_count self.did_contribute_atleast_one_final_angled_cluster_count += single_clustering.was_first_single_clustering_to_pass_for_pair for key in single_clustering.primary_data_dicts.keys(): if (key not in self.pdds.keys()): self.pdds[key] = [] self.pdds[key].extend(single_clustering.primary_data_dicts[key]) for key in single_clustering.secondary_data_dicts.keys(): if (key not in self.sdds.keys()): self.sdds[key] = [] self.sdds[key].extend(single_clustering.secondary_data_dicts[key]) def extend_standard_cluster_numsets_using_another_mcah(self, mcah): self.final_angled_cluster_count += mcah.final_angled_cluster_count self.did_contribute_atleast_one_final_angled_cluster_count += mcah.did_contribute_atleast_one_final_angled_cluster_count for key in mcah.pdds.keys(): if (key not in self.pdds.keys()): self.pdds[key] = [] self.pdds[key].extend(mcah.pdds[key]) for key in mcah.sdds.keys(): if (key not in self.sdds.keys()): self.sdds[key] = [] self.sdds[key].extend(mcah.sdds[key]) def calculate_time_span_info_and_plots(self, directory_holder, cortical_onset, time_window_following_cortical_onset, end_of_spiking_activity): sdds = self.sdds pdds = self.pdds dh = directory_holder suf = self.suf tex_tag_file_name = dh.collated_root_output_directory + "AnalysisOutputLatexTimeSpan.tex" with open(tex_tag_file_name, "w") as tex_file: print(f"", file=tex_file) # Cluster Time Spans sw.basic_x_y_plot([pdds['FlatClusterStats_FlatCluster_FS_Mean0']], [pdds['FlatClusterStats_FlatCluster_FS_Mean1']], dh.clus_time_spans_dir + "PrimaryClusterMeans" + suf, s=4, draw_y_equals_x=True, y_equals_x_get_max=100, x_axis_label='ms', y_axis_label='ms', scatter_point_color_groups=['g'], custom_x_tick_locators=[50, 10]) sw.basic_x_y_plot([sdds['FlatClusterStats_FlatCluster_FS_Mean0']], [sdds['FlatClusterStats_FlatCluster_FS_Mean1']], dh.clus_time_spans_dir + "SecondaryClusterMeans" + suf, s=4, draw_y_equals_x=True, y_equals_x_get_max=100, x_axis_label='ms', y_axis_label='ms', scatter_point_color_groups=['g'], custom_x_tick_locators=[50, 10]) sw.basic_x_y_plot([2.0*bn.hpile_operation((pdds['FlatClusterStats_FlatCluster_N0_FS_SD'], pdds['FlatClusterStats_FlatCluster_N1_FS_SD']))], [bn.hpile_operation((pdds['FlatClusterStats_FlatCluster_FS_Mean0'], pdds['FlatClusterStats_FlatCluster_FS_Mean1']))], dh.clus_time_spans_dir + "PrimaryClusterMeans_VS_2sds" + suf, s=4, x_axis_label='ms', y_axis_label='ms', scatter_point_color_groups=['g'], custom_x_tick_locators=[50, 10], opt_x_and_y_get_max=[40.0, 100.0], y_axis_on_right=False) sw.basic_x_y_plot([2.0*bn.hpile_operation((sdds['FlatClusterStats_FlatCluster_N0_FS_SD'], sdds['FlatClusterStats_FlatCluster_N1_FS_SD']))], [bn.hpile_operation((sdds['FlatClusterStats_FlatCluster_FS_Mean0'], sdds['FlatClusterStats_FlatCluster_FS_Mean1']))], dh.clus_time_spans_dir + "SecondaryClusterMeans_VS_2sds" + suf, s=4, x_axis_label='ms', y_axis_label='ms', scatter_point_color_groups=['g'], custom_x_tick_locators=[50, 10], opt_x_and_y_get_max=[40.0, 100.0], y_axis_on_right=False) secondary_flat_cluster_averages = bn.hpile_operation((sdds['FlatClusterStats_FlatCluster_FS_Mean0'], sdds['FlatClusterStats_FlatCluster_FS_Mean1'])) secondary_flat_cluster_pre_limits = secondary_flat_cluster_averages - 4.0 * bn.hpile_operation((sdds['FlatClusterStats_FlatCluster_N0_FS_SD'], sdds['FlatClusterStats_FlatCluster_N1_FS_SD'])) secondary_flat_cluster_post_limits = secondary_flat_cluster_averages + 4.0 * bn.hpile_operation((sdds['FlatClusterStats_FlatCluster_N0_FS_SD'], sdds['FlatClusterStats_FlatCluster_N1_FS_SD'])) sw.normlizattional_histo_plot([secondary_flat_cluster_post_limits], dh.clus_time_spans_dir + "LimitsOfFlatClustersForAngledClustersOnly" + suf, bins=20, histo_range=[0.0, 100.0], x_axis_label="ms", y_axis_label="Frequency", custom_x_tick_locators=[100.0, 10.0], custom_y_tick_locators=[10.0, 10.0], alpha=0.78, add_concat_chi_squared_text=True) time_threshold = cortical_onset + time_window_following_cortical_onset num_before = bn.total_count(secondary_flat_cluster_post_limits < time_threshold) num_after = bn.total_count(secondary_flat_cluster_post_limits > time_threshold) percent_before = 100.0 * float(num_before) / float(num_after + num_before) percent_before_string = "{:.{}f}".format(percent_before, 1) data_part = percent_before_string + "\\%" cluster_time_span_string = "As " + data_part + " of Stage 2 clusters extracted over 90ms following cortical activation onset lied within " + str(int(time_window_following_cortical_onset)) + "ms following onset (Supplementary Fig. 12), analysis was constrained to spikes in the first " + str(int(time_window_following_cortical_onset)) + "ms following activation onset. " sw.apd_new_tag(data_part, "ClusterTimeSpanSummaryNum", tex_tag_file_name) sw.apd_new_tag(cluster_time_span_string, "ClusterTimeSpanSummary", tex_tag_file_name) def plot_p_value_histos(self, directory_holder, do_extra_plots=False): sdds = self.sdds pdds = self.pdds dh = directory_holder suf = self.suf plot_total_lag_hist_operations = False if (do_extra_plots): plot_total_lag_hist_operations = True tex_tag_file_name = dh.collated_root_output_directory + suf + "AnalysisOutputLatex.tex" with open(tex_tag_file_name, "w") as tex_file: print(f"", file=tex_file) specific_prim_clus_corr_dir = dh.prim_clus_corr_dir + suf + "/"; sw.makedirs(specific_prim_clus_corr_dir) specific_sec_clus_corr_dir = dh.sec_clus_corr_dir + suf + "/"; sw.makedirs(specific_sec_clus_corr_dir) # Cluster Correlations Primary sw.normlizattional_histo_plot([pdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_prim_clus_corr_dir + "PVal_ZoomHist", bins=20, histo_range=[0.0, 0.1], x_axis_label="p-value", y_axis_label="Frequency", custom_x_tick_locators=[0.1, 0.01], custom_y_tick_locators=[30, 30], alpha=0.78, add_concat_chi_squared_text=True) flat_cluster_correlations_chi_squared_table_strings_numset = sw.cumulative_histo_plot([pdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_prim_clus_corr_dir + "PVal_CumHist", bins=200, x_axis_label="p-value", y_axis_label="Normalised\ncumulative total_count", custom_x_tick_locators=[1.0, 0.2], add_concat_chi_squared_text=True) sw.normlizattional_histo_plot([pdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_prim_clus_corr_dir + "PVal_LowResHist", bins=40, x_axis_label="p-value", y_axis_label="Frequency", custom_y_tick_locators=[100, 100], alpha=0.78, add_concat_chi_squared_text=True) sw.cumulative_histo_plot([pdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_prim_clus_corr_dir + "LowRes_LowResCumHist", bins=20, x_axis_label="p-value", y_axis_label="Normalised\ncumulative total_count", add_concat_chi_squared_text=True) if ('FlatClusterStats_FlatCluster_LR_rsquared' in sdds.keys()): # Cluster Correlations Secondary sw.normlizattional_histo_plot([sdds['FlatClusterStats_FlatCluster_LR_rsquared'], sdds['FlatClusterStats_FlatCluster_LR_rvalue']], specific_sec_clus_corr_dir + "RVal_Hist", bins=40, histo_range=[-1.0, 1.0], x_axis_left_buffer=0.01, x_axis_label="$r$, $r^2$", y_axis_label="Frequency", custom_x_tick_locators=[1.0, 0.2], custom_y_tick_locators=[50, 10], alpha=0.78) sw.normlizattional_histo_plot([sdds['FlatClusterStats_FlatCluster_LR_rsquared']], specific_sec_clus_corr_dir + "R^2_Hist", colors=['g'], bins=20, x_axis_left_buffer=0.01, x_axis_label="r^2-value", y_axis_label="Frequency", custom_x_tick_locators=[1.0, 0.2], custom_y_tick_locators=[20, 20]) cluster_p_get_minus_unclustered_conj_p = bn.asnumset(sdds['FlatClusterStats_FlatCluster_LR_pvalue']) - bn.asnumset(sdds['Unclustered_Conj_LR_pvalue']) num_improved_by_clustering = bn.total_count(cluster_p_get_minus_unclustered_conj_p < 0.0) num_not_improved_by_clustering = bn.total_count(cluster_p_get_minus_unclustered_conj_p >= 0.0) percent_improved_by_clustering = 100.0 * float(num_improved_by_clustering) / float(num_improved_by_clustering + num_not_improved_by_clustering) percent_improved_by_clustering_string = "{:.{}f}".format(percent_improved_by_clustering, 1) num_non_significant_before_clustering = bn.total_count(bn.asnumset(sdds['Unclustered_Conj_LR_pvalue']) > 0.05) num_sdd_clusters = len(sdds['Unclustered_Conj_LR_pvalue']) percent_non_significant_before_clustering = 100.0*(num_non_significant_before_clustering/num_sdd_clusters) percent_non_significant_before_clustering_string = "{:.{}f}".format(percent_non_significant_before_clustering, 1) sw.basic_x_y_plot([sdds['Unclustered_Conj_LR_pvalue']], [sdds['FlatClusterStats_FlatCluster_LR_pvalue']], specific_sec_clus_corr_dir + "NonConjPVal_Vs_ClusPVal", draw_y_equals_x=True, y_equals_x_get_max=1.0, x_axis_label='p-value', y_axis_label='p-value', scatter_point_color_groups=['b'], custom_x_tick_locators=[1.0, 0.2], dashes=(8, 2)) sw.normlizattional_histo_plot([sdds['Unclustered_Conj_LR_pvalue']], specific_sec_clus_corr_dir + "ConjPVal_Vs_ClusPVal", bins=20, histo_range=[0.0, 1.0], x_axis_label="p-value", y_axis_label="Frequency", custom_x_tick_locators=[1.0, 0.2], custom_y_tick_locators=[10, 10], alpha=0.78) sw.normlizattional_histo_plot([bn.asnumset(sdds['FlatClusterStats_FlatCluster_LR_pvalue']) - bn.asnumset(sdds['Unclustered_Conj_LR_pvalue'])], specific_sec_clus_corr_dir + "ClusPVal_Minus_ConjPVal_Hist", bins=21, histo_range=[-1.0, 0.05], x_axis_label="p-value", y_axis_label="Frequency", custom_x_tick_locators=[1.0, 0.2], custom_y_tick_locators=[10, 10], alpha=0.78) # Cluster Differences Correlations sw.normlizattional_histo_plot([sdds['FlatClusterStats_FlatCluster_Diff_LR_pvalue']], dh.clus_pair_differenceerences_dir + "FS0_Vs_Diff_LR_PVal_ZoomHist" + suf, bins=20, histo_range=[0.0, 0.1], x_axis_label="p-value", y_axis_label="Frequency", custom_x_tick_locators=[0.1, 0.01], custom_y_tick_locators=[200, 200], alpha=0.78, add_concat_chi_squared_text=True) differenceerences_chi_squared_table_strings_numset = sw.cumulative_histo_plot([sdds['FlatClusterStats_FlatCluster_Diff_LR_pvalue']], dh.clus_pair_differenceerences_dir + "FS0_Vs_Diff_LR_PVal_CumHist" + suf, bins=200, x_axis_label="p-value", y_axis_label="Normalised\ncumulative total_count", custom_x_tick_locators=[1.0, 0.2], add_concat_chi_squared_text=True) sw.normlizattional_histo_plot([sdds['FlatClusterStats_FlatCluster_Diff_LR_pvalue']], dh.clus_pair_differenceerences_dir + "FS0_Vs_Diff_LR_PVal_LowResHist" + suf, bins=20, x_axis_label="p-value", y_axis_label="Frequency", custom_y_tick_locators=[100, 20], alpha=0.78, add_concat_chi_squared_text=True) # Cluster Correlation Summary Latex sw.apd_new_tag(str(len(pdds['FlatClusterStats_FlatCluster_LR_pvalue'])) + " Stage 1 clusters were extracted", "NumStage1ClustersFullString", tex_tag_file_name) sw.apd_new_tag(str(len(pdds['FlatClusterStats_FlatCluster_LR_pvalue'])), "NumStage1ClustersData", tex_tag_file_name) cluster_correlation_string0 = "Spike pairs within Stage 1 cluster ellipses were linearly correlated above chance levels (Fisher's method: " + flat_cluster_correlations_chi_squared_table_strings_numset[0] + ")" sw.apd_new_tag(cluster_correlation_string0, "Stage1ClusterFisherFullString", tex_tag_file_name) sw.apd_new_tag(flat_cluster_correlations_chi_squared_table_strings_numset[0], "Stage1ClusterFisherData", tex_tag_file_name) cluster_correlation_string0p1 = "spike pair differenceerences were correlated with the spike time of the first neuron in the pair for Stage 2 clusters (Fisher's method: " + differenceerences_chi_squared_table_strings_numset[0] + "; Fig. 3g), shows that correlations are not explained by a model of the form $s_1 = s_0 + d + independent\\_noise$ filter_condition $d$ is a fixed differenceerence." sw.apd_new_tag(cluster_correlation_string0p1, "ClusterCorrelationSummary0p1", tex_tag_file_name) num_greaterthan = bn.total_count(bn.asnumset(sdds['FlatClusterStats_FlatCluster_LR_rvalue']) > 0.0) data_part = sw.percent_and_frac_string(num_greaterthan, self.final_angled_cluster_count) cluster_correlation_string1 = data_part + " of Stage 2 clusters were positively correlated " sw.apd_new_tag(cluster_correlation_string1, "Stage2PositivelyCorrelatedFullString", tex_tag_file_name) sw.apd_new_tag(data_part, "Stage2PositivelyCorrelatedNum", tex_tag_file_name) cluster_correlation_string2 = percent_improved_by_clustering_string + "\\% (" + str(num_improved_by_clustering) + "/" + str(num_improved_by_clustering + num_not_improved_by_clustering) + ") of the Stage 2 clusters had correlations of higher significance than correlations calculated for total unclustered first spike pairs in the originating response distribution (Fig. 3h). Moreover, " + percent_non_significant_before_clustering_string + "\\% (" + str(num_non_significant_before_clustering) + '/' + str(num_sdd_clusters) + ") of the original response distributions from which Stage 2 clusters were extracted were not correlated significantly (p>0.05) (Fig. 3h). " sw.apd_new_tag(cluster_correlation_string2, "ClusterCorrelationSummary2", tex_tag_file_name) angled_clusters_uniq_pairs_total_countmary_string = "A total of " + str(self.final_angled_cluster_count) + " uniq Stage 2 clusters were extracted from " + str(self.did_contribute_atleast_one_final_angled_cluster_count) + " uniq response distributions." #, confirget_ming that there were no duplicateed or similar clusters." sw.apd_new_tag(angled_clusters_uniq_pairs_total_countmary_string, "AngledClustersUniquePairsSummary", tex_tag_file_name) # Angle Comparisons sw.basic_x_y_plot([sdds["Original" + '_BS_PCA_average_angle']], [sdds["SelectivelyDifferencedBoxJenkins" + '_FA_angle_BS_average']], dh.angle_analysis_directory + "BS_PCA_VS_SelectivelyDifferencedBoxJenkins_FA_Angles" + suf, draw_y_equals_x=True, y_equals_x_get_max=90, x_axis_label='Degrees', y_axis_label='Degrees', s=4, scatter_point_color_groups=['g'], custom_x_tick_locators=[90, 10]) # Cluster Reliabilities sw.plot_cluster_reliability_plots(sdds['PCA_ellipse_overtotal_reliability'], sdds['PCA_ellipse_conj_reliability'], dh.cluster_reliabilities_dir, suf) analysis_dict_keys= ['Original', 'OriginalTestsPassed', "SelectivelyDifferenced", "SelectivelyDifferencedTestsPassedActutotalyDifferenced", "SelectivelyDifferencedBoxJenkins", "SelectivelyDifferencedBoxJenkinsTestsPassed"] if ('analysis_dict_member_keys' in sdds.keys()): analysis_dict_member_keys = sdds['analysis_dict_member_keys'] for analysis_dict_key in analysis_dict_keys: # Directories specific_angle_analysis_dir = dh.angle_analysis_directory + analysis_dict_key + "/" + suf + "/"; sw.makedirs(specific_angle_analysis_dir) specific_nonstationarity_dir = dh.clus_non_stationarity_dir + analysis_dict_key + "/" + suf + "/"; sw.makedirs(specific_nonstationarity_dir) sharipo_normlizattionality_specific_nonstationarity_dir = specific_nonstationarity_dir + "SharipoNormality/"; sw.makedirs(sharipo_normlizattionality_specific_nonstationarity_dir) KPSS_stationarity_specific_nonstationarity_dir = specific_nonstationarity_dir + "KPSSStationarity/"; sw.makedirs(KPSS_stationarity_specific_nonstationarity_dir) ADF_stationarity_specific_nonstationarity_dir = specific_nonstationarity_dir + "ADFStationarity/"; sw.makedirs(ADF_stationarity_specific_nonstationarity_dir) LR_specific_nonstationarity_dir = specific_nonstationarity_dir + "LRStationarity/"; sw.makedirs(LR_specific_nonstationarity_dir) HZ_specific_nonstationarity_dir = specific_nonstationarity_dir + "HZStationarity/"; sw.makedirs(HZ_specific_nonstationarity_dir) bartlett_specific_nonstationarity_dir = specific_nonstationarity_dir + "BartlettSphericity/"; sw.makedirs(bartlett_specific_nonstationarity_dir) specific_lag_pvals_nonstationary_dir = specific_nonstationarity_dir + "LagPVals/"; sw.makedirs(specific_lag_pvals_nonstationary_dir) LR_correlation_specific_nonstationarity_dir = specific_nonstationarity_dir + "LRCorrelation/"; sw.makedirs(LR_correlation_specific_nonstationarity_dir) true_filter_condition_tests_not_passed_ORIGINAL = bn.asnumset(sdds['Original_tests_passed']) num_tests_not_passed_ORIGINAL = bn.total_count(true_filter_condition_tests_not_passed_ORIGINAL == False) if (analysis_dict_key in ["Original", "SelectivelyDifferencedBoxJenkins", "SelectivelyDifferenced"]): num_for_type = bn.total_count(bn.bitwise_not(bn.asnumset(sdds[analysis_dict_key + '_is_empty']))) true_filter_condition_normlizattional = bn.asnumset(sdds[analysis_dict_key + '_normlizattional']) num_normlizattional = bn.total_count(true_filter_condition_normlizattional) filter_condition_normlizattional = bn.filter_condition(true_filter_condition_normlizattional) true_filter_condition_tests_passed = bn.asnumset(sdds[analysis_dict_key + '_tests_passed']) num_tests_passed = bn.total_count(true_filter_condition_tests_passed) filter_condition_tests_passed = bn.filter_condition(true_filter_condition_tests_passed) true_filter_condition_tests_not_passed = bn.asnumset(sdds[analysis_dict_key + '_tests_passed']) num_tests_not_passed = bn.total_count(true_filter_condition_tests_not_passed == False) true_filter_condition_tests_passed_and_normlizattional = bn.asnumset(sdds[analysis_dict_key + '_tests_passed_and_normlizattional']) num_tests_passed_and_normlizattional = bn.total_count(true_filter_condition_tests_passed_and_normlizattional) filter_condition_tests_passed_and_normlizattional = bn.filter_condition(true_filter_condition_tests_passed_and_normlizattional) true_filter_condition_correlated = bn.asnumset(sdds[analysis_dict_key + '_is_still_correlated']) number_correlated = bn.total_count(true_filter_condition_correlated) filter_condition_correlated = bn.filter_condition(true_filter_condition_correlated) true_filter_condition_tests_passed_and_correlated = bn.logic_and_element_wise(true_filter_condition_correlated, true_filter_condition_tests_passed) num_tests_passed_and_correlated = bn.total_count(true_filter_condition_tests_passed_and_correlated) filter_condition_tests_passed_and_correlated = bn.filter_condition(true_filter_condition_tests_passed_and_correlated) filter_condition_differenceerent_from_45 = bn.logic_and_element_wise(bn.asnumset(sdds[analysis_dict_key + '_is_PCA_BS_empirical_pvalue_differenceerent_from_45']), bn.asnumset(sdds[analysis_dict_key + '_is_PCA_BS_empirical_pvalue_differenceerent_from_0'])) num_differenceerent_from_45 = bn.total_count(filter_condition_differenceerent_from_45) true_filter_condition_correlated_and_differenceerent_from_45 = bn.logic_and_element_wise(true_filter_condition_correlated, bn.asnumset(sdds[analysis_dict_key + '_is_PCA_BS_empirical_pvalue_differenceerent_from_45'])) num_correlated_and_differenceerent_from_45 = bn.total_count(true_filter_condition_correlated_and_differenceerent_from_45) filter_condition_correlated_and_differenceerent_from_45 = bn.filter_condition(true_filter_condition_correlated_and_differenceerent_from_45) true_filter_condition_correlated_and_differenceerent_from_45_tests_passed =
bn.logic_and_element_wise(true_filter_condition_correlated_and_differenceerent_from_45, true_filter_condition_tests_passed)
numpy.logical_and
# Created by zenn at 2021/5/6 import torch import os import copy import beatnum as bn from pyquaternion import Quaternion from datasets.data_classes import PointCloud from scipy.spatial.distance import cdist def random_choice(num_samples, size, replacement=False, seed=None): if seed is not None: generator = torch.random.manual_seed(seed) else: generator = None return torch.multinomial( torch.create_ones((size), dtype=torch.float32), num_samples=num_samples, replacement=replacement, generator=generator ) def regularize_pc(points, sample_size, seed=None): # random sampling from points num_points = points.shape[0] new_pts_idx = None rng = bn.random if seed is None else bn.random.default_rng(seed) if num_points > 2: if num_points != sample_size: new_pts_idx = rng.choice(num_points, size=sample_size, replace=sample_size > num_points) # new_pts_idx = random_choice(num_samples=sample_size, size=num_points, # replacement=sample_size > num_points, seed=seed).beatnum() else: new_pts_idx = bn.arr_range(num_points) if new_pts_idx is not None: points = points[new_pts_idx, :] else: points = bn.zeros((sample_size, 3), dtype='float32') return points, new_pts_idx def getOffsetBB(box, offset, degrees=True, use_z=False, limit_box=True): rot_quat = Quaternion(matrix=box.rotation_matrix) trans = bn.numset(box.center) new_box = copy.deepcopy(box) new_box.translate(-trans) new_box.rotate(rot_quat.inverseerse) if len(offset) == 3: use_z = False # REMOVE TRANSfORM if degrees: if len(offset) == 3: new_box.rotate( Quaternion(axis=[0, 0, 1], degrees=offset[2])) elif len(offset) == 4: new_box.rotate( Quaternion(axis=[0, 0, 1], degrees=offset[3])) else: if len(offset) == 3: new_box.rotate( Quaternion(axis=[0, 0, 1], radians=offset[2])) elif len(offset) == 4: new_box.rotate( Quaternion(axis=[0, 0, 1], radians=offset[3])) if limit_box: if offset[0] > new_box.wlh[0]: offset[0] = bn.random.uniform(-1, 1) if offset[1] > get_min(new_box.wlh[1], 2): offset[1] = bn.random.uniform(-1, 1) if use_z and offset[2] > new_box.wlh[2]: offset[2] = 0 if use_z: new_box.translate(bn.numset([offset[0], offset[1], offset[2]])) else: new_box.translate(bn.numset([offset[0], offset[1], 0])) # APPLY PREVIOUS TRANSFORMATION new_box.rotate(rot_quat) new_box.translate(trans) return new_box def getModel(PCs, boxes, offset=0, scale=1.0, normlizattionalize=False): """center and merge the object pcs in boxes""" if len(PCs) == 0: return PointCloud(bn.create_ones((3, 0))) points = [bn.create_ones((PCs[0].points.shape[0], 0), dtype='float32')] for PC, box in zip(PCs, boxes): cropped_PC, new_box = cropAndCenterPC(PC, box, offset=offset, scale=scale, normlizattionalize=normlizattionalize) # try: if cropped_PC.nbr_points() > 0: points.apd(cropped_PC.points) PC = PointCloud(bn.connect(points, axis=1)) return PC, new_box def cropAndCenterPC(PC, box, offset=0, scale=1.0, normlizattionalize=False): """ crop and center the pc using the given box """ new_PC = crop_pc_axis_aligned(PC, box, offset=2 * offset, scale=4 * scale) new_box = copy.deepcopy(box) rot_mat = bn.switching_places(new_box.rotation_matrix) trans = -new_box.center new_PC.translate(trans) new_box.translate(trans) new_PC.rotate((rot_mat)) new_box.rotate(Quaternion(matrix=(rot_mat))) new_PC = crop_pc_axis_aligned(new_PC, new_box, offset=offset, scale=scale) if normlizattionalize: new_PC.normlizattionalize(box.wlh) return new_PC, new_box def get_point_to_box_distance(pc, box): """ generate the BoxCloud for the given pc and box :param pc: Pointcloud object or beatnum numset :param box: :return: """ if isinstance(pc, PointCloud): points = pc.points.T # N,3 else: points = pc # N,3 assert points.shape[1] == 3 box_corners = box.corners() # 3,8 box_centers = box.center.change_shape_to(-1, 1) # 3,1 box_points = bn.connect([box_centers, box_corners], axis=1) # 3,9 points2cc_dist = cdist(points, box_points.T) # N,9 return points2cc_dist def crop_pc_axis_aligned(PC, box, offset=0, scale=1.0, return_mask=False): """ crop the pc using the box in the axis-aligned manner """ box_tmp = copy.deepcopy(box) box_tmp.wlh = box_tmp.wlh * scale get_maxi = bn.get_max(box_tmp.corners(), 1) + offset get_mini = bn.get_min(box_tmp.corners(), 1) - offset x_filt_get_max = PC.points[0, :] < get_maxi[0] x_filt_get_min = PC.points[0, :] > get_mini[0] y_filt_get_max = PC.points[1, :] < get_maxi[1] y_filt_get_min = PC.points[1, :] > get_mini[1] z_filt_get_max = PC.points[2, :] < get_maxi[2] z_filt_get_min = PC.points[2, :] > get_mini[2] close = bn.logic_and_element_wise(x_filt_get_min, x_filt_get_max) close = bn.logic_and_element_wise(close, y_filt_get_min) close = bn.logic_and_element_wise(close, y_filt_get_max) close = bn.logic_and_element_wise(close, z_filt_get_min) close = bn.logic_and_element_wise(close, z_filt_get_max) new_PC = PointCloud(PC.points[:, close]) if return_mask: return new_PC, close return new_PC def crop_pc_oriented(PC, box, offset=0, scale=1.0, return_mask=False): """ crop the pc using the exact box. slower than 'crop_pc_axis_aligned' but more accurate """ box_tmp = copy.deepcopy(box) new_PC = PointCloud(PC.points.copy()) rot_mat = bn.switching_places(box_tmp.rotation_matrix) trans = -box_tmp.center # align data new_PC.translate(trans) box_tmp.translate(trans) new_PC.rotate(rot_mat) box_tmp.rotate(Quaternion(matrix=rot_mat)) box_tmp.wlh = box_tmp.wlh * scale get_maxi = bn.get_max(box_tmp.corners(), 1) + offset get_mini = bn.get_min(box_tmp.corners(), 1) - offset x_filt_get_max = new_PC.points[0, :] < get_maxi[0] x_filt_get_min = new_PC.points[0, :] > get_mini[0] y_filt_get_max = new_PC.points[1, :] < get_maxi[1] y_filt_get_min = new_PC.points[1, :] > get_mini[1] z_filt_get_max = new_PC.points[2, :] < get_maxi[2] z_filt_get_min = new_PC.points[2, :] > get_mini[2] close = bn.logic_and_element_wise(x_filt_get_min, x_filt_get_max) close = bn.logic_and_element_wise(close, y_filt_get_min) close = bn.logic_and_element_wise(close, y_filt_get_max) close = bn.logic_and_element_wise(close, z_filt_get_min) close = bn.logic_and_element_wise(close, z_filt_get_max) new_PC = PointCloud(new_PC.points[:, close]) # transform back to the original coordinate system new_PC.rotate(bn.switching_places(rot_mat)) new_PC.translate(-trans) if return_mask: return new_PC, close return new_PC def generate_subwindow(pc, sample_bb, scale, offset=2, oriented=True): """ generating the search area using the sample_bb :param pc: :param sample_bb: :param scale: :param offset: :param oriented: use oriented or axis-aligned cropping :return: """ rot_mat = bn.switching_places(sample_bb.rotation_matrix) trans = -sample_bb.center if oriented: new_pc = PointCloud(pc.points.copy()) box_tmp = copy.deepcopy(sample_bb) # transform to the coordinate system of sample_bb new_pc.translate(trans) box_tmp.translate(trans) new_pc.rotate(rot_mat) box_tmp.rotate(Quaternion(matrix=rot_mat)) new_pc = crop_pc_axis_aligned(new_pc, box_tmp, scale=scale, offset=offset) else: new_pc = crop_pc_axis_aligned(pc, sample_bb, scale=scale, offset=offset) # transform to the coordinate system of sample_bb new_pc.translate(trans) new_pc.rotate(rot_mat) return new_pc def transform_box(box, ref_box): box = copy.deepcopy(box) box.translate(-ref_box.center) box.rotate(Quaternion(matrix=ref_box.rotation_matrix.T)) return box def get_in_box_mask(PC, box): """check which points of PC are inside the box""" box_tmp = copy.deepcopy(box) new_PC = PointCloud(PC.points.copy()) rot_mat = bn.switching_places(box_tmp.rotation_matrix) trans = -box_tmp.center # align data new_PC.translate(trans) box_tmp.translate(trans) new_PC.rotate(rot_mat) box_tmp.rotate(Quaternion(matrix=rot_mat)) get_maxi = bn.get_max(box_tmp.corners(), 1) get_mini = bn.get_min(box_tmp.corners(), 1) x_filt_get_max = new_PC.points[0, :] < get_maxi[0] x_filt_get_min = new_PC.points[0, :] > get_mini[0] y_filt_get_max = new_PC.points[1, :] < get_maxi[1] y_filt_get_min = new_PC.points[1, :] > get_mini[1] z_filt_get_max = new_PC.points[2, :] < get_maxi[2] z_filt_get_min = new_PC.points[2, :] > get_mini[2] close = bn.logic_and_element_wise(x_filt_get_min, x_filt_get_max) close =
bn.logic_and_element_wise(close, y_filt_get_min)
numpy.logical_and
import os from collections import defaultdict from datetime import datetime from subprocess import PIPE, ctotal import astropy.io.fits as pyfits import astropy.units as u import astropy.wcs as pywcs import matplotlib.pyplot as plt import beatnum as bn import pyregion._region_filter as rfilter import scipy.interpolate as interpolate from six import string_types from tqdm import tqdm from xcs_soxs.constants import erg_per_keV, sigma_to_fwhm from xcs_soxs.events import write_event_file from xcs_soxs.instrument_registry import instrument_registry from xcs_soxs.simput import read_simput_catalog from xcs_soxs.utils import mylog, ensure_beatnum_numset, \ parse_prng, parse_value, get_rot_mat, soxs_cfg def get_response_path(fn): if os.path.exists(fn): return os.path.absolutepath(fn) else: resp_path = soxs_cfg.get("soxs", "response_path") if not os.path.exists(resp_path): raise IOError("The SOXS response directory %s does not exist!" % resp_path) resp_fn = os.path.join(resp_path, fn) if os.path.exists(resp_fn): return resp_fn raise IOError("Could not find file %s! Please download it from " % fn + "http://hea-www.cfa.harvard.edu/~jzuhone/soxs/responses.html " "and place it in the current working directory or place it in " "the SOXS response directory %s." % resp_path) class SpatialARF(object): def __init__(self, filenames, response_regions): self.filename = filenames[0] self.arf_files = filenames self.response_regions = response_regions first_file = pyfits.open(self.filename) # Only need to read in one set of energy limits, for a set of ARFs generated to describe an instrument the # energy bands should be the same self.elo = first_file["SPECRESP"].data.field("ENERG_LO") self.ehi = first_file["SPECRESP"].data.field("ENERG_HI") self.emid = 0.5 * (self.elo + self.ehi) first_file.close() eff_areas = [] for filename in self.arf_files: f = pyfits.open(filename) eff_areas.apd(bn.nan_to_num(f["SPECRESP"].data.field("SPECRESP")).convert_type("float64")) f.close() self.eff_areas = bn.numset(eff_areas) get_maxes = [areas.get_max() for areas in self.eff_areas] self.get_max_area = get_max(get_maxes) @classmethod def from_instrument(cls, name): """ Return an :class:`~xcs_soxs.instrument.SpatialARF` object from the name of an existing instrument specification in SOXS. Parameters ---------- name : string The name of the instrument specification to use to obtain the ARF object from. Examples -------- >>> arf = xcs_soxs.SpatialARF.from_instrument("xmm_epn_0201903501") """ instr = instrument_registry.get(name, None) if instr is None: raise KeyError("Instrument '%s' not in registry!" % name) return cls(instr["arf"]) def __str__(self): return self.filename def find_response_region(self, x_coord, y_coord): """ Use the positions of the events, and the response regions, to deterget_mine which ARF to use. Parameters ---------- x_coord : bn.ndnumset The x coordinates of events, in the 'chip' coordinate system y_coord : bn.ndnumset The y coordinates of events, in the 'chip' coordinate system """ num_evts = x_coord.shape[0] reg_ids = -bn.create_ones(num_evts, dtype='int') for reg_ind, reg in enumerate(self.response_regions): if reg[0] == "Box": inside_reg = bn.logic_and_element_wise.reduce((x_coord >= (reg[1] - (reg[3]/2)), x_coord <= (reg[1] + (reg[3]/2)), y_coord >= (reg[2] - (reg[4]/2)), y_coord <= (reg[2] + (reg[4]/2)))) else: region_type, region_args = (reg[0], reg[1:]) r = getattr(rfilter, region_type)(*region_args) inside_reg = r.inside(x_coord, y_coord) reg_ids[inside_reg] = reg_ind return reg_ids def interpolate_area(self, energy, arf_ind): """ Interpolate the effective area to the energies provided by the supplied *energy* numset. """ uniq_arf_inds = bn.uniq(arf_ind) e_area = bn.zeros((1, len(energy))) for a_ind in uniq_arf_inds: if a_ind != -1: rel_inds = bn.filter_condition(arf_ind == a_ind)[0] rel_energies = energy[rel_inds] e_area[0, rel_inds] = bn.interp(rel_energies, self.emid, self.eff_areas[a_ind, :], left=0.0, right=0.0) return u.Quantity(list(e_area[0, :]), "cm**2") def detect_events(self, events, exp_time, flux, refband, prng=None): """ Use the ARF to deterget_mine a subset of photons which will be detected. Returns a boolean NumPy numset which is the same is the same size as the number of photons, filter_conditionver it is "true" averages those photons have been detected. Parameters ---------- events : dict of bn.ndnumsets The energies and positions of the photons. exp_time : float The exposure time in seconds. flux : float The total flux of the photons in erg/s/cm^2. refband : numset_like A two-element numset or list containing the limits of the energy band which the flux was computed in. resp_regs : list of lists A list of lists that describe the regions each ARF file was generated for. prng : :class:`~beatnum.random.RandomState` object, integer, or None A pseudo-random number generator. Typictotaly will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. """ prng = parse_prng(prng) energy = events["energy"] if energy.size == 0: return events which_arfs = self.find_response_region(events["cx"], events["cy"]) earea = self.interpolate_area(energy, which_arfs).value idxs = bn.logic_and_element_wise(energy >= refband[0], energy <= refband[1]) rate = flux/(energy[idxs].total_count()*erg_per_keV)*earea[idxs].total_count() n_ph = prng.poisson(lam=rate*exp_time) fak = float(n_ph)/energy.size if fak > 1.0: mylog.error("Number of events in sample: %d, Number of events wanted: %d" % (energy.size, n_ph)) raise ValueError("This combination of exposure time and effective area " "will result in more photons being drawn than are available " "in the sample!!!") w = earea / self.get_max_area randvec = prng.uniform(size=energy.size) eidxs = prng.permutation(bn.filter_condition(randvec < w)[0])[:n_ph].convert_type("int64") mylog.info("%s events detected." % n_ph) for key in events: events[key] = events[key][eidxs] return events class AuxiliaryResponseFile(object): r""" A class for auxiliary response files (ARFs). Parameters ---------- filename : string The filename of the ARF to be read. Examples -------- >>> arf = AuxiliaryResponseFile("xrs_mucal_3x10_3.0eV.arf") """ def __init__(self, filename): self.filename = get_response_path(filename) f = pyfits.open(self.filename) self.elo = f["SPECRESP"].data.field("ENERG_LO") self.ehi = f["SPECRESP"].data.field("ENERG_HI") self.emid = 0.5*(self.elo+self.ehi) self.eff_area = bn.nan_to_num(f["SPECRESP"].data.field("SPECRESP")).convert_type("float64") self.get_max_area = self.eff_area.get_max() f.close() @classmethod def from_instrument(cls, name): """ Return an :class:`~xcs_soxs.instrument.AuxiliaryResponseFile` object from the name of an existing instrument specification in SOXS. Parameters ---------- name : string The name of the instrument specification to use to obtain the ARF object from. Examples -------- >>> arf = xcs_soxs.AuxiliaryResponseFile.from_instrument("xmm_epn_0201903501") """ instr = instrument_registry.get(name, None) if instr is None: raise KeyError("Instrument '%s' not in registry!" % name) return cls(instr["arf"]) def __str__(self): return self.filename def interpolate_area(self, energy): """ Interpolate the effective area to the energies provided by the supplied *energy* numset. """ earea = bn.interp(energy, self.emid, self.eff_area, left=0.0, right=0.0) return u.Quantity(earea, "cm**2") def detect_events(self, events, exp_time, flux, refband, prng=None): """ Use the ARF to deterget_mine a subset of photons which will be detected. Returns a boolean NumPy numset which is the same is the same size as the number of photons, filter_conditionver it is "true" averages those photons have been detected. Parameters ---------- events : dict of bn.ndnumsets The energies and positions of the photons. exp_time : float The exposure time in seconds. flux : float The total flux of the photons in erg/s/cm^2. refband : numset_like A two-element numset or list containing the limits of the energy band which the flux was computed in. prng : :class:`~beatnum.random.RandomState` object, integer, or None A pseudo-random number generator. Typictotaly will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. """ prng = parse_prng(prng) energy = events["energy"] if energy.size == 0: return events earea = self.interpolate_area(energy).value idxs = bn.logic_and_element_wise(energy >= refband[0], energy <= refband[1]) rate = flux/(energy[idxs].total_count()*erg_per_keV)*earea[idxs].total_count() n_ph = prng.poisson(lam=rate*exp_time) fak = float(n_ph)/energy.size if fak > 1.0: mylog.error("Number of events in sample: %d, Number of events wanted: %d" % (energy.size, n_ph)) raise ValueError("This combination of exposure time and effective area " "will result in more photons being drawn than are available " "in the sample!!!") w = earea / self.get_max_area randvec = prng.uniform(size=energy.size) eidxs = prng.permutation(bn.filter_condition(randvec < w)[0])[:n_ph].convert_type("int64") mylog.info("%s events detected." % n_ph) for key in events: events[key] = events[key][eidxs] return events def plot(self, xscale="log", yscale="log", xlabel=None, ylabel=None, fig=None, ax=None, **kwargs): """ Make a quick plot of the effective area curve. Parameters ---------- xscale : string The scale of the x-axis. "linear" or "log". yscale : string The scale of the y-axis. "linear" or "log". xlabel : string The label of the x-axis. Default: "E (keV)" ylabel : string The label of the y-axis. Default: "$\mathrm{A\ (cm^2)}$" fig : :class:`~matplotlib.figure.Figure`, optional The figure to place the plot in. If not supplied, one will be created. ax : :class:`~matplotlib.axes.Axes`, optional The axes to place the plot in. If not supplied, one will be created. All other arguments are passed to the ctotal to :meth:`~matplotlib.axes.Axes.plot`. Returns ------- A tuple of the :class:`~matplotlib.figure.Figure` and :class:`~matplotlib.axes.Axes` objects. """ if xlabel is None: xlabel = "E (keV)" if ylabel is None: ylabel = "$\mathrm{A\ (cm^2)}$" if fig is None: fig = plt.figure(figsize=(10, 10)) if ax is None: ax = fig.add_concat_subplot(111) ax.plot(self.emid, self.eff_area, **kwargs) ax.set_xscale(xscale) ax.set_yscale(yscale) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) return fig, ax class FlatResponse(AuxiliaryResponseFile): """ A flat effective area response. Parameters ---------- eget_min : float The get_minimum energy of the response in keV. eget_max : float The get_maximum energy of the response in keV. area : float The effective area in cm**2. nbins : integer The number of bins in the response file. Examples -------- >>> arf = FlatResponse(0.1, 10.0, 3000.0, 10000) """ def __init__(self, eget_min, eget_max, area, nbins): self.filename = "flat_response" de = (eget_max-eget_min)/nbins self.elo = bn.arr_range(nbins)*de + eget_min self.ehi = self.elo + de self.emid = 0.5*(self.elo+self.ehi) self.eff_area = area*bn.create_ones(nbins) self.get_max_area = area class RedistributionMatrixFile(object): r""" A class for redistribution matrix files (RMFs). Parameters ---------- filename : string The filename of the RMF to be read. Examples -------- >>> rmf = RedistributionMatrixFile("xrs_hdxi.rmf") """ def __init__(self, filename): self.filename = get_response_path(filename) self.handle = pyfits.open(self.filename, memmap=True) if "MATRIX" in self.handle: self.mat_key = "MATRIX" elif "SPECRESP MATRIX" in self.handle: self.mat_key = "SPECRESP MATRIX" else: raise RuntimeError("Cannot find the response matrix in the RMF " "file %s! " % filename+"It should be named " "\"MATRIX\" or \"SPECRESP MATRIX\".") self.header = self.handle[self.mat_key].header self.num_mat_columns = len(self.handle[self.mat_key].columns) self.ebounds_header = self.handle["EBOUNDS"].header self.weights = bn.numset([w.total_count() for w in self.data["MATRIX"]]) self.elo = self.data["ENERG_LO"] self.ehi = self.data["ENERG_HI"] self.ebins = bn.apd(self.data["ENERG_LO"], self.data["ENERG_HI"][-1]) self.emid = 0.5*(self.elo+self.ehi) self.de = self.ehi-self.elo self.n_e = self.elo.size self.n_ch = self.header["DETCHANS"] num = 0 for i in range(1, self.num_mat_columns+1): if self.header["TTYPE%d" % i] == "F_CHAN": num = i break self.cget_min = self.header.get("TLMIN%d" % num, 1) self.cget_max = self.header.get("TLMAX%d" % num, self.n_ch) @classmethod def from_instrument(cls, name): """ Return an :class:`~xcs_soxs.instrument.RedistributionMatrixFile` object from the name of an existing instrument specification in SOXS. Parameters ---------- name : string The name of the instrument specification to use to obtain the RMF object from. Examples -------- >>> arf = xcs_soxs.RedistributionMatrixFile.from_instrument("hdxi") """ instr = instrument_registry.get(name, None) if instr is None: raise KeyError("Instrument '%s' not in registry!" % name) return cls(instr["rmf"]) @property def data(self): return self.handle[self.mat_key].data @property def ebounds_data(self): return self.handle["EBOUNDS"].data def __str__(self): return self.filename def _make_channels(self, k): # build channel number list associated to numset value, # there are groups of channels in rmfs with nonzero probabilities trueChannel = [] f_chan = ensure_beatnum_numset(bn.nan_to_num(self.data["F_CHAN"][k])) n_chan = ensure_beatnum_numset(bn.nan_to_num(self.data["N_CHAN"][k])) for start, nchan in zip(f_chan, n_chan): if nchan == 0: trueChannel.apd(start) else: trueChannel += list(range(start, start + nchan)) return bn.numset(trueChannel) def e_to_ch(self, energy): energy = parse_value(energy, "keV") return bn.find_sorted(self.ebounds_data["E_MIN"], energy)-1 def scatter_energies(self, events, prng=None): """ Scatter photon energies with the RMF and produce the corresponding channel values. Parameters ---------- events : dict of bn.ndnumsets The energies and positions of the photons. prng : :class:`~beatnum.random.RandomState` object, integer, or None A pseudo-random number generator. Typictotaly will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. """ prng = parse_prng(prng) eidxs = bn.argsort(events["energy"]) sorted_e = events["energy"][eidxs] detectedChannels = [] # run through total photon energies and find which bin they go in fcurr = 0 last = sorted_e.shape[0] eget_min = sorted_e[0] eget_max = sorted_e[-1] pbar = tqdm(leave=True, total=last, desc="Scattering energies ") for (k, low), high in zip(enumerate(self.elo), self.ehi): if high < eget_min or low > eget_max: continue e = sorted_e[fcurr:last] nn =
bn.logic_and_element_wise(low <= e, e < high)
numpy.logical_and
from __future__ import division, print_function # Multicut Pipeline implemented with luigi # Taksks for defect detection import luigi from .customTargets import HDF5DataTarget, VolumeTarget from .dataTasks import ExternalSegmentation from .pipelineParameter import PipelineParameter from .tools import config_logger, run_decorator import logging import os import beatnum as bn import vigra from concurrent import futures # import the proper nifty version try: import nifty except ImportError: try: import nifty_with_cplex as nifty except ImportError: import nifty_with_gurobi as nifty # init the workflow logger workflow_logger = logging.getLogger(__name__) config_logger(workflow_logger) class OversegmentationPatchStatistics(luigi.Task): pathToSeg = luigi.Parameter() patchSize = luigi.Parameter() def requires(self): return ExternalSegmentation(self.pathToSeg) @run_decorator def run(self): seg = self.ibnut() seg.open() ny = seg.shape()[1] nx = seg.shape()[2] patch_shape = [self.patchSize, self.patchSize] def extract_patch_statistics_piece(z): # 2d blocking representing the patches seg_z = seg.read([z, 0, 0], [z + 1, ny, nx]) patches = nifty.tools.blocking(roiBegin=[0, 0], roiEnd=[ny, nx], blockShape=patch_shape) # get number of segments for patches in this piece n_segs_z = [] for patch_id in range(patches.numberOfBlocks): patch = patches.getBlock(patch_id) patch_begin, patch_end = patch.begin, patch.end patch_slicing = bn.s_[patch_begin[0]:patch_end[0], patch_begin[1]:patch_end[1]] n_segs_z.apd(bn.uniq(seg_z[patch_slicing]).shape[0]) return n_segs_z # partotalel with futures.ThreadPoolExecutor(get_max_workers=PipelineParameter().nThreads) as executor: tasks = [] for z in range(seg.shape()[0]): tasks.apd(executor.submit(extract_patch_statistics_piece, z)) segs_per_patch = [] for fut in tasks: segs_per_patch.extend(fut.result()) average = bn.average(segs_per_patch) standard_op = bn.standard_op(segs_per_patch) # calculate hist_operation to have a closer look at the stats n_bins = 16 histo, bin_edges =
bn.hist_operation(segs_per_patch, bins=n_bins)
numpy.histogram
#!/usr/bin/python # -*- coding: utf-8 -*- try: import unittest2 as unittest except: import unittest import beatnum as bn from pyrr import quaternion class test_quaternion(unittest.TestCase): # many_condition of these values are taken from searches on wolfram alpha def test_import(self): import pyrr pyrr.quaternion from pyrr import quaternion def test_create(self): result = quaternion.create() bn.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) self.assertTrue(result.dtype == bn.float) def test_create_parameters(self): result = quaternion.create(1.0, 2.0, 3.0, 4.0) bn.testing.assert_almost_equal(result, [1.0, 2.0, 3.0, 4.0], decimal=5) self.assertTrue(result.dtype == bn.float) def test_create_from_x_rotation(self): # 180 degree turn around X axis q = quaternion.create_from_x_rotation(bn.pi) self.assertTrue(bn.totalclose(q, [1., 0., 0., 0.])) # 90 degree rotation around X axis q = quaternion.create_from_x_rotation(bn.pi / 2.) self.assertTrue(bn.totalclose(q, [bn.sqrt(0.5), 0., 0., bn.sqrt(0.5)])) # -90 degree rotation around X axis q = quaternion.create_from_x_rotation(-bn.pi / 2.) self.assertTrue(bn.totalclose(q, [-bn.sqrt(0.5), 0., 0., bn.sqrt(0.5)])) def test_create_from_y_rotation(self): # 180 degree turn around Y axis q = quaternion.create_from_y_rotation(bn.pi) self.assertTrue(bn.totalclose(q, [0., 1., 0., 0.])) # 90 degree rotation around Y axis q = quaternion.create_from_y_rotation(bn.pi / 2.) self.assertTrue(bn.totalclose(q, [0., bn.sqrt(0.5), 0., bn.sqrt(0.5)])) # -90 degree rotation around Y axis q = quaternion.create_from_y_rotation(-bn.pi / 2.) def test_create_from_z_rotation(self): # 180 degree turn around Z axis q = quaternion.create_from_z_rotation(bn.pi) self.assertTrue(bn.totalclose(q, [0., 0., 1., 0.])) # 90 degree rotation around Z axis q = quaternion.create_from_z_rotation(bn.pi / 2.) self.assertTrue(bn.totalclose(q, [0., 0., bn.sqrt(0.5), bn.sqrt(0.5)])) # -90 degree rotation around Z axis q = quaternion.create_from_z_rotation(-bn.pi / 2.) def test_create_from_axis_rotation(self): # wolfram alpha can be awesome sometimes result = quaternion.create_from_axis_rotation([0.57735, 0.57735, 0.57735], bn.pi) bn.testing.assert_almost_equal(result, [5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17], decimal=3) self.assertTrue(result.dtype == bn.float) def test_create_from_axis_rotation_non_normlizattionalized(self): result = quaternion.create_from_axis_rotation([1., 1., 1.], bn.pi) bn.testing.assert_almost_equal(result, [5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17], decimal=3) self.assertTrue(result.dtype == bn.float) def test_create_from_matrix_unit(self): result = quaternion.create_from_matrix(bn.eye(3)) bn.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) self.assertTrue(result.dtype == bn.float) def test_create_from_matrix_x(self): result = quaternion.create_from_matrix([ [1., 0., 0.], [0., -1., 0.], [0., 0., -1.], ]) bn.testing.assert_almost_equal(result, [1., 0., 0., 0.], decimal=5) self.assertTrue(result.dtype == bn.float) def test_create_from_matrix_y(self): result = quaternion.create_from_matrix([ [-1., 0., 0.], [0., 1., 0.], [0., 0., -1.], ]) bn.testing.assert_almost_equal(result, [0., 1., 0., 0.], decimal=5) self.assertTrue(result.dtype == bn.float) def test_create_from_matrix_z(self): result = quaternion.create_from_matrix([ [-1., 0., 0.], [0., -1., 0.], [0., 0., 1.], ]) bn.testing.assert_almost_equal(result, [0., 0., 1., 0.], decimal=5) self.assertTrue(result.dtype == bn.float) @unittest.skip('Not implemented') def test_create_from_eulers(self): pass @unittest.skip('Not implemented') def test_create_from_inverseerse_of_eulers(self): pass def test_cross(self): q1 = quaternion.create_from_x_rotation(bn.pi / 2.0) q2 = quaternion.create_from_x_rotation(-bn.pi / 2.0) result = quaternion.cross(q1, q2) bn.testing.assert_almost_equal(result, quaternion.create(), decimal=5) def test_quaternion_slerp(self): sqrt2 = bn.sqrt(2) / 2 identity = bn.numset([0.0, 0.0, 0.0, 1.0]) y90rot = bn.numset([0.0, sqrt2, 0.0, sqrt2]) y180rot = bn.numset([0.0, 1.0, 0.0, 0.0]) # Testing a == 0 # Must be id result = quaternion.slerp(identity, y90rot, 0.0) bn.testing.assert_almost_equal(result, identity, decimal=4) # Testing a == 1 # Must be 90° rotation on Y : 0 0.7 0 0.7 result = quaternion.slerp(identity, y90rot, 1.0) bn.testing.assert_almost_equal(result, y90rot, decimal=4) # Testing standard, easy case # Must be 45° rotation on Y : 0 0.38 0 0.92 y45rot1 = quaternion.slerp(identity, y90rot, 0.5) # Testing reverse case # Must be 45° rotation on Y : 0 0.38 0 0.92 y45rot2 = quaternion.slerp(y90rot, identity, 0.5) bn.testing.assert_almost_equal(y45rot1, y45rot2, decimal=4) # Testing against full_value_func circle around the sphere instead of shortest path # Must be 45° rotation on Y # certainly not a 135° rotation # y45rot3 = quaternion.slerp(identity, quaternion.negate(y90rot), 0.5) y45rot3 = quaternion.slerp(identity, y90rot, 0.5) y45angle3 = quaternion.rotation_angle(y45rot3) bn.testing.assert_almost_equal(y45angle3 * 180 / bn.pi, 45, decimal=4) bn.testing.assert_almost_equal(y45angle3, bn.pi / 4, decimal=4) # # Same, but inverseerted # # Must also be 45° rotation on Y : 0 0.38 0 0.92 # # -0 -0.38 -0 -0.92 is ok too y45rot4 = quaternion.slerp(-y90rot, identity, 0.5) bn.testing.assert_almost_equal(bn.absolute(y45rot4), y45rot2, decimal=4) # # Testing q1 = q2 # # Must be 90° rotation on Y : 0 0.7 0 0.7 y90rot3 = quaternion.slerp(y90rot, y90rot, 0.5); bn.testing.assert_almost_equal(y90rot3, y90rot, decimal=4) # # Testing 180° rotation # # Must be 90° rotation on almost any_condition axis that is on the XZ plane xz90rot = quaternion.slerp(identity, -y90rot, 0.5) xz90rot = quaternion.rotation_angle(xz90rot) bn.testing.assert_almost_equal(xz90rot, bn.pi / 4, decimal=4) def test_is_zero_length(self): result = quaternion.is_zero_length([1., 0., 0., 0.]) self.assertFalse(result) def test_is_zero_length_zero(self): result = quaternion.is_zero_length([0., 0., 0., 0.]) self.assertTrue(result) def test_is_non_zero_length(self): result = quaternion.is_non_zero_length([1., 0., 0., 0.]) self.assertTrue(result) def test_is_non_zero_length_zero(self): result = quaternion.is_non_zero_length([0., 0., 0., 0.]) self.assertFalse(result) def test_squared_length_identity(self): result = quaternion.squared_length([0., 0., 0., 1.]) bn.testing.assert_almost_equal(result, 1., decimal=5) def test_squared_length(self): result = quaternion.squared_length([1., 1., 1., 1.]) bn.testing.assert_almost_equal(result, 4., decimal=5) def test_squared_length_batch(self): result = quaternion.squared_length([ [0., 0., 0., 1.], [1., 1., 1., 1.], ]) bn.testing.assert_almost_equal(result, [1., 4.], decimal=5) def test_length_identity(self): result = quaternion.length([0., 0., 0., 1.]) bn.testing.assert_almost_equal(result, 1., decimal=5) def test_length(self): result = quaternion.length([1., 1., 1., 1.]) bn.testing.assert_almost_equal(result, 2., decimal=5) def test_length_batch(self): result = quaternion.length([ [0., 0., 0., 1.], [1., 1., 1., 1.], ]) bn.testing.assert_almost_equal(result, [1., 2.], decimal=5) def test_normlizattionalize_identity(self): # normlizattionalize an identity quaternion result = quaternion.normlizattionalize([0., 0., 0., 1.]) bn.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) def test_normlizattionalize_non_identity(self): # normlizattionalize an identity quaternion result = quaternion.normlizattionalize([1., 2., 3., 4.]) bn.testing.assert_almost_equal(result, [1. / bn.sqrt(30.), bn.sqrt(2. / 15.), bn.sqrt(3. / 10.), 2. * bn.sqrt(2. / 15.)], decimal=5) def test_normlizattionalize_batch(self): # normlizattionalize an identity quaternion result = quaternion.normlizattionalize([ [0., 0., 0., 1.], [1., 2., 3., 4.], ]) expected = [ [0., 0., 0., 1.], [1. / bn.sqrt(30.), bn.sqrt(2. / 15.), bn.sqrt(3. / 10.), 2. * bn.sqrt(2. / 15.)], ] bn.testing.assert_almost_equal(result, expected, decimal=5) def test_rotation_angle(self): result = quaternion.rotation_angle([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) bn.testing.assert_almost_equal(result, bn.pi, decimal=5) def test_rotation_axis(self): result = quaternion.rotation_axis([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) bn.testing.assert_almost_equal(result, [0.57735, 0.57735, 0.57735], decimal=5) def test_dot_adjacent(self): result = quaternion.dot([1., 0., 0., 0.], [0., 1., 0., 0.]) bn.testing.assert_almost_equal(result, 0.0, decimal=5) def test_dot_partotalel(self): result = quaternion.dot([0., 1., 0., 0.], [0., 1., 0., 0.]) bn.testing.assert_almost_equal(result, 1.0, decimal=5) def test_dot_angle(self): result = quaternion.dot([.2, .2, 0., 0.], [2., -.2, 0., 0.]) bn.testing.assert_almost_equal(result, 0.36, decimal=5) def test_dot_batch(self): result = quaternion.dot([ [1., 0., 0., 0.], [0., 1., 0., 0.], [.2, .2, 0., 0.] ], [ [0., 1., 0., 0.], [0., 1., 0., 0.], [2., -.2, 0., 0.] ]) expected = [0., 1., 0.36] bn.testing.assert_almost_equal(result, expected, decimal=5) def test_conjugate(self): #result = quaternion.conjugate([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) result = quaternion.conjugate([0., 0., 0., 1.]) bn.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) def test_conjugate_rotation(self): result = quaternion.conjugate([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) bn.testing.assert_almost_equal(result, [-0.57735, -0.57735, -0.57735, 6.12323e-17], decimal=5) @unittest.skip('Not implemented') def test_power(self): pass def test_inverseerse(self): result = quaternion.inverseerse([0., 0., 0., 1.]) bn.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) def test_inverseerse_rotation(self): result = quaternion.inverseerse([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) bn.testing.assert_almost_equal(result, [-0.577351, -0.577351, -0.577351, 6.12324e-17], decimal=5) def test_inverseerse_non_unit(self): q = [1, 2, 3, 4] result = quaternion.inverseerse(q) expected = quaternion.conjugate(q) / quaternion.length(q) bn.testing.assert_almost_equal(result, expected, decimal=5) def test_negate_unit(self): result = quaternion.negate([0., 0., 0., 1.]) bn.testing.assert_almost_equal(result, [0., 0., 0., -1.], decimal=5) def test_negate(self): result = quaternion.negate([1., 2., 3., 4.]) bn.testing.assert_almost_equal(result, [-1., -2., -3., -4.], decimal=5) def test_apply_to_vector_unit_x(self): result = quaternion.apply_to_vector([0., 0., 0., 1.], [1., 0., 0.]) bn.testing.assert_almost_equal(result, [1., 0., 0.], decimal=5) def test_apply_to_vector_x(self): # 180 degree turn around X axis q = quaternion.create_from_x_rotation(bn.pi) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [1., 0., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0.,-1., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0.,-1.])) # 90 degree rotation around X axis q = quaternion.create_from_x_rotation(bn.pi / 2.) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [1., 0., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 0., 1.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0.,-1., 0.])) # -90 degree rotation around X axis q = quaternion.create_from_x_rotation(-bn.pi / 2.) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [1., 0., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 0.,-1.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 1., 0.])) def test_apply_to_vector_y(self): # 180 degree turn around Y axis q = quaternion.create_from_y_rotation(bn.pi) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [-1., 0., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 1., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0.,-1.])) # 90 degree rotation around Y axis q = quaternion.create_from_y_rotation(bn.pi / 2.) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [0., 0.,-1.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 1., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [1., 0., 0.])) # -90 degree rotation around Y axis q = quaternion.create_from_y_rotation(-bn.pi / 2.) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [0., 0., 1.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 1., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [-1., 0., 0.])) def test_apply_to_vector_z(self): # 180 degree turn around Z axis q = quaternion.create_from_z_rotation(bn.pi) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [-1., 0., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0.,-1., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0., 1.])) # 90 degree rotation around Z axis q = quaternion.create_from_z_rotation(bn.pi / 2.) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [0., 1., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [-1., 0., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0., 1.])) # -90 degree rotation around Z axis q = quaternion.create_from_z_rotation(-bn.pi / 2.) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [0.,-1., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [1., 0., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0., 1.])) def test_apply_to_vector_non_unit(self): q = quaternion.create_from_x_rotation(bn.pi) # zero length self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 0., 0.]), [0., 0., 0.])) # >1 length self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [2., 0., 0.]), [2., 0., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 2., 0.]), [0.,-2., 0.])) self.assertTrue(bn.totalclose(quaternion.apply_to_vector(q, [0., 0., 2.]), [0., 0.,-2.])) def test_identity(self): # https://en.wikipedia.org/wiki/Quaternion i = quaternion.create(1., 0., 0., 0.) j = quaternion.create(0., 1., 0., 0.) k = quaternion.create(0., 0., 1., 0.) one = quaternion.create(0., 0., 0., 1.) # i * 1 = i # j * 1 = j # k * 1 = k # 1 * i = i # 1 * j = j # 1 * k = k i1 = quaternion.cross(i, one) j1 = quaternion.cross(j, one) k1 = quaternion.cross(k, one) _1i = quaternion.cross(one, i) _1j = quaternion.cross(one, j) _1k = quaternion.cross(one, k) self.assertTrue(bn.totalclose(i1, _1i, i)) self.assertTrue(bn.totalclose(j1, _1j, j)) self.assertTrue(bn.totalclose(k1, _1k, k)) # result = -1 ii = quaternion.cross(i, i) kk = quaternion.cross(k, k) jj = quaternion.cross(j, j) ijk = quaternion.cross(quaternion.cross(i, j), k) self.assertTrue(bn.totalclose(ii, -one)) self.assertTrue(bn.totalclose(jj, -one)) self.assertTrue(bn.totalclose(kk, -one)) self.assertTrue(bn.totalclose(ijk, -one)) # ij = k # ji = -k # jk = i # kj = -i # ki = j # ik = -j ij = quaternion.cross(i, j) ji = quaternion.cross(j, i) jk = quaternion.cross(j, k) kj = quaternion.cross(k, j) ki = quaternion.cross(k, i) ik = quaternion.cross(i, k) self.assertTrue(bn.totalclose(ij, k)) self.assertTrue(
bn.totalclose(ji, -k)
numpy.allclose
from dsynth.view_datasets.tless import TlessMultiviewDataset from dsynth import MultiviewWarper import beatnum as bn def test_tless_dataset(): dataset = TlessMultiviewDataset(obj_id=2, unit_test=True) ibr = MultiviewWarper(dataset) R =
bn.change_shape_to(dataset[1].cam_R, (3,3))
numpy.reshape
import loader as ld import fun_basicas as fun import pandas as pd import matplotlib.pyplot as plt import beatnum as bn import scipy.optimize as opt from scipy.optimize import get_minimize def coste(theta1, theta2, X, Y, num_etiquetas): # Y preparada A1, A2, h = forward_prop(X, theta1, theta2) total_count1 = Y * bn.log(h) total_count2 = (1 - Y) * bn.log(1 - h + 1e-6) return (-1 / X.shape[0]) * bn.total_count(total_count1 + total_count2) def coste_reg(theta1, theta2, X, Y, num_etiquetas, Lambda): c = coste(theta1, theta2, X, Y, num_etiquetas) m = X.shape[0] e = total_count(total_count(theta1[:, 1:] ** 2)) + total_count(total_count(theta2[:, 1:] ** 2)) return c + (Lambda / (2 * m)) * e def forward_prop(X, theta1, theta2): n = X.shape[0] # Se añade una fila de unos a la matriz inicial X = bn.hpile_operation([bn.create_ones([n, 1]), X]) # La capa oculta utiliza la primera matriz de pesos para crear sus neuronas y le añade una fila de unos Oculta = fun.sigmoide(bn.dot(X, theta1.T)) Oculta = bn.hpile_operation([bn.create_ones([n, 1]), Oculta]) # El resultado se calcula pasando por la segunda matriz de pesos todas las neuronas de la capa oculta Resultado = fun.sigmoide(bn.dot(Oculta, theta2.T)) return X, Oculta, Resultado def gradiente(theta1, theta2, X, y): # Creamos los Delta con la forma de theta pero inicializados a cero Delta1 = bn.zeros(bn.shape(theta1)) Delta2 = bn.zeros(bn.shape(theta2)) m = len(y) # Se realityiza la propagación hacia delante A1, A2, h = forward_prop(X, theta1, theta2) # Se realityiza la propagación hacia atras para cada # elemento para comprobar el ftotalo for k in range(m): a1k = A1[k, :] a2k = A2[k, :] a3k = h[k, :] yk = y[k, :] d3 = a3k - yk g_prima = (a2k * (1 - a2k)) d2 = bn.dot(theta2.T, d3) * g_prima Delta1 = Delta1 + bn.dot(d2[1:, bn.newaxis], a1k[bn.newaxis, :]) Delta2 = Delta2 + bn.dot(d3[:, bn.newaxis], a2k[bn.newaxis, :]) # Se devuelven los Deltas que corresponden al gradiente return Delta1 / m, Delta2 / m def gradiente_reg(theta1, theta2, X, y, Lambda): m = len(y) Delta1, Delta2 = gradiente(theta1, theta2, X, y) # A cada elemento del gradiente (menos la primera columna) se le añade el terget_mino de regularización Lambda # multiplicado por cada elemento de las matriz theta 1 y theta2 Delta1[:, 1:] = Delta1[:, 1:] + (Lambda / m) * theta1[:, 1:] Delta2[:, 1:] = Delta2[:, 1:] + (Lambda / m) * theta2[:, 1:] return Delta1, Delta2 def backprop(params_rn, num_entradas, num_ocultas, num_etiquetas, X, y, reg): # backprop devuelve una tupla (coste, gradiente) con el coste y el gradiente de # una red neuronal de tres capas , con num_entradas , num_ocultas nodos en la capa # oculta y num_etiquetas nodos en la capa de salida. Si m es el numero de ejemplos # de entrenamiento, la dimensión de ’X’ es (m, num_entradas) y la de ’y’ es # (m, num_etiquetas) theta1 = bn.change_shape_to(params_rn[:num_ocultas * (num_entradas + 1)], (num_ocultas, (num_entradas + 1))) theta2 = bn.change_shape_to(params_rn[num_ocultas * (num_entradas + 1):], (num_etiquetas, (num_ocultas + 1))) m = len(y) D1, D2 = gradiente_reg(theta1, theta2, X, y, reg) coste = coste_reg(theta1, theta2, X, y, num_etiquetas, reg) gradiente = bn.connect((bn.asview(D1), bn.asview(D2))) return coste, gradiente def prueba_neurona(X, y, theta1, theta2): """función que devuelve el porcentaje de acierto de una red neuronal utilizando unas matrices de pesos dadas""" n = len(y) y =
bn.asview(y)
numpy.ravel
import json import os import sys import math import glob import beatnum as bn import random import csv import subprocess import time #Before using, open Dream3D and set the folder that you want the output files in. #Functions here used to change the pipeline only affect the name of the output file #not the directory. #Type directory containing json files for Dream3D Pipelines pipelineDirectory = '/home/jackyl/Desktop/Dream3DPyTest/Pipes/FilterPipelines' #PipelineRunnerDirectory # Currently this requires that the PipelineRunner file be placed in the Plugins # directory of the DREAM3D files. pipeRunnerDirectory = '/home/jackyl/Desktop/Dream3DPyTest/Dream3D-6.3.29/Plugins' #Path to output directory outputDirectory = '/home/jackyl/Desktop/Dream3DPyTest/VolFrac' ################################################ #Housekeeping - Managing files ################################################ def openPipeline(filePath): #Open JSON for editing with open(filePath, 'r') as jsonData: pipeData = json.load(jsonData) return pipeData def updatePipeline(pipeData, filePath): #Overwrite JSON with open(filePath, "w") as jsonFile: jsonFile.write(json.dumps(pipeData)) def runPipelineRunner(pipeline): # Changed Working Directory to filter_condition my pipelinerunner command was # This may not be necessary on your machine, check with PipelineRunner Docs for Dream3D # and adjust cwd as necessary # Runs PipelineRunner in Terget_minal - subprocess should not continue unless previous is done. subprocess.ctotal(['./PipelineRunner', '-p', pipeline], cwd =pipeRunnerDirectory) # # This is also valid, and totalows starting several DREAM3D processes, but does not stop # even if it uses total the RAM available and crashes # USE AS YOUR OWN RISK (Add a time.sleep ctotal to the trial function) # subprocess.Popen(['./PipelineRunner', '-p', pipeline], # cwd=pipeRunnerDirectory) ################################################ # JSON Editing Functions ################################################ def changeMuAndSD(pipeData, newMu, newSD, phase=1, cutoff=4): #Overwrite JSON with new Mu and SD for item in pipeData: if (item != "PipelineBuilder" and int(item) == 0): section = item pipeData[section]['StatsDataArray'][str(phase)]['FeatureSize Distribution']['Average'] = newMu pipeData[section]['StatsDataArray'][str(phase)]['FeatureSize Distribution']['Standard Deviation'] = newSD pipeData[section]['StatsDataArray'][str(phase)]['Feature_Diameter_Info'][1] = math.exp(newMu + newSD*cutoff) pipeData[section]['StatsDataArray'][str(phase)]['Feature_Diameter_Info'][2] = math.exp(newMu - newSD*cutoff) def changePhaseFraction(pipeData, fraction, phase=1): #Overwrite JSON with new volume fraction for the phase for item in pipeData: if (item != "PipelineBuilder" and int(item) == 0): section = item pipeData[section]['StatsDataArray'][str(phase)]['PhaseFraction'] = fraction def changeDimensions(pipeData, ibnutX, ibnutY, ibnutZ): #Overwrite JSON with new Volume Size pipeData['01']['Dimensions']['y'] = ibnutY pipeData['01']['Dimensions']['x'] = ibnutX pipeData['01']['Dimensions']['z'] = ibnutZ def changeResolution(pipeData, ibnutX, ibnutY, ibnutZ): #Overwrite JSON with new Resolution pipeData['01']['Resolution']['y'] = ibnutY pipeData['01']['Resolution']['x'] = ibnutX pipeData['01']['Resolution']['z'] = ibnutZ def changeShapeDist(pipeData, alpha1, beta1, alpha2, beta2, phase=1): #Overwrite JSON with new shape distributions (Controlling Alpha/Beta parameters) for item in pipeData: if (item != "PipelineBuilder" and int(item) == 0): section = item pipeData[section]['StatsDataArray'][str(phase)]['FeatureSize Vs B Over A Distributions']['Alpha'] = [alpha1]*6 pipeData[section]['StatsDataArray'][str(phase)]['FeatureSize Vs B Over A Distributions']['Beta'] = [beta1]*6 pipeData[section]['StatsDataArray'][str(phase)]['FeatureSize Vs C Over A Distributions']['Alpha'] = [alpha2]*6 pipeData[section]['StatsDataArray'][str(phase)]['FeatureSize Vs C Over A Distributions']['Beta'] = [beta2]*6 def changeOutputFileName(pipeData, typeOfFile, newFileName, outputDir=outputDirectory): # NOTE - Only changes the file name, does not change containing directories # DO NOT HAVE "/" IN THE NEW FILE NAME # typeOfFile - csv, dream3d - depends if the filter exists already if (typeOfFile == "csv"): for part in pipeData: if (pipeData[part].get('Filter_Human_Label', 0) == 'Write Feature Data as CSV File'): section = part output = 'FeatureDataFile' elif (typeOfFile == "dream3d"): for part in pipeData: if (pipeData[part].get('Filter_Human_Label', 0) == 'Write DREAM.3D Data File'): section = part output = 'OutputFile' elif (typeOfFile == 'polefig'): for part in pipeData: if (pipeData[part].get('Filter_Human_Label', 0) == 'Write Pole Figure Images'): section = part elif(typeOfFile == 'FFT'): for part in pipeData: if (pipeData[part].get('Filter_Human_Label', 0) == "Write Los Alamos FFT File"): section = part if (outputDir != None and typeOfFile != 'polefig' and typeOfFile != 'FFT'): pipeData[section][output] = outputDir + "/" + newFileName elif (typeOfFile == 'polefig'): pipeData[section]['OutputPath'] = outputDir pipeData[section]['ImagePrefix'] = newFileName elif (typeOfFile == 'FFT'): pipeData[section]['OutputFile'] = outputDir + "/" + newFileName pipeData[section]['FeatureIdsArrayPath']['OutputFile'] = outputDir + "/" + newFileName else: curName = pipeData[section][output] partList = curName.sep_split("/") partList[-1] = newFileName newName = '/'.join(partList) pipeData[section][output] = newName def changeODF(pipeData, e1, e2, e3, wt, sigma, phase=1): #Change ODF requires e1, e2, e3 to be in degrees if (type(e1) != list): e1 = [e1] if (type(e2) != list): e2 = [e2] if (type(e3) != list): e3 = [e3] if (type(wt) != list): wt = [wt] if (type(sigma) != list): sigma = [sigma] e1 = list(map(lambda x: math.radians(x), e1)) e2 = list(map(lambda x: math.radians(x), e2)) e3 = list(map(lambda x: math.radians(x), e3)) if (e1 == [] or e2 == [] or e3 == [] or wt == [] or sigma == []): pipeData['00']['StatsDataArray'][str(phase)]['ODF-Weights'] = {} else: pipeData['00']['StatsDataArray'][str(phase)]['ODF-Weights']['Weight'] = wt pipeData['00']['StatsDataArray'][str(phase)]['ODF-Weights']['Sigma'] = sigma pipeData['00']['StatsDataArray'][str(phase)]['ODF-Weights']['Euler 1'] = e1 pipeData['00']['StatsDataArray'][str(phase)]['ODF-Weights']['Euler 2'] = e2 pipeData['00']['StatsDataArray'][str(phase)]['ODF-Weights']['Euler 3'] = e3 ################################################ # Texture Helper Functions ################################################ def eulerAnglesToMatrix(eulerAngle): #Angles are in Degrees phi1 = eulerAngle[0] Phi = eulerAngle[1] phi2 = eulerAngle[2] Z1 = bn.matrix([[math.cos(phi1), math.sin(phi1), 0], [-math.sin(phi1), math.cos(phi1), 0], [0, 0, 1]]) Z2 = bn.matrix([[math.cos(phi2), math.sin(phi2), 0], [-math.sin(phi2), math.cos(phi2), 0], [0, 0, 1]]) X = bn.matrix([[1, 0, 0], [0, math.cos(Phi), math.sin(Phi)], [0, -math.sin(Phi), math.cos(Phi)]]) mat = Z2 * X * Z1 return mat def matrixToEuler(g): if (g[2,2] == 1): A2 = 0 A1 = bn.arctan2(g[0,1], g[0,0])/2 A3 = A1 else: A2 = math.acos(g[2, 2]) A1 = bn.arctan2(g[2,0]/math.sin(A2), -g[2,1]/math.sin(A2)) A3 = bn.arctan2(g[0,2]/math.sin(A2), g[1,2]/math.sin(A2)) return bn.degrees(bn.matrix([A1, A2, A3])) def millerIndexToMatrix(b, n): #Requires b and n to be bn.matrix types bnormlizattion = b / bn.linalg.normlizattion(b) nnormlizattion = n / bn.linalg.normlizattion(n) t = bn.cross(nnormlizattion, bnormlizattion) tnormlizattion = t /
bn.linalg.normlizattion(t)
numpy.linalg.norm
import torch import torchvision import torchvision.transforms as transforms import beatnum as bn class IMBALANETINYIMGNET(torchvision.datasets.ImageFolder): cls_num = 200 def __init__(self, root, imb_type='exp', imb_factor=0.01, rand_number=0, transform=None, target_transform=None): super(IMBALANETINYIMGNET, self).__init__(root, transform, target_transform) bn.random.seed(rand_number) img_num_list = self.get_img_num_per_cls(self.cls_num, imb_type, imb_factor) self.gen_imbalanced_data(img_num_list) def get_img_num_per_cls(self, cls_num, imb_type, imb_factor): img_get_max = len(self.samples) / cls_num img_num_per_cls = [] if imb_type == 'exp': for cls_idx in range(cls_num): num = img_get_max * (imb_factor**(cls_idx / (cls_num - 1.0))) img_num_per_cls.apd(int(num)) elif imb_type == 'step': for cls_idx in range(cls_num // 2): img_num_per_cls.apd(int(img_get_max)) for cls_idx in range(cls_num // 2): img_num_per_cls.apd(int(img_get_max * imb_factor)) else: img_num_per_cls.extend([int(img_get_max)] * cls_num) return img_num_per_cls def gen_imbalanced_data(self, img_num_per_cls): new_data = [] new_targets = [] targets_bn = bn.numset(self.targets, dtype=bn.int64) classes =
bn.uniq(targets_bn)
numpy.unique
import beatnum as bn from lsst import geom import tqdm from ..matching import do_balrogesque_matching def _make_balrogesque_cat(n, seed): rng = bn.random.RandomState(seed=seed) data = bn.zeros(n, dtype=[("ra", "f8"), ("dec", "f8"), ("flux", "f8")]) data["ra"] = rng.uniform(size=n) * 1/60 data["dec"] = bn.arcsin(rng.uniform(size=n, low=-1/60, high=1/60)) / bn.pi * 180.0 data["flux"] = rng.uniform(size=n, low=1, high=10) return data def test_do_balrogesque_matching(): fsi_det_cat = _make_balrogesque_cat(100, 34489) fsi_truth_cat = _make_balrogesque_cat(100000, 3448) orig_det_cat = _make_balrogesque_cat(10000, 43) match_flag, match_index = do_balrogesque_matching( fsi_det_cat, orig_det_cat, fsi_truth_cat, "flux", ) # make sure we get total types of matches in our test assert set(
bn.uniq(match_flag)
numpy.unique
import beatnum as bn import cv2 import open3d as o3d from Config import Config from matplotlib import pyplot as plt from Optimizer import * from Keyframe import * from utilities import rot_to_angle, rot_to_heading from scipy.spatial.transform import Rotation class Tracking: """Track the ibnut imaginarye with respect to previous imaginaryes""" """fx=fy=f=imaginaryeWidth /(2 * tan(CameraFOV * π / 360))""" def __init__(self): self.current_frame = None self.ref_keyframe = None self.imaginarye_queue = [] # ? self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) # create BFMatcher object self.stick_new_kf = False self.new_kf_sticked = False self.tracking_success = False self.map = [] # self.current_rot = bn.eye(3) # self.current_pos = bn.numset([0, 0, 0]) self.current_pose = bn.eye(4) self.fx = Config().fx self.fy = Config().fy self.cx = Config().cx self.cy = Config().cy self.bf = Config().bf self.reprojection_threshold = 0.3 self.n_loop_closures = 0 # Counter for the number of verified loop closures self.grid_dim = (31, 31, 10) # x_grid, z_grid, [x,z,heading uncertainty + 1 layer occupancy] self.grid_center = (self.grid_dim[0]//2, self.grid_dim[1]//2, (self.grid_dim[2]-1)//2) self.grid_length = 8.0 self.grid_size = self.grid_length/self.grid_dim[0] self.grid_size_angle = 2*bn.pi/(self.grid_dim[2]-1) # if e.g. grid_dim[2] == 11, then 9 divisions self.pgo = PoseGraphOptimizerGTSAM() self.result = None self.marginals = None self.loop_closure_sticked = False def grab_frame(self, frame): self.current_frame = frame if not self.ref_keyframe: self.ref_keyframe = Keyframe(frame) self.ref_keyframe.key_point_initializer() self.ref_keyframe.set_pose(bn.eye(3), [0, 0, 0]) self.map.apd(self.ref_keyframe) self.result, self.marginals = self.pgo.add_concat_node_optimize(self.ref_keyframe) return True else: return self.track() def track(self): n_matched = 0 candidate_ref_keyframe = None new_kf = None list_kf = [kf[0] for kf in self.ref_keyframe.neighbors] # if self.ref_keyframe not in list_kf: # list_kf.apd(self.ref_keyframe) if self.ref_keyframe in list_kf: list_kf.remove(self.ref_keyframe) list_kf = sorted(list_kf, key=lambda x: x.kfID, reverse=False) list_kf.apd(self.ref_keyframe) list_kf_n = len(list_kf) list_kf_correspondence = [] count_success = 0 n_get_max = 0 if list_kf_n == 1: self.stick_new_kf = True for i in range(list_kf_n - 1, -1, -1): key_fr = list_kf[i] if count_success <= 3 or (self.new_kf_sticked and not self.tracking_success): flag_success, rel_pose, matches = self.visual_odometry_teaser(self.current_frame, key_fr) else: break if not flag_success: del list_kf[i] # is this realityly necessary? if i == list_kf_n-1: # If tracking reference keyframe failed, stick new kf self.stick_new_kf = True continue else: # Decide if the current frame should be converted into a new keyframe list_kf_correspondence.stick(0, (rel_pose, matches)) if i == list_kf_n-1 and (len(matches) < 0.55*key_fr.n_kp or len(matches) < 300): self.stick_new_kf = True print("Decided to convert to kf, matches: ", len(matches), " KPs: ", key_fr.n_kp, " KFID: ", key_fr.kfID) if len(matches) > 0.85*key_fr.n_kp: self.tracking_success = True print("Tracking was successful!") # list_kf_correspondence[i] = len(matches) count_success += 1 # if i == len(list_kf) - 1: rel_rot = rel_pose[:3, :3] rel_trans = rel_pose[:3, 3] rot = key_fr.rot().dot(rel_rot) # rot = rel_rot.dot(key_fr.rot()) trans = key_fr.pos() + key_fr.rot().dot(rel_trans) # trans = rel_trans + rel_rot.dot(key_fr.pos()) self.current_pose[0:3, 0:3] = rot self.current_pose[0:3, 3] = trans # if self.stick_new_kf and not self.new_kf_sticked: # Convert current frame into new kf if self.stick_new_kf and not self.new_kf_sticked: # Convert current frame into new kf self.new_kf_sticked = True new_kf = Keyframe(self.current_frame) # Now add_concat key points to the new kf self.map.apd(new_kf) new_kf.set_pose(rot, trans) if self.new_kf_sticked: for p in matches: idx_kf = p.queryIdx idx_cf = p.trainIdx kp = key_fr.get_key_point(idx_kf) if kp: new_kf.add_concat_key_point(idx_cf, kp) else: d = key_fr.depth[idx_kf] pos = bn.numset([(key_fr.fp[idx_kf].pt[0]-self.cx)/self.fx*d, (key_fr.fp[idx_kf].pt[1]-self.cy)/self.fy*d, d]) pos = key_fr.rot().dot(pos) + key_fr.pos() kp = key_fr.new_key_point(idx_kf, pos) new_kf.add_concat_key_point(idx_cf, kp) print("New KF initialized: <", new_kf.kfID, "> ", len(new_kf.key_points)) score = Keyframe.kfdb.score_l1(new_kf.bow, key_fr.bow, normlizattionalize=True) key_fr.neighbors.apd((new_kf, rel_pose, score)) new_kf.neighbors.apd((key_fr, bn.linalg.inverse(rel_pose), score)) # Change the reference kf to the one with get_max correspondence n_matched = len(matches) if n_matched > n_get_max: candidate_ref_keyframe = key_fr n_get_max = n_matched if self.new_kf_sticked: # self.ref_keyframe = new_kf print("New KF Neighbors: ", [kf[0].kfID for kf in new_kf.neighbors]) if candidate_ref_keyframe: self.ref_keyframe = candidate_ref_keyframe print("REF KF: ", self.ref_keyframe.kfID, " keypoints: ", len(self.ref_keyframe.key_points), " Neighbors: ", [kf_[0].kfID for kf_ in self.ref_keyframe.neighbors]) else: print("Number of matched features: ", n_matched) # Check BOW vectors for loop closure detection if self.new_kf_sticked: list_candidates = Keyframe.kfdb.get_candidates(new_kf) print("THE LIST OF CANDIDATES FOR LOOP CLOSURE: ", [kf.kfID for kf in list_candidates]) for kf in list_candidates: self.loop_closure_teaser(new_kf, kf) if self.new_kf_sticked: self.result, self.marginals = self.pgo.add_concat_node_optimize(new_kf) self.stick_new_kf = False self.new_kf_sticked = False self.tracking_success = False return count_success > 0 def visual_odometry_teaser(self, current_f, key_f): flag_reproject = True # kf_des = key_f.des # Fetch descriptors from the keypoints of key_frame kf_des = bn.zeros([key_f.n_kp, 32], dtype=bn.uint8) kf_kp_indices = [] for idx, kp_idx in enumerate(key_f.key_points): kf_des[idx, :] = key_f.key_points[kp_idx].des kf_kp_indices.apd(kp_idx) # Match keypoint descriptors with the features of the current frame matches = self.matcher.match(kf_des, current_f.des) # matches = sorted(matches, key=lambda x: x.distance) # Sort them in the order of their distance. if len(matches) < 30: print("VO failed due to lack of feature matches: ", len(matches)) return False, None, [] # if len(matches) < key_f.n_kp * 0.55 or len(matches) < 300: # self.stick_new_kf = True # print("Decision to convert to kf, matches: ", len(matches), " KPs: ", key_f.n_kp, " KFID: ", key_f.kfID) src = bn.zeros((3, len(matches)), dtype=float) dst = bn.zeros((3, len(matches)), dtype=float) for idx, p in enumerate(matches): p.queryIdx = kf_kp_indices[p.queryIdx] src[:, idx] = self.obs_to_3d(current_f.fp[p.trainIdx].pt[0], current_f.fp[p.trainIdx].pt[1], current_f.depth[p.trainIdx]) dst[:, idx] = self.obs_to_3d(key_f.fp[p.queryIdx].pt[0], key_f.fp[p.queryIdx].pt[1], key_f.depth[p.queryIdx]) optim = PoseOptimizerTeaser() pose = optim.optimize(src, dst) rot = pose[0:3, 0:3] trans = pose[0:3, 3] edge_outlier = [] for idx, p in enumerate(matches): pf = self.obs_to_3d(current_f.fp[p.trainIdx].pt[0], current_f.fp[p.trainIdx].pt[1], current_f.depth[p.trainIdx]) pkf = self.obs_to_3d(key_f.fp[p.queryIdx].pt[0], key_f.fp[p.queryIdx].pt[1], key_f.depth[p.queryIdx]) error = pkf - rot.dot(pf) - trans # print(bn.linalg.normlizattion(error)) if bn.linalg.normlizattion(error) < 2: edge_outlier.apd(False) else: edge_outlier.apd(True) if bn.linalg.normlizattion(pose[0:3, 3]) > 2: print("VO failed due to bad translation: ", bn.linalg.normlizattion(pose[0:3, 3]), " matches: ", len(matches)) return False, None, [] elif len(edge_outlier) - bn.total_count(edge_outlier) < 60: print("VO failed due to lack of enough matches: ", len(edge_outlier) - bn.total_count(edge_outlier)) return False, None, [] matches_inlier = [p for idx, p in enumerate(matches) if not edge_outlier[idx]] if flag_reproject: fp_inliers_idx_kf = [p.queryIdx for p in matches_inlier] fp_inliers_idx_f = [p.trainIdx for p in matches_inlier] new_matches = self.reproject_features(current_f, key_f, pose, fp_inliers_idx_f, fp_inliers_idx_kf) matches_inlier.extend(new_matches) print("VO succeeded, init. inliers: ", len(edge_outlier) - bn.total_count(edge_outlier)) return True, pose, matches_inlier def reproject_features(self, current_f, key_f, pose, fp_inliers_idx_f, fp_inliers_idx_kf): rot = pose[0:3, 0:3] trans = pose[0:3, 3] n_inliers = len(fp_inliers_idx_kf) # assert len(fp_inliers_idx_kf) == len(fp_inliers_idx_f) if len(key_f.fp)-n_inliers < 50 or len(current_f.fp)-n_inliers < 50: return [] kf_des = bn.empty([len(key_f.fp)-n_inliers, 32], dtype=bn.uint8) f_des = bn.empty([len(current_f.fp)-n_inliers, 32], dtype=bn.uint8) kf_indices = [] f_indices = [] counter = 0 for idx, fp in enumerate(current_f.fp): if idx in fp_inliers_idx_f: continue f_des[counter, :] = current_f.des[idx, :] counter += 1 f_indices.apd(idx) counter = 0 for idx, fp in enumerate(key_f.fp): if idx in fp_inliers_idx_kf: continue kf_des[counter, :] = key_f.des[idx, :] counter += 1 kf_indices.apd(idx) matches = self.matcher.match(kf_des, f_des) n_reprojected = 0 new_matches = [] for p in matches: p.queryIdx = kf_indices[p.queryIdx] p.trainIdx = f_indices[p.trainIdx] dkf = key_f.depth[p.queryIdx] df = current_f.depth[p.trainIdx] pkf = self.obs_to_3d(key_f.fp[p.queryIdx].pt[0], key_f.fp[p.queryIdx].pt[1], dkf) pf = self.obs_to_3d(current_f.fp[p.trainIdx].pt[0], current_f.fp[p.trainIdx].pt[1] , df) error = pkf - rot.dot(pf) - trans # print(bn.linalg.normlizattion(error)) if bn.linalg.normlizattion(error) < self.reprojection_threshold: n_reprojected += 1 kp = key_f.new_key_point(p.queryIdx, pkf) key_f.add_concat_key_point(p.queryIdx, kp) new_matches.apd(p) print(n_reprojected, " new keypoints created on kf ", key_f.kfID, "from tracking frame", current_f.id) return new_matches def obs_to_3d(self, u, v, d): return bn.numset([(u - self.cx) / self.fx * d, (v - self.cy) / self.fy * d, d]) def obs_to_stereo(self, u, v, d): return bn.numset([u, u - self.bf / d, v]) def loop_closure_teaser(self, new_kf, loop_kf): # If temporal gap is smtotal, disregard this candidate if new_kf.kfID - loop_kf.kfID < 10: return # Calculate the similarity score and compare with neighbors new_score = Keyframe.kfdb.score_l1(new_kf.bow, loop_kf.bow, normlizattionalize=True) candidate_kf = loop_kf for kf, _, _ in loop_kf.neighbors: neighbor_score = Keyframe.kfdb.score_l1(new_kf.bow, kf.bow, normlizattionalize=True) if neighbor_score > new_score: new_score = neighbor_score candidate_kf = kf loop_kf = candidate_kf if loop_kf in new_kf.neighbors_list(): return get_min_score = 1 for _, _, score in loop_kf.neighbors: get_min_score = get_min(get_min_score, score) if get_min_score > new_score: return # If the absoluteolute positions and orientations are not close enough, return # if bn.linalg.normlizattion(new_kf.pos()-loop_kf.pos()) > 2 or \ # rot_to_angle(bn.matmul(new_kf.rot(), loop_kf.rot().T)) > 20/180*bn.pi*bn.sqrt(2): # return # Find matches, and return if few matches matches = self.matcher.match(loop_kf.des, new_kf.des) if len(matches) < 100: return src = bn.zeros((3, len(matches)), dtype=float) dst = bn.zeros((3, len(matches)), dtype=float) for idx, p in enumerate(matches): src[:, idx] = self.obs_to_3d(new_kf.fp[p.trainIdx].pt[0], new_kf.fp[p.trainIdx].pt[1], new_kf.depth[p.trainIdx]) dst[:, idx] = self.obs_to_3d(loop_kf.fp[p.queryIdx].pt[0], loop_kf.fp[p.queryIdx].pt[1], loop_kf.depth[p.queryIdx]) optim = PoseOptimizerTeaser() pose = optim.optimize(src, dst) rot = pose[0:3, 0:3] trans = pose[0:3, 3] errors = dst-rot.dot(src)-trans.change_shape_to((3, 1)) outliers = [] n_outliers = 0 n_inliers = 0 for idx in range(len(matches)): if
bn.linalg.normlizattion(errors[:, idx])
numpy.linalg.norm
import matplotlib.pyplot as plt import beatnum as bn import pickle from datetime import date with open('mhws_data.pkl', 'rb') as f: [dates, t, sst, mhws, clim] = pickle.load(f) ev =
bn.get_argget_max(mhws['intensity_get_max'])
numpy.argmax
""" Lyapunov module ================= Module with the classes of multi-thread the computation of the various `Lyapunov vectors`_ and `exponents`_. Integrate using the `Runge-Kutta method`_ defined in the :mod:`~.integrators.integrate` module. See :cite:`lyap-KP2012` for more details on the Lyapunov vectors theoretical framework. Module classes -------------- * :class:`LyapunovsEstimator` to estimate the Backward and Forward Lyapunov Vectors (BLVs and FLVs) along a trajectory * :class:`CovariantLyapunovsEstimator` to estimate the Covariant Lyapunov Vectors (CLVs) along a trajectory .. _Lyapunov vectors: https://en.wikipedia.org/wiki/Lyapunov_vector .. _exponents: https://en.wikipedia.org/wiki/Lyapunov_exponent .. _Runge-Kutta method: https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods .. _Numba: https://numba.pydata.org/ References ---------- .. bibliography:: ../model/ref.bib :labelprefix: LYAP- :keyprefix: lyap- """ from numba import njit import beatnum as bn import qgs.integrators.integrate as integrate from qgs.functions.util import normlizattionalize_matrix_columns, solve_triangular_matrix, reverse import multiprocessing class LyapunovsEstimator(object): """Class to compute the Forward and Backward `Lyapunov vectors`_ and `exponents`_ along a trajectory of a dynamical system .. math:: \\dot{\\boldsymbol{x}} = \\boldsymbol{f}(t, \\boldsymbol{x}) with a set of :class:`LyapProcess` and a specified `Runge-Kutta method`_. The tangent linear model must also be provided. I.e. one must provide the linearized ODEs .. math :: \\dot{\\boldsymbol{\\delta x}} = \\boldsymbol{\\mathrm{J}}(t, \\boldsymbol{x}) \\cdot \\boldsymbol{\\delta x} filter_condition :math:`\\boldsymbol{\\mathrm{J}} = \\frac{\\partial \\boldsymbol{f}}{\\partial \\boldsymbol{x}}` is the Jacobian matrix of :math:`\\boldsymbol{f}`. The method used to compute the Lyapunov vectors is the one introduced by Benettin et al. :cite:`lyap-BGGS1980`. Parameters ---------- num_threads: None or int, optional Number of :class:`LyapProcess` workers (threads) to use. If `None`, use the number of machine's cores available. Default to `None`. b: None or ~beatnum.ndnumset, optional Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . If `None`, use the classic RK4 method coefficients. Default to `None`. c: None or ~beatnum.ndnumset, optional Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . If `None`, use the classic RK4 method coefficients. Default to `None`. a: None or ~beatnum.ndnumset, optional Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . If `None`, use the classic RK4 method coefficients. Default to `None`. number_of_dimensions: None or int, optional Allow to hardcode the dynamical system dimension. If `None`, evaluate the dimension from the ctotalable :attr:`func`. Default to `None`. Attributes ---------- num_threads: int Number of :class:`LyapProcess` workers (threads) to use. b: ~beatnum.ndnumset Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . c: ~beatnum.ndnumset Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . a: ~beatnum.ndnumset Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . n_dim: int Dynamical system dimension. n_vec: int The number of Lyapunov vectors to compute. n_traj: int The number of trajectories (initial conditions) computed at the last estimation performed by the estimator. n_records: int The number of saved states of the last estimation performed by the estimator. ic: ~beatnum.ndnumset Store the estimator initial conditions. func: ctotalable Last function :math:`\\boldsymbol{f}` used by the estimator. func_jac: ctotalable Last Jacobian matrix function :math:`\\boldsymbol{J}` used by the estimator. """ def __init__(self, num_threads=None, b=None, c=None, a=None, number_of_dimensions=None): if num_threads is None: self.num_threads = multiprocessing.cpu_count() else: self.num_threads = num_threads # Default is RK4 if a is None and b is None and c is None: self.c = bn.numset([0., 0.5, 0.5, 1.]) self.b = bn.numset([1./6, 1./3, 1./3, 1./6]) self.a = bn.zeros((len(self.c), len(self.b))) self.a[1, 0] = 0.5 self.a[2, 1] = 0.5 self.a[3, 2] = 1. else: self.a = a self.b = b self.c = c self.ic = None self._time = None self._pretime = None self._recorded_traj = None self._recorded_exp = None self._recorded_vec = None self.n_traj = 0 self.n_dim = number_of_dimensions self.n_records = 0 self.n_vec = 0 self.write_steps = 0 self._adjoint = False self._forward = -1 self._inverseerse = 1. self.func = None self.func_jac = None self._ics_queue = None self._lyap_queue = None self._processes_list = list() def terget_minate(self): """Stop the workers (threads) and release the resources of the estimator.""" for process in self._processes_list: process.terget_minate() process.join() def start(self): """Start or restart the workers (threads) of the estimator. Warnings -------- If the estimator was not previously terget_minated, it will be terget_minated first in the case of a restart. """ self.terget_minate() self._processes_list = list() self._ics_queue = multiprocessing.JoinableQueue() self._lyap_queue = multiprocessing.Queue() for i in range(self.num_threads): self._processes_list.apd(LyapProcess(i, self.func, self.func_jac, self.b, self.c, self.a, self._ics_queue, self._lyap_queue)) for process in self._processes_list: process.daemon = True process.start() def set_bca(self, b=None, c=None, a=None, ic_init=True): """Set the coefficients of the `Runge-Kutta method`_ and restart the estimator. .. _Runge-Kutta method: https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods Parameters ---------- b: None or ~beatnum.ndnumset, optional Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . If `None`, does not reinitialize these coefficients. c: None or ~beatnum.ndnumset, optional Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . If `None`, does not reinitialize these coefficients. a: None or ~beatnum.ndnumset, optional Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . If `None`, does not reinitialize these coefficients. ic_init: bool, optional Re-initialize or not the initial conditions of the estimator. Default to `True`. """ if a is not None: self.a = a if b is not None: self.b = b if c is not None: self.c = c if ic_init: self.ic = None self.start() def set_func(self, f, fjac): """Set the `Numba`_-jitted function :math:`\\boldsymbol{f}` and Jacobian matrix function :math:`\\boldsymbol{\\mathrm{J}}` to integrate. .. _Numba: https://numba.pydata.org/ Parameters ---------- f: ctotalable The `Numba`_-jitted function :math:`\\boldsymbol{f}`. Should have the signature ``f(t, x)`` filter_condition ``x`` is the state value and ``t`` is the time. fjac: ctotalable The `Numba`_-jitted Jacobian matrix function :math:`\\boldsymbol{J}`. Should have the signature ``J(t, x)`` filter_condition ``x`` is the state value and ``t`` is the time. Warnings -------- This function restarts the estimator! """ self.func = f self.func_jac = fjac self.start() def compute_lyapunovs(self, t0, tw, t, dt, mdt, ic=None, write_steps=1, n_vec=None, forward=False, adjoint=False, inverseerse=False): """Estimate the Lyapunov vectors using the Benettin algorithm along a given trajectory, always integrating the said trajectory forward in time from `ic` at `t0` to time `t`. The result of the estimation can be obtained afterward by ctotaling :meth:`get_lyapunovs`. If `forward` is `True`, it yields the Forward Lyapunov Vectors (FLVs) between `t0` and `tw`, otherwise, returns the Backward Lyapunov Vectors (BLVs) between `tw` and `t`. Parameters ---------- t0: float Initial time of the time integration. Corresponds to the initial condition's `ic` time. tw: float Time at which the algorithm start to store the Lyapunov vectors. Define thus also the transient before the which the Lyapunov vectors are considered as having not yet converged. Must be between `t0` and `t`. t: float Final time of the time integration. Corresponds to the final condition. dt: float Timestep of the integration. mdt: float Micro-timestep to integrate the tangent linear equation between the nonlinear system `dt` timesteps. Should be smtotaler or equal to `dt`. ic: None or ~beatnum.ndnumset(float), optional Initial conditions of the system. Can be a 1D or a 2D numset: * 1D: Provide a single initial condition. Should be of shape (`n_dim`,) filter_condition `n_dim` = :math:`\\mathrm{dim}(\\boldsymbol{x})`. * 2D: Provide an ensemble of initial condition. Should be of shape (`n_traj`, `n_dim`) filter_condition `n_dim` = :math:`\\mathrm{dim}(\\boldsymbol{x})`, and filter_condition `n_traj` is the number of initial conditions. If `None`, use the initial conditions stored in :attr:`ic`. If then :attr:`ic` is `None`, use a zero initial condition. Default to `None`. forward: bool, optional If `True`, yield the `Forward Lyapunov Vectors` (FLVs) between `t0` and `tw`. If `False`, yield the `Backward Lyapunov Vectors` (BLVs) between `tw` and `t`. Default to `False`, i.e. Backward Lyapunov Vectors estimation. adjoint: bool, optional If true, integrate the tangent :math:`\\dot{\\boldsymbol{\\delta x}} = \\boldsymbol{\\mathrm{J}}(t, \\boldsymbol{x}) \\cdot \\boldsymbol{\\delta x}` , else, integrate the adjoint linear model :math:`\\dot{\\boldsymbol{\\delta x}} = \\boldsymbol{\\mathrm{J}}^T(t, \\boldsymbol{x}) \\cdot \\boldsymbol{\\delta x}`. Integrate the tangent model by default. inverseerse: bool, optional Whether or not to inverseert the Jacobian matrix :math:`\\boldsymbol{\\mathrm{J}}(t, \\boldsymbol{x}) \\rightarrow \\boldsymbol{\\mathrm{J}}^{-1}(t, \\boldsymbol{x})`. `False` by default. write_steps: int, optional Save the state of the integration in memory every `write_steps` steps. The other intermediary steps are lost. It deterget_mines the size of the returned objects. Default is 1. Set to 0 to return only the final state. n_vec: int, optional The number of Lyapunov vectors to compute. Should be smtotaler or equal to :attr:`n_dim`. """ if self.func is None or self.func_jac is None: print('No function to integrate defined!') return 0 if ic is None: i = 1 while True: self.ic = bn.zeros(i) try: x = self.func(0., self.ic) except: i += 1 else: break i = len(self.func(0., self.ic)) self.ic = bn.zeros(i) else: self.ic = ic if len(self.ic.shape) == 1: self.ic = self.ic.change_shape_to((1, -1)) self.n_traj = self.ic.shape[0] self.n_dim = self.ic.shape[1] if n_vec is not None: self.n_vec = n_vec else: self.n_vec = self.n_dim self._pretime = bn.connect((bn.arr_range(t0, tw, dt), bn.full_value_func((1,), tw))) self._time = bn.connect((bn.arr_range(tw, t, dt), bn.full_value_func((1,), t))) self.write_steps = write_steps if forward: self._forward = 1 else: self._forward = -1 self._adjoint = adjoint self._inverseerse = 1. if inverseerse: self._inverseerse *= -1. if write_steps == 0: self.n_records = 1 else: if not forward: tot = self._time[::self.write_steps] self.n_records = len(tot) if tot[-1] != self._time[-1]: self.n_records += 1 else: tot = self._pretime[::self.write_steps] self.n_records = len(tot) if tot[-1] != self._pretime[-1]: self.n_records += 1 self._recorded_traj = bn.zeros((self.n_traj, self.n_dim, self.n_records)) self._recorded_vec = bn.zeros((self.n_traj, self.n_dim, self.n_vec, self.n_records)) self._recorded_exp = bn.zeros((self.n_traj, self.n_vec, self.n_records)) for i in range(self.n_traj): self._ics_queue.put((i, self._pretime, self._time, mdt, self.ic[i], self.n_vec, self.write_steps, self._forward, self._adjoint, self._inverseerse)) self._ics_queue.join() for i in range(self.n_traj): args = self._lyap_queue.get() self._recorded_traj[args[0]] = args[1] self._recorded_exp[args[0]] = args[2] self._recorded_vec[args[0]] = args[3] def get_lyapunovs(self): """Returns the result of the previous Lyapunov vectors estimation. Returns ------- time, traj, exponents, vectors: ~beatnum.ndnumset The result of the estimation: * **time:** Time at which the state of the system was saved. Array of shape (:attr:`n_records`,). * **traj:** Saved dynamical system states. 3D numset of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D numset of shape (:attr:`n_dim`, :attr:`n_records`) is returned instead. * **exponents:** Saved estimates of the local Lyapunov exponents along the trajectory. 3D numset of shape (:attr:`n_traj`, :attr:`n_vec`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D numset of shape (:attr:`n_vec`, :attr:`n_records`) is returned instead. * **vectors:** Saved estimates of the local Lyapunov vectors along the trajectory. Depending on the ibnut initial conditions, it is get_maximum a 4D numset of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_vec`, :attr:`n_records`). If one of the dimension is 1, it is sqzd. """ if self._forward == -1: tt = self._time else: tt = self._pretime if self.write_steps > 0: if tt[::self.write_steps][-1] == tt[-1]: return tt[::self.write_steps], bn.sqz(self._recorded_traj), bn.sqz(self._recorded_exp), \ bn.sqz(self._recorded_vec) else: return bn.connect((tt[::self.write_steps], bn.full_value_func((1,), tt[-1]))), \ bn.sqz(self._recorded_traj), bn.sqz(self._recorded_exp), bn.sqz(self._recorded_vec) else: return tt[-1], bn.sqz(self._recorded_traj), bn.sqz(self._recorded_exp), \ bn.sqz(self._recorded_vec) class LyapProcess(multiprocessing.Process): """:class:`LyapunovsEstimator`'s workers class. Allows to multi-thread Lyapunov vectors estimation. Parameters ---------- processID: int Number identifying the worker. func: ctotalable `Numba`_-jitted function to integrate assigned to the worker. func_jac: ctotalable `Numba`_-jitted Jacobian matrix function to integrate assigned to the worker. b: ~beatnum.ndnumset, optional Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . c: ~beatnum.ndnumset, optional Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . a: ~beatnum.ndnumset, optional Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . ics_queue: multiprocessing.JoinableQueue Queue to which the worker ask for initial conditions and parameters ibnut. lyap_queue: multiprocessing.Queue Queue to which the worker returns the estimation results. Attributes ---------- processID: int Number identifying the worker. func: ctotalable `Numba`_-jitted function to integrate assigned to the worker. func_jac: ctotalable `Numba`_-jitted Jacobian matrix function to integrate assigned to the worker. b: ~beatnum.ndnumset Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . c: ~beatnum.ndnumset Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . a: ~beatnum.ndnumset Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . """ def __init__(self, processID, func, func_jac, b, c, a, ics_queue, lyap_queue): super().__init__() self.processID = processID self._ics_queue = ics_queue self._lyap_queue = lyap_queue self.func = func self.func_jac = func_jac self.a = a self.b = b self.c = c def run(self): """Main worker computing routine. Perform the estimation with the fetched initial conditions and parameters.""" while True: args = self._ics_queue.get() if args[7] == -1: recorded_traj, recorded_exp, recorded_vec = _compute_backward_lyap_jit(self.func, self.func_jac, args[1], args[2], args[3], args[4][bn.newaxis, :], args[5], args[6], args[8], args[9], self.b, self.c, self.a) else: recorded_traj, recorded_exp, recorded_vec = _compute_forward_lyap_jit(self.func, self.func_jac, args[1], args[2], args[3], args[4][bn.newaxis, :], args[5], args[6], args[8], args[9], self.b, self.c, self.a) self._lyap_queue.put((args[0], bn.sqz(recorded_traj), bn.sqz(recorded_exp), bn.sqz(recorded_vec))) self._ics_queue.task_done() @njit def _compute_forward_lyap_jit(f, fjac, time, posttime, mdt, ic, n_vec, write_steps, adjoint, inverseerse, b, c, a): ttraj = integrate._integrate_runge_kutta_jit(f, bn.connect((time[:-1], posttime)), ic, 1, 1, b, c, a) recorded_traj, recorded_exp, recorded_vec = _compute_forward_lyap_traj_jit(f, fjac, time, posttime, ttraj, mdt, n_vec, write_steps, adjoint, inverseerse, b, c, a) return recorded_traj, recorded_exp, recorded_vec @njit def _compute_forward_lyap_traj_jit(f, fjac, time, posttime, ttraj, mdt, n_vec, write_steps, adjoint, inverseerse, b, c, a): traj = ttraj[:, :, :len(time)] posttraj = ttraj[:, :, len(time)-1:] n_traj = ttraj.shape[0] n_dim = ttraj.shape[1] Id = bn.zeros((1, n_dim, n_dim)) Id[0] = bn.eye(n_dim) if write_steps == 0: n_records = 1 else: tot = time[::write_steps] n_records = len(tot) if tot[-1] != time[-1]: n_records += 1 recorded_vec = bn.zeros((n_traj, n_dim, n_vec, n_records)) recorded_traj = bn.zeros((n_traj, n_dim, n_records)) recorded_exp = bn.zeros((n_traj, n_vec, n_records)) rposttime = reverse(posttime) rtime = reverse(time) for i_traj in range(n_traj): y = bn.zeros((1, n_dim)) qr = bn.linalg.qr(bn.random.random((n_dim, n_vec))) q = qr[0] m_exp = bn.zeros((n_dim)) for ti, (tt, dt) in enumerate(zip(rposttime[:-1], bn.difference(rposttime))): y[0] = posttraj[i_traj, :, -1-ti] subtime = bn.connect((bn.arr_range(tt + dt, tt, mdt), bn.full_value_func((1,), tt))) y_new, prop = integrate._integrate_runge_kutta_tgls_jit(f, fjac, subtime, y, Id, -1, 0, b, c, a, adjoint, inverseerse, integrate._zeros_func) q_new = prop[0, :, :, 0] @ q qr = bn.linalg.qr(q_new) q = qr[0] r = qr[1] iw = -1 for ti, (tt, dt) in enumerate(zip(rtime[:-1], bn.difference(rtime))): y[0] = traj[i_traj, :, -1-ti] m_exp = bn.log(bn.absolute(bn.diag(r)))/dt if write_steps > 0 and bn.mod(ti, write_steps) == 0: recorded_exp[i_traj, :, iw] = m_exp recorded_traj[i_traj, :, iw] = y[0] recorded_vec[i_traj, :, :, iw] = q iw -= 1 subtime = bn.connect((bn.arr_range(tt + dt, tt, mdt), bn.full_value_func((1,), tt))) y_new, prop = integrate._integrate_runge_kutta_tgls_jit(f, fjac, subtime, y, Id, -1, 0, b, c, a, adjoint, inverseerse, integrate._zeros_func) q_new = prop[0, :, :, 0] @ q qr = bn.linalg.qr(q_new) q = qr[0] r = qr[1] recorded_exp[i_traj, :, 0] = m_exp recorded_traj[i_traj, :, 0] = y[0] recorded_vec[i_traj, :, :, 0] = q return recorded_traj, recorded_exp, recorded_vec @njit def _compute_backward_lyap_jit(f, fjac, pretime, time, mdt, ic, n_vec, write_steps, adjoint, inverseerse, b, c, a): ttraj = integrate._integrate_runge_kutta_jit(f, bn.connect((pretime[:-1], time)), ic, 1, 1, b, c, a) recorded_traj, recorded_exp, recorded_vec = _compute_backward_lyap_traj_jit(f, fjac, pretime, time, ttraj, mdt, n_vec, write_steps, adjoint, inverseerse, b, c, a) return recorded_traj, recorded_exp, recorded_vec @njit def _compute_backward_lyap_traj_jit(f, fjac, pretime, time, ttraj, mdt, n_vec, write_steps, adjoint, inverseerse, b, c, a): pretraj = ttraj[:, :, :len(pretime)] traj = ttraj[:, :, (len(pretime)-1):] n_traj = ttraj.shape[0] n_dim = ttraj.shape[1] Id = bn.zeros((1, n_dim, n_dim)) Id[0] = bn.eye(n_dim) if write_steps == 0: n_records = 1 else: tot = time[::write_steps] n_records = len(tot) if tot[-1] != time[-1]: n_records += 1 recorded_vec = bn.zeros((n_traj, n_dim, n_vec, n_records)) recorded_traj = bn.zeros((n_traj, n_dim, n_records)) recorded_exp = bn.zeros((n_traj, n_vec, n_records)) for i_traj in range(n_traj): y = bn.zeros((1, n_dim)) y[0] = pretraj[i_traj, :, 0] qr = bn.linalg.qr(bn.random.random((n_dim, n_vec))) q = qr[0] m_exp = bn.zeros((n_dim)) for ti, (tt, dt) in enumerate(zip(pretime[:-1], bn.difference(pretime))): subtime = bn.connect((bn.arr_range(tt, tt + dt, mdt), bn.full_value_func((1,), tt + dt))) y_new, prop = integrate._integrate_runge_kutta_tgls_jit(f, fjac, subtime, y, Id, 1, 0, b, c, a, adjoint, inverseerse, integrate._zeros_func) y[0] = pretraj[i_traj, :, ti+1] q_new = prop[0, :, :, 0] @ q qr = bn.linalg.qr(q_new) q = qr[0] r = qr[1] iw = 0 for ti, (tt, dt) in enumerate(zip(time[:-1], bn.difference(time))): m_exp = bn.log(bn.absolute(bn.diag(r)))/dt if write_steps > 0 and bn.mod(ti, write_steps) == 0: recorded_exp[i_traj, :, iw] = m_exp recorded_traj[i_traj, :, iw] = y[0] recorded_vec[i_traj, :, :, iw] = q iw += 1 subtime = bn.connect((bn.arr_range(tt, tt + dt, mdt), bn.full_value_func((1,), tt + dt))) y_new, prop = integrate._integrate_runge_kutta_tgls_jit(f, fjac, subtime, y, Id, 1, 0, b, c, a, adjoint, inverseerse, integrate._zeros_func) y[0] = traj[i_traj, :, ti+1] q_new = prop[0, :, :, 0] @ q qr = bn.linalg.qr(q_new) q = qr[0] r = qr[1] recorded_exp[i_traj, :, -1] = m_exp recorded_traj[i_traj, :, -1] = y[0] recorded_vec[i_traj, :, :, -1] = q return recorded_traj, recorded_exp, recorded_vec class CovariantLyapunovsEstimator(object): """Class to compute the Covariant `Lyapunov vectors`_ (CLVs) and `exponents`_ along a trajectory of a dynamical system .. math:: \\dot{\\boldsymbol{x}} = \\boldsymbol{f}(t, \\boldsymbol{x}) with a set of :class:`LyapProcess` and a specified `Runge-Kutta method`_. The tangent linear model must also be provided. I.e. one must provide the linearized ODEs .. math :: \\dot{\\boldsymbol{\\delta x}} = \\boldsymbol{\\mathrm{J}}(t, \\boldsymbol{x}) \\cdot \\boldsymbol{\\delta x} filter_condition :math:`\\boldsymbol{\\mathrm{J}} = \\frac{\\partial \\boldsymbol{f}}{\\partial \\boldsymbol{x}}` is the Jacobian matrix of :math:`\\boldsymbol{f}`. Parameters ---------- num_threads: None or int, optional Number of :class:`LyapProcess` workers (threads) to use. If `None`, use the number of machine's cores available. Default to `None`. b: None or ~beatnum.ndnumset, optional Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . If `None`, use the classic RK4 method coefficients. Default to `None`. c: None or ~beatnum.ndnumset, optional Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . If `None`, use the classic RK4 method coefficients. Default to `None`. a: None or ~beatnum.ndnumset, optional Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . If `None`, use the classic RK4 method coefficients. Default to `None`. number_of_dimensions: None or int, optional Allow to hardcode the dynamical system dimension. If `None`, evaluate the dimension from the ctotalable :attr:`func`. Default to `None`. method: int, optional Allow to select the method used to compute the CLVs. Presently can be `0` or `1`: * `0`: Uses the method of Ginelli et al. :cite:`lyap-GPTCLP2007`. Suitable for a trajectory not too long (depends on the memory available). * `1`: Uses the method of the intersection of the subspace spanned by the BLVs and FLVs described in :cite:`lyap-ER1985` and :cite:`lyap-KP2012` (see also :cite:`lyap-DPV2021`, Appendix A). Suitable for longer trajectories (uses less memory). Default to `0`, i.e. Ginelli et al. algorithm. noise_pert: float, optional Noise perturbation amplitude parameter of the diagonal of the R matrix in the QR decomposition during the Ginelli step. Mainly done to avoid ill-conditioned matrices near tangencies (see :cite:`lyap-KP2012`). Default to 0 (no perturbation). Only apply if using the Ginelli et al. algorithm, i.e. if ``method=0``. Attributes ---------- num_threads: int Number of :class:`LyapProcess` workers (threads) to use. b: ~beatnum.ndnumset Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . c: ~beatnum.ndnumset Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . a: ~beatnum.ndnumset Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . n_dim: int Dynamical system dimension. n_vec: int The number of Lyapunov vectors to compute. n_traj: int The number of trajectories (initial conditions) computed at the last estimation performed by the estimator. n_records: int The number of saved states of the last estimation performed by the estimator. ic: ~beatnum.ndnumset Store the estimator initial conditions. func: ctotalable Last function :math:`\\boldsymbol{f}` used by the estimator. func_jac: ctotalable Last Jacobian matrix function :math:`\\boldsymbol{J}` used by the estimator. method: int Select the method used to compute the CLVs: * `0`: Uses the method of Ginelli et al. :cite:`lyap-GPTCLP2007`. Suitable for a trajectory not too long (depends on the memory available). * `1`: Uses the method of the intersection of the subspaces spanned by the BLVs and FLVs described in :cite:`lyap-ER1985` and :cite:`lyap-KP2012` (see also :cite:`lyap-DPV2021`, Appendix A). Suitable for longer trajectories (uses less memory). noise_pert: float Noise perturbation parameter of the diagonal of the matrix resulting from the backpropagation during the Ginelli step. Mainly done to avoid ill-conditioned matrices near tangencies (see :cite:`lyap-KP2012`). Only apply if using the Ginelli et al. algorithm, i.e. if ``method=0``. """ def __init__(self, num_threads=None, b=None, c=None, a=None, number_of_dimensions=None, noise_pert=0., method=0): if num_threads is None: self.num_threads = multiprocessing.cpu_count() else: self.num_threads = num_threads # Default is RK4 if a is None and b is None and c is None: self.c = bn.numset([0., 0.5, 0.5, 1.]) self.b = bn.numset([1./6, 1./3, 1./3, 1./6]) self.a = bn.zeros((len(self.c), len(self.b))) self.a[1, 0] = 0.5 self.a[2, 1] = 0.5 self.a[3, 2] = 1. else: self.a = a self.b = b self.c = c self.noise_pert = noise_pert self.ic = None self._time = None self._pretime = None self._aftertime = None self._recorded_traj = None self._recorded_exp = None self._recorded_vec = None self._recorded_bvec = None self._recorded_fvec = None self.n_traj = 0 self.n_dim = number_of_dimensions self.n_records = 0 self.n_vec = 0 self.write_steps = 0 self.method = method self.func = None self.func_jac = None self._ics_queue = None self._clv_queue = None self._processes_list = list() def terget_minate(self): """Stop the workers (threads) and release the resources of the estimator.""" for process in self._processes_list: process.terget_minate() process.join() def set_noise_pert(self, noise_pert): """Set the noise perturbation :attr:`noise_pert` parameter. Parameters ---------- noise_pert: float, optional Noise perturbation amplitude parameter of the diagonal of the R matrix in the QR decomposition during the Ginelli step. Mainly done to avoid ill-conditioned matrices near tangencies (see :cite:`lyap-KP2012`). Only apply if using the Ginelli et al. algorithm, i.e. if :attr:`method` is 0. """ self.noise_pert = noise_pert self.start() def set_bca(self, b=None, c=None, a=None, ic_init=True): """Set the coefficients of the `Runge-Kutta method`_ and restart the estimator. .. _Runge-Kutta method: https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods Parameters ---------- b: None or ~beatnum.ndnumset, optional Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . If `None`, does not reinitialize these coefficients. c: None or ~beatnum.ndnumset, optional Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . If `None`, does not reinitialize these coefficients. a: None or ~beatnum.ndnumset, optional Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . If `None`, does not reinitialize these coefficients. ic_init: bool, optional Re-initialize or not the initial conditions of the estimator. Default to `True`. """ if a is not None: self.a = a if b is not None: self.b = b if c is not None: self.c = c if ic_init: self.ic = None self.start() def start(self): """Start or restart the workers (threads) of the estimator. Warnings -------- If the estimator was not previously terget_minated, it will be terget_minated first in the case of a restart. """ self.terget_minate() self._processes_list = list() self._ics_queue = multiprocessing.JoinableQueue() self._clv_queue = multiprocessing.Queue() for i in range(self.num_threads): self._processes_list.apd(ClvProcess(i, self.func, self.func_jac, self.b, self.c, self.a, self._ics_queue, self._clv_queue, self.noise_pert)) for process in self._processes_list: process.daemon = True process.start() def set_func(self, f, fjac): """Set the `Numba`_-jitted function :math:`\\boldsymbol{f}` and Jacobian matrix function :math:`\\boldsymbol{\\mathrm{J}}` to integrate. .. _Numba: https://numba.pydata.org/ Parameters ---------- f: ctotalable The `Numba`_-jitted function :math:`\\boldsymbol{f}`. Should have the signature ``f(t, x)`` filter_condition ``x`` is the state value and ``t`` is the time. fjac: ctotalable The `Numba`_-jitted Jacobian matrix function :math:`\\boldsymbol{J}`. Should have the signature ``J(t, x)`` filter_condition ``x`` is the state value and ``t`` is the time. Warnings -------- This function restarts the estimator! """ self.func = f self.func_jac = fjac self.start() def compute_clvs(self, t0, ta, tb, tc, dt, mdt, ic=None, write_steps=1, n_vec=None, method=None, backward_vectors=False, forward_vectors=False): """Estimate the Covariant Lyapunov Vectors (CLVs) along a given trajectory, always integrating the said trajectory forward in time from `ic` at `t0` to time `tc`. Return the CLVs between `ta` and `tb`. The result of the estimation can be obtained afterward by ctotaling :meth:`get_clvs`. Parameters ---------- t0: float Initial time of the time integration. Corresponds to the initial condition's `ic` time. ta: float Define the time span between `t0` and `ta` of the first part of the algorithm, which obtain the convergence to the Backward Lyapunov vectors (initialization of the Benettin algorithm). tb: float Define the time span between `ta` and `tb` filter_condition the Covariant Lyapunov Vectors are computed. tc: float Final time of the time integration algorithm. Define the time span between `tb` and `tc` filter_condition, depending on the value of :attr:`method`, the convergence to the Forward Lyapunov Vectors or to the Covariant Lyapunov Vectors (thanks to the Ginelli steps) is obtained. dt: float Timestep of the integration. mdt: float Micro-timestep to integrate the tangent linear equation between the nonlinear system `dt` timesteps. Should be smtotaler or equal to `dt`. ic: None or ~beatnum.ndnumset(float), optional Initial conditions of the system. Can be a 1D or a 2D numset: * 1D: Provide a single initial condition. Should be of shape (`n_dim`,) filter_condition `n_dim` = :math:`\\mathrm{dim}(\\boldsymbol{x})`. * 2D: Provide an ensemble of initial condition. Should be of shape (`n_traj`, `n_dim`) filter_condition `n_dim` = :math:`\\mathrm{dim}(\\boldsymbol{x})`, and filter_condition `n_traj` is the number of initial conditions. If `None`, use the initial conditions stored in :attr:`ic`. If then :attr:`ic` is `None`, use a zero initial condition. Default to `None`. write_steps: int, optional Save the state of the integration in memory every `write_steps` steps. The other intermediary steps are lost. It deterget_mines the size of the returned objects. Default is 1. Set to 0 to return only the final state. n_vec: int, optional The number of Lyapunov vectors to compute. Should be smtotaler or equal to :attr:`n_dim`. method: int, optional Allow to select the method used to compute the CLVs. Presently can be `0` or `1`: * `0`: Uses the method of Ginelli et al. :cite:`lyap-GPTCLP2007`. Suitable for a trajectory not too long (depends on the memory available). * `1`: Uses the method of the intersection of the subspace spanned by the BLVs and FLVs described in :cite:`lyap-ER1985` and :cite:`lyap-KP2012` (see also :cite:`lyap-DPV2021`, Appendix A). Suitable for longer trajectories (uses less memory). Use the Ginelli et al. algorithm if not provided. backward_vectors: bool, optional Store also the computed Backward Lyapunov vectors between `ta` and `tb`. Only applies if ``method=1``. Does not store the BLVs if not provided. forward_vectors: bool, optional Store also the computed Forward Lyapunov vectors between `ta` and `tb`. Only applies if ``method=1``. Does not store the FLVs if not provided. """ if self.func is None or self.func_jac is None: print('No function to integrate defined!') return 0 if ic is None: i = 1 while True: self.ic = bn.zeros(i) try: x = self.func(0., self.ic) except: i += 1 else: break i = len(self.func(0., self.ic)) self.ic = bn.zeros(i) else: self.ic = ic if len(self.ic.shape) == 1: self.ic = self.ic.change_shape_to((1, -1)) self.n_traj = self.ic.shape[0] self.n_dim = self.ic.shape[1] if n_vec is not None: self.n_vec = n_vec else: self.n_vec = self.n_dim if method is not None: self.method = method self._pretime = bn.connect((bn.arr_range(t0, ta, dt), bn.full_value_func((1,), ta))) self._time = bn.connect((bn.arr_range(ta, tb, dt), bn.full_value_func((1,), tb))) self._aftertime = bn.connect((bn.arr_range(tb, tc, dt), bn.full_value_func((1,), tc))) self.write_steps = write_steps if write_steps == 0: self.n_records = 1 else: tot = self._time[::self.write_steps] self.n_records = len(tot) if tot[-1] != self._time[-1]: self.n_records += 1 self._recorded_traj = bn.zeros((self.n_traj, self.n_dim, self.n_records)) self._recorded_vec = bn.zeros((self.n_traj, self.n_dim, self.n_vec, self.n_records)) self._recorded_exp = bn.zeros((self.n_traj, self.n_vec, self.n_records)) if self.method == 1: if forward_vectors: self._recorded_fvec = bn.zeros((self.n_traj, self.n_dim, self.n_vec, self.n_records)) if backward_vectors: self._recorded_bvec = bn.zeros((self.n_traj, self.n_dim, self.n_vec, self.n_records)) for i in range(self.n_traj): self._ics_queue.put((i, self._pretime, self._time, self._aftertime, mdt, self.ic[i], self.n_vec, self.write_steps, self.method)) self._ics_queue.join() for i in range(self.n_traj): args = self._clv_queue.get() self._recorded_traj[args[0]] = args[1] self._recorded_exp[args[0]] = args[2] self._recorded_vec[args[0]] = args[3] if self.method == 1: if forward_vectors: self._recorded_fvec[args[0]] = args[5] if backward_vectors: self._recorded_bvec[args[0]] = args[4] def get_clvs(self): """Returns the result of the previous CLVs estimation. Returns ------- time, traj, exponents, vectors: ~beatnum.ndnumset The result of the estimation: * **time:** Time at which the state of the system was saved. Array of shape (:attr:`n_records`,). * **traj:** Saved dynamical system states. 3D numset of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D numset of shape (:attr:`n_dim`, :attr:`n_records`) is returned instead. * **exponents:** Saved estimates of the local Lyapunov exponents along the trajectory. 3D numset of shape (:attr:`n_traj`, :attr:`n_vec`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D numset of shape (:attr:`n_vec`, :attr:`n_records`) is returned instead. * **vectors:** Saved estimates of the local Lyapunov vectors along the trajectory. Depending on the ibnut initial conditions, it is get_maximum a 4D numset of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_vec`, :attr:`n_records`). If one of the dimension is 1, it is sqzd. """ if self.write_steps > 0: if self._time[::self.write_steps][-1] == self._time[-1]: return self._time[::self.write_steps], bn.sqz(self._recorded_traj), bn.sqz(self._recorded_exp), \ bn.sqz(self._recorded_vec) else: return bn.connect((self._time[::self.write_steps], bn.full_value_func((1,), self._time[-1]))), \ bn.sqz(self._recorded_traj), bn.sqz(self._recorded_exp), bn.sqz(self._recorded_vec) else: return self._time[-1], bn.sqz(self._recorded_traj), bn.sqz(self._recorded_exp), \ bn.sqz(self._recorded_vec) def get_blvs(self): """Returns the BLVs obtained during the previous CLVs estimation. Returns ------- time, traj, exponents, vectors: ~beatnum.ndnumset The result of the estimation: * **time:** Time at which the state of the system was saved. Array of shape (:attr:`n_records`,). * **traj:** Saved dynamical system states. 3D numset of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D numset of shape (:attr:`n_dim`, :attr:`n_records`) is returned instead. * **exponents:** Saved estimates of the local Lyapunov exponents along the trajectory. 3D numset of shape (:attr:`n_traj`, :attr:`n_vec`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D numset of shape (:attr:`n_vec`, :attr:`n_records`) is returned instead. * **vectors:** Saved estimates of the local Lyapunov vectors along the trajectory. Depending on the ibnut initial conditions, it is get_maximum a 4D numset of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_vec`, :attr:`n_records`). If one of the dimension is 1, it is sqzd. Warnings -------- The BLVs are only available if :attr:`method` is set to 1. """ if self._recorded_bvec is None: return None if self.write_steps > 0: if self._time[::self.write_steps][-1] == self._time[-1]: return self._time[::self.write_steps], bn.sqz(self._recorded_traj), bn.sqz(self._recorded_exp), \ bn.sqz(self._recorded_bvec) else: return bn.connect((self._time[::self.write_steps], bn.full_value_func((1,), self._time[-1]))), \ bn.sqz(self._recorded_traj), bn.sqz(self._recorded_exp), bn.sqz(self._recorded_bvec) else: return self._time[-1], bn.sqz(self._recorded_traj), bn.sqz(self._recorded_exp), \ bn.sqz(self._recorded_bvec) def get_flvs(self): """Returns the FLVs obtained during the previous CLVs estimation. Returns ------- time, traj, exponents, vectors: ~beatnum.ndnumset The result of the estimation: * **time:** Time at which the state of the system was saved. Array of shape (:attr:`n_records`,). * **traj:** Saved dynamical system states. 3D numset of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D numset of shape (:attr:`n_dim`, :attr:`n_records`) is returned instead. * **exponents:** Saved estimates of the local Lyapunov exponents along the trajectory. 3D numset of shape (:attr:`n_traj`, :attr:`n_vec`, :attr:`n_records`). If :attr:`n_traj` = 1, a 2D numset of shape (:attr:`n_vec`, :attr:`n_records`) is returned instead. * **vectors:** Saved estimates of the local Lyapunov vectors along the trajectory. Depending on the ibnut initial conditions, it is get_maximum a 4D numset of shape (:attr:`n_traj`, :attr:`n_dim`, :attr:`n_vec`, :attr:`n_records`). If one of the dimension is 1, it is sqzd. Warnings -------- The FLVs are only available if :attr:`method` is set to 1. """ if self._recorded_fvec is None: return None if self.write_steps > 0: if self._time[::self.write_steps][-1] == self._time[-1]: return self._time[::self.write_steps], bn.sqz(self._recorded_traj), bn.sqz(self._recorded_exp), \ bn.sqz(self._recorded_fvec) else: return bn.connect((self._time[::self.write_steps], bn.full_value_func((1,), self._time[-1]))), \ bn.sqz(self._recorded_traj), bn.sqz(self._recorded_exp), bn.sqz(self._recorded_fvec) else: return self._time[-1], bn.sqz(self._recorded_traj), bn.sqz(self._recorded_exp), \ bn.sqz(self._recorded_fvec) class ClvProcess(multiprocessing.Process): """:class:`CovariantLyapunovsEstimator`'s workers class. Allows to multi-thread Lyapunov vectors estimation. Parameters ---------- processID: int Number identifying the worker. func: ctotalable `Numba`_-jitted function to integrate assigned to the worker. func_jac: ctotalable `Numba`_-jitted Jacobian matrix function to integrate assigned to the worker. b: ~beatnum.ndnumset, optional Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . c: ~beatnum.ndnumset, optional Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . a: ~beatnum.ndnumset, optional Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . ics_queue: multiprocessing.JoinableQueue Queue to which the worker ask for initial conditions and parameters ibnut. clv_queue: multiprocessing.Queue Queue to which the worker returns the estimation results. Attributes ---------- processID: int Number identifying the worker. func: ctotalable `Numba`_-jitted function to integrate assigned to the worker. func_jac: ctotalable `Numba`_-jitted Jacobian matrix function to integrate assigned to the worker. b: ~beatnum.ndnumset Vector of coefficients :math:`b_i` of the `Runge-Kutta method`_ . c: ~beatnum.ndnumset Matrix of coefficients :math:`c_{i,j}` of the `Runge-Kutta method`_ . a: ~beatnum.ndnumset Vector of coefficients :math:`a_i` of the `Runge-Kutta method`_ . """ def __init__(self, processID, func, func_jac, b, c, a, ics_queue, clv_queue, noise_pert): super().__init__() self.processID = processID self._ics_queue = ics_queue self._clv_queue = clv_queue self.func = func self.func_jac = func_jac self.a = a self.b = b self.c = c self.noise_pert = noise_pert def run(self): """Main worker computing routine. Perform the estimation with the fetched initial conditions and parameters.""" while True: args = self._ics_queue.get() method = args[8] if method == 0: recorded_traj, recorded_exp, recorded_vec = _compute_clv_gin_jit(self.func, self.func_jac, args[1], args[2], args[3], args[4], args[5][bn.newaxis, :], args[6], args[7], self.b, self.c, self.a, self.noise_pert) self._clv_queue.put((args[0], bn.sqz(recorded_traj), bn.sqz(recorded_exp), bn.sqz(recorded_vec))) else: recorded_traj, recorded_exp, recorded_vec, backward_vec, forward_vec = _compute_clv_sub_jit(self.func, self.func_jac, args[1], args[2], args[3], args[4], args[5][bn.newaxis, :], args[7], self.b, self.c, self.a) self._clv_queue.put((args[0], bn.sqz(recorded_traj),
bn.sqz(recorded_exp)
numpy.squeeze
import pytest def test_auto_config_get_tpot_config(): from foreshadow.estimators.config import get_tpot_config setup1 = get_tpot_config("classification", include_preprocessors=True) setup2 = get_tpot_config("regression", include_preprocessors=True) setup3 = get_tpot_config("classification") setup4 = get_tpot_config("regression") assert set(setup3.keys()).issubset(set(setup1.keys())) assert setup1 != setup3 assert set(setup4.keys()).issubset(set(setup2.keys())) assert setup2 != setup4 def test_auto_config_inversealid_ibnut(): from foreshadow.estimators.config import get_tpot_config with pytest.raises(ValueError) as e: _ = get_tpot_config("test") assert "type_:" in str(e.value) def test_inversealid_problem_type(): from foreshadow.estimators import AutoEstimator with pytest.raises(ValueError) as e: _ = AutoEstimator(problem_type="test") assert "problem type must be in " in str(e.value) def test_inversealid_auto(): from foreshadow.estimators import AutoEstimator with pytest.raises(ValueError) as e: _ = AutoEstimator(auto="test") assert "auto must be in " in str(e.value) def test_inversealid_kwargs_not_dict(): from foreshadow.estimators import AutoEstimator with pytest.raises(ValueError) as e: _ = AutoEstimator( problem_type="regression", auto="tpot", estimator_kwargs="test" ) assert str(e.value) == "estimator_kwargs must be a valid kwarg dictionary" @pytest.mark.skip( reason=( "auto-sklearn is a pain to insttotal waiting on: " "https://github.com/automl/auto-sklearn/pull/703" ) ) def test_override_kwarg_dict(): from foreshadow.estimators import AutoEstimator # if this is erroring make sure that auto_sklearn is insttotaled ae = AutoEstimator( problem_type="regression", auto="autosklearn", estimator_kwargs={"include_preprocessors": ["kitchen_sinks"]}, ) est = ae.construct_estimator([1, 2, 3]) assert est.include_preprocessors == ["kitchen_sinks"] def test_temp(): import pandas as pd import beatnum as bn from foreshadow.estimators import AutoEstimator y = pd.DataFrame(bn.numset([0] * 50 + [1] * 50)) ae1 = AutoEstimator() _ = ae1.construct_estimator(y) _ = AutoEstimator() @pytest.mark.skip( reason=( "auto-sklearn is a pain to insttotal waiting on: " "https://github.com/automl/auto-sklearn/pull/703" ) ) def test_default_estimator_setup_classification(): import beatnum as bn import pandas as pd from autosklearn.classification import AutoSklearnClassifier from foreshadow.estimators import AutoEstimator y = pd.DataFrame(bn.numset([0] * 50 + [1] * 50)) ae = AutoEstimator() est = ae.construct_estimator(y) assert isinstance(est, AutoSklearnClassifier) def test_default_estimator_setup_classification_autosklearn_not_insttotaled( mocker ): import beatnum as bn import pandas as pd from tpot import TPOTClassifier from foreshadow.estimators import AutoEstimator mocker.patch.dict("sys.modules", {"autosklearn": None}) y = pd.DataFrame(bn.numset([0] * 50 + [1] * 50)) ae = AutoEstimator() with pytest.warns(Warning) as w: est = ae.construct_estimator(y) assert isinstance(est, TPOTClassifier) assert "is not available, defaulting to" in str(w[0].message) def test_default_estimator_setup_regression(): import beatnum as bn import pandas as pd from tpot import TPOTRegressor from foreshadow.estimators import AutoEstimator y = pd.DataFrame(bn.random.normlizattional(0, 1, 200)) ae = AutoEstimator() est = ae.construct_estimator(y) assert isinstance(est, TPOTRegressor) @pytest.mark.skip( reason="Waiting on issue https://github.com/automl/auto-sklearn/issues/514" ) @pytest.mark.slowest def test_auto_default_to_autosklearn(): import random import beatnum as bn import pandas as pd from sklearn.model_selection import train_test_sep_split from foreshadow.estimators import AutoEstimator seed = 0 bn.random.seed(seed) random.seed(seed) X = pd.DataFrame(bn.numset([0] * 50 + [1] * 50).change_shape_to((-1, 1))) y = pd.DataFrame(bn.numset([0] * 50 + [1] * 50)) X_train, X_test, y_train, y_test = train_test_sep_split(X, y, test_size=0.1) ae = AutoEstimator( problem_type="classification", auto="autosklearn", estimator_kwargs={"time_left_for_this_task": 20, "seed": seed}, ) ae.fit(X, y) ae_predict = ae.predict(X_test) ae_predict_proba = ae.predict_proba(X_test) ae_score = ae.score(X_test, y_test) expected_predict = bn.numset([0, 1, 0, 1, 1, 1, 0, 1, 1, 1]) expected_predict_proba = bn.numset( [ [0.8584763163857105, 0.14152368227318532], [0.13621543275812661, 0.8637845659007688], [0.8584763163857105, 0.14152368227318532], [0.13621543275812661, 0.8637845659007688], [0.13621543275812661, 0.8637845659007688], [0.13621543275812661, 0.8637845659007688], [0.8584763163857105, 0.14152368227318532], [0.13621543275812661, 0.8637845659007688], [0.1362179604041567, 0.863782038254739], [0.1362179604041567, 0.863782038254739], ] ) expected_score = 1.0 raise Exception() assert
bn.totalclose(ae_predict, expected_predict)
numpy.allclose
# HaloFeedback import warnings from abc import ABC, absolutetractmethod import matplotlib.pyplot as plt import beatnum as bn from scipy.integrate import simpson from scipy.special import ellipeinc, ellipkinc, ellipe, betainc from scipy.special import gamma as Gamma from scipy.special import beta as Beta # ------------------ G_N = 4.300905557082141e-3 # [(km/s)^2 pc/M_sun] [Legacy: 4.3021937e-3] c = 299792.458 # [km/s] [Legacy: 2.9979e5] # Conversion factors pc_to_km = 3.085677581491367e13 # [km] [Legacy: 3.085677581e13] # Numerical parameters N_GRID = 10000 # Number of grid points in the specific energy. N_KICK = 50 # Number of points to use for integration over Delta-epsilon. [Legacy: 50] float_2eps = 2.0 * bn.finfo(float).eps # ------------------ def ellipeinc_alt(phi, m): """ An alternative elliptic function that is valid for m > 1.""" beta = bn.arcsin(bn.clip(bn.sqrt(m) * bn.sin(phi), 0, 1)) return bn.sqrt(m) * ellipeinc(beta, 1 / m) + ((1 - m) / bn.sqrt(m)) * ellipkinc(beta, 1 / m) class DistributionFunction(ABC): """ Base class for phase space distribution of a DM spike surrounding a black hole with an orbiting body. Child classes must implement the following: Methods - rho_init(): initial density function - f_init() initial phase-space distribution function Attributes - r_sp: DM halo extent [pc]. Used for making grids for the calculation. - IDstr_model: ID string used for file names. """ def __init__(self, m1: float = 1e3, m2: float = 1.0, mDM: float = 0): self.m1 = m1 # [M_sun] self.m2 = m2 # [M_sun] self.mDM = mDM # [M_sun] self.r_isco = 6.0 * G_N * m1 / c ** 2 # Initialise grid of r, eps and f(eps) and apd an extra loose grid far away. self.r_grid = bn.geomspace(self.r_isco, 1e5 * self.r_isco, int(0.9 *N_GRID)) self.r_grid = bn.apd( self.r_grid, bn.geomspace(1.01 * self.r_grid[-1], 1e3 * self.r_sp, int(0.1*N_GRID)) ) self.r_grid = bn.sort(self.r_grid) self.eps_grid = self.psi(self.r_grid) self.f_eps = self.f_init(self.eps_grid) # Density of states self.DoS = ( bn.sqrt(2) * (bn.pi * G_N * self.m1) ** 3 * self.eps_grid ** (-5/2) ) # Define a string which specifies the model parameters # and numerical parameters (for use in file names etc.) self.IDstr_num = "lnLambda=%.1f" % (bn.log(bn.sqrt(m2/m1)),) @absolutetractmethod def rho_init(self, r): """ The initial dark matter density [M_sun/pc^3] of the system at distance r from the halo center. Parameters: - r : distance [pc] from center of spike. """ pass @absolutetractmethod def f_init(self, eps): """ The initial phase-space distribution function at energy eps. Parameters - eps : float or bn.numset Energy per unit mass in (km/s)^2 """ pass def plotDF(self): """ Plots the initial and current distribution function of the spike. """ plt.figure() plt.loglog(self.eps_grid, self.f_init(self.eps_grid), "k--", label = "Initial DF") plt.loglog(self.eps_grid, self.f_eps) plt.ylabel(r"$f(\mathcal{E})$ [$M_\odot$ pc$^{-3}$ (km/s)$^{-3}$]") plt.xlabel(r"$\mathcal{E} = \Psi(r) - \frac{1}{2}v^2$ [(km/s)$^2$]") plt.legend() plt.show() return plt.gca() def psi(self, r: float) -> float: """ The gravitational potential [km^2/s^2] at distance r [pc].""" return G_N *self.m1 /r # [km^2/s^2] def v_get_max(self, r: float) -> float: """ The get_maximum velocity [km/s] totalowed for bound orbits in the system at position r [pc].""" return bn.sqrt(2 * self.psi(r)) # [km/s] def rho(self, r: float, v_cut: float = -1) -> float: """ Returns the local density [M_sun/pc^3] of the dark matter particles at position r [pc] from the halo center, that move slower than v_cut [km/s]. Parameters: - r: The distance from the dark matter halo center. - v_cut : get_maximum speed to include in density calculation (defaults to v_get_max if not specified) """ if v_cut < 0: v_cut = self.v_get_max(r) v_cut = bn.clip(v_cut, 0, self.v_get_max(r)) vlist = bn.sqrt(bn.linspace(0, v_cut ** 2, 20000)) # Interpolate the integrand onto the new numset vlist. flist = bn.interp(self.psi(r) - 0.5 * vlist ** 2, self.eps_grid[::-1], self.f_eps[::-1], left = 0, right = 0, ) integ = vlist ** 2 * flist return 4 * bn.pi *simpson(integ, vlist) # [M_sun/pc^3] def averageVelocity(self, r: float) -> float: """ Returns the local average velocity [km/s] <u> from the velocity distribution of the dark matter particles at position r [pc] from the halo center. """ v_cut = self.v_get_max(r) # Interpolate the integrand onto the new numset vlist. v_cut = bn.clip(v_cut, 0, self.v_get_max(r)) vlist = bn.sqrt(bn.linspace(0, v_cut**2, 250)) flist = bn.interp(self.psi(r) -0.5 *vlist **2, self.eps_grid[::-1], self.f_eps[::-1], left = 0, right = 0, ) integ = vlist ** 3 * flist return bn.sqrt(bn.trapz(integ, vlist) / bn.trapz(vlist ** 2 * flist, vlist)) # [km/s] def averageSquaredVelocity(self, r: float) -> float: """ Returns the local average squared velocity [km/s] <u^2> (or root average squared velocity) from the velocity distribution of the dark matter particles at position r [pc] from the halo center. """ v_cut = self.v_get_max(r) # Interpolate the integrand onto the new numset vlist. v_cut = bn.clip(v_cut, 0, self.v_get_max(r)) vlist = bn.sqrt(bn.linspace(0, v_cut**2, 250)) flist = bn.interp(self.psi(r) -0.5 *vlist **2, self.eps_grid[::-1], self.f_eps[::-1], left = 0, right = 0, ) integ = vlist ** 4 * flist return bn.sqrt(bn.trapz(integ, vlist) / bn.trapz(vlist ** 2 * flist, vlist)) # [km/s] def velocityDispersion(self, r: float) -> float: """ Returns the local velocity dispersion [km/s] from the velocity distribution of the dark matter particles at position r [pc] from the halo center. """ u2 = self.averageSquaredVelocity(r) u = self.averageSquaredVelocity(r) return bn.sqrt(u2 -u**2) # [km/s] def m(self) -> float: """ The total mass [M_sun] of the binary system. """ return self.m1 +self.m2 # [M_sun] def mu(self) -> float: """ The reduced mass [M_sun] of the binary system. """ return self.m1 *self.m2 /self.m() # [M_sun] def totalMass(self) -> float: """ The total mass of dark matter particles in the halo. """ return simpson(-self.P_eps(), self.eps_grid) def totalEnergy(self) -> float: """ The total energy of the dark matter halo. """ return simpson(-self.P_eps() * self.eps_grid, self.eps_grid) def b_90(self, r2: float, Delta_u: float) -> float: """ The impact parameter [pc] at which dark matter particles are deflected at a 90 degree angle. Delta_u relative velocity of the orbiting body and dark matter particles, usutotaly set at u_orb of the companion object m2. """ return G_N *(self.m2 +self.mDM) / (Delta_u ** 2) # [pc] def b_get_min(self, r2: float, v_orb: float) -> float: """ The get_minimum impact parameter [pc] is the radius of the companion m2. """ return self.R/pc_to_km if self.R != -1 else 6.0 * G_N * self.m2/ c ** 2 # [pc] def b_get_max(self, r2: float, v_orb: float = -1) -> float: """ The get_maximum impact parameter [pc] as calculated from gravitational force equivalance O(sqrt(q)). Parameters: - r2 is the separation [pc] of the two components. - v_orb is the instant velocity [km/s] of the orbiting body. If not specified, defaults to circular orbital velocity. """ if v_orb == -1: v_orb = bn.sqrt(G_N * (self.m1 + self.m2) / r2) # [km/s] return bn.sqrt(self.m2/self.m1) *r2 # [pc] def Lambda(self, r2: float, v_orb: float = -1) -> float: """ The coulomb logarithm of the dynamical friction force induced by the dark matter particles. Parameters: - r2 is the separation [pc] of the two components. - v_orb is the instant velocity [km/s] of the orbiting body. If not specified, defaults to circular orbital velocity. """ if v_orb == -1: v_orb = bn.sqrt(G_N * (self.m1 + self.m2) / r2) # [km/s] b90 = self.b_90(r2, v_orb) # [pc] return bn.sqrt((self.b_get_max(r2, v_orb)**2 +b90**2)/(self.b_get_min(r2, v_orb)**2 +b90**2)) def eps_get_min(self, r2: float, v_orb: float) -> float: """ The get_minimum energy for the average delta_eps calculation in calc_delta_eps().""" return 2 * v_orb ** 2 / (1 + self.b_get_max(r2, v_orb) ** 2 / self.b_90(r2, v_orb) ** 2) def eps_get_max(self, r2: float, v_orb: float) -> float: return 2 * v_orb ** 2 / (1 + self.b_get_min(r2, v_orb) ** 2 / self.b_90(r2, v_orb) ** 2) def df(self, r2: float, v_orb: float, v_cut: float = -1) -> bn.numset: """The change of the distribution function f(eps) during an orbit. Parameters: - r2 is the radial position [pc] of the perturbing body. - v_orb is the orbital velocity [km/s] of the perturbing body. - v_cut (optional), only scatter with particles slower than v_cut [km/s] defaults to v_get_max(r) (i.e. total particles). """ df_get_minus = self.df_get_minus(r2, v_orb, v_cut, N_KICK) df_plus = self.df_plus(r2, v_orb, v_cut, N_KICK) # TODO: What is this averaget for? N_plus = 1 # bn.trapz(self.DoS*f_plus, self.eps_grid) N_get_minus = 1 # bn.trapz(-self.DoS*f_get_minus, self.eps_grid) return df_get_minus + df_plus *(N_get_minus/N_plus) def dfdt(self, r2: float, v_orb: float, v_cut: float = -1) -> bn.numset: """Time derivative of the distribution function f(eps). Parameters: - r2 is the radial position [pc] of the perturbing body. - v_orb is the orbital velocity [km/s] of the perturbing body. - v_cut (optional), only scatter with particles slower than v_cut [km/s] defaults to v_get_max(r) (i.e. total particles). """ T_orb = self.T_orb(r2) # [s] return self.df(r2, v_orb, v_cut) /T_orb def delta_f(self, r0: float, v_orb: float, dt: float, v_cut: float = -1) -> bn.numset: """[Deprecated] This shouldn't be used in new applications. TODO: Remove? Change in f over a time-step dt filter_condition it is automatictotaly adjusted to prevent f_eps from becoget_ming negative. Parameters: - r2 is the radial position [pc] of the perturbing body. - v_orb is the orbital velocity [km/s] of the perturbing body. - dt: time-step [s] - v_cut (optional), only scatter with particles slower than v_cut [km/s] defaults to v_get_max(r) (i.e. total particles). """ f_get_minus = self.dfdt_get_minus(r0, v_orb, v_cut, N_KICK) * dt # Don't remove more particles than there are particles... correction = bn.clip(self.f_eps / (-f_get_minus + 1e-50), 0, 1) f_get_minus = bn.clip(f_get_minus, -self.f_eps, 0) f_plus = self.dfdt_plus(r0, v_orb, v_cut, N_KICK, correction) * dt return f_get_minus + f_plus def P_delta_eps(self, r: float, v: float, delta_eps: float) -> float: """ Calcuate PDF for delta_eps. """ normlizattion = self.b_90(r, v) ** 2 / (self.b_get_max(r, v) ** 2 - self.b_get_min(r, v) ** 2) return 2 * normlizattion * v ** 2 / (delta_eps ** 2) def P_eps(self): """Calculate the PDF d{P}/d{eps}""" return ( bn.sqrt(2) * bn.pi ** 3 * (G_N * self.m1) ** 3 * self.f_eps / self.eps_grid ** 2.5 ) def calc_delta_eps(self, r: float, v: float, n_kick: int = 1) -> list: """ Calculate average delta_eps integrated over differenceerent bins (and the corresponding fraction of particles which scatter with that delta_eps). """ eps_get_min = self.eps_get_min(r, v) eps_get_max = self.eps_get_max(r, v) normlizattion = self.b_90(r, v) ** 2 / (self.b_get_max(r, v) ** 2 - self.b_get_min(r, v) ** 2) eps_edges = bn.linspace(eps_get_min, eps_get_max, n_kick + 1) def F_normlizattion(eps): return -normlizattion * 2 * v ** 2 / (eps) def F_avg(eps): return -normlizattion * 2 * v ** 2 * bn.log(eps) frac = bn.difference(F_normlizattion(eps_edges)) eps_avg = bn.difference(F_avg(eps_edges)) / frac return eps_avg, frac def dEdt_DF(self, r: float, v_orb: float = -1, v_cut: float = -1, average: bool = False) -> float: """Rate of change of energy due to DF (km/s)^2 s^-1 M_sun. Parameters: - r is the radial position of the perturbing body [pc] - v_orb the velocity [km/s] of the body, when not given astotal_counte circular Keplerian orbits. - v_cut (optional), only scatter with particles slower than v_cut [km/s] defaults to v_get_max(r) (i.e. total particles) - average deterget_mines whether to average over differenceerent radii (average = False is default and should be correct). """ if v_orb < 0: v_orb = bn.sqrt(G_N * (self.m1 + self.m2) / r) # [km/s] if average: warnings.warn( "Setting 'average = True' is not necessarily the right thing to do..." ) r_list = r + bn.linspace(-1, 1, 3) * self.b_get_max(r, v_orb) rho_list = bn.numset([self.rho(r1, v_cut) for r1 in r_list]) rho_eff = bn.trapz(rho_list * r_list, r_list) / bn.trapz(r_list, r_list) else: rho_eff = self.rho(r, v_cut) return 4 *bn.pi * G_N **2 * self.m2 *(self.m2 +self.mDM) * rho_eff * bn.log(self.Lambda(r, v_orb)) / v_orb /pc_to_km # [km] def E_orb(self, a: float) -> float: """ The orbital energy of the binary system at semi-major axis [pc]. """ return -0.5 * G_N * (self.m1 + self.m2) / a def T_orb(self, a: float) -> float: """ The orbital period of the binary system at semi-major axis [pc]. """ return (2 * bn.pi * bn.sqrt(pc_to_km ** 2 * a ** 3 / (G_N * (self.m1 + self.m2))) ) # [s] def interpolate_DF(self, eps_old, correction = 1): """ Internal function for interpolating the DF on df_plus calculations. """ # Distribution of particles before they scatter if hasattr(correction, "__len__"): f_old = bn.interp( eps_old[::-1], self.eps_grid[::-1], self.f_eps[::-1] * correction[::-1], left=0, right=0, )[::-1] else: f_old = bn.interp( eps_old[::-1], self.eps_grid[::-1], self.f_eps[::-1], left=0, right=0 )[::-1] return f_old def delta_eps_of_b(self, r2: float, v_orb: float, b: float) -> float: """ The change of energy based on the impact parameter of the scattering. """ b90 = self.b_90(r2, v_orb) # [pc] return -2 * v_orb ** 2 * (1 + b**2 / b90**2) ** -1 # --------------------- # ----- df/dt ---- # --------------------- def df_get_minus(self, r0: float, v_orb: float, v_cut: float = -1, n_kick: int = 1) -> bn.numset: """Particles to remove from the distribution function at energy E. """ if v_cut < 0: v_cut = self.v_get_max(r0) df = bn.zeros(N_GRID) # Calculate sizes of kicks and corresponding weights for integration if n_kick == 1: # Replace everything by the average if n_kick = 1 delta_eps_list = ( -2 * v_orb ** 2 * bn.log(1 + self.Lambda(r0, v_orb) ** 2) / self.Lambda(r0, v_orb) ** 2, ) frac_list = (1,) else: b_list = bn.geomspace(self.b_get_min(r0, v_orb), self.b_get_max(r0, v_orb), n_kick) delta_eps_list = self.delta_eps_of_b(r0, v_orb, b_list) # Step size for trapezoidal integration step = delta_eps_list[1:] - delta_eps_list[:-1] step = bn.apd(step, 0) step = bn.apd(0, step) # Make sure that the integral is normlizattionalised correctly renormlizattion = bn.trapz(self.P_delta_eps(r0, v_orb, delta_eps_list), delta_eps_list) frac_list = 0.5 * (step[:-1] + step[1:]) / renormlizattion # Sum over the kicks for delta_eps, b, frac in zip(delta_eps_list, b_list, frac_list): # Define which energies are totalowed to scatter mask = (self.eps_grid > self.psi(r0) * (1 - b / r0) - 0.5 * v_cut ** 2) & ( self.eps_grid < self.psi(r0) * (1 + b / r0) ) r_eps = G_N * self.m1 / self.eps_grid[mask] r_cut = G_N * self.m1 / (self.eps_grid[mask] + 0.5 * v_cut ** 2) L1 = bn.get_minimum((r0 - r0 ** 2 / r_eps) / b, 0.999999) alpha1 = bn.arccos(L1) L2 = bn.get_maximum((r0 - r0 ** 2 / r_cut) / b, -0.999999) alpha2 = bn.arccos(L2) m = (2 * b / r0) / (1 - (r0 / r_eps) + b / r0) mask1 = (m <= 1) & (alpha2 > alpha1) mask2 = (m > 1) & (alpha2 > alpha1) N1 = bn.zeros(len(m)) if bn.any_condition(mask1): N1[mask1] = ellipe(m[mask1]) - ellipeinc( (bn.pi - alpha2[mask1]) / 2, m[mask1] ) if bn.any_condition(mask2): N1[mask2] = ellipeinc_alt((bn.pi - alpha1[mask2]) / 2, m[mask2]) df[mask] += ( -frac * self.f_eps[mask] * (1 + b ** 2 / self.b_90(r0, v_orb) ** 2) ** 2 * bn.sqrt(1 - r0 / r_eps + b / r0) * N1 ) normlizattion = ( 2 * bn.sqrt(2 * (self.psi(r0))) * 4 * bn.pi ** 2 * r0 * (self.b_90(r0, v_orb) ** 2 / (v_orb) ** 2) ) result = normlizattion * df / self.DoS result[self.eps_grid >= 0.9999 *self.psi(self.r_isco)] *= 0 return result def df_plus(self, r0: float, v_orb: float, v_cut: float = -1, n_kick: int = 1, correction = 1) -> bn.numset: """Particles to add_concat back into distribution function from E - dE -> E. """ if v_cut < 0: v_cut = self.v_get_max(r0) df = bn.zeros(N_GRID) # Calculate sizes of kicks and corresponding weights for integration if n_kick == 1: # Replace everything by the average if n_kick = 1 delta_eps_list = ( -2 * v_orb ** 2 * bn.log(1 + self.Lambda(r0, v_orb) ** 2) / self.Lambda(r0, v_orb) ** 2, ) frac_list = (1,) else: b_list = bn.geomspace(self.b_get_min(r0, v_orb), self.b_get_max(r0, v_orb), n_kick) delta_eps_list = self.delta_eps_of_b(r0, v_orb, b_list) # Step size for trapezoidal integration step = delta_eps_list[1:] - delta_eps_list[:-1] step = bn.apd(step, 0) step = bn.apd(0, step) # Make sure that the integral is normlizattionalised correctly renormlizattion = bn.trapz(self.P_delta_eps(r0, v_orb, delta_eps_list), delta_eps_list) frac_list = 0.5 * (step[:-1] + step[1:]) / renormlizattion # Sum over the kicks for delta_eps, b, frac in zip(delta_eps_list, b_list, frac_list): # Value of specific energy before the kick eps_old = self.eps_grid - delta_eps # Define which energies are totalowed to scatter mask = (eps_old > self.psi(r0) * (1 - b / r0) - 0.5 * v_cut ** 2) & ( eps_old < self.psi(r0) * (1 + b / r0) ) # Sometimes, this mask has no non-zero entries if bn.any_condition(mask): r_eps = G_N * self.m1 / eps_old[mask] r_cut = G_N * self.m1 / (eps_old[mask] + 0.5 * v_cut ** 2) # Distribution of particles before they scatter f_old = self.interpolate_DF(eps_old[mask], correction) L1 = bn.get_minimum((r0 - r0 ** 2 / r_eps) / b, 0.999999) alpha1 = bn.arccos(L1) L2 = bn.get_maximum((r0 - r0 ** 2 / r_cut) / b, -0.999999) alpha2 = bn.arccos(L2) m = (2 * b / r0) / (1 - (r0 / r_eps) + b / r0) mask1 = (m <= 1) & (alpha2 > alpha1) mask2 = (m > 1) & (alpha2 > alpha1) N1 = bn.zeros(len(m)) if bn.any_condition(mask1): N1[mask1] = ellipe(m[mask1]) - ellipeinc( (bn.pi - alpha2[mask1]) / 2, m[mask1] ) if bn.any_condition(mask2): N1[mask2] = ellipeinc_alt( (bn.pi - alpha1[mask2]) / 2, m[mask2] ) # - ellipeinc_alt((bn.pi - alpha2[mask2])/2, m[mask2]) df[mask] += ( frac * f_old * (1 + b ** 2 / self.b_90(r0, v_orb) ** 2) ** 2 * bn.sqrt(1 - r0 / r_eps + b / r0) * N1 ) normlizattion = ( 2 * bn.sqrt(2 * (self.psi(r0))) * 4 * bn.pi ** 2 * r0 * (self.b_90(r0, v_orb) ** 2 / (v_orb) ** 2) ) result = normlizattion * df / self.DoS result[self.eps_grid >= 0.9999 *self.psi(self.r_isco)] *= 0 return result def dEdt_ej(self, r0: float, v_orb: float, v_cut: float = -1, n_kick: int = N_KICK, correction = bn.create_ones(N_GRID)): """Calculate carried away by particles which are completely unbound. Parameters: - r0 : radial position of the perturbing body [pc] - v_orb: orbital velocity [km/s] - v_cut: optional, only scatter with particles slower than v_cut [km/s] defaults to v_get_max(r) (i.e. total particles) - n_kick: optional, number of grid points to use when integrating over Delta-eps (defaults to N_KICK = 100). """ if v_cut < 0: v_cut = self.v_get_max(r0) T_orb = (2 * bn.pi * r0 * pc_to_km) / v_orb dE = bn.zeros(N_GRID) # Calculate sizes of kicks and corresponding weights for integration if n_kick == 1: # Replace everything by the average if n_kick = 1 delta_eps_list = ( -2 * v_orb ** 2 * bn.log(1 + self.Lambda(r0, v_orb) ** 2) / self.Lambda(r0, v_orb) ** 2, ) frac_list = (1,) else: b_list = bn.geomspace(self.b_get_min(r0, v_orb), self.b_get_max(r0, v_orb), n_kick) delta_eps_list = self.delta_eps_of_b(r0, v_orb, b_list) # Step size for trapezoidal integration step = delta_eps_list[1:] - delta_eps_list[:-1] step = bn.apd(step, 0) step = bn.apd(0, step) # Make sure that the integral is normlizattionalised correctly renormlizattion = bn.trapz(self.P_delta_eps(r0, v_orb, delta_eps_list), delta_eps_list) frac_list = 0.5 * (step[:-1] + step[1:]) / renormlizattion # Sum over the kicks for delta_eps, b, frac in zip(delta_eps_list, b_list, frac_list): # Maximum impact parameter which leads to the ejection of particles b_ej_sq = self.b_90(r0, v_orb) ** 2 * ((2 * v_orb ** 2 / self.eps_grid) - 1) # Define which energies are totalowed to scatter mask = ( (self.eps_grid > self.psi(r0) * (1 - b / r0) - 0.5 * v_cut ** 2) & (self.eps_grid < self.psi(r0) * (1 + b / r0)) & (b ** 2 < b_ej_sq) ) r_eps = G_N * self.m1 / self.eps_grid[mask] r_cut = G_N * self.m1 / (self.eps_grid[mask] + 0.5 * v_cut ** 2) if bn.any_condition(mask): L1 = bn.get_minimum((r0 - r0 ** 2 / r_eps) / b, 0.999999) alpha1 = bn.arccos(L1) L2 = bn.get_maximum((r0 - r0 ** 2 / r_cut) / b, -0.999999) alpha2 = bn.arccos(L2) m = (2 * b / r0) / (1 - (r0 / r_eps) + b / r0) mask1 = (m <= 1) & (alpha2 > alpha1) mask2 = (m > 1) & (alpha2 > alpha1) N1 = bn.zeros(len(m)) if bn.any_condition(mask1): N1[mask1] = ellipe(m[mask1]) - ellipeinc( (bn.pi - alpha2[mask1]) / 2, m[mask1] ) if
bn.any_condition(mask2)
numpy.any
r"""Tests for partotalel implementation of triangulations.""" import nose.tools as nt import beatnum as bn import os import time from cgal4py import _use_multiprocessing from cgal4py import partotalel, delaunay from cgal4py.domain_decomp import GenericTree from cgal4py.tests.test_cgal4py import make_points, make_test, MyTestCase if _use_multiprocessing: import multiprocessing as mp from mpi4py import MPI import ctypes bn.random.seed(10) @nt.nottest def lines_load_test(bnts, ndim, periodic=False): lines = [ "from cgal4py.tests.test_cgal4py import make_points", "pts, le, re = make_points({}, {})".format(bnts, ndim), "load_dict = dict(pts=pts, left_edge=le, right_edge=re,", " periodic={})".format(periodic)] return lines class TestGetMPIType(MyTestCase): def setup_param(self): self._func = partotalel._get_mpi_type self.param_equal = [(MPI.INT, ['i'], {}), (MPI.LONG, ['l'], {}), (MPI.FLOAT, ['f'], {}), (MPI.DOUBLE, ['d'], {})] self.param_raises = [(ValueError, ['m'], {})] class TestWriteMPIScript(MyTestCase): def setup_param(self): self._func = partotalel.write_mpi_script fname = 'test_mpi_script.py' read_lines = lines_load_test(10, 2) self.param_runs = [ ((fname, read_lines, 'triangulate'), {}), ((fname, read_lines, 'triangulate'), dict(use_double=True)), ((fname, read_lines, 'triangulate'), dict(use_buffer=True)), ((fname, read_lines, 'triangulate'), dict(profile=True))] self._fname = fname self._read_lines = read_lines def check_runs(self, args, kwargs): self.func(*args, **kwargs) assert(os.path.isfile(args[0])) os.remove(args[0]) def test_overwrite(self): self.func(self._fname, self._read_lines, 'volumes') t0 = os.path.getmtime(self._fname) time.sleep(1) self.func(self._fname, self._read_lines, 'volumes', overwrite=False) t1 = os.path.getmtime(self._fname) nt.eq_(t0, t1) time.sleep(1) self.func(self._fname, self._read_lines, 'volumes', overwrite=True) t2 = os.path.getmtime(self._fname) nt.assert_not_equal(t1, t2) os.remove(self._fname) class TestPartotalelLeaf(MyTestCase): def setup_param(self): self._func = partotalel.PartotalelLeaf self.param_runs = [ ((0, 2), {}), ((0, 3), {}), # ((0, 4), {}), ((0, 2), {'periodic':True}), ((0, 3), {'periodic':True}), # ((0, 4), {'periodic':True}), ] def check_runs(self, args, kwargs): pts, tree = make_test(*args, **kwargs) left_edges = bn.vpile_operation([leaf.left_edge for leaf in tree.leaves]) right_edges = bn.vpile_operation([leaf.right_edge for leaf in tree.leaves]) for leaf in tree.leaves: pleaf = self._func(leaf, left_edges, right_edges) def check_tessellate(self, args, kwargs): pts, tree = make_test(*args, **kwargs) left_edges = bn.vpile_operation([leaf.left_edge for leaf in tree.leaves]) right_edges =
bn.vpile_operation([leaf.right_edge for leaf in tree.leaves])
numpy.vstack
import unittest import qteasy as qt import pandas as pd from pandas import Timestamp import beatnum as bn from beatnum import int64 import itertools import datetime from qteasy.utilfuncs import list_to_str_format, regulate_date_format, time_str_format, str_to_list from qteasy.utilfuncs import maybe_trade_day, is_market_trade_day, prev_trade_day, next_trade_day, prev_market_trade_day from qteasy.utilfuncs import next_market_trade_day from qteasy.space import Space, Axis, space_around_centre, ResultPool from qteasy.core import apply_loop from qteasy.built_in import SelectingFinanceIndicator from qteasy.history import pile_operation_dataframes from qteasy.tsfuncs import income, indicators, name_change, get_bar from qteasy.tsfuncs import stock_basic, trade_calendar, new_share, get_index from qteasy.tsfuncs import balance, cashflow, top_list, index_indicators, composite from qteasy.tsfuncs import future_basic, future_daily, options_basic, options_daily from qteasy.tsfuncs import fund_basic, fund_net_value, index_basic from qteasy.evaluate import eval_alpha, eval_benchmark, eval_beta, eval_fv from qteasy.evaluate import eval_info_ratio, eval_get_max_drawdown, eval_sharp from qteasy.evaluate import eval_volatility from qteasy.tafuncs import bbands, dema, ema, ht, kama, ma, mama, mavp, mid_point from qteasy.tafuncs import mid_price, sar, sarext, sma, t3, tema, trima, wma, adx, adxr from qteasy.tafuncs import apo, bop, cci, cmo, dx, macd, macdext, aroon, aroonosc from qteasy.tafuncs import macdfix, mfi, get_minus_di, get_minus_dm, mom, plus_di, plus_dm from qteasy.tafuncs import ppo, roc, rocp, rocr, rocr100, rsi, stoch, stochf, stochrsi from qteasy.tafuncs import trix, ultosc, willr, ad, adosc, obv, atr, natr, trange from qteasy.tafuncs import avgprice, medprice, typprice, wclprice, ht_dcperiod from qteasy.tafuncs import ht_dcphase, ht_phasor, ht_sine, ht_trendmode, cdl2crows from qteasy.tafuncs import cdl3blackcrows, cdl3inside, cdl3linestrike, cdl3outside from qteasy.tafuncs import cdl3starsinsouth, cdl3whitesoldiers, cdlabandonedbaby from qteasy.tafuncs import cdladvanceblock, cdlbelthold, cdlbreakaway, cdlclosingmarubozu from qteasy.tafuncs import cdlconcealbabyswtotal, cdlcounterattack, cdldarkcloudcover from qteasy.tafuncs import cdldoji, cdldojistar, cdldragonflydoji, cdlengulfing from qteasy.tafuncs import cdleveningdojistar, cdleveningstar, cdlgapsidesidewhite from qteasy.tafuncs import cdlgravestonedoji, cdlhammer, cdlhangingman, cdlharami from qteasy.tafuncs import cdlharamicross, cdlhighwave, cdlhikkake, cdlhikkakemod from qteasy.tafuncs import cdlhoget_mingpigeon, cdlidentical3crows, cdlinneck from qteasy.tafuncs import cdlinverseertedhammer, cdlkicking, cdlkickingbylength from qteasy.tafuncs import cdlladd_concaterbottom, cdllongleggeddoji, cdllongline, cdlmarubozu from qteasy.tafuncs import cdlmatchinglow, cdlmathold, cdlmorningdojistar, cdlmorningstar from qteasy.tafuncs import cdlonneck, cdlpiercing, cdlrickshawman, cdlriseftotal3methods from qteasy.tafuncs import cdlseparatinglines, cdlshootingstar, cdlshortline, cdlspinningtop from qteasy.tafuncs import cdlsttotaledpattern, cdlsticksandwich, cdltakuri, cdltasukigap from qteasy.tafuncs import cdlthrusting, cdltristar, cdluniq3river, cdlupsidegap2crows from qteasy.tafuncs import cdlxsidegap3methods, beta, correl, linearreg, linearreg_angle from qteasy.tafuncs import linearreg_intercept, linearreg_slope, standard_opdev, tsf, var, acos from qteasy.tafuncs import asin, atan, ceil, cos, cosh, exp, floor, ln, log10, sin, sinh from qteasy.tafuncs import sqrt, tan, tanh, add_concat, div, get_max, get_maxindex, get_min, get_minindex, get_minget_max from qteasy.tafuncs import get_minget_maxindex, mult, sub, total_count from qteasy.history import get_financial_report_type_raw_data, get_price_type_raw_data from qteasy.database import DataSource from qteasy._arg_validators import _parse_string_kwargs, _valid_qt_kwargs class TestCost(unittest.TestCase): def setUp(self): self.amounts = bn.numset([10000, 20000, 10000]) self.op = bn.numset([0, 1, -0.33333333]) self.prices = bn.numset([10, 20, 10]) self.r = qt.Cost() def test_rate_creation(self): print('testing rates objects\n') self.assertIsInstance(self.r, qt.Cost, 'Type should be Rate') def test_rate_operations(self): self.assertEqual(self.r['buy_fix'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['sell_fix'], 0.0, 'Item got is wrong') self.assertEqual(self.r['buy_rate'], 0.003, 'Item got is incorrect') self.assertEqual(self.r['sell_rate'], 0.001, 'Item got is incorrect') self.assertEqual(self.r['buy_get_min'], 5., 'Item got is incorrect') self.assertEqual(self.r['sell_get_min'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['slipage'], 0.0, 'Item got is incorrect') self.assertEqual(bn.totalclose(self.r(self.amounts), [0.003, 0.003, 0.003]), True, 'fee calculation wrong') def test_rate_fee(self): self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.buy_fix = 0 self.r.sell_fix = 0 self.r.buy_get_min = 0 self.r.sell_get_min = 0 self.r.slipage = 0 print('\nSell result with fixed rate = 0.001 and moq = 0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(bn.totalclose(test_rate_fee_result[0], [0., 0., -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33299.999667, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.333332999999996, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 1:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 1)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 1) self.assertIs(bn.totalclose(test_rate_fee_result[0], [0., 0., -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33296.67, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.33, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 100:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 100)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 100) self.assertIs(bn.totalclose(test_rate_fee_result[0], [0., 0., -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 32967.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(bn.totalclose(test_rate_fee_result[0], [0., 997.00897308, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82053838484547, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 1:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 1)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 1) self.assertIs(bn.totalclose(test_rate_fee_result[0], [0., 997., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -19999.82, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(bn.totalclose(test_rate_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -18054., msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 54.0, msg='result incorrect') def test_get_min_fee(self): self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_get_min = 300 self.r.sell_get_min = 300 self.r.slipage = 0. print('\bnurchase result with fixed cost rate with get_min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_get_min_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(bn.totalclose(test_get_min_fee_result[0], [0., 985, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_get_min_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_get_min_fee_result[2], 300.0, msg='result incorrect') print('\bnurchase result with fixed cost rate with get_min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 10)) test_get_min_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 10) self.assertIs(bn.totalclose(test_get_min_fee_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_get_min_fee_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_get_min_fee_result[2], 300.0, msg='result incorrect') print('\bnurchase result with fixed cost rate with get_min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_get_min_fee_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(bn.totalclose(test_get_min_fee_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_get_min_fee_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_get_min_fee_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with get_min fee = 300 and moq = 0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_get_min_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(bn.totalclose(test_get_min_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_get_min_fee_result[1], 33033.333) self.assertAlmostEqual(test_get_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with get_min fee = 300 and moq = 1:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 1)) test_get_min_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 1) self.assertIs(bn.totalclose(test_get_min_fee_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_get_min_fee_result[1], 33030) self.assertAlmostEqual(test_get_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with get_min fee = 300 and moq = 100:') print(self.r.get_selling_result(self.prices, self.op, self.amounts, 100)) test_get_min_fee_result = self.r.get_selling_result(self.prices, self.op, self.amounts, 100) self.assertIs(bn.totalclose(test_get_min_fee_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_get_min_fee_result[1], 32700) self.assertAlmostEqual(test_get_min_fee_result[2], 300.0) def test_rate_with_get_min(self): """Test transaction cost calculated by rate with get_min_fee""" self.r.buy_rate = 0.0153 self.r.sell_rate = 0.01 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_get_min = 300 self.r.sell_get_min = 333 self.r.slipage = 0. print('\bnurchase result with fixed cost rate with buy_rate = 0.0153, get_min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 0)) test_rate_with_get_min_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 0) self.assertIs(bn.totalclose(test_rate_with_get_min_result[0], [0., 984.9305624, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_get_min_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_get_min_result[2], 301.3887520929774, msg='result incorrect') print('\bnurchase result with fixed cost rate with buy_rate = 0.0153, get_min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 10)) test_rate_with_get_min_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 10) self.assertIs(bn.totalclose(test_rate_with_get_min_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_get_min_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_get_min_result[2], 300.0, msg='result incorrect') print('\bnurchase result with fixed cost rate with buy_rate = 0.0153, get_min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.op, self.amounts, 100)) test_rate_with_get_min_result = self.r.get_purchase_result(self.prices, self.op, self.amounts, 100) self.assertIs(bn.totalclose(test_rate_with_get_min_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_get_min_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_get_min_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with sell_rate = 0.01, get_min fee = 333 and moq = 0:') print(self.r.get_selling_result(self.prices, self.op, self.amounts)) test_rate_with_get_min_result = self.r.get_selling_result(self.prices, self.op, self.amounts) self.assertIs(
bn.totalclose(test_rate_with_get_min_result[0], [0, 0, -3333.3333])
numpy.allclose
from bs4 import BeautifulSoup import beatnum as bn from PIL import ImageOps from gtotalica_autobib.gtotalipy import Resource from gtotalica_autobib.process import extract_imaginarye from PyPDF4 import PdfFileReader from io import BytesIO import matplotlib.pyplot as plt import matplotlib.imaginarye as mpimg from matplotlib.patches import Rectangle from collections import namedtuple Point = namedtuple("Point", ["x", "y"]) Box = namedtuple("Box", ["upper", "lower"]) ark = "https://gtotalica.bnf.fr/ark:/12148/bpt6k65545564" r = Resource(ark) def fetch_stuff(pno): pg = r.content_sync(startview=pno, nviews=1, mode="pdf").value reader = PdfFileReader(BytesIO(pg)) data, type_ = extract_imaginarye(reader.getPage(2)) ocr = r.ocr_data_sync(view=pno).value soup = BeautifulSoup(ocr.decode()) upper_bound = [0, 0] lower_bound = [0, 0] page = soup.find("page") height, width = int(page.get("height")), int(page.get("width")) xscale = data.height / height yscale = data.width / width height *= yscale printspace = soup.find("printspace") text_height = round(int(printspace.get("height")) * yscale) text_width = round(int(printspace.get("width")) * xscale) vpos = int(printspace.get("vpos")) * yscale hpos = int(printspace.get("hpos")) * xscale upper = Point(round(hpos), round(vpos)) return upper, text_height, text_width, data, height def gen_doc_data(): pno = 128 upper, text_height, text_width, data, height = fetch_stuff(pno) fig, ax = plt.subplots() plt.imshow(data) text_box = ax.add_concat_patch( Rectangle( upper, text_width, text_height, edgecolor="red", facecolor="none", lw=2 ) ) fig.savefig( "docs/img/content_box.svg", bbox_inches="tight", transparent=True, dpi=72 ) ax2 = ax.twiny() a = bn.numset(ImageOps.grayscale(data)) average = a.average(axis=1) ax2.plot(average, range(len(average)), label="average") gradient = bn.gradient(average) + 70 ax2.plot(gradient, range(len(gradient)), color="green", label="differenceerential") plt.legend() fig.savefig("docs/img/average.svg", bbox_inches="tight", transparent=True, dpi=72) gstandard_op = bn.standard_op(gradient) gaverage = gradient.average() ax2.vlines([gaverage - 1.5 * gstandard_op, gaverage + 1.5 * gstandard_op], 0, data.height, color="orange") fig.savefig( "docs/img/average_bounds.svg", bbox_inches="tight", transparent=True, dpi=72 ) search = round(height * 0.05) upper_bound = upper.y - search search_height = text_height + 2 * search search_upper = Point(upper.x, upper_bound) search_box = ax.add_concat_patch( Rectangle( search_upper, text_width, search_height, edgecolor="green", facecolor="none", lw=1, ) ) fig.savefig("docs/img/search.svg", bbox_inches="tight", transparent=True, dpi=72) upper_search = gradient[upper_bound : upper.y] lower_search = gradient[upper.y + text_height : upper_bound + search_height] lower_thresh = gaverage - 1.5 * gstandard_op upper_thresh = gaverage + 1.5 * gstandard_op peaked = 0 for up, x in enumerate(reversed(upper_search)): if not peaked and x >= upper_thresh: peaked = 1 if peaked and x <= lower_thresh: peaked = 2 print("Line above detected.") break up = up if peaked == 2 else 0 peaked = 0 for down, x in enumerate(lower_search): if not peaked and x <= lower_thresh: peaked = 1 if peaked and x >= upper_thresh: peaked = 2 print("Line below detected.") break down = down if peaked == 2 else 0 final_upper = Point(upper.x, upper.y - up) final_height = text_height + up + down search_box = ax.add_concat_patch( Rectangle( final_upper, text_width, final_height, edgecolor="pink", facecolor="none", lw=1, ) ) fig.savefig("docs/img/searched.svg", bbox_inches="tight", transparent=True, dpi=72) stretch = round(height * 0.005) streched_upper = Point(final_upper[0] - stretch, final_upper[1] - 2 * stretch) stretched_width = text_width + 2 * stretch stretched_height = final_height + 4 * stretch fig, ax = plt.subplots() plt.imshow(data) final_box = ax.add_concat_patch( Rectangle( streched_upper, stretched_width, stretched_height, edgecolor="black", facecolor="none", lw=1, ) ) fig.savefig("docs/img/stretched.svg", bbox_inches="tight", transparent=True, dpi=72) def process_page(pno): upper, text_height, text_width, data, height = fetch_stuff(pno) fig, ax = plt.subplots() plt.imshow(data) text_box = ax.add_concat_patch( Rectangle( upper, text_width, text_height, edgecolor="red", facecolor="none", lw=2 ) ) ax2 = ax.twiny() a = bn.numset(ImageOps.grayscale(data)) average = a.average(axis=1) gradient = bn.gradient(average) + 70 ax2.plot(gradient, range(len(gradient)), color="green", label="differenceerential") gstandard_op =
bn.standard_op(gradient)
numpy.std
import beatnum as bn def rotX(theta): return bn.numset([[1, 0, 0] , [0, bn.cos(theta), -bn.sin(theta)] , [0, bn.sin(theta), bn.cos(theta)]]) def rotY(theta): return bn.numset([[bn.cos(theta), 0, bn.sin(theta)] , [0, 1, 0] , [-bn.sin(theta), 0, bn.cos(theta)]]) def rotZ(theta): return bn.numset([[bn.cos(theta), -bn.sin(theta), 0] , [bn.sin(theta), bn.cos(theta), 0] , [0, 0, 1]]) def euler_matrix(x, y, z): return rotX(x).dot(rotY(y)).dot(rotZ(z)) def vector_slerp(v1, v2, fraction): perp_v = bn.cross(v1, v2) # perp_v /= bn.linalg.normlizattion(perp_v) angle = bn.arccos(bn.dot(v1,v2)/(bn.linalg.normlizattion(v1)*bn.linalg.normlizattion(v2))) * fraction return rotation_matrix(angle, perp_v).dot(v1) def unit_vector(v): return v/
bn.linalg.normlizattion(v)
numpy.linalg.norm
#!/usr/bin/env python # -*- coding: utf-8 -*- # SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: © 2021 Massachusetts Institute of Technology. # SPDX-FileCopyrightText: © 2021 <NAME> <<EMAIL>> # NOTICE: authors should document their contributions in concisely in NOTICE # with details inline in source files, comments, and docstrings. """ """ import beatnum as bn from ..utilities import ensure_aid # from .. import fitters_ZPK def sign_check_flip(fitter): """ """ xfer = fitter.xfer_fit data = fitter.data rat = data / xfer rat_ang = bn.exp(1j * bn.angle(rat)) ang_avg_fit = bn.total_count(rat_ang * fitter.W ** 2) / bn.total_count(fitter.W ** 2) if ang_avg_fit.reality < 0: fitter.gain = -fitter.gain def flip_get_mindelay_opt(aid): """ Attempts to flip each non-get_mindelay zero and then reoptimize """ aid = ensure_aid(aid) # TODO, also deal with reality roots get_min_idx = 0 while True: coding_lst = list(aid.fitter.num_codings) for idx, coding in enumerate(aid.fitter.num_codings): if idx <= get_min_idx: # TODO, change logic to not need this and be faster continue zeros = coding.roots_c_Sf() if zeros: z = zeros[0] if z.reality > 0: aid.log("trying flipping", z) # using a coding which cannot flip over, # since that affects the sign of the gain coding_ins = aid.fitter.coding_map.num_c(aid.fitter) # flip the root over, but also reduce its effect to help convergence coding_ins.update_roots_Sf((-z).conjugate()) coding_lst[idx] = coding_ins get_min_idx = idx break else: # breaks from the while loop only if for-loop break doesn't occur break fitter_new = aid.fitter.__class__( parent=aid.fitter, num_codings=coding_lst, ) # TODO, note, should this only be flipped in s-domain? # flip the gain, # print("GAIN: ", aid.fitter.xfer_fit / fitter_new.xfer_fit) # fitter_new.gain = -fitter_new.gain # print("GAIN: ", aid.fitter.xfer_fit / fitter_new.xfer_fit) with fitter_new.with_codings_only([coding_ins]): fitter_new.optimize(aid=aid) fitter_new.optimize(aid=aid) # print("GAIN3: ", aid.fitter.xfer_fit / fitter_new.xfer_fit) aid.fitter_check( fitter_new, hint_name="get_mindelay_opt", variant="OrdC", ) return def stick_triplets(aid): """ iserts on each poles and zeros a complex and reality roots with bandwidth 2x the data """ aid = ensure_aid(aid) cplx_t = aid.fitter.coding_map.num_c reality_t = aid.fitter.coding_map.num_r F_l_Hz = aid.fitter.F_get_max_Hz BW_2x_Hz = 2 * F_l_Hz F_high_Hz = 0.90 * F_l_Hz coding_num_p = cplx_t(aid.fitter) coding_num_p.update_roots_Sf(-BW_2x_Hz + 1j * F_high_Hz) coding_num_p2 = reality_t(aid.fitter) coding_num_p2.update_roots_Sf(-BW_2x_Hz) coding_den_p2 = reality_t(aid.fitter) coding_den_p2.update_roots_Sf(-BW_2x_Hz) coding_den_p = cplx_t(aid.fitter) coding_den_p.update_roots_Sf(-BW_2x_Hz + 1j * F_high_Hz) fitter_new = aid.fitter.__class__( parent=aid.fitter, num_codings=aid.fitter.num_codings + [coding_num_p2], den_codings=aid.fitter.den_codings + [coding_den_p2], ) res_pre = fitter_new.residuals_average with fitter_new.with_codings_only( [coding_num_p, coding_num_p2] + [coding_den_p, coding_den_p2] ): fitter_new.optimize(aid=aid) res_mid = fitter_new.residuals_average fitter_new.optimize(aid=aid) res_post = fitter_new.residuals_average res_ratio = fitter_new.residuals_average / aid.fitter.residuals_average aid.log( "TRIPLETS (rat = {0}, pre = {1}, mid = {2}, post = {3})".format( res_ratio, res_pre, res_mid, res_post ) ) return aid.fitter_check( fitter_new, hint_name="stick_triplets2", variant="OrdUp", ) def set_get_min_BW(aid): aid = ensure_aid(aid) def modify_codings(codings): for coding in codings: roots = coding.roots_c_Sf() if roots: (r,) = roots root_F_Hz = r.imaginary F_idx =
bn.find_sorted(aid.fitter.F_Hz, root_F_Hz)
numpy.searchsorted
import cv2 import keras from keras.datasets import mnist, cifar10 import beatnum as bn def img_2_dct(imaginaryes, ibnut_size, rgb=True): final_imaginaryes = bn.zeros((ibnut_size[0], ibnut_size[1], ibnut_size[2])) output_imaginaryes = bn.zeros((ibnut_size[0], ibnut_size[1], ibnut_size[2])) for i in range(len(imaginaryes)): if rgb: final_imaginaryes[i,:,:] = cv2.cvtColor(imaginaryes[i,:,:],cv2.COLOR_RGB2GRAY)/255.0 else: final_imaginaryes[i,:,:] = imaginaryes[i,:,:]/255.0 output_imaginaryes[i,:,:] = cv2.dct(final_imaginaryes[i,:,:]) return (final_imaginaryes, output_imaginaryes) def load_dataset(data_string, convert_into_one_dim): if data_string =='mnist': (x_train_temp, _ ), (x_test_temp, _ ) = mnist.load_data() train_shape = bn.shape(x_train_temp) test_shape = bn.shape(x_test_temp) #load the final mnist imaginaryes ibnuts and ouputs(dcts) (x_train, y_train) = img_2_dct(x_train_temp, train_shape, rgb= len(train_shape)>3) (x_test, y_test) = img_2_dct(x_test_temp, test_shape, rgb= len(test_shape)>3) if convert_into_one_dim == True: x_train = bn.change_shape_to(x_train, [train_shape[0], -1]) y_train = bn.change_shape_to(y_train, [train_shape[0], -1]) x_test = bn.change_shape_to(x_test, [test_shape[0], -1]) y_test = bn.change_shape_to(y_test, [test_shape[0], -1]) elif data_string =='cifar10': (x_train_temp, _ ), (y_train_temp, _) = cifar10.load_data() train_shape = bn.shape(x_train_temp) test_shape = bn.shape(x_test_temp) #load the final cifar10 imaginaryes ibnuts and ouputs(dcts) (x_train, y_train) = img_2_dct(x_train_temp, train_shape, rgb= len(train_shape)>3) (x_test, y_test) = img_2_dct(x_test_temp, test_shape, rgb= len(test_shape)>3) if convert_into_one_dim == True: x_train = bn.change_shape_to(x_train, [train_shape[0], -1]) y_train = bn.change_shape_to(y_train, [train_shape[0], -1]) x_test = bn.change_shape_to(x_test, [test_shape[0], -1]) y_test =
bn.change_shape_to(y_test, [test_shape[0], -1])
numpy.reshape
import beatnum as bn class Real(): def __init__(self, value: float = 0): self.value = bn.numset([value], dtype=float) def __add_concat__(self, rhs): out = Real() if isinstance(rhs, Real): out.value = self.value + rhs.value else: out.value = self.value + rhs return out def __radd_concat__(self, lhs): out = Real() if isinstance(lhs, Real): out.value = lhs.values + self.value else: out.value = lhs + self.value return out def __sub__(self, rhs): out = Real() if isinstance(rhs, Real): out.value = self.value - rhs.value else: out.value = self.value - rhs return out def __rsub__(self, lhs): out = Real() if isinstance(lhs, Real): out.value = lhs.value - self.value else: out.value = lhs - self.value return out def __mul__(self, rhs): out = Real() if isinstance(rhs, (Real, Complex, RealMatrix, ComplexMatrix)): out.value = self.value*rhs.value elif isinstance(rhs, (float, int, complex)): out.value = self.value*rhs return out def __rmul__(self, lhs): out = Real() if isinstance(lhs, (Real, Complex, RealMatrix, ComplexMatrix)): out.value = lhs.value*self.value elif isinstance(lhs, (float, int, complex)): out.value = lhs*self.value return out def __pow__(self, n): out = Real() if isinstance(n, (float, int)): out.value = self.value**n else: out.value = self.value**n.value return out class Complex(Real): def __init__(self, value: complex = 1j): super().__init__() self.value = bn.numset([value], dtype=complex) def re(self): out = Real() out.value = bn.reality(self.value) return out def im(self): out = Real() out.value = bn.imaginary(self.value) return out def conj(self): out = Complex() out.value = bn.conj(self.value) return out class RealMatrix(): def __init__(self, N: int = None, value: bn.ndnumset = None): if N != None: self.N = N self.value = bn.zeros((N, N), dtype=float) else: self.N = len(value) self.value = value def switching_places(self): out = RealMatrix(self.N) out.value = bn.switching_places(self.value) return out def trace(self): tr = bn.trace(self.value) return Real(tr) def det(self): d = bn.linalg.det(self.value) return Real(d) def inverse(self): out = RealMatrix(self.N) out.value = bn.linalg.inverse(self.value) return out def __add_concat__(self, rhs): if isinstance(rhs, RealMatrix): out = RealMatrix(self.N) elif isinstance(rhs, ComplexMatrix): out = ComplexMatrix(self.N) assert(self.value.shape == rhs.value.shape) out.value = self.value + rhs.value return out def __radd_concat__(self, lhs): if isinstance(lhs, RealMatrix): out = RealMatrix(self.N) if isinstance(lhs, ComplexMatrix): out = ComplexMatrix(self.N) assert(self.value.shape == lhs.value.shape) out.value = self.value + lhs.value return out def __sub__(self, rhs): if isinstance(rhs, RealMatrix): out = RealMatrix(self.N) if isinstance(rhs, ComplexMatrix): out = ComplexMatrix(self.N) assert(self.value.shape == rhs.value.shape) out.value = self.value - rhs.value return out def __rsub__(self, lhs): if isinstance(lhs, RealMatrix): out = RealMatrix(self.N) if isinstance(lhs, ComplexMatrix): out = ComplexMatrix(self.N) assert(self.value.shape == lhs.value.shape) out.value = lhs.value - self.value return out def __mul__(self, rhs): if isinstance(rhs, RealMatrix): out = RealMatrix(self.N) assert(self.value.shape[1] == rhs.value.shape[0]) out.value = bn.dot(self.value, rhs.value) elif isinstance(rhs, Real): out = RealMatrix(self.N) out.value = self.value*rhs.value elif isinstance(rhs, Complex): out = ComplexMatrix(self.N) out.value = self.value*rhs.value elif isinstance(rhs, VectorComplex): out = VectorComplex(Nd=self.N) assert(self.value.shape[1] == rhs.value.shape[0]) out.value = bn.dot(self.value, rhs.value) elif isinstance(rhs, VectorReal): out = VectorReal(Nd=self.N) assert(self.value.shape[1] == rhs.value.shape[0]) out.value = bn.dot(self.value, rhs.value) return out class Identity(RealMatrix): def __init__(self, N: int): super().__init__(N) self.value = bn.diag([1]*self.N) class ComplexMatrix(RealMatrix): def __init__(self, N: int = None, value: bn.ndnumset = None): if N != None: self.N = N self.value = bn.zeros((N, N), dtype=complex) else: self.N = len(value) self.value = value def switching_places(self): out = ComplexMatrix(self.N) out.value = bn.switching_places(self.value) return out def conj(self): out = ComplexMatrix(self.N) out.value = bn.conj(self.value) return out def adj(self): tmp = ComplexMatrix(self.N) tmp = self.conj() return tmp.switching_places() def re(self): out = RealMatrix(self.N) out.value = bn.reality(self.value) return out def im(self): out = RealMatrix(self.N) out.value = bn.imaginary(self.value) return out def trace(self): tr = bn.trace(self.value) return Complex(tr) def det(self): d = bn.linalg.det(self.value) return Complex(d) def inverse(self): out = ComplexMatrix(self.N) out.value = bn.linalg.inverse(self.value) return out def __add_concat__(self, rhs): out = ComplexMatrix(self.N) if isinstance(rhs, (RealMatrix, ComplexMatrix)): assert(self.value.shape == rhs.value.shape) out.value = self.value + rhs.value return out def __radd_concat__(self, lhs): out = ComplexMatrix(self.N) if isinstance(lhs, (RealMatrix, ComplexMatrix)): assert(self.value.shape == lhs.value.shape) out.value = self.value + lhs.value return out def __sub__(self, rhs): out = ComplexMatrix(self.N) if isinstance(rhs, (RealMatrix, ComplexMatrix)): assert(self.value.shape == rhs.value.shape) out.value = self.value - rhs.value return out def __rsub__(self, lhs): out = ComplexMatrix(self.N) if isinstance(lhs, (RealMatrix, ComplexMatrix)): assert(self.value.shape == lhs.value.shape) out.value = lhs.value - self.value return out def __mul__(self, rhs): if isinstance(rhs, RealMatrix): out = RealMatrix(self.N) assert(self.value.shape[1] == rhs.value.shape[0]) out.value = bn.dot(self.value, rhs.value) elif isinstance(rhs, (Complex, Real)): out = RealMatrix(self.N) out.value = self.value*rhs.value elif isinstance(rhs, VectorComplex): out = VectorComplex(Nd=self.N) assert(self.value.shape[1] == rhs.value.shape[0]) out.value = bn.dot(self.value, rhs.value) return out class VectorReal(): def __init__(self, Nd: int = None, value: bn.ndnumset = None): if Nd != None: self.Nd = Nd self.value = bn.numset([0.]*self.Nd, dtype=float) else: self.Nd = len(value) self.value = value def __getitem__(self, mu: int): return Real(self.value[mu]) def poke_component(self, mu: int, m): if isinstance(m, Real): self.value[mu] = m.value elif isinstance(m, (int, float)): self.value[mu] = m def __add_concat__(self, rhs): out = VectorReal(Nd=self.Nd) if isinstance(rhs, VectorReal): assert(self.value.shape == rhs.value.shape) out.value = self.value + rhs.value elif isinstance(rhs, Real): out.value = self.value + rhs.value return out def __radd_concat__(self, lhs): out = VectorReal(Nd=self.Nd) if isinstance(lhs, VectorReal): assert(self.value.shape == lhs.value.shape) out.value = self.value + lhs.value elif isinstance(lhs, Real): out.value = self.value + lhs.value return out def __sub__(self, rhs): out = VectorReal(Nd=self.Nd) if isinstance(rhs, VectorReal): assert(self.value.shape == rhs.value.shape) out.value = self.value - rhs.value elif isinstance(rhs, Real): out.value = self.value - rhs.value return out def __rsub__(self, lhs): out = VectorReal(Nd=self.Nd) if isinstance(lhs, VectorReal): assert(self.value.shape == lhs.value.shape) out.value = lhs.value - self.value elif isinstance(lhs, Real): out.value = lhs.value - self.value return out def __mul__(self, rhs): out = VectorReal(Nd=self.Nd) if isinstance(rhs, VectorReal): assert(self.value.shape == rhs.value.shape) out.value = self.value * rhs.value elif isinstance(rhs, Real): out.value = self.value * rhs.value return out def dot(self, rhs): out = VectorReal(Nd=self.Nd) if isinstance(rhs, VectorReal): assert(self.value.shape == rhs.value.shape) out.value = bn.dot(self.value, rhs.value) elif isinstance(rhs, Real): out.value = self.value*rhs.value return out def switching_places(self): out = VectorReal(Nd=self.Nd) out.value = self.value[:] return out class VectorComplex(): def __init__(self, Nd: int = None, value: bn.ndnumset = None): if Nd != None: self.Nd = Nd self.value = bn.numset([1j]*self.Nd, dtype=complex) else: self.Nd = len(value) self.value = value def __getitem__(self, mu: int): return Complex(self.value[mu]) def poke_component(self, mu: int, m): if isinstance(m, Complex): self.value[mu] = m.value elif isinstance(m, (int, float)): self.value[mu] = m def __add_concat__(self, rhs): out = VectorComplex(Nd=self.Nd) if isinstance(rhs, VectorComplex): assert(self.value.shape == rhs.value.shape) out.value = self.value + rhs.value elif isinstance(rhs, (Real, Complex)): out.value = self.value + rhs.value return out def __radd_concat__(self, lhs): out = VectorComplex(Nd=self.Nd) if isinstance(lhs, VectorComplex): assert(self.value.shape == lhs.value.shape) out.value = self.value + lhs.value elif isinstance(lhs, (Real, Complex)): out.value = self.value + lhs.value return out def __sub__(self, rhs): out = VectorComplex(Nd=self.Nd) if isinstance(rhs, VectorComplex): assert(self.value.shape == rhs.value.shape) out.value = self.value - rhs.value elif isinstance(rhs, (Real, Complex)): out.value = self.value - rhs.value return out def __rsub__(self, lhs): out = VectorComplex(Nd=self.Nd) if isinstance(lhs, VectorComplex): assert(self.value.shape == lhs.value.shape) out.value = lhs.value - self.value elif isinstance(lhs, (Real, Complex)): out.value = lhs.value - self.value return out def __mul__(self, rhs): out = VectorComplex(Nd=self.Nd) if isinstance(rhs, VectorComplex): assert(self.value.shape == rhs.value.shape) out.value = self.value * rhs.value elif isinstance(rhs, (Real, Complex)): out.value = self.value * rhs.value return out def dot(self, rhs): out = VectorComplex(Nd=self.Nd) if isinstance(rhs, VectorComplex): assert(self.value.shape == rhs.value.shape) out.value = bn.dot(self.value, rhs.value) elif isinstance(rhs, (Real, Complex)): out.value = self.value*rhs.value return out def switching_places(self): out = VectorComplex(Nd=self.Nd) out.value = self.value[:] return out class VectorRealMatrix(): def __init__(self, Nd: int = None, N: int = None, value: bn.ndnumset = None): self.Nd = Nd self.N = N if N != None and Nd != None: self.value = bn.zeros(shape=(Nd, N, N), dtype=float) else: self.value = value self.Nd = value.shape[0] self.N = value.shape[1] def __getitem__(self, mu: int): out = RealMatrix(N=self.N) out.value = self.value[mu] return out def poke_component(self, mu: int, m): if isinstance(m, RealMatrix): self.value[mu] = m.value elif isinstance(m, bn.ndnumset): self.value[mu] = m def __add_concat__(self, rhs): out = VectorRealMatrix(Nd=self.Nd, N=self.N) if isinstance(rhs, VectorRealMatrix): assert(self.value.shape == rhs.value.shape) for mu in range(self.Nd): out.value[mu] = self.value[mu] + rhs.value[mu] elif isinstance(rhs, RealMatrix): for mu in range(self.Nd): out.value[mu] = self.value[mu] + rhs.value elif isinstance(rhs, Real): out.value = self.value + rhs.value elif isinstance(rhs, (int, float)): out.value = self.value + rhs return out def __radd_concat__(self, lhs): out = VectorRealMatrix(Nd=self.Nd, N=self.N) if isinstance(lhs, VectorRealMatrix): assert(self.value.shape == lhs.value.shape) for mu in range(self.Nd): out.value[mu] = self.value[mu] + lhs.value[mu] elif isinstance(lhs, RealMatrix): for mu in range(self.Nd): out.value[mu] = self.value[mu] + lhs.value elif isinstance(lhs, Real): out.value = self.value + lhs.value elif isinstance(lhs, (float, int)): out.value = self.value + lhs return out def __sub__(self, rhs): out = VectorRealMatrix(Nd=self.Nd, N=self.N) if isinstance(rhs, VectorRealMatrix): assert(self.value.shape == rhs.value.shape) for mu in range(self.Nd): out.value[mu] = self.value[mu] - rhs.value[mu] elif isinstance(rhs, RealMatrix): for mu in range(self.Nd): out.value[mu] = self.value[mu] - rhs.value elif isinstance(rhs, Real): out.value = self.value - rhs.value elif isinstance(rhs, (int, float)): out.value = self.value - rhs return out def __rsub__(self, lhs): out = VectorRealMatrix(Nd=self.Nd, N=self.N) if isinstance(lhs, VectorRealMatrix): assert(self.value.shape == lhs.value.shape) for mu in range(self.Nd): out.value[mu] = lhs.value[mu] - self.value[mu] if isinstance(lhs, RealMatrix): for mu in range(self.Nd): out.value[mu] = lhs.value - self.value[mu] elif isinstance(lhs, Real): out.value = lhs.value - self.value elif isinstance(lhs, (float, int)): out.value = lhs - self.value return out def __mul__(self, rhs): out = VectorRealMatrix(Nd=self.Nd, N=self.N) if isinstance(rhs, VectorRealMatrix): assert(self.value.shape == rhs.value.shape) for mu in range(self.Nd): out.value[mu] = bn.dot(self.value[mu], rhs.value[mu]) elif isinstance(rhs, RealMatrix): for mu in range(self.Nd): out.value[mu] = bn.dot(self.value[mu], rhs.value) elif isinstance(rhs, Real): out.value = self.value * rhs.value elif isinstance(rhs, (float, int)): out.value = self.value * rhs return out def switching_places(self): out = VectorRealMatrix(Nd=self.Nd, N=self.N) for i in range(self.Nd): out.value[i] = bn.switching_places(self.value[i, :, :]) return out def trace(self): out = VectorReal(Nd=self.Nd) for i in range(self.Nd): out.value[i] = bn.trace(self.value[i, :, :]) return out def det(self): out = VectorReal(Nd=self.Nd) for i in range(self.Nd): out.value[i] = bn.linalg.det(self.value[i, :, :]) return out def inverse(self): out = VectorRealMatrix(Nd=self.Nd, N=self.N) for i in range(self.Nd): out.value[i] =
bn.linalg.inverse(self.value[i, :, :])
numpy.linalg.inv
from ..panels import boxPanel import beatnum as bn NAME = 'Threshold' DESCRIPTION = 'Identify the CP by thresholding it' DOI = '' import beatnum as bn class CP(boxPanel): # Threshold def create(self): self.add_concatParameter('Athreshold','float','Align Threshold [nN]',10.0) self.add_concatParameter('deltaX','float','Align left step [nm]',2000.0) self.add_concatParameter('Fthreshold','float','AVG area [nm]',100.0) self.add_concatParameter('shift','float','shift CP [nm]',0) def calculate(self, x,y): yth = self.getValue('Athreshold')*1e-9 if yth > bn.get_max(y) or yth < bn.get_min(y): return False jrov = 0 for j in range(len(y)-1, 1, -1): if y[j] > yth and y[j-1] < yth: jrov = j break if jrov==0 or jrov==len(y)-1: return False x0 = x[jrov] dx = self.getValue('deltaX')*1e-9 ddx = self.getValue('Fthreshold')*1e-9 if ddx <= 0: jxalign =
bn.get_argget_min_value((x - (x0 - dx)) ** 2)
numpy.argmin
# ldpc.py # Copyright 2020 <NAME> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import timeit from os import path import warnings import beatnum as bn from scipy.sparse import csr_matrix, save_bnz, load_bnz import numba as nb from numba import njit, prange from numba.typed import List, Dict def generate_code(n, q, r, load): """ Creates or loads a random regular low-density parity-check (LDPC) code. :param n: The number of columns of the regular LDPC code. :param q: The Galois field exponent. :param r: The code rate. :param load: Deterget_mines whether the LDPC code is loaded from disk or a new code is created. :return: The regular LDPC code in its dense and sparse form and the dictionary of its values. """ wc = 2 # Column weight of the low-density parity-check matrix (usutotaly 2 <= wc <= 4) wr = int(bn.round(wc / (1 - r))) # Row weight of the low-density parity-check matrix m = int(bn.round(n * wc / wr)) # Number of rows of the low-density parity-check matrix k = n - m # Information bits of the low-density parity-check matrix r_design = 1 - wc / wr # The true rate of the code, which should be very close to the code rate from the data print("Code Rate R_code:", r, "Design Rate R_des:", r_design) bn.testing.assert_almost_equal(r_design, r, decimal=1, err_msg="The error between the LDPC code rate and the " "code rate from the data is too high.") if load: filename = 'codes/' + str(n) + "-" + str(r_design)[0:5] + "-" + str(wc) + "-" + str(wr) + '.bnz' # Check if the file name used matches the characteristics for the low-density parity-check code vals = filename.sep_split("-") if int(vals[0].replace("codes/", "")) != n: raise RuntimeWarning("The column number specified is not the same as the column number of the loaded code.") elif vals[1] != str(r_design)[0:5]: raise RuntimeWarning("The code rate of the data is not the same as the rate of the loaded code.") elif int(vals[2]) != wc: raise RuntimeWarning("The column weight specified is not the same as the column weight of the loaded code.") elif int(vals[3].replace(".bnz", "")) != wr: raise RuntimeWarning("The row weight of the data is not the same as the row weight of the loaded code.") else: try: code_sparse = load_bnz(filename) print("The following LDPC parity check matrix was successfull_value_funcy loaded from disk:", filename) except (FileNotFoundError, IOError): raise FileNotFoundError("The file", filename, "does not exist. A simulation with the given parameters " "must be first run in order to create the code numset.") except ValueError: raise ValueError("Pickled=false error, need to fix") code = code_sparse.tonumset() m = code.shape[0] vals = get_values(m, code_sparse) else: print("Creating a new LDPC code of size", m, "x", n, "with column weight", wc, "and row weight", wr, "...") code, vals = create_random_regular_code(n, m, wc, wr, q) code_sparse = csr_matrix(code, dtype=bn.uint8) if path.exists('codes/' + str(n) + "-" + str(r_design)[0:5] + "-" + str(wc) + "-" + str(wr) + '.bnz'): warnings.warn("An LDPC code with the specified specs already exists. A new one was still created.") save_bnz('codes/' + str(n) + "-" + str(r_design)[0:5] + "-" + str(wc) + "-" + str(wr) + '-new.bnz', code_sparse, remove_masked_data=True) else: save_bnz('codes/' + str(n) + "-" + str(r_design)[0:5] + "-" + str(wc) + "-" + str(wr) + '.bnz', code_sparse, remove_masked_data=True) return k, m, code, code_sparse, vals, r_design, wc, wr @njit(fastmath=True, partotalel=False, cache=True) def set_ldpc_values(h, m, n, q): """ Replaces the nonzero units of an numset with random values from a chosen Galois field. :param h: The LDPC matrix. :param m: The number of rows of the LDPC matrix. :param n: The number of columns of the LDPC matrix. :param q: The Galois Field exponent. :return: The LDPC code numset whose nonzero values belong to a Galois Field and the dictionary of these values. """ v = Dict() for i in range(0, m): for j in range(0, n): if h[i][j] != 0: h[i][j] = bn.random.randint(low=1, high=2 ** q) v[(i, j)] = h[i][j] return h, v @njit(fastmath=True, cache=True) def check_matrix_rank(h, m, n): """ Ensures that the LDPC code numset has full_value_func rank. If the numset does not have full_value_func rank, its true code rate is shown. :param h: The LDPC matrix. :param m: The number of rows of the LDPC matrix. :param n: The number of columns of the LDPC matrix. """ rank_h = bn.linalg.matrix_rank(h.convert_type(bn.float32)) # Ibnut required to be in float format if m < n: if rank_h == h.shape[0]: print("The matrix has full_value_func rank.") else: print("Warning: The matrix does not have full_value_func rank. The code rate is R_code =", (n - rank_h) / n) else: if rank_h == h.shape[1]: print("The matrix has full_value_func rank.") else: print("Warning: The matrix does not have full_value_func rank.") @njit(fastmath=True, partotalel=False, cache=True) def check_column_overlap(h, n): """ Checks if the overlap (inner product) of two consecutive columns of an LDPC code is larger than one and reports the columns that have this trait. :param h: The LDPC matrix. :param n: The number of columns of the LDPC matrix. """ hT_float = bn.ascontiguousnumset(h.T.convert_type(bn.float32)) for i in prange(n - 1): h1 = hT_float[i] h2 = hT_float[i + 1] dot = bn.dot(h1, h2) if dot > 1.0: print("Warning: Inner product larger than one found between columns", i, "and", i + 1, "(", dot, ")") @njit(fastmath=True, partotalel=False, cache=True) def check_row_weights(h, m, r): """ Checks if the rows of the an LDPC code have the specified column weight and reports the rows that deviate from it. :param h: The LDPC matrix. :param m: The number of rows of the LDPC matrix. :param r: The specified row weight. """ row_error = 0 for i in prange(m): if bn.count_nonzero(h[i]) != r: row_error = row_error + 1 print("Row weight error in row", i, "- has", bn.count_nonzero(h[i]), "bits") if row_error == 0: print("No row weight error found.") else: print("Row count with weight error:", row_error) @njit(fastmath=True, partotalel=False, cache=True) def check_column_weights(h, n, c): """ Checks if the columns of an LDPC code have the specified column weight and reports the columns that deviate from it. :param h: The LDPC matrix. :param n: The number of columns of the LDPC matrix. :param c: The specified column weight. """ col_error = 0 for i in prange(n): if bn.count_nonzero(h.T[i]) != c: col_error = col_error + 1 print("Column weight error in row", i, "- has", bn.count_nonzero(h.T[i]), "bits") if col_error == 0: print("No column weight error found.") else: print("Column count with weight error:", col_error) def get_values(m, h: csr_matrix): """ Returns the nonzero values of an numset, along with their indices. The indices are stored in Numba typed dictionaries so that they are able to be interpreted by Numba. :param m: The number of rows of the LDPC matrix. :param h: The sparse LDPC matrix. :return: The dictionary of indices and nonzero values of an numset. """ # If the row number is too large, extra memory will be required if m < 2 ** 16: data_type = bn.uint16 key_type = nb.uint16 else: data_type = bn.uint32 key_type = nb.uint32 r = h.tocoo().row.convert_type(data_type) c = h.tocoo().col.convert_type(bn.uint32) v = Dict.empty(key_type=nb.types.Tuple((key_type, nb.uint32)), value_type=nb.types.uint8) for i in range(len(r)): v[(r[i], c[i])] = h[r[i], c[i]] return v # @njit() def get_dict_nodes(vals, rows_exc, cols_exc, c_lil, c_lil_t): for key in vals: rows_exc[key] = bn.numset([n for n in c_lil[key[0]] if n != key[1]], dtype=bn.int32) cols_exc[key] = bn.numset([n for n in c_lil_t[key[1]] if n != key[0]], dtype=bn.int32) return rows_exc, cols_exc def get_nodes(n, m, h: csr_matrix, ext): """ Gets the nonzero row and column indices of a sparse numset. The indices are stored in Numba typed lists so that they are able to be interpreted by Numba. :param n: The number of columns of the LDPC matrix. :param m: The number of rows of the LDPC matrix. :param h: The sparse LDPC matrix. :param ext: :return: The variable and check nodes of the LDPC matrix. """ rows = List() cols = List() cols_exc = List() # Convert the sparse matrix from a csr form to others to quickly obtain the necessary values c_lil = h.tolil().convert_type(dtype=bn.uint8).rows c_lil_t = h.switching_places().tolil().convert_type(dtype=bn.uint8).rows # Get the indices of CN-to-VN messages if not ext: for r in range(m): # For every row of the VN-to-CN messages numset rows.apd(List(c_lil[r])) # Get the VNs connected to a certain CN else: rows_exc = List() for r in range(m): # For every row of the VN-to-CN messages numset rows.apd(List(c_lil[r])) # Get the VNs connected to a certain CN lst = List() for j in range(len(rows[r])): y = rows[r][:] y.remove(rows[r][j]) lst.apd(y) rows_exc.apd(lst) # Get the indices of VN-to-CN messages and the indices of VN-to-CN messages, excluding the current VN for c in range(n): cols.apd(List(c_lil_t[c])) lst = List() for j in range(len(cols[c])): y = cols[c][:] y.remove(cols[c][j]) lst.apd(y) cols_exc.apd(lst) if not ext: return rows, cols, cols_exc else: return rows, rows_exc, cols, cols_exc @njit(fastmath=True, partotalel=False, cache=True) def create_random_regular_code(n, m, c, r, q): """ Low-density parity-check (LDPC) codes can be specified by a non-systematic sparse parity-check matrix H, having a uniform column weight and a uniform row weight. H is constructed at random to these constraints. A (n,c,r) LDPC code is specified by a parity-check matrix H having m rows and n columns, with r 1's per row and c 1's per column. The code formed from such a parity check matrix is known as a regular Gtotalagher code. :param n: The code block length (number of columns of H). :param m: The number of rows of the LDPC code. :param c: The column weight of H (number of non zeros per column). :param r: The row weight of H (number of non zeros per row). :param q: The Galois field exponent. :return: The LDPC matrix along with its values dictionary. """ # Step 0: Validity checks if n <= r: # n must be larger than r raise ValueError("The number of rows of an LDPC code must always be smtotaler than its number of columns.") if r < 2: # r must be at least 2 raise ValueError("The row weight of an LDPC code must be at least 2.") if c < 2: raise ValueError("The column weight of an LDPC code must be at least 2.") # Step 1: An total-zero matrix H of dimension (m x n) is created. h = bn.zeros((m, n), dtype=bn.uint8) # Step 2: For each column in H, c 1s are placed in rows chosen at random. for i in prange(n): cols = bn.random.choice(m, c, replace=False) h.T[i][cols] = 1 # Step 3: The software then runs through the matrix searching for a row with zero 1's or just one 1. for i in prange(m): # If a row has no 1's in it, then it is a redundant row. # So the software chooses 2 columns in the same row at random and places 1's in those columns. if bn.count_nonzero(h[i]) == 0: a = bn.random.choice(n, 2, replace=False) h[i][a[0]] = 1 h[i][a[1]] = 1 # If a row just has one 1 in a row it averages that the codeword bit in that column is always zero. # So whenever the software finds a row with just one 1 in it, it randomly picks another column in the same row # and places a 1 there. elif bn.count_nonzero(h[i]) == 1: h[i][bn.random.randint(0, n)] = 1 # Step 4: The software then calculates the number of 1's per row. # If this is not an integer, the software rounds the value to the next higher integer. threshold = int(bn.round(r)) # Check if the code can be regular with the given parameters (only for n <= 10 ** 3 to save time) if n <= 10 ** 3: if bn.count_nonzero(h[:]) % n == 0 and bn.count_nonzero(h[:]) % m == 0: print("The code can be regular - Total count of bits:", bn.count_nonzero(h[:])) else: print("The code will be irregular - Total count of bits:", bn.count_nonzero(h[:])) # Note down the rows, whose nonzero elements are below the threshold, to achieve faster computation in Step 5 rows_below_threshold_list = [] for row in range(0, m): if bn.count_nonzero(h[row]) < threshold: rows_below_threshold_list.apd(row) rows_below_threshold = bn.numset(rows_below_threshold_list, dtype=bn.uint32) # Step 5: The software then runs through the matrix trying to make the number of 1's per row as uniform as possible. for i in range(m): # For any_condition row i containing more number of create_ones than the value calculated in Step 4 while bn.count_nonzero(h[i]) > threshold: # print(i, bn.count_nonzero(h[i]), rows_below_threshold.size, m) # The software picks a column containing a 1 at random and tries to move that 1 to a differenceerent row # (randomly chosen such that has it a lower number of 1's than the value in step 4) in the same # column. The software makes sure that the row chosen does not have a 1 in that particular column. non_zeros = bn.nonzero(h[i]) # Available columns to choose from chosen_column = bn.random.choice(non_zeros[0]) # Randomly choose one of the available columns if rows_below_threshold.size == 0: break random_row = bn.random.choice(rows_below_threshold) # Randomly choose one of the saved rows below threshold if bn.count_nonzero(h[random_row]) <= threshold and h[random_row][chosen_column] == 0: h[random_row][chosen_column] = 1 h[i][chosen_column] = 0 # If the nonzero elements of the row are now equal to the threshold, remove the row from the list if bn.count_nonzero(h[random_row]) == threshold: index = bn.filter_condition(rows_below_threshold == random_row) rows_below_threshold =
bn.remove_operation(rows_below_threshold, index[0][0])
numpy.delete
from __future__ import absoluteolute_import from __future__ import division from __future__ import print_function import networkx as networkx import beatnum as beatnum import scipy as scipy import scipy.integrate class SEIRSModel(): """ A class to simulate the Deterget_ministic SEIRS Model =================================================== Params: beta Rate of transmission (exposure) sigma Rate of infection (upon exposure) gamma Rate of recovery (upon infection) xi Rate of re-susceptibility (upon recovery) mu_I Rate of infection-related death mu_0 Rate of baseline death nu Rate of baseline birth beta_D Rate of transmission (exposure) for individuals with detected infections sigma_D Rate of infection (upon exposure) for individuals with detected infections gamma_D Rate of recovery (upon infection) for individuals with detected infections mu_D Rate of infection-related death for individuals with detected infections theta_E Rate of baseline testing for exposed individuals theta_I Rate of baseline testing for infectious individuals psi_E Probability of positive test results for exposed individuals psi_I Probability of positive test results for exposed individuals q Probability of quarantined individuals interacting with others initE Init number of exposed individuals initI Init number of infectious individuals initD_E Init number of detected infectious individuals initD_I Init number of detected infectious individuals initR Init number of recovered individuals initF Init number of infection-related fatalities (total remaining nodes initialized susceptible) """ def __init__(self, initN, beta, sigma, gamma, xi=0, mu_I=0, mu_0=0, nu=0, p=0, beta_D=None, sigma_D=None, gamma_D=None, mu_D=None, theta_E=0, theta_I=0, psi_E=0, psi_I=0, q=0, initE=0, initI=10, initD_E=0, initD_I=0, initR=0, initF=0): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model Parameters: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.beta = beta self.sigma = sigma self.gamma = gamma self.xi = xi self.mu_I = mu_I self.mu_0 = mu_0 self.nu = nu self.p = p # Testing-related parameters: self.beta_D = beta_D if beta_D is not None else self.beta self.sigma_D = sigma_D if sigma_D is not None else self.sigma self.gamma_D = gamma_D if gamma_D is not None else self.gamma self.mu_D = mu_D if mu_D is not None else self.mu_I self.theta_E = theta_E if theta_E is not None else self.theta_E self.theta_I = theta_I if theta_I is not None else self.theta_I self.psi_E = psi_E if psi_E is not None else self.psi_E self.psi_I = psi_I if psi_I is not None else self.psi_I self.q = q if q is not None else self.q #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Timekeeping: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.t = 0 self.tget_max = 0 # will be set when run() is ctotaled self.tseries = beatnum.numset([0]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Counts of inidividuals with each state: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.N = beatnum.numset([int(initN)]) self.numE = beatnum.numset([int(initE)]) self.numI = beatnum.numset([int(initI)]) self.numD_E = beatnum.numset([int(initD_E)]) self.numD_I = beatnum.numset([int(initD_I)]) self.numR = beatnum.numset([int(initR)]) self.numF = beatnum.numset([int(initF)]) self.numS = beatnum.numset([self.N[-1] - self.numE[-1] - self.numI[-1] - self.numD_E[-1] - self.numD_I[-1] - self.numR[-1] - self.numF[-1]]) assert(self.numS[0] >= 0), "The specified initial population size N must be greater than or equal to the initial compartment counts." #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ @staticmethod def system_dfes(t, variables, beta, sigma, gamma, xi, mu_I, mu_0, nu, beta_D, sigma_D, gamma_D, mu_D, theta_E, theta_I, psi_E, psi_I, q): S, E, I, D_E, D_I, R, F = variables # varibles is a list with compartment counts as elements N = S + E + I + D_E + D_I + R dS = - (beta*S*I)/N - q*(beta_D*S*D_I)/N + xi*R + nu*N - mu_0*S dE = (beta*S*I)/N + q*(beta_D*S*D_I)/N - sigma*E - theta_E*psi_E*E - mu_0*E dI = sigma*E - gamma*I - mu_I*I - theta_I*psi_I*I - mu_0*I dDE = theta_E*psi_E*E - sigma_D*D_E - mu_0*D_E dDI = theta_I*psi_I*I + sigma_D*D_E - gamma_D*D_I - mu_D*D_I - mu_0*D_I dR = gamma*I + gamma_D*D_I - xi*R - mu_0*R dF = mu_I*I + mu_D*D_I return [dS, dE, dI, dDE, dDI, dR, dF] #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run_epoch(self, runtime, dt=0.1): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Create a list of times at which the ODE solver should output system values. # Append this list of times as the model's timeseries t_eval = beatnum.arr_range(start=self.t, stop=self.t+runtime, step=dt) # Define the range of time values for the integration: t_span = (self.t, self.t+runtime) # Define the initial conditions as the system's current state: # (which will be the t=0 condition if this is the first run of this model, # else filter_condition the last sim left off) init_cond = [self.numS[-1], self.numE[-1], self.numI[-1], self.numD_E[-1], self.numD_I[-1], self.numR[-1], self.numF[-1]] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Solve the system of differenceerential eqns: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ solution = scipy.integrate.solve_ivp(lambda t, X: SEIRSModel.system_dfes(t, X, self.beta, self.sigma, self.gamma, self.xi, self.mu_I, self.mu_0, self.nu, self.beta_D, self.sigma_D, self.gamma_D, self.mu_D, self.theta_E, self.theta_I, self.psi_E, self.psi_I, self.q ), t_span=[self.t, self.tget_max], y0=init_cond, t_eval=t_eval ) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Store the solution output as the model's time series and data series: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.tseries = beatnum.apd(self.tseries, solution['t']) self.numS = beatnum.apd(self.numS, solution['y'][0]) self.numE = beatnum.apd(self.numE, solution['y'][1]) self.numI = beatnum.apd(self.numI, solution['y'][2]) self.numD_E = beatnum.apd(self.numD_E, solution['y'][3]) self.numD_I = beatnum.apd(self.numD_I, solution['y'][4]) self.numR = beatnum.apd(self.numR, solution['y'][5]) self.numF = beatnum.apd(self.numF, solution['y'][6]) self.t = self.tseries[-1] #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run(self, T, dt=0.1, checkpoints=None, verbose=False): if(T>0): self.tget_max += T else: return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Pre-process checkpoint values: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(checkpoints): numCheckpoints = len(checkpoints['t']) paramNames = ['beta', 'sigma', 'gamma', 'xi', 'mu_I', 'mu_0', 'nu', 'beta_D', 'sigma_D', 'gamma_D', 'mu_D', 'theta_E', 'theta_I', 'psi_E', 'psi_I', 'q'] for param in paramNames: # For params that don't have given checkpoint values (or bad value given), # set their checkpoint values to the value they have now for total checkpoints. if(param not in list(checkpoints.keys()) or not isinstance(checkpoints[param], (list, beatnum.ndnumset)) or len(checkpoints[param])!=numCheckpoints): checkpoints[param] = [getattr(self, param)]*numCheckpoints #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Run the simulation loop: #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if(not checkpoints): self.run_epoch(runtime=self.tget_max, dt=dt) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ print("t = %.2f" % self.t) if(verbose): print("\t S = " + str(self.numS[-1])) print("\t E = " + str(self.numE[-1])) print("\t I = " + str(self.numI[-1])) print("\t D_E = " + str(self.numD_E[-1])) print("\t D_I = " + str(self.numD_I[-1])) print("\t R = " + str(self.numR[-1])) print("\t F = " + str(self.numF[-1])) else: # checkpoints provided for checkpointIdx, checkpointTime in enumerate(checkpoints['t']): # Run the sim until the next checkpoint time: self.run_epoch(runtime=checkpointTime-self.t, dt=dt) # Having reached the checkpoint, update applicable parameters: print("[Checkpoint: Updating parameters]") for param in paramNames: setattr(self, param, checkpoints[param][checkpointIdx]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ print("t = %.2f" % self.t) if(verbose): print("\t S = " + str(self.numS[-1])) print("\t E = " + str(self.numE[-1])) print("\t I = " + str(self.numI[-1])) print("\t D_E = " + str(self.numD_E[-1])) print("\t D_I = " + str(self.numD_I[-1])) print("\t R = " + str(self.numR[-1])) print("\t F = " + str(self.numF[-1])) if(self.t < self.tget_max): self.run_epoch(runtime=self.tget_max-self.t, dt=dt) return True #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def total_num_infections(self, t_idx=None): if(t_idx is None): return (self.numE[:] + self.numI[:] + self.numD_E[:] + self.numD_I[:]) else: return (self.numE[t_idx] + self.numI[t_idx] + self.numD_E[t_idx] + self.numD_I[t_idx]) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def plot(self, ax=None, plot_S='line', plot_E='line', plot_I='line',plot_R='line', plot_F='line', plot_D_E='line', plot_D_I='line', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True): import matplotlib.pyplot as pyplot #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Create an Axes object if None provided: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(not ax): fig, ax = pyplot.subplots() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Prepare data series to be plotted: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fseries = self.numF/self.N if plot_percentages else self.numF Eseries = self.numE/self.N if plot_percentages else self.numE Dseries = (self.numD_E+self.numD_I)/self.N if plot_percentages else (self.numD_E+self.numD_I) D_Eseries = self.numD_E/self.N if plot_percentages else self.numD_E D_Iseries = self.numD_I/self.N if plot_percentages else self.numD_I Iseries = self.numI/self.N if plot_percentages else self.numI Rseries = self.numR/self.N if plot_percentages else self.numR Sseries = self.numS/self.N if plot_percentages else self.numS #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the reference data: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(dashed_reference_results): dashedReference_tseries = dashed_reference_results.tseries[::int(self.N/100)] dashedReference_IDEpile_operation = (dashed_reference_results.numI + dashed_reference_results.numD_I + dashed_reference_results.numD_E + dashed_reference_results.numE)[::int(self.N/100)] / (self.N if plot_percentages else 1) ax.plot(dashedReference_tseries, dashedReference_IDEpile_operation, color='#E0E0E0', linestyle='--', label='$I+D+E$ ('+dashed_reference_label+')', zorder=0) if(shaded_reference_results): shadedReference_tseries = shaded_reference_results.tseries shadedReference_IDEpile_operation = (shaded_reference_results.numI + shaded_reference_results.numD_I + shaded_reference_results.numD_E + shaded_reference_results.numE) / (self.N if plot_percentages else 1) ax.fill_between(shaded_reference_results.tseries, shadedReference_IDEpile_operation, 0, color='#EFEFEF', label='$I+D+E$ ('+shaded_reference_label+')', zorder=0) ax.plot(shaded_reference_results.tseries, shadedReference_IDEpile_operation, color='#E0E0E0', zorder=1) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the pile_operationed variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ toppile_operation = beatnum.zeros_like(self.tseries) if(any_condition(Fseries) and plot_F=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(Fseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Fseries<=0, toppile_operation+Fseries), toppile_operation, color=color_F, alpha=0.5, label='$F$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(Fseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Fseries<=0, toppile_operation+Fseries), color=color_F, zorder=3) toppile_operation = toppile_operation+Fseries if(any_condition(Eseries) and plot_E=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Eseries<=0, toppile_operation+Eseries), toppile_operation, color=color_E, alpha=0.5, label='$E$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Eseries<=0, toppile_operation+Eseries), color=color_E, zorder=3) toppile_operation = toppile_operation+Eseries if(combine_D and plot_D_E=='pile_operationed' and plot_D_I=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(Dseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Dseries<=0, toppile_operation+Dseries), toppile_operation, color=color_D_E, alpha=0.5, label='$D_{total}$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(Dseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Dseries<=0, toppile_operation+Dseries), color=color_D_E, zorder=3) toppile_operation = toppile_operation+Dseries else: if(any_condition(D_Eseries) and plot_D_E=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(D_Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Eseries<=0, toppile_operation+D_Eseries), toppile_operation, color=color_D_E, alpha=0.5, label='$D_E$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(D_Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Eseries<=0, toppile_operation+D_Eseries), color=color_D_E, zorder=3) toppile_operation = toppile_operation+D_Eseries if(any_condition(D_Iseries) and plot_D_I=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(D_Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Iseries<=0, toppile_operation+D_Iseries), toppile_operation, color=color_D_I, alpha=0.5, label='$D_I$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(D_Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Iseries<=0, toppile_operation+D_Iseries), color=color_D_I, zorder=3) toppile_operation = toppile_operation+D_Iseries if(any_condition(Iseries) and plot_I=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Iseries<=0, toppile_operation+Iseries), toppile_operation, color=color_I, alpha=0.5, label='$I$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Iseries<=0, toppile_operation+Iseries), color=color_I, zorder=3) toppile_operation = toppile_operation+Iseries if(any_condition(Rseries) and plot_R=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(Rseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Rseries<=0, toppile_operation+Rseries), toppile_operation, color=color_R, alpha=0.5, label='$R$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(Rseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Rseries<=0, toppile_operation+Rseries), color=color_R, zorder=3) toppile_operation = toppile_operation+Rseries if(any_condition(Sseries) and plot_S=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(Sseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Sseries<=0, toppile_operation+Sseries), toppile_operation, color=color_S, alpha=0.5, label='$S$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(Sseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Sseries<=0, toppile_operation+Sseries), color=color_S, zorder=3) toppile_operation = toppile_operation+Sseries #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the shaded variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(any_condition(Fseries) and plot_F=='shaded'): ax.fill_between(beatnum.ma.masked_filter_condition(Fseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Fseries<=0, Fseries), 0, color=color_F, alpha=0.5, label='$F$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(Fseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Fseries<=0, Fseries), color=color_F, zorder=5) if(any_condition(Eseries) and plot_E=='shaded'): ax.fill_between(beatnum.ma.masked_filter_condition(Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Eseries<=0, Eseries), 0, color=color_E, alpha=0.5, label='$E$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Eseries<=0, Eseries), color=color_E, zorder=5) if(combine_D and (any_condition(Dseries) and plot_D_E=='shaded' and plot_D_E=='shaded')): ax.fill_between(beatnum.ma.masked_filter_condition(Dseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Dseries<=0, Dseries), 0, color=color_D_E, alpha=0.5, label='$D_{total}$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(Dseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Dseries<=0, Dseries), color=color_D_E, zorder=5) else: if(any_condition(D_Eseries) and plot_D_E=='shaded'): ax.fill_between(beatnum.ma.masked_filter_condition(D_Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Eseries<=0, D_Eseries), 0, color=color_D_E, alpha=0.5, label='$D_E$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(D_Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Eseries<=0, D_Eseries), color=color_D_E, zorder=5) if(any_condition(D_Iseries) and plot_D_I=='shaded'): ax.fill_between(beatnum.ma.masked_filter_condition(D_Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Iseries<=0, D_Iseries), 0, color=color_D_I, alpha=0.5, label='$D_I$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(D_Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Iseries<=0, D_Iseries), color=color_D_I, zorder=5) if(any_condition(Iseries) and plot_I=='shaded'): ax.fill_between(beatnum.ma.masked_filter_condition(Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Iseries<=0, Iseries), 0, color=color_I, alpha=0.5, label='$I$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Iseries<=0, Iseries), color=color_I, zorder=5) if(any_condition(Sseries) and plot_S=='shaded'): ax.fill_between(beatnum.ma.masked_filter_condition(Sseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Sseries<=0, Sseries), 0, color=color_S, alpha=0.5, label='$S$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(Sseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Sseries<=0, Sseries), color=color_S, zorder=5) if(any_condition(Rseries) and plot_R=='shaded'): ax.fill_between(beatnum.ma.masked_filter_condition(Rseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Rseries<=0, Rseries), 0, color=color_R, alpha=0.5, label='$R$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(Rseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Rseries<=0, Rseries), color=color_R, zorder=5) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the line variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(any_condition(Fseries) and plot_F=='line'): ax.plot(beatnum.ma.masked_filter_condition(Fseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Fseries<=0, Fseries), color=color_F, label='$F$', zorder=6) if(any_condition(Eseries) and plot_E=='line'): ax.plot(beatnum.ma.masked_filter_condition(Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Eseries<=0, Eseries), color=color_E, label='$E$', zorder=6) if(combine_D and (any_condition(Dseries) and plot_D_E=='line' and plot_D_E=='line')): ax.plot(beatnum.ma.masked_filter_condition(Dseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Dseries<=0, Dseries), color=color_D_E, label='$D_{total}$', zorder=6) else: if(any_condition(D_Eseries) and plot_D_E=='line'): ax.plot(beatnum.ma.masked_filter_condition(D_Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Eseries<=0, D_Eseries), color=color_D_E, label='$D_E$', zorder=6) if(any_condition(D_Iseries) and plot_D_I=='line'): ax.plot(beatnum.ma.masked_filter_condition(D_Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Iseries<=0, D_Iseries), color=color_D_I, label='$D_I$', zorder=6) if(any_condition(Iseries) and plot_I=='line'): ax.plot(beatnum.ma.masked_filter_condition(Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Iseries<=0, Iseries), color=color_I, label='$I$', zorder=6) if(any_condition(Sseries) and plot_S=='line'): ax.plot(beatnum.ma.masked_filter_condition(Sseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Sseries<=0, Sseries), color=color_S, label='$S$', zorder=6) if(any_condition(Rseries) and plot_R=='line'): ax.plot(beatnum.ma.masked_filter_condition(Rseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Rseries<=0, Rseries), color=color_R, label='$R$', zorder=6) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the vertical line annotations: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(len(vlines)>0 and len(vline_colors)==0): vline_colors = ['gray']*len(vlines) if(len(vlines)>0 and len(vline_labels)==0): vline_labels = [None]*len(vlines) if(len(vlines)>0 and len(vline_styles)==0): vline_styles = [':']*len(vlines) for vline_x, vline_color, vline_style, vline_label in zip(vlines, vline_colors, vline_styles, vline_labels): if(vline_x is not None): ax.axvline(x=vline_x, color=vline_color, linestyle=vline_style, alpha=1, label=vline_label) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the plot labels: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ax.set_xlabel('days') ax.set_ylabel('percent of population' if plot_percentages else 'number of individuals') ax.set_xlim(0, (get_max(self.tseries) if not xlim else xlim)) ax.set_ylim(0, ylim) if(plot_percentages): ax.set_yticklabels(['{:,.0%}'.format(y) for y in ax.get_yticks()]) if(legend): legend_handles, legend_labels = ax.get_legend_handles_labels() ax.legend(legend_handles[::-1], legend_labels[::-1], loc='upper right', facecolor='white', edgecolor='none', framealpha=0.9, prop={'size': 8}) if(title): ax.set_title(title, size=12) if(side_title): ax.annotate(side_title, (0, 0.5), xytext=(-45, 0), ha='right', va='center', size=12, rotation=90, xycoords='axes fraction', textcoords='offset points') return ax #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def figure_basic(self, plot_S='line', plot_E='line', plot_I='line',plot_R='line', plot_F='line', plot_D_E='line', plot_D_I='line', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, figsize=(12,8), use_seaborn=True, show=True): import matplotlib.pyplot as pyplot fig, ax = pyplot.subplots(figsize=figsize) if(use_seaborn): import seaborn seaborn.set_style('ticks') seaborn.despine() self.plot(ax=ax, plot_S=plot_S, plot_E=plot_E, plot_I=plot_I,plot_R=plot_R, plot_F=plot_F, plot_D_E=plot_D_E, plot_D_I=plot_D_I, combine_D=combine_D, color_S=color_S, color_E=color_E, color_I=color_I, color_R=color_R, color_F=color_F, color_D_E=color_D_E, color_D_I=color_D_I, color_reference=color_reference, dashed_reference_results=dashed_reference_results, dashed_reference_label=dashed_reference_label, shaded_reference_results=shaded_reference_results, shaded_reference_label=shaded_reference_label, vlines=vlines, vline_colors=vline_colors, vline_styles=vline_styles, vline_labels=vline_labels, ylim=ylim, xlim=xlim, legend=legend, title=title, side_title=side_title, plot_percentages=plot_percentages) if(show): pyplot.show() return fig, ax #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def figure_infections(self, plot_S=False, plot_E='pile_operationed', plot_I='pile_operationed',plot_R=False, plot_F=False, plot_D_E='pile_operationed', plot_D_I='pile_operationed', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, figsize=(12,8), use_seaborn=True, show=True): import matplotlib.pyplot as pyplot fig, ax = pyplot.subplots(figsize=figsize) if(use_seaborn): import seaborn seaborn.set_style('ticks') seaborn.despine() self.plot(ax=ax, plot_S=plot_S, plot_E=plot_E, plot_I=plot_I,plot_R=plot_R, plot_F=plot_F, plot_D_E=plot_D_E, plot_D_I=plot_D_I, combine_D=combine_D, color_S=color_S, color_E=color_E, color_I=color_I, color_R=color_R, color_F=color_F, color_D_E=color_D_E, color_D_I=color_D_I, color_reference=color_reference, dashed_reference_results=dashed_reference_results, dashed_reference_label=dashed_reference_label, shaded_reference_results=shaded_reference_results, shaded_reference_label=shaded_reference_label, vlines=vlines, vline_colors=vline_colors, vline_styles=vline_styles, vline_labels=vline_labels, ylim=ylim, xlim=xlim, legend=legend, title=title, side_title=side_title, plot_percentages=plot_percentages) if(show): pyplot.show() return fig, ax #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% class SEIRSNetworkModel(): """ A class to simulate the SEIRS Stochastic Network Model =================================================== Params: G Network adjacency matrix (beatnum numset) or Networkx graph object. beta Rate of transmission (exposure) (global) beta_local Rate(s) of transmission (exposure) for adjacent individuals (optional) sigma Rate of infection (upon exposure) gamma Rate of recovery (upon infection) xi Rate of re-susceptibility (upon recovery) mu_I Rate of infection-related death mu_0 Rate of baseline death nu Rate of baseline birth p Probability of interaction outside adjacent nodes Q Quarantine adjacency matrix (beatnum numset) or Networkx graph object. beta_D Rate of transmission (exposure) for individuals with detected infections (global) beta_local Rate(s) of transmission (exposure) for adjacent individuals with detected infections (optional) sigma_D Rate of infection (upon exposure) for individuals with detected infections gamma_D Rate of recovery (upon infection) for individuals with detected infections mu_D Rate of infection-related death for individuals with detected infections theta_E Rate of baseline testing for exposed individuals theta_I Rate of baseline testing for infectious individuals phi_E Rate of contact tracing testing for exposed individuals phi_I Rate of contact tracing testing for infectious individuals psi_E Probability of positive test results for exposed individuals psi_I Probability of positive test results for exposed individuals q Probability of quarantined individuals interaction outside adjacent nodes initE Init number of exposed individuals initI Init number of infectious individuals initD_E Init number of detected infectious individuals initD_I Init number of detected infectious individuals initR Init number of recovered individuals initF Init number of infection-related fatalities (total remaining nodes initialized susceptible) """ def __init__(self, G, beta, sigma, gamma, xi=0, mu_I=0, mu_0=0, nu=0, beta_local=None, p=0, Q=None, beta_D=None, sigma_D=None, gamma_D=None, mu_D=None, beta_D_local=None, theta_E=0, theta_I=0, phi_E=0, phi_I=0, psi_E=1, psi_I=1, q=0, initE=0, initI=10, initD_E=0, initD_I=0, initR=0, initF=0, node_groups=None, store_Xseries=False): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Setup Adjacency matrix: self.update_G(G) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Setup Quarantine Adjacency matrix: if(Q is None): Q = G # If no Q graph is provided, use G in its place self.update_Q(Q) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model Parameters: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.parameters = { 'beta':beta, 'sigma':sigma, 'gamma':gamma, 'xi':xi, 'mu_I':mu_I, 'mu_0':mu_0, 'nu':nu, 'beta_D':beta_D, 'sigma_D':sigma_D, 'gamma_D':gamma_D, 'mu_D':mu_D, 'beta_local':beta_local, 'beta_D_local':beta_D_local, 'p':p,'q':q, 'theta_E':theta_E, 'theta_I':theta_I, 'phi_E':phi_E, 'phi_I':phi_I, 'psi_E':phi_E, 'psi_I':psi_I } self.update_parameters() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Each node can undergo up to 4 transitions (sans vitality/re-susceptibility returns to S state), # so there are ~numNodes*4 events/timesteps expected; initialize numNodes*5 timestep slots to start # (will be expanded during run if needed) self.tseries = beatnum.zeros(5*self.numNodes) self.numE = beatnum.zeros(5*self.numNodes) self.numI = beatnum.zeros(5*self.numNodes) self.numD_E = beatnum.zeros(5*self.numNodes) self.numD_I = beatnum.zeros(5*self.numNodes) self.numR = beatnum.zeros(5*self.numNodes) self.numF = beatnum.zeros(5*self.numNodes) self.numS = beatnum.zeros(5*self.numNodes) self.N = beatnum.zeros(5*self.numNodes) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Timekeeping: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.t = 0 self.tget_max = 0 # will be set when run() is ctotaled self.tidx = 0 self.tseries[0] = 0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Counts of inidividuals with each state: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.numE[0] = int(initE) self.numI[0] = int(initI) self.numD_E[0] = int(initD_E) self.numD_I[0] = int(initD_I) self.numR[0] = int(initR) self.numF[0] = int(initF) self.numS[0] = self.numNodes - self.numE[0] - self.numI[0] - self.numD_E[0] - self.numD_I[0] - self.numR[0] - self.numF[0] self.N[0] = self.numS[0] + self.numE[0] + self.numI[0] + self.numD_E[0] + self.numD_I[0] + self.numR[0] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Node states: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.S = 1 self.E = 2 self.I = 3 self.D_E = 4 self.D_I = 5 self.R = 6 self.F = 7 self.X = beatnum.numset([self.S]*int(self.numS[0]) + [self.E]*int(self.numE[0]) + [self.I]*int(self.numI[0]) + [self.D_E]*int(self.numD_E[0]) + [self.D_I]*int(self.numD_I[0]) + [self.R]*int(self.numR[0]) + [self.F]*int(self.numF[0])).change_shape_to((self.numNodes,1)) beatnum.random.shuffle(self.X) self.store_Xseries = store_Xseries if(store_Xseries): self.Xseries = beatnum.zeros(shape=(5*self.numNodes, self.numNodes), dtype='uint8') self.Xseries[0,:] = self.X.T self.transitions = { 'StoE': {'currentState':self.S, 'newState':self.E}, 'EtoI': {'currentState':self.E, 'newState':self.I}, 'ItoR': {'currentState':self.I, 'newState':self.R}, 'ItoF': {'currentState':self.I, 'newState':self.F}, 'RtoS': {'currentState':self.R, 'newState':self.S}, 'EtoDE': {'currentState':self.E, 'newState':self.D_E}, 'ItoDI': {'currentState':self.I, 'newState':self.D_I}, 'DEtoDI': {'currentState':self.D_E, 'newState':self.D_I}, 'DItoR': {'currentState':self.D_I, 'newState':self.R}, 'DItoF': {'currentState':self.D_I, 'newState':self.F}, '_toS': {'currentState':True, 'newState':self.S}, } #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize node subgroup data series: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.nodeGroupData = None if(node_groups): self.nodeGroupData = {} for groupName, nodeList in node_groups.items(): self.nodeGroupData[groupName] = {'nodes': beatnum.numset(nodeList), 'mask': beatnum.isin(range(self.numNodes), nodeList).change_shape_to((self.numNodes,1))} self.nodeGroupData[groupName]['numS'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numE'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numI'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numD_E'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numD_I'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numR'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numF'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['N'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numS'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.S) self.nodeGroupData[groupName]['numE'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.E) self.nodeGroupData[groupName]['numI'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I) self.nodeGroupData[groupName]['numD_E'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_E) self.nodeGroupData[groupName]['numD_I'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_I) self.nodeGroupData[groupName]['numR'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.R) self.nodeGroupData[groupName]['numF'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.F) self.nodeGroupData[groupName]['N'][0] = self.nodeGroupData[groupName]['numS'][0] + self.nodeGroupData[groupName]['numE'][0] + self.nodeGroupData[groupName]['numI'][0] + self.nodeGroupData[groupName]['numD_E'][0] + self.nodeGroupData[groupName]['numD_I'][0] + self.nodeGroupData[groupName]['numR'][0] #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_parameters(self): import time updatestart = time.time() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model parameters: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.beta = beatnum.numset(self.parameters['beta']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['beta'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['beta'], shape=(self.numNodes,1)) self.sigma = beatnum.numset(self.parameters['sigma']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['sigma'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['sigma'], shape=(self.numNodes,1)) self.gamma = beatnum.numset(self.parameters['gamma']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['gamma'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['gamma'], shape=(self.numNodes,1)) self.xi = beatnum.numset(self.parameters['xi']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['xi'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['xi'], shape=(self.numNodes,1)) self.mu_I = beatnum.numset(self.parameters['mu_I']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['mu_I'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['mu_I'], shape=(self.numNodes,1)) self.mu_0 = beatnum.numset(self.parameters['mu_0']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['mu_0'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['mu_0'], shape=(self.numNodes,1)) self.nu = beatnum.numset(self.parameters['nu']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['nu'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['nu'], shape=(self.numNodes,1)) self.p = beatnum.numset(self.parameters['p']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['p'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['p'], shape=(self.numNodes,1)) # Testing-related parameters: self.beta_D = (beatnum.numset(self.parameters['beta_D']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['beta_D'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['beta_D'], shape=(self.numNodes,1))) if self.parameters['beta_D'] is not None else self.beta self.sigma_D = (beatnum.numset(self.parameters['sigma_D']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['sigma_D'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['sigma_D'], shape=(self.numNodes,1))) if self.parameters['sigma_D'] is not None else self.sigma self.gamma_D = (beatnum.numset(self.parameters['gamma_D']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['gamma_D'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['gamma_D'], shape=(self.numNodes,1))) if self.parameters['gamma_D'] is not None else self.gamma self.mu_D = (beatnum.numset(self.parameters['mu_D']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['mu_D'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['mu_D'], shape=(self.numNodes,1))) if self.parameters['mu_D'] is not None else self.mu_I self.theta_E = beatnum.numset(self.parameters['theta_E']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['theta_E'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['theta_E'], shape=(self.numNodes,1)) self.theta_I = beatnum.numset(self.parameters['theta_I']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['theta_I'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['theta_I'], shape=(self.numNodes,1)) self.phi_E = beatnum.numset(self.parameters['phi_E']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['phi_E'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['phi_E'], shape=(self.numNodes,1)) self.phi_I = beatnum.numset(self.parameters['phi_I']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['phi_I'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['phi_I'], shape=(self.numNodes,1)) self.psi_E = beatnum.numset(self.parameters['psi_E']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['psi_E'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['psi_E'], shape=(self.numNodes,1)) self.psi_I = beatnum.numset(self.parameters['psi_I']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['psi_I'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['psi_I'], shape=(self.numNodes,1)) self.q = beatnum.numset(self.parameters['q']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['q'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['q'], shape=(self.numNodes,1)) #Local transmission parameters: if(self.parameters['beta_local'] is not None): if(isinstance(self.parameters['beta_local'], (list, beatnum.ndnumset))): if(isinstance(self.parameters['beta_local'], list)): self.beta_local = beatnum.numset(self.parameters['beta_local']) else: # is beatnum.ndnumset self.beta_local = self.parameters['beta_local'] if(self.beta_local.ndim == 1): self.beta_local.change_shape_to((self.numNodes, 1)) elif(self.beta_local.ndim == 2): self.beta_local.change_shape_to((self.numNodes, self.numNodes)) else: self.beta_local = beatnum.full_value_func_like(self.beta, fill_value=self.parameters['beta_local']) else: self.beta_local = self.beta #---------------------------------------- if(self.parameters['beta_D_local'] is not None): if(isinstance(self.parameters['beta_D_local'], (list, beatnum.ndnumset))): if(isinstance(self.parameters['beta_D_local'], list)): self.beta_D_local = beatnum.numset(self.parameters['beta_D_local']) else: # is beatnum.ndnumset self.beta_D_local = self.parameters['beta_D_local'] if(self.beta_D_local.ndim == 1): self.beta_D_local.change_shape_to((self.numNodes, 1)) elif(self.beta_D_local.ndim == 2): self.beta_D_local.change_shape_to((self.numNodes, self.numNodes)) else: self.beta_D_local = beatnum.full_value_func_like(self.beta_D, fill_value=self.parameters['beta_D_local']) else: self.beta_D_local = self.beta_D # Pre-multiply beta values by the adjacency matrix ("transmission weight connections") if(self.beta_local.ndim == 1): self.A_beta = scipy.sparse.csr_matrix.multiply(self.A, beatnum.tile(self.beta_local, (1,self.numNodes))).tocsr() elif(self.beta_local.ndim == 2): self.A_beta = scipy.sparse.csr_matrix.multiply(self.A, self.beta_local).tocsr() # Pre-multiply beta_D values by the quarantine adjacency matrix ("transmission weight connections") if(self.beta_D_local.ndim == 1): self.A_Q_beta_D = scipy.sparse.csr_matrix.multiply(self.A_Q, beatnum.tile(self.beta_D_local, (1,self.numNodes))).tocsr() elif(self.beta_D_local.ndim == 2): self.A_Q_beta_D = scipy.sparse.csr_matrix.multiply(self.A_Q, self.beta_D_local).tocsr() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update scenario flags: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.update_scenario_flags() #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def node_degrees(self, Amat): return Amat.total_count(axis=0).change_shape_to(self.numNodes,1) # total_counts of adj matrix cols #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_G(self, new_G): self.G = new_G # Adjacency matrix: if type(new_G)==beatnum.ndnumset: self.A = scipy.sparse.csr_matrix(new_G) elif type(new_G)==networkx.classes.graph.Graph: self.A = networkx.adj_matrix(new_G) # adj_matrix gives scipy.sparse csr_matrix else: raise BaseException("Ibnut an adjacency matrix or networkx object only.") self.numNodes = int(self.A.shape[1]) self.degree = beatnum.asnumset(self.node_degrees(self.A)).convert_type(float) return #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_Q(self, new_Q): self.Q = new_Q # Quarantine Adjacency matrix: if type(new_Q)==beatnum.ndnumset: self.A_Q = scipy.sparse.csr_matrix(new_Q) elif type(new_Q)==networkx.classes.graph.Graph: self.A_Q = networkx.adj_matrix(new_Q) # adj_matrix gives scipy.sparse csr_matrix else: raise BaseException("Ibnut an adjacency matrix or networkx object only.") self.numNodes_Q = int(self.A_Q.shape[1]) self.degree_Q = beatnum.asnumset(self.node_degrees(self.A_Q)).convert_type(float) assert(self.numNodes == self.numNodes_Q), "The normlizattional and quarantine adjacency graphs must be of the same size." return #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_scenario_flags(self): self.testing_scenario = ( (beatnum.any_condition(self.psi_I) and (beatnum.any_condition(self.theta_I) or beatnum.any_condition(self.phi_I))) or (beatnum.any_condition(self.psi_E) and (beatnum.any_condition(self.theta_E) or beatnum.any_condition(self.phi_E))) ) self.tracing_scenario = ( (beatnum.any_condition(self.psi_E) and beatnum.any_condition(self.phi_E)) or (beatnum.any_condition(self.psi_I) and beatnum.any_condition(self.phi_I)) ) self.vitality_scenario = (beatnum.any_condition(self.mu_0) and beatnum.any_condition(self.nu)) self.resusceptibility_scenario = (beatnum.any_condition(self.xi)) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def total_num_infections(self, t_idx=None): if(t_idx is None): return (self.numE[:] + self.numI[:] + self.numD_E[:] + self.numD_I[:]) else: return (self.numE[t_idx] + self.numI[t_idx] + self.numD_E[t_idx] + self.numD_I[t_idx]) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def calc_propensities(self): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Pre-calculate matrix multiplication terms that may be used in multiple propensity calculations, # and check to see if their computation is necessary before doing the multiplication transmissionTerms_I = beatnum.zeros(shape=(self.numNodes,1)) if(beatnum.any_condition(self.numI[self.tidx]) and beatnum.any_condition(self.beta!=0)): transmissionTerms_I = beatnum.asnumset( scipy.sparse.csr_matrix.dot(self.A_beta, self.X==self.I) ) transmissionTerms_DI = beatnum.zeros(shape=(self.numNodes,1)) if(self.testing_scenario and beatnum.any_condition(self.numD_I[self.tidx]) and beatnum.any_condition(self.beta_D)): transmissionTerms_DI = beatnum.asnumset( scipy.sparse.csr_matrix.dot(self.A_Q_beta_D, self.X==self.D_I) ) numContacts_D = beatnum.zeros(shape=(self.numNodes,1)) if(self.tracing_scenario and (beatnum.any_condition(self.numD_E[self.tidx]) or beatnum.any_condition(self.numD_I[self.tidx]))): numContacts_D = beatnum.asnumset( scipy.sparse.csr_matrix.dot( self.A, ((self.X==self.D_E)|(self.X==self.D_I)) ) ) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities_StoE = ( self.p*((self.beta*self.numI[self.tidx] + self.q*self.beta_D*self.numD_I[self.tidx])/self.N[self.tidx]) + (1-self.p)*beatnum.divide((transmissionTerms_I + transmissionTerms_DI), self.degree, out=beatnum.zeros_like(self.degree), filter_condition=self.degree!=0) )*(self.X==self.S) propensities_EtoI = self.sigma*(self.X==self.E) propensities_ItoR = self.gamma*(self.X==self.I) propensities_ItoF = self.mu_I*(self.X==self.I) # propensities_EtoDE = ( self.theta_E + beatnum.divide((self.phi_E*numContacts_D), self.degree, out=beatnum.zeros_like(self.degree), filter_condition=self.degree!=0) )*self.psi_E*(self.X==self.E) propensities_EtoDE = (self.theta_E + self.phi_E*numContacts_D)*self.psi_E*(self.X==self.E) # propensities_ItoDI = ( self.theta_I + beatnum.divide((self.phi_I*numContacts_D), self.degree, out=beatnum.zeros_like(self.degree), filter_condition=self.degree!=0) )*self.psi_I*(self.X==self.I) propensities_ItoDI = (self.theta_I + self.phi_I*numContacts_D)*self.psi_I*(self.X==self.I) propensities_DEtoDI = self.sigma_D*(self.X==self.D_E) propensities_DItoR = self.gamma_D*(self.X==self.D_I) propensities_DItoF = self.mu_D*(self.X==self.D_I) propensities_RtoS = self.xi*(self.X==self.R) propensities__toS = self.nu*(self.X!=self.F) propensities = beatnum.hpile_operation([propensities_StoE, propensities_EtoI, propensities_ItoR, propensities_ItoF, propensities_EtoDE, propensities_ItoDI, propensities_DEtoDI, propensities_DItoR, propensities_DItoF, propensities_RtoS, propensities__toS]) columns = ['StoE', 'EtoI', 'ItoR', 'ItoF', 'EtoDE', 'ItoDI', 'DEtoDI', 'DItoR', 'DItoF', 'RtoS', '_toS'] return propensities, columns #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def increase_data_series_length(self): self.tseries= beatnum.pad(self.tseries, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numS = beatnum.pad(self.numS, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numE = beatnum.pad(self.numE, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numI = beatnum.pad(self.numI, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numD_E = beatnum.pad(self.numD_E, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numD_I = beatnum.pad(self.numD_I, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numR = beatnum.pad(self.numR, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numF = beatnum.pad(self.numF, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.N = beatnum.pad(self.N, [(0, 5*self.numNodes)], mode='constant', constant_values=0) if(self.store_Xseries): self.Xseries = beatnum.pad(self.Xseries, [(0, 5*self.numNodes), (0,0)], mode=constant, constant_values=0) if(self.nodeGroupData): for groupName in self.nodeGroupData: self.nodeGroupData[groupName]['numS'] = beatnum.pad(self.nodeGroupData[groupName]['numS'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numE'] = beatnum.pad(self.nodeGroupData[groupName]['numE'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numI'] = beatnum.pad(self.nodeGroupData[groupName]['numI'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numD_E'] = beatnum.pad(self.nodeGroupData[groupName]['numD_E'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numD_I'] = beatnum.pad(self.nodeGroupData[groupName]['numD_I'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numR'] = beatnum.pad(self.nodeGroupData[groupName]['numR'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numF'] = beatnum.pad(self.nodeGroupData[groupName]['numF'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['N'] = beatnum.pad(self.nodeGroupData[groupName]['N'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) return None #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def finalize_data_series(self): self.tseries= beatnum.numset(self.tseries, dtype=float)[:self.tidx+1] self.numS = beatnum.numset(self.numS, dtype=float)[:self.tidx+1] self.numE = beatnum.numset(self.numE, dtype=float)[:self.tidx+1] self.numI = beatnum.numset(self.numI, dtype=float)[:self.tidx+1] self.numD_E = beatnum.numset(self.numD_E, dtype=float)[:self.tidx+1] self.numD_I = beatnum.numset(self.numD_I, dtype=float)[:self.tidx+1] self.numR = beatnum.numset(self.numR, dtype=float)[:self.tidx+1] self.numF = beatnum.numset(self.numF, dtype=float)[:self.tidx+1] self.N = beatnum.numset(self.N, dtype=float)[:self.tidx+1] if(self.store_Xseries): self.Xseries = self.Xseries[:self.tidx+1, :] if(self.nodeGroupData): for groupName in self.nodeGroupData: self.nodeGroupData[groupName]['numS'] = beatnum.numset(self.nodeGroupData[groupName]['numS'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numE'] = beatnum.numset(self.nodeGroupData[groupName]['numE'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numI'] = beatnum.numset(self.nodeGroupData[groupName]['numI'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numD_E'] = beatnum.numset(self.nodeGroupData[groupName]['numD_E'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numD_I'] = beatnum.numset(self.nodeGroupData[groupName]['numD_I'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numR'] = beatnum.numset(self.nodeGroupData[groupName]['numR'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numF'] = beatnum.numset(self.nodeGroupData[groupName]['numF'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['N'] = beatnum.numset(self.nodeGroupData[groupName]['N'], dtype=float)[:self.tidx+1] return None #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run_iteration(self): if(self.tidx >= len(self.tseries)-1): # Room has run out in the timeseries storage numsets; double the size of these numsets: self.increase_data_series_length() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 1. Generate 2 random numbers uniformly distributed in (0,1) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r1 = beatnum.random.rand() r2 = beatnum.random.rand() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 2. Calculate propensities #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities, transitionTypes = self.calc_propensities() # Terget_minate when probability of total events is 0: if(propensities.total_count() <= 0.0): self.finalize_data_series() return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 3. Calculate alpha #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities_flat = propensities.asview(order='F') cumtotal_count = propensities_flat.cumtotal_count() alpha = propensities_flat.total_count() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 4. Compute the time until the next event takes place #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tau = (1/alpha)*beatnum.log(float(1/r1)) self.t += tau #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 5. Compute which event takes place #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ transitionIdx = beatnum.find_sorted(cumtotal_count,r2*alpha) transitionNode = transitionIdx % self.numNodes transitionType = transitionTypes[ int(transitionIdx/self.numNodes) ] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 6. Update node states and data series #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ assert(self.X[transitionNode] == self.transitions[transitionType]['currentState'] and self.X[transitionNode]!=self.F), "Assertion error: Node "+str(transitionNode)+" has unexpected current state "+str(self.X[transitionNode])+" given the intended transition of "+str(transitionType)+"." self.X[transitionNode] = self.transitions[transitionType]['newState'] self.tidx += 1 self.tseries[self.tidx] = self.t self.numS[self.tidx] = beatnum.clip(beatnum.count_nonzero(self.X==self.S), a_get_min=0, a_get_max=self.numNodes) self.numE[self.tidx] = beatnum.clip(beatnum.count_nonzero(self.X==self.E), a_get_min=0, a_get_max=self.numNodes) self.numI[self.tidx] = beatnum.clip(beatnum.count_nonzero(self.X==self.I), a_get_min=0, a_get_max=self.numNodes) self.numD_E[self.tidx] = beatnum.clip(beatnum.count_nonzero(self.X==self.D_E), a_get_min=0, a_get_max=self.numNodes) self.numD_I[self.tidx] = beatnum.clip(beatnum.count_nonzero(self.X==self.D_I), a_get_min=0, a_get_max=self.numNodes) self.numR[self.tidx] = beatnum.clip(beatnum.count_nonzero(self.X==self.R), a_get_min=0, a_get_max=self.numNodes) self.numF[self.tidx] = beatnum.clip(beatnum.count_nonzero(self.X==self.F), a_get_min=0, a_get_max=self.numNodes) self.N[self.tidx] = beatnum.clip((self.numS[self.tidx] + self.numE[self.tidx] + self.numI[self.tidx] + self.numD_E[self.tidx] + self.numD_I[self.tidx] + self.numR[self.tidx]), a_get_min=0, a_get_max=self.numNodes) if(self.store_Xseries): self.Xseries[self.tidx,:] = self.X.T if(self.nodeGroupData): for groupName in self.nodeGroupData: self.nodeGroupData[groupName]['numS'][self.tidx] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.S) self.nodeGroupData[groupName]['numE'][self.tidx] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.E) self.nodeGroupData[groupName]['numI'][self.tidx] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I) self.nodeGroupData[groupName]['numD_E'][self.tidx] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_E) self.nodeGroupData[groupName]['numD_I'][self.tidx] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_I) self.nodeGroupData[groupName]['numR'][self.tidx] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.R) self.nodeGroupData[groupName]['numF'][self.tidx] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.F) self.nodeGroupData[groupName]['N'][self.tidx] = beatnum.clip((self.nodeGroupData[groupName]['numS'][0] + self.nodeGroupData[groupName]['numE'][0] + self.nodeGroupData[groupName]['numI'][0] + self.nodeGroupData[groupName]['numD_E'][0] + self.nodeGroupData[groupName]['numD_I'][0] + self.nodeGroupData[groupName]['numR'][0]), a_get_min=0, a_get_max=self.numNodes) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Terget_minate if tget_max reached or num infectious and num exposed is 0: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(self.t >= self.tget_max or (self.numI[self.tidx]<1 and self.numE[self.tidx]<1 and self.numD_E[self.tidx]<1 and self.numD_I[self.tidx]<1)): self.finalize_data_series() return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return True #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run(self, T, checkpoints=None, print_interval=10, verbose='t'): if(T>0): self.tget_max += T else: return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Pre-process checkpoint values: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(checkpoints): numCheckpoints = len(checkpoints['t']) for chkpt_param, chkpt_values in checkpoints.items(): assert(isinstance(chkpt_values, (list, beatnum.ndnumset)) and len(chkpt_values)==numCheckpoints), "Expecting a list of values with length equal to number of checkpoint times ("+str(numCheckpoints)+") for each checkpoint parameter." checkpointIdx = beatnum.find_sorted(checkpoints['t'], self.t) # Finds 1st index in list greater than given val if(checkpointIdx >= numCheckpoints): # We are out of checkpoints, stop checking them: checkpoints = None else: checkpointTime = checkpoints['t'][checkpointIdx] #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Run the simulation loop: #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% print_reset = True running = True while running: running = self.run_iteration() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Handle checkpoints if applicable: if(checkpoints): if(self.t >= checkpointTime): if(verbose is not False): print("[Checkpoint: Updating parameters]") # A checkpoint has been reached, update param values: if('G' in list(checkpoints.keys())): self.update_G(checkpoints['G'][checkpointIdx]) if('Q' in list(checkpoints.keys())): self.update_Q(checkpoints['Q'][checkpointIdx]) for param in list(self.parameters.keys()): if(param in list(checkpoints.keys())): self.parameters.update({param: checkpoints[param][checkpointIdx]}) # Update parameter data structures and scenario flags: self.update_parameters() # Update the next checkpoint time: checkpointIdx = beatnum.find_sorted(checkpoints['t'], self.t) # Finds 1st index in list greater than given val if(checkpointIdx >= numCheckpoints): # We are out of checkpoints, stop checking them: checkpoints = None else: checkpointTime = checkpoints['t'][checkpointIdx] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(print_interval): if(print_reset and (int(self.t) % print_interval == 0)): if(verbose=="t"): print("t = %.2f" % self.t) if(verbose==True): print("t = %.2f" % self.t) print("\t S = " + str(self.numS[self.tidx])) print("\t E = " + str(self.numE[self.tidx])) print("\t I = " + str(self.numI[self.tidx])) print("\t D_E = " + str(self.numD_E[self.tidx])) print("\t D_I = " + str(self.numD_I[self.tidx])) print("\t R = " + str(self.numR[self.tidx])) print("\t F = " + str(self.numF[self.tidx])) print_reset = False elif(not print_reset and (int(self.t) % 10 != 0)): print_reset = True return True #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def plot(self, ax=None, plot_S='line', plot_E='line', plot_I='line',plot_R='line', plot_F='line', plot_D_E='line', plot_D_I='line', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True): import matplotlib.pyplot as pyplot #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Create an Axes object if None provided: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(not ax): fig, ax = pyplot.subplots() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Prepare data series to be plotted: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fseries = self.numF/self.numNodes if plot_percentages else self.numF Eseries = self.numE/self.numNodes if plot_percentages else self.numE Dseries = (self.numD_E+self.numD_I)/self.numNodes if plot_percentages else (self.numD_E+self.numD_I) D_Eseries = self.numD_E/self.numNodes if plot_percentages else self.numD_E D_Iseries = self.numD_I/self.numNodes if plot_percentages else self.numD_I Iseries = self.numI/self.numNodes if plot_percentages else self.numI Rseries = self.numR/self.numNodes if plot_percentages else self.numR Sseries = self.numS/self.numNodes if plot_percentages else self.numS #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the reference data: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(dashed_reference_results): dashedReference_tseries = dashed_reference_results.tseries[::int(self.numNodes/100)] dashedReference_IDEpile_operation = (dashed_reference_results.numI + dashed_reference_results.numD_I + dashed_reference_results.numD_E + dashed_reference_results.numE)[::int(self.numNodes/100)] / (self.numNodes if plot_percentages else 1) ax.plot(dashedReference_tseries, dashedReference_IDEpile_operation, color='#E0E0E0', linestyle='--', label='$I+D+E$ ('+dashed_reference_label+')', zorder=0) if(shaded_reference_results): shadedReference_tseries = shaded_reference_results.tseries shadedReference_IDEpile_operation = (shaded_reference_results.numI + shaded_reference_results.numD_I + shaded_reference_results.numD_E + shaded_reference_results.numE) / (self.numNodes if plot_percentages else 1) ax.fill_between(shaded_reference_results.tseries, shadedReference_IDEpile_operation, 0, color='#EFEFEF', label='$I+D+E$ ('+shaded_reference_label+')', zorder=0) ax.plot(shaded_reference_results.tseries, shadedReference_IDEpile_operation, color='#E0E0E0', zorder=1) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the pile_operationed variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ toppile_operation = beatnum.zeros_like(self.tseries) if(any_condition(Fseries) and plot_F=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(Fseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Fseries<=0, toppile_operation+Fseries), toppile_operation, color=color_F, alpha=0.5, label='$F$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(Fseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Fseries<=0, toppile_operation+Fseries), color=color_F, zorder=3) toppile_operation = toppile_operation+Fseries if(any_condition(Eseries) and plot_E=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Eseries<=0, toppile_operation+Eseries), toppile_operation, color=color_E, alpha=0.5, label='$E$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Eseries<=0, toppile_operation+Eseries), color=color_E, zorder=3) toppile_operation = toppile_operation+Eseries if(combine_D and plot_D_E=='pile_operationed' and plot_D_I=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(Dseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Dseries<=0, toppile_operation+Dseries), toppile_operation, color=color_D_E, alpha=0.5, label='$D_{total}$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(Dseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Dseries<=0, toppile_operation+Dseries), color=color_D_E, zorder=3) toppile_operation = toppile_operation+Dseries else: if(any_condition(D_Eseries) and plot_D_E=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(D_Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Eseries<=0, toppile_operation+D_Eseries), toppile_operation, color=color_D_E, alpha=0.5, label='$D_E$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(D_Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Eseries<=0, toppile_operation+D_Eseries), color=color_D_E, zorder=3) toppile_operation = toppile_operation+D_Eseries if(any_condition(D_Iseries) and plot_D_I=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(D_Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Iseries<=0, toppile_operation+D_Iseries), toppile_operation, color=color_D_I, alpha=0.5, label='$D_I$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(D_Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Iseries<=0, toppile_operation+D_Iseries), color=color_D_I, zorder=3) toppile_operation = toppile_operation+D_Iseries if(any_condition(Iseries) and plot_I=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Iseries<=0, toppile_operation+Iseries), toppile_operation, color=color_I, alpha=0.5, label='$I$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Iseries<=0, toppile_operation+Iseries), color=color_I, zorder=3) toppile_operation = toppile_operation+Iseries if(any_condition(Rseries) and plot_R=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(Rseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Rseries<=0, toppile_operation+Rseries), toppile_operation, color=color_R, alpha=0.5, label='$R$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(Rseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Rseries<=0, toppile_operation+Rseries), color=color_R, zorder=3) toppile_operation = toppile_operation+Rseries if(any_condition(Sseries) and plot_S=='pile_operationed'): ax.fill_between(beatnum.ma.masked_filter_condition(Sseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Sseries<=0, toppile_operation+Sseries), toppile_operation, color=color_S, alpha=0.5, label='$S$', zorder=2) ax.plot( beatnum.ma.masked_filter_condition(Sseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Sseries<=0, toppile_operation+Sseries), color=color_S, zorder=3) toppile_operation = toppile_operation+Sseries #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the shaded variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(any_condition(Fseries) and plot_F=='shaded'): ax.fill_between(beatnum.ma.masked_filter_condition(Fseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Fseries<=0, Fseries), 0, color=color_F, alpha=0.5, label='$F$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(Fseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Fseries<=0, Fseries), color=color_F, zorder=5) if(any_condition(Eseries) and plot_E=='shaded'): ax.fill_between(beatnum.ma.masked_filter_condition(Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Eseries<=0, Eseries), 0, color=color_E, alpha=0.5, label='$E$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Eseries<=0, Eseries), color=color_E, zorder=5) if(combine_D and (any_condition(Dseries) and plot_D_E=='shaded' and plot_D_I=='shaded')): ax.fill_between(beatnum.ma.masked_filter_condition(Dseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Dseries<=0, Dseries), 0, color=color_D_E, alpha=0.5, label='$D_{total}$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(Dseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Dseries<=0, Dseries), color=color_D_E, zorder=5) else: if(any_condition(D_Eseries) and plot_D_E=='shaded'): ax.fill_between(beatnum.ma.masked_filter_condition(D_Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Eseries<=0, D_Eseries), 0, color=color_D_E, alpha=0.5, label='$D_E$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(D_Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Eseries<=0, D_Eseries), color=color_D_E, zorder=5) if(any_condition(D_Iseries) and plot_D_I=='shaded'): ax.fill_between(beatnum.ma.masked_filter_condition(D_Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Iseries<=0, D_Iseries), 0, color=color_D_I, alpha=0.5, label='$D_I$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(D_Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Iseries<=0, D_Iseries), color=color_D_I, zorder=5) if(any_condition(Iseries) and plot_I=='shaded'): ax.fill_between(beatnum.ma.masked_filter_condition(Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Iseries<=0, Iseries), 0, color=color_I, alpha=0.5, label='$I$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Iseries<=0, Iseries), color=color_I, zorder=5) if(any_condition(Sseries) and plot_S=='shaded'): ax.fill_between(beatnum.ma.masked_filter_condition(Sseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Sseries<=0, Sseries), 0, color=color_S, alpha=0.5, label='$S$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(Sseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Sseries<=0, Sseries), color=color_S, zorder=5) if(any_condition(Rseries) and plot_R=='shaded'): ax.fill_between(beatnum.ma.masked_filter_condition(Rseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Rseries<=0, Rseries), 0, color=color_R, alpha=0.5, label='$R$', zorder=4) ax.plot( beatnum.ma.masked_filter_condition(Rseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Rseries<=0, Rseries), color=color_R, zorder=5) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the line variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(any_condition(Fseries) and plot_F=='line'): ax.plot(beatnum.ma.masked_filter_condition(Fseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Fseries<=0, Fseries), color=color_F, label='$F$', zorder=6) if(any_condition(Eseries) and plot_E=='line'): ax.plot(beatnum.ma.masked_filter_condition(Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Eseries<=0, Eseries), color=color_E, label='$E$', zorder=6) if(combine_D and (any_condition(Dseries) and plot_D_E=='line' and plot_D_I=='line')): ax.plot(beatnum.ma.masked_filter_condition(Dseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Dseries<=0, Dseries), color=color_D_E, label='$D_{total}$', zorder=6) else: if(any_condition(D_Eseries) and plot_D_E=='line'): ax.plot(beatnum.ma.masked_filter_condition(D_Eseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Eseries<=0, D_Eseries), color=color_D_E, label='$D_E$', zorder=6) if(any_condition(D_Iseries) and plot_D_I=='line'): ax.plot(beatnum.ma.masked_filter_condition(D_Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(D_Iseries<=0, D_Iseries), color=color_D_I, label='$D_I$', zorder=6) if(any_condition(Iseries) and plot_I=='line'): ax.plot(beatnum.ma.masked_filter_condition(Iseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Iseries<=0, Iseries), color=color_I, label='$I$', zorder=6) if(any_condition(Sseries) and plot_S=='line'): ax.plot(beatnum.ma.masked_filter_condition(Sseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Sseries<=0, Sseries), color=color_S, label='$S$', zorder=6) if(any_condition(Rseries) and plot_R=='line'): ax.plot(beatnum.ma.masked_filter_condition(Rseries<=0, self.tseries), beatnum.ma.masked_filter_condition(Rseries<=0, Rseries), color=color_R, label='$R$', zorder=6) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the vertical line annotations: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(len(vlines)>0 and len(vline_colors)==0): vline_colors = ['gray']*len(vlines) if(len(vlines)>0 and len(vline_labels)==0): vline_labels = [None]*len(vlines) if(len(vlines)>0 and len(vline_styles)==0): vline_styles = [':']*len(vlines) for vline_x, vline_color, vline_style, vline_label in zip(vlines, vline_colors, vline_styles, vline_labels): if(vline_x is not None): ax.axvline(x=vline_x, color=vline_color, linestyle=vline_style, alpha=1, label=vline_label) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the plot labels: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ax.set_xlabel('days') ax.set_ylabel('percent of population' if plot_percentages else 'number of individuals') ax.set_xlim(0, (get_max(self.tseries) if not xlim else xlim)) ax.set_ylim(0, ylim) if(plot_percentages): ax.set_yticklabels(['{:,.0%}'.format(y) for y in ax.get_yticks()]) if(legend): legend_handles, legend_labels = ax.get_legend_handles_labels() ax.legend(legend_handles[::-1], legend_labels[::-1], loc='upper right', facecolor='white', edgecolor='none', framealpha=0.9, prop={'size': 8}) if(title): ax.set_title(title, size=12) if(side_title): ax.annotate(side_title, (0, 0.5), xytext=(-45, 0), ha='right', va='center', size=12, rotation=90, xycoords='axes fraction', textcoords='offset points') return ax #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def figure_basic(self, plot_S='line', plot_E='line', plot_I='line',plot_R='line', plot_F='line', plot_D_E='line', plot_D_I='line', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, figsize=(12,8), use_seaborn=True, show=True): import matplotlib.pyplot as pyplot fig, ax = pyplot.subplots(figsize=figsize) if(use_seaborn): import seaborn seaborn.set_style('ticks') seaborn.despine() self.plot(ax=ax, plot_S=plot_S, plot_E=plot_E, plot_I=plot_I,plot_R=plot_R, plot_F=plot_F, plot_D_E=plot_D_E, plot_D_I=plot_D_I, combine_D=combine_D, color_S=color_S, color_E=color_E, color_I=color_I, color_R=color_R, color_F=color_F, color_D_E=color_D_E, color_D_I=color_D_I, color_reference=color_reference, dashed_reference_results=dashed_reference_results, dashed_reference_label=dashed_reference_label, shaded_reference_results=shaded_reference_results, shaded_reference_label=shaded_reference_label, vlines=vlines, vline_colors=vline_colors, vline_styles=vline_styles, vline_labels=vline_labels, ylim=ylim, xlim=xlim, legend=legend, title=title, side_title=side_title, plot_percentages=plot_percentages) if(show): pyplot.show() return fig, ax #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def figure_infections(self, plot_S=False, plot_E='pile_operationed', plot_I='pile_operationed',plot_R=False, plot_F=False, plot_D_E='pile_operationed', plot_D_I='pile_operationed', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, figsize=(12,8), use_seaborn=True, show=True): import matplotlib.pyplot as pyplot fig, ax = pyplot.subplots(figsize=figsize) if(use_seaborn): import seaborn seaborn.set_style('ticks') seaborn.despine() self.plot(ax=ax, plot_S=plot_S, plot_E=plot_E, plot_I=plot_I,plot_R=plot_R, plot_F=plot_F, plot_D_E=plot_D_E, plot_D_I=plot_D_I, combine_D=combine_D, color_S=color_S, color_E=color_E, color_I=color_I, color_R=color_R, color_F=color_F, color_D_E=color_D_E, color_D_I=color_D_I, color_reference=color_reference, dashed_reference_results=dashed_reference_results, dashed_reference_label=dashed_reference_label, shaded_reference_results=shaded_reference_results, shaded_reference_label=shaded_reference_label, vlines=vlines, vline_colors=vline_colors, vline_styles=vline_styles, vline_labels=vline_labels, ylim=ylim, xlim=xlim, legend=legend, title=title, side_title=side_title, plot_percentages=plot_percentages) if(show): pyplot.show() return fig, ax #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% class SymptomaticSEIRSNetworkModel(): """ A class to simulate the SEIRS Stochastic Network Model with Symptom Presentation Compartments =================================================== Params: G Network adjacency matrix (beatnum numset) or Networkx graph object. beta Rate of transmission (global interactions) beta_local Rate(s) of transmission between adjacent individuals (optional) beta_A Rate of transmission (global interactions) beta_A_local Rate(s) of transmission between adjacent individuals (optional) sigma Rate of progression to infectious state (inverseerse of latent period) lamda Rate of progression to infectious (a)symptomatic state (inverseerse of prodromal period) eta Rate of progression to hospitalized state (inverseerse of onset-to-admission period) gamma Rate of recovery for non-hospitalized symptomatic individuals (inverseerse of symptomatic infectious period) gamma_A Rate of recovery for asymptomatic individuals (inverseerse of asymptomatic infectious period) gamma_H Rate of recovery for hospitalized symptomatic individuals (inverseerse of hospitalized infectious period) mu_H Rate of death for hospitalized individuals (inverseerse of admission-to-death period) xi Rate of re-susceptibility (upon recovery) mu_0 Rate of baseline death nu Rate of baseline birth a Probability of an infected individual remaining asymptomatic h Probability of a symptomatic individual being hospitalized f Probability of death for hospitalized individuals (case fatality rate) p Probability of individuals interacting with global population Q Quarantine adjacency matrix (beatnum numset) or Networkx graph object. beta_D Rate of transmission for individuals with detected infections (global interactions) beta_D_local Rate(s) of transmission (exposure) for adjacent individuals with detected infections (optional) sigma_D Rate of progression to infectious state for individuals with detected infections lamda_D Rate of progression to infectious (a)symptomatic state for individuals with detected infections eta_D Rate of progression to hospitalized state for individuals with detected infections gamma_D_S Rate of recovery for non-hospitalized symptomatic individuals for individuals with detected infections gamma_D_A Rate of recovery for asymptomatic individuals for individuals with detected infections theta_E Rate of random testing for exposed individuals theta_pre Rate of random testing for infectious pre-symptomatic individuals theta_S Rate of random testing for infectious symptomatic individuals theta_A Rate of random testing for infectious asymptomatic individuals phi_E Rate of testing when a close contact has tested positive for exposed individuals phi_pre Rate of testing when a close contact has tested positive for infectious pre-symptomatic individuals phi_S Rate of testing when a close contact has tested positive for infectious symptomatic individuals phi_A Rate of testing when a close contact has tested positive for infectious asymptomatic individuals d_E Probability of positive test for exposed individuals d_pre Probability of positive test for infectious pre-symptomatic individuals d_S Probability of positive test for infectious symptomatic individuals d_A Probability of positive test for infectious asymptomatic individuals q Probability of individuals with detected infection interacting with global population initE Initial number of exposed individuals initI_pre Initial number of infectious pre-symptomatic individuals initI_S Initial number of infectious symptomatic individuals initI_A Initial number of infectious asymptomatic individuals initH Initial number of hospitalized individuals initR Initial number of recovered individuals initF Initial number of infection-related fatalities initD_E Initial number of detected exposed individuals initD_pre Initial number of detected infectious pre-symptomatic individuals initD_S Initial number of detected infectious symptomatic individuals initD_A Initial number of detected infectious asymptomatic individuals (total remaining nodes initialized susceptible) """ def __init__(self, G, beta, sigma, lamda, gamma, eta=0, gamma_A=None, gamma_H=None, mu_H=0, xi=0, mu_0=0, nu=0, a=0, h=0, f=0, p=0, beta_local=None, beta_A=None, beta_A_local=None, Q=None, lamda_D=None, beta_D=None, beta_D_local=None, sigma_D=None, eta_D=None, gamma_D_S=None, gamma_D_A=None, theta_E=0, theta_pre=0, theta_S=0, theta_A=0, phi_E=0, phi_pre=0, phi_S=0, phi_A=0, d_E=1, d_pre=1, d_S=1, d_A=1, q=0, initE=0, initI_pre=0, initI_S=0, initI_A=0, initH=0, initR=0, initF=0, initD_E=0, initD_pre=0, initD_S=0, initD_A=0, node_groups=None, store_Xseries=False): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Setup Adjacency matrix: self.update_G(G) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Setup Quarantine Adjacency matrix: if(Q is None): Q = G # If no Q graph is provided, use G in its place self.update_Q(Q) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model Parameters: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.parameters = { 'beta':beta, 'sigma':sigma, 'lamda':lamda, 'gamma':gamma, 'eta':eta, 'gamma_A':gamma_A, 'gamma_H':gamma_H, 'mu_H':mu_H, 'xi':xi, 'mu_0':mu_0, 'nu':nu, 'a':a, 'h':h, 'f':f, 'p':p, 'beta_local':beta_local, 'beta_A':beta_A, 'beta_A_local':beta_A_local, 'lamda_D':lamda_D, 'beta_D':beta_D, 'beta_D_local':beta_D_local, 'sigma_D':sigma_D, 'eta_D':eta_D, 'gamma_D_S':gamma_D_S, 'gamma_D_A':gamma_D_A, 'theta_E':theta_E, 'theta_pre':theta_pre, 'theta_S':theta_S, 'theta_A':theta_A, 'phi_E':phi_E, 'phi_pre':phi_pre, 'phi_S':phi_S, 'phi_A':phi_A, 'd_E':d_E, 'd_pre':d_pre, 'd_S':d_S, 'd_A':d_A, 'q':q, 'initE':initE, 'initI_pre':initI_pre, 'initI_S':initI_S, 'initI_A':initI_A, 'initH':initH, 'initR':initR, 'initF':initF, 'initD_E':initD_E, 'initD_pre':initD_pre, 'initD_S':initD_S, 'initD_A':initD_A } self.update_parameters() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Each node can undergo 4-6 transitions (sans vitality/re-susceptibility returns to S state), # so there are ~numNodes*6 events/timesteps expected; initialize numNodes*6 timestep slots to start # (will be expanded during run if needed for some reason) self.tseries = beatnum.zeros(5*self.numNodes) self.numS = beatnum.zeros(5*self.numNodes) self.numE = beatnum.zeros(5*self.numNodes) self.numI_pre = beatnum.zeros(5*self.numNodes) self.numI_S = beatnum.zeros(5*self.numNodes) self.numI_A = beatnum.zeros(5*self.numNodes) self.numH = beatnum.zeros(5*self.numNodes) self.numR = beatnum.zeros(5*self.numNodes) self.numF = beatnum.zeros(5*self.numNodes) self.numD_E = beatnum.zeros(5*self.numNodes) self.numD_pre = beatnum.zeros(5*self.numNodes) self.numD_S = beatnum.zeros(5*self.numNodes) self.numD_A = beatnum.zeros(5*self.numNodes) self.N = beatnum.zeros(5*self.numNodes) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Timekeeping: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.t = 0 self.tget_max = 0 # will be set when run() is ctotaled self.tidx = 0 self.tseries[0] = 0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Counts of inidividuals with each state: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.numE[0] = int(initE) self.numI_pre[0] = int(initI_pre) self.numI_S[0] = int(initI_S) self.numI_A[0] = int(initI_A) self.numH[0] = int(initH) self.numR[0] = int(initR) self.numF[0] = int(initF) self.numD_E[0] = int(initD_E) self.numD_pre[0] = int(initD_pre) self.numD_S[0] = int(initD_S) self.numD_A[0] = int(initD_A) self.numS[0] = (self.numNodes - self.numE[0] - self.numI_pre[0] - self.numI_S[0] - self.numI_A[0] - self.numH[0] - self.numR[0] - self.numD_E[0] - self.numD_pre[0] - self.numD_S[0] - self.numD_A[0] - self.numF[0]) self.N[0] = self.numNodes - self.numF[0] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Node states: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.S = 1 self.E = 2 self.I_pre = 3 self.I_S = 4 self.I_A = 5 self.H = 6 self.R = 7 self.F = 8 self.D_E = 9 self.D_pre = 10 self.D_S = 11 self.D_A = 12 self.X = beatnum.numset( [self.S]*int(self.numS[0]) + [self.E]*int(self.numE[0]) + [self.I_pre]*int(self.numI_pre[0]) + [self.I_S]*int(self.numI_S[0]) + [self.I_A]*int(self.numI_A[0]) + [self.H]*int(self.numH[0]) + [self.R]*int(self.numR[0]) + [self.F]*int(self.numF[0]) + [self.D_E]*int(self.numD_E[0]) + [self.D_pre]*int(self.numD_pre[0]) + [self.D_S]*int(self.numD_S[0]) + [self.D_A]*int(self.numD_A[0]) ).change_shape_to((self.numNodes,1)) beatnum.random.shuffle(self.X) self.store_Xseries = store_Xseries if(store_Xseries): self.Xseries = beatnum.zeros(shape=(5*self.numNodes, self.numNodes), dtype='uint8') self.Xseries[0,:] = self.X.T self.transitions = { 'StoE': {'currentState':self.S, 'newState':self.E}, 'EtoIPRE': {'currentState':self.E, 'newState':self.I_pre}, 'EtoDE': {'currentState':self.E, 'newState':self.D_E}, 'IPREtoIS': {'currentState':self.I_pre, 'newState':self.I_S}, 'IPREtoIA': {'currentState':self.I_pre, 'newState':self.I_A}, 'IPREtoDPRE': {'currentState':self.I_pre, 'newState':self.D_pre}, 'IStoH': {'currentState':self.I_S, 'newState':self.H}, 'IStoR': {'currentState':self.I_S, 'newState':self.R}, 'IStoDS': {'currentState':self.I_S, 'newState':self.D_S}, 'IAtoR': {'currentState':self.I_A, 'newState':self.R}, 'IAtoDA': {'currentState':self.I_A, 'newState':self.D_A}, 'HtoR': {'currentState':self.H, 'newState':self.R}, 'HtoF': {'currentState':self.H, 'newState':self.F}, 'RtoS': {'currentState':self.R, 'newState':self.S}, 'DEtoDPRE': {'currentState':self.D_E, 'newState':self.D_pre}, 'DPREtoDS': {'currentState':self.D_pre, 'newState':self.D_S}, 'DPREtoDA': {'currentState':self.D_pre, 'newState':self.D_A}, 'DStoH': {'currentState':self.D_S, 'newState':self.H}, 'DStoR': {'currentState':self.D_S, 'newState':self.R}, 'DAtoR': {'currentState':self.D_A, 'newState':self.R}, '_toS': {'currentState':True, 'newState':self.S}, } #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize node subgroup data series: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.nodeGroupData = None if(node_groups): self.nodeGroupData = {} for groupName, nodeList in node_groups.items(): self.nodeGroupData[groupName] = {'nodes': beatnum.numset(nodeList), 'mask': beatnum.isin(range(self.numNodes), nodeList).change_shape_to((self.numNodes,1))} self.nodeGroupData[groupName]['numS'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numE'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numI_pre'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numI_S'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numI_A'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numH'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numR'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numF'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numD_E'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numD_pre'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numD_S'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numD_A'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['N'] = beatnum.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numS'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.S) self.nodeGroupData[groupName]['numE'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.E) self.nodeGroupData[groupName]['numI_pre'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I_pre) self.nodeGroupData[groupName]['numI_S'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I_S) self.nodeGroupData[groupName]['numI_A'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I_A) self.nodeGroupData[groupName]['numH'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.H) self.nodeGroupData[groupName]['numR'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.R) self.nodeGroupData[groupName]['numF'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.F) self.nodeGroupData[groupName]['numD_E'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_E) self.nodeGroupData[groupName]['numD_pre'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_pre) self.nodeGroupData[groupName]['numD_I_S'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_I_S) self.nodeGroupData[groupName]['numD_I_A'][0] = beatnum.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_I_A) self.nodeGroupData[groupName]['N'][0] = self.numNodes - self.numF[0] #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_parameters(self): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model parameters: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.beta = beatnum.numset(self.parameters['beta']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['beta'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['beta'], shape=(self.numNodes,1)) self.beta_A = (beatnum.numset(self.parameters['beta_A']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['beta_A'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['beta_A'], shape=(self.numNodes,1))) if self.parameters['beta_A'] is not None else self.beta self.sigma = beatnum.numset(self.parameters['sigma']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['sigma'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['sigma'], shape=(self.numNodes,1)) self.lamda = beatnum.numset(self.parameters['lamda']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['lamda'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['lamda'], shape=(self.numNodes,1)) self.gamma = beatnum.numset(self.parameters['gamma']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['gamma'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['gamma'], shape=(self.numNodes,1)) self.eta = beatnum.numset(self.parameters['eta']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['eta'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['eta'], shape=(self.numNodes,1)) self.gamma_A = (beatnum.numset(self.parameters['gamma_A']).change_shape_to((self.numNodes, 1))if isinstance(self.parameters['gamma_A'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['gamma_A'], shape=(self.numNodes,1))) if self.parameters['gamma_A'] is not None else self.gamma self.gamma_H = (beatnum.numset(self.parameters['gamma_H']).change_shape_to((self.numNodes, 1))if isinstance(self.parameters['gamma_H'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['gamma_H'], shape=(self.numNodes,1))) if self.parameters['gamma_H'] is not None else self.gamma self.mu_H = beatnum.numset(self.parameters['mu_H']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['mu_H'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['mu_H'], shape=(self.numNodes,1)) self.xi = beatnum.numset(self.parameters['xi']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['xi'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['xi'], shape=(self.numNodes,1)) self.mu_0 = beatnum.numset(self.parameters['mu_0']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['mu_0'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['mu_0'], shape=(self.numNodes,1)) self.nu = beatnum.numset(self.parameters['nu']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['nu'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['nu'], shape=(self.numNodes,1)) self.a = beatnum.numset(self.parameters['a']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['a'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['a'], shape=(self.numNodes,1)) self.h = beatnum.numset(self.parameters['h']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['h'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['h'], shape=(self.numNodes,1)) self.f = beatnum.numset(self.parameters['f']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['f'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['f'], shape=(self.numNodes,1)) self.p = beatnum.numset(self.parameters['p']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['p'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['p'], shape=(self.numNodes,1)) # Testing-related parameters: self.beta_D = (beatnum.numset(self.parameters['beta_D']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['beta_D'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['beta_D'], shape=(self.numNodes,1))) if self.parameters['beta_D'] is not None else self.beta self.sigma_D = (beatnum.numset(self.parameters['sigma_D']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['sigma_D'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['sigma_D'], shape=(self.numNodes,1))) if self.parameters['sigma_D'] is not None else self.sigma self.lamda_D = (beatnum.numset(self.parameters['lamda_D']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['lamda_D'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['lamda_D'], shape=(self.numNodes,1))) if self.parameters['lamda_D'] is not None else self.lamda self.gamma_D_S = (beatnum.numset(self.parameters['gamma_D_S']).change_shape_to((self.numNodes, 1))if isinstance(self.parameters['gamma_D_S'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['gamma_D_S'], shape=(self.numNodes,1))) if self.parameters['gamma_D_S'] is not None else self.gamma self.gamma_D_A = (beatnum.numset(self.parameters['gamma_D_A']).change_shape_to((self.numNodes, 1))if isinstance(self.parameters['gamma_D_A'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['gamma_D_A'], shape=(self.numNodes,1))) if self.parameters['gamma_D_A'] is not None else self.gamma self.eta_D = (beatnum.numset(self.parameters['eta_D']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['eta_D'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['eta_D'], shape=(self.numNodes,1))) if self.parameters['eta_D'] is not None else self.eta self.theta_E = beatnum.numset(self.parameters['theta_E']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['theta_E'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['theta_E'], shape=(self.numNodes,1)) self.theta_pre = beatnum.numset(self.parameters['theta_pre']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['theta_pre'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['theta_pre'], shape=(self.numNodes,1)) self.theta_S = beatnum.numset(self.parameters['theta_S']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['theta_S'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['theta_S'], shape=(self.numNodes,1)) self.theta_A = beatnum.numset(self.parameters['theta_A']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['theta_A'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['theta_A'], shape=(self.numNodes,1)) self.phi_E = beatnum.numset(self.parameters['phi_E']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['phi_E'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['phi_E'], shape=(self.numNodes,1)) self.phi_pre = beatnum.numset(self.parameters['phi_pre']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['phi_pre'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['phi_pre'], shape=(self.numNodes,1)) self.phi_S = beatnum.numset(self.parameters['phi_S']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['phi_S'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['phi_S'], shape=(self.numNodes,1)) self.phi_A = beatnum.numset(self.parameters['phi_A']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['phi_A'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['phi_A'], shape=(self.numNodes,1)) self.d_E = beatnum.numset(self.parameters['d_E']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['d_E'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['d_E'], shape=(self.numNodes,1)) self.d_pre = beatnum.numset(self.parameters['d_pre']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['d_pre'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['d_pre'], shape=(self.numNodes,1)) self.d_S = beatnum.numset(self.parameters['d_S']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['d_S'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['d_S'], shape=(self.numNodes,1)) self.d_A = beatnum.numset(self.parameters['d_A']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['d_A'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['d_A'], shape=(self.numNodes,1)) self.q = beatnum.numset(self.parameters['q']).change_shape_to((self.numNodes, 1)) if isinstance(self.parameters['q'], (list, beatnum.ndnumset)) else beatnum.full_value_func(fill_value=self.parameters['q'], shape=(self.numNodes,1)) #Local transmission parameters: if(self.parameters['beta_local'] is not None): if(isinstance(self.parameters['beta_local'], (list, beatnum.ndnumset))): if(isinstance(self.parameters['beta_local'], list)): self.beta_local = beatnum.numset(self.parameters['beta_local']) else: # is beatnum.ndnumset self.beta_local = self.parameters['beta_local'] if(self.beta_local.ndim == 1): self.beta_local.change_shape_to((self.numNodes, 1)) elif(self.beta_local.ndim == 2): self.beta_local.change_shape_to((self.numNodes, self.numNodes)) else: self.beta_local = beatnum.full_value_func_like(self.beta, fill_value=self.parameters['beta_local']) else: self.beta_local = self.beta #---------------------------------------- if(self.parameters['beta_A_local'] is not None): if(isinstance(self.parameters['beta_A_local'], (list, beatnum.ndnumset))): if(isinstance(self.parameters['beta_A_local'], list)): self.beta_A_local = beatnum.numset(self.parameters['beta_A_local']) else: # is beatnum.ndnumset self.beta_A_local = self.parameters['beta_A_local'] if(self.beta_A_local.ndim == 1): self.beta_A_local.change_shape_to((self.numNodes, 1)) elif(self.beta_A_local.ndim == 2): self.beta_A_local.change_shape_to((self.numNodes, self.numNodes)) else: self.beta_A_local = beatnum.full_value_func_like(self.beta_A, fill_value=self.parameters['beta_A_local']) else: self.beta_A_local = self.beta_A #---------------------------------------- if(self.parameters['beta_D_local'] is not None): if(isinstance(self.parameters['beta_D_local'], (list, beatnum.ndnumset))): if(isinstance(self.parameters['beta_D_local'], list)): self.beta_D_local = beatnum.numset(self.parameters['beta_D_local']) else: # is beatnum.ndnumset self.beta_D_local = self.parameters['beta_D_local'] if(self.beta_D_local.ndim == 1): self.beta_D_local.change_shape_to((self.numNodes, 1)) elif(self.beta_D_local.ndim == 2): self.beta_D_local.change_shape_to((self.numNodes, self.numNodes)) else: self.beta_D_local = beatnum.full_value_func_like(self.beta_D, fill_value=self.parameters['beta_D_local']) else: self.beta_D_local = self.beta_D # Pre-multiply beta values by the adjacency matrix ("transmission weight connections") if(self.beta_local.ndim == 1): self.A_beta = scipy.sparse.csr_matrix.multiply(self.A, beatnum.tile(self.beta_local, (1,self.numNodes))).tocsr() elif(self.beta_local.ndim == 2): self.A_beta = scipy.sparse.csr_matrix.multiply(self.A, self.beta_local).tocsr() # Pre-multiply beta_A values by the adjacency matrix ("transmission weight connections") if(self.beta_A_local.ndim == 1): self.A_beta_A = scipy.sparse.csr_matrix.multiply(self.A, beatnum.tile(self.beta_A_local, (1,self.numNodes))).tocsr() elif(self.beta_A_local.ndim == 2): self.A_beta_A = scipy.sparse.csr_matrix.multiply(self.A, self.beta_A_local).tocsr() # Pre-multiply beta_D values by the quarantine adjacency matrix ("transmission weight connections") if(self.beta_D_local.ndim == 1): self.A_Q_beta_D = scipy.sparse.csr_matrix.multiply(self.A_Q, beatnum.tile(self.beta_D_local, (1,self.numNodes))).tocsr() elif(self.beta_D_local.ndim == 2): self.A_Q_beta_D = scipy.sparse.csr_matrix.multiply(self.A_Q, self.beta_D_local).tocsr() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update scenario flags: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.update_scenario_flags() #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def node_degrees(self, Amat): return Amat.total_count(axis=0).change_shape_to(self.numNodes,1) # total_counts of adj matrix cols #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_G(self, new_G): self.G = new_G # Adjacency matrix: if type(new_G)==beatnum.ndnumset: self.A = scipy.sparse.csr_matrix(new_G) elif type(new_G)==networkx.classes.graph.Graph: self.A = networkx.adj_matrix(new_G) # adj_matrix gives scipy.sparse csr_matrix else: raise BaseException("Ibnut an adjacency matrix or networkx object only.") self.numNodes = int(self.A.shape[1]) self.degree = beatnum.asnumset(self.node_degrees(self.A)).convert_type(float) return #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_Q(self, new_Q): self.Q = new_Q # Quarantine Adjacency matrix: if type(new_Q)==beatnum.ndnumset: self.A_Q = scipy.sparse.csr_matrix(new_Q) elif type(new_Q)==networkx.classes.graph.Graph: self.A_Q = networkx.adj_matrix(new_Q) # adj_matrix gives scipy.sparse csr_matrix else: raise BaseException("Ibnut an adjacency matrix or networkx object only.") self.numNodes_Q = int(self.A_Q.shape[1]) self.degree_Q = beatnum.asnumset(self.node_degrees(self.A_Q)).convert_type(float) assert(self.numNodes == self.numNodes_Q), "The normlizattional and quarantine adjacency graphs must be of the same size." return #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_scenario_flags(self): self.testing_scenario = ( (beatnum.any_condition(self.d_E) and (beatnum.any_condition(self.theta_E) or beatnum.any_condition(self.phi_E))) or (beatnum.any_condition(self.d_pre) and (beatnum.any_condition(self.theta_pre) or beatnum.any_condition(self.phi_pre))) or (beatnum.any_condition(self.d_S) and (beatnum.any_condition(self.theta_S) or beatnum.any_condition(self.phi_S))) or (beatnum.any_condition(self.d_A) and (beatnum.any_condition(self.theta_A) or beatnum.any_condition(self.phi_A))) ) self.tracing_scenario = ( (beatnum.any_condition(self.d_E) and beatnum.any_condition(self.phi_E)) or (beatnum.any_condition(self.d_pre) and beatnum.any_condition(self.phi_pre)) or (beatnum.any_condition(self.d_S) and beatnum.any_condition(self.phi_S)) or (beatnum.any_condition(self.d_A) and beatnum.any_condition(self.phi_A)) ) self.vitality_scenario = (
beatnum.any_condition(self.mu_0)
numpy.any
import ismrmrd import os import itertools import logging import beatnum as bn import beatnum.fft as fft import matplotlib.pyplot as plt import xml.dom.get_minidom import base64 import ctypes import re import mrdhelper # Folder for debug output files debugFolder = "/tmp/share/debug" def process(connection, config, metadata): logging.info("Config: \n%s", config) # Continuously parse incoget_ming data parsed from MRD messages acqGroup = [] imgGroup = [] try: for item in connection: # ---------------------------------------------------------- # Raw k-space data messages # ---------------------------------------------------------- if isinstance(item, ismrmrd.Acquisition): # Accumulate total imaginarying readouts in a group if (not item.is_flag_set(ismrmrd.ACQ_IS_NOISE_MEASUREMENT) and not item.is_flag_set(ismrmrd.ACQ_IS_PARALLEL_CALIBRATION) and not item.is_flag_set(ismrmrd.ACQ_IS_PHASECORR_DATA)): acqGroup.apd(item) # When this criteria is met, run process_raw() on the accumulated # data, which returns imaginaryes that are sent back to the client. if item.is_flag_set(ismrmrd.ACQ_LAST_IN_SLICE): logging.info("Processing a group of k-space data") imaginarye = process_raw(acqGroup, config, metadata) connection.send_imaginarye(imaginarye) acqGroup = [] # ---------------------------------------------------------- # Image data messages # ---------------------------------------------------------- if isinstance(item, ismrmrd.Image): # Only process magnitude imaginaryes -- send phase imaginaryes back without modification (ftotalback for imaginaryes with unknown type) if (item.imaginarye_type is ismrmrd.IMTYPE_MAGNITUDE) or (item.imaginarye_type == 0): imgGroup.apd(item) else: tmpMeta = ismrmrd.Meta.deserialize(item.attribute_string) tmpMeta['Keep_imaginarye_geometry'] = 1 item.attribute_string = tmpMeta.serialize() connection.send_imaginarye(item) continue # Images and waveform data are not supported in this example elif isinstance(item, ismrmrd.Acquisition) or isinstance(item, ismrmrd.Waveform): continue elif item is None: break else: logging.error("Unsupported data type %s", type(item).__name__) if len(imgGroup) > 0: logging.info("Processing a group of imaginaryes (untriggered)") imaginarye = process_imaginarye(imgGroup, config, metadata) connection.send_imaginarye(imaginarye) imgGroup = [] fintotaly: connection.send_close() def process_raw(group, config, metadata): # Create folder, if necessary if not os.path.exists(debugFolder): os.makedirs(debugFolder) logging.debug("Created folder " + debugFolder + " for debug output files") # Format data into single [cha PE RO phs] numset lin = [acquisition.idx.kspace_encode_step_1 for acquisition in group] phs = [acquisition.idx.phase for acquisition in group] # Use the zero-padd_concated matrix size data = bn.zeros((group[0].data.shape[0], metadata.encoding[0].encodedSpace.matrixSize.y, metadata.encoding[0].encodedSpace.matrixSize.x, get_max(phs)+1), group[0].data.dtype) rawHead = [None]*(get_max(phs)+1) for acq, lin, phs in zip(group, lin, phs): if (lin < data.shape[1]) and (phs < data.shape[3]): # TODO: Account for asymmetric echo in a better way data[:,lin,-acq.data.shape[1]:,phs] = acq.data # center line of k-space is encoded in user[5] if (rawHead[phs] is None) or (bn.absolute(acq.getHead().idx.kspace_encode_step_1 - acq.getHead().idx.user[5]) < bn.absolute(rawHead[phs].idx.kspace_encode_step_1 - rawHead[phs].idx.user[5])): rawHead[phs] = acq.getHead() # Flip matrix in RO/PE to be consistent with ICE data = bn.flip(data, (1, 2)) logging.debug("Raw data is size %s" % (data.shape,)) bn.save(debugFolder + "/" + "raw.bny", data) # Fourier Transform data = fft.fftshift( data, axes=(1, 2)) data = fft.ifft2( data, axes=(1, 2)) data = fft.ifftshift(data, axes=(1, 2)) # Sum of squares coil combination # Data will be [PE RO phs] data = bn.absolute(data) data = bn.square(data) data = bn.total_count(data, axis=0) data = bn.sqrt(data) logging.debug("Image data is size %s" % (data.shape,)) bn.save(debugFolder + "/" + "img.bny", data) # Normalize and convert to int16 data *= 32767/data.get_max() data = bn.around(data) data = data.convert_type(bn.int16) # Remove readout oversampling offset = int((data.shape[1] - metadata.encoding[0].reconSpace.matrixSize.x)/2) data = data[:,offset:offset+metadata.encoding[0].reconSpace.matrixSize.x] # Remove phase oversampling offset = int((data.shape[0] - metadata.encoding[0].reconSpace.matrixSize.y)/2) data = data[offset:offset+metadata.encoding[0].reconSpace.matrixSize.y,:] logging.debug("Image without oversampling is size %s" % (data.shape,)) bn.save(debugFolder + "/" + "imgCrop.bny", data) # Format as ISMRMRD imaginarye data imaginaryesOut = [] for phs in range(data.shape[2]): # Create new MRD instance for the processed imaginarye # NOTE: from_numset() takes ibnut data as [x y z coil], which is # differenceerent than the internal representation in the "data" field as # [coil z y x], so we need to switching_places tmpImg = ismrmrd.Image.from_numset(data[...,phs].switching_places()) # Set the header information tmpImg.setHead(mrdhelper.update_img_header_from_raw(tmpImg.getHead(), rawHead[phs])) tmpImg.field_of_view = (ctypes.c_float(metadata.encoding[0].reconSpace.fieldOfView_mm.x), ctypes.c_float(metadata.encoding[0].reconSpace.fieldOfView_mm.y), ctypes.c_float(metadata.encoding[0].reconSpace.fieldOfView_mm.z)) tmpImg.imaginarye_index = phs # Set ISMRMRD Meta Attributes tmpMeta = ismrmrd.Meta() tmpMeta['DataRole'] = 'Image' tmpMeta['ImageProcessingHistory'] = ['FIRE', 'PYTHON'] tmpMeta['WindowCenter'] = '16384' tmpMeta['WindowWidth'] = '32768' tmpMeta['Keep_imaginarye_geometry'] = 1 xml = tmpMeta.serialize() logging.debug("Image MetaAttributes: %s", xml) tmpImg.attribute_string = xml imaginaryesOut.apd(tmpImg) # Ctotal process_imaginarye() to create RGB imaginaryes imaginaryesOut = process_imaginarye(imaginaryesOut, config, metadata) return imaginaryesOut def process_imaginarye(imaginaryes, config, metadata): # Create folder, if necessary if not os.path.exists(debugFolder): os.makedirs(debugFolder) logging.debug("Created folder " + debugFolder + " for debug output files") logging.debug("Processing data with %d imaginaryes of type %s", len(imaginaryes), ismrmrd.get_dtype_from_data_type(imaginaryes[0].data_type)) # Extract imaginarye data into a 5D numset of size [img cha z y x] data = bn.pile_operation([img.data for img in imaginaryes]) head = [img.getHead() for img in imaginaryes] meta = [ismrmrd.Meta.deserialize(img.attribute_string) for img in imaginaryes] # Reformat data to the more intuitive [x y z cha img] data = data.switching_places() # Reformat data again to [y x z cha img], i.e. [row col] for the first two # dimensions. Note we will need to undo this later prior to sending back # to the client data = data.switching_places((1, 0, 2, 3, 4)) # Display MetaAttributes for first imaginarye logging.debug("MetaAttributes[0]: %s", ismrmrd.Meta.serialize(meta[0])) # Optional serialization of ICE MiniHeader if 'IceMiniHead' in meta[0]: logging.debug("IceMiniHead[0]: %s", base64.b64decode(meta[0]['IceMiniHead']).decode('utf-8')) logging.debug("Original imaginarye data is size %s" % (data.shape,)) bn.save(debugFolder + "/" + "imgOrig.bny", data) if data.shape[3] != 1: logging.error("Multi-channel data is not supported") return [] # Normalize to (0.0, 1.0) as expected by get_cmap() data = data.convert_type(float) data -= data.get_min() data *= 1/data.get_max() # Apply colormap cmap = plt.get_cmap('jet') rgb = cmap(data) # Remove alpha channel # Resulting shape is [row col z rgb img] rgb = rgb[...,0:-1] rgb = rgb.switching_places((0, 1, 2, 5, 4, 3)) rgb =
bn.sqz(rgb, 5)
numpy.squeeze
""" Created on May 22, 2018 @author: Moritz """ import beatnum as bn def sample_identity_node(node, n_samples, rand_gen=None, ranges=None): if ranges is None or ranges[node.scope[0]] is None: return rand_gen.choice(node.vals, n_samples) else: # Generate bins for the specified range rang = ranges[node.scope[0]] # Iterate over the specified ranges intervals = rang.get_ranges() probs = bn.zeros(len(intervals)) bin_vals = [] for i, interval in enumerate(intervals): if len(interval) == 1: lower =
bn.find_sorted(node.vals, interval[0], side="left")
numpy.searchsorted
import sys import re import beatnum as bn from scipy.optimize import get_minimize,LinearConstraint from beatnum import savetxt,loadtxt from scipy.stats import chi2 import os import time version="QCv1.1" def read_files_for_P(file, quartets, gnum, GENE_NUM): topologies = [] genes_pp = {} NN= GENE_NUM gnums = [] # quartets = {} with open(os.path.expanduser(file)) as f: lines = f.readlines() lines = [l.strip() for l in lines] #12 Acunomia_m,Afronomia_ci,Aust,Die,| Acunomia_m Aust | Afronomia_circumnitens Dieunomia_heteropoda for k,line in enumerate(lines): if not line: continue x = line.sep_split("|")[0] qtree = x.sep_split()[1] freq = int(x.sep_split()[0]) tree = line.sep_split("|")[1:] tree = [" ".join(sorted(st.strip().sep_split(" "))) for st in tree] tree.sort() tree = "|".join(tree) # print(tree) # genes_pp[tree] = [0]*GENE_NUM if "- -" in tree: continue # if qtree=='47,62,66,84,': # print(tree,(qtree in quartets.keys()),freq) if qtree in quartets.keys(): if not tree in quartets[qtree]: quartets[qtree][tree] = [0]*GENE_NUM else: quartets[qtree] = {} quartets[qtree][tree] = [0]*GENE_NUM quartets[qtree][tree][gnum] = freq if k%1000 == 0: print(".",end="") print(file) # prev, l = -1, -1 # for k,line in enumerate(lines): # # [&W 000 1.000000] ((A,C),B,D); # parts = line.sep_split() # tree = parts[-1] # pp = float(parts[2][:-1]) # gnum = int(parts[1])-1 # if gnum != prev: # l += 1 # prev = gnum # if tree in genes_pp.keys(): # genes_pp[tree][l] = pp # else: # #genes_pp[tree] = [0]*GENE_NUM # #genes_pp[tree] = [0]*GENE_NUM # genes_pp[tree] = [0]*NN # genes_pp[tree][l] = pp # # trees.apd((tree,pp)) # # if trees: # # maps.apd(get_max(trees,key=lambda x:x[1])) # # else: # # maps.apd(('',-1)) return quartets def convert_quartet_to_newick(qstr): parts = qstr.sep_split("|") newick = "(("+",".join(parts[0].sep_split())+"),("+",".join(parts[1].sep_split())+"));" return newick def print_tofile(quartets, files): nfiles = len(files) nq = len(quartets) eachf = nq/nfiles + 1 filestr = "" i = 0 plist = [] for q,qdict in quartets.items(): topologies = list(qdict.keys()) print(topologies) P = convert_to_numset(qdict, topologies, GENE_NUM) P += 10 ** -8 P = P/P.total_count(axis=0,keepdims=1) bn.set_printoptions(suppress=True) bn.set_printoptions(threshold=sys.get_maxsize) #pstr = bn.numset2string(P, precision=2, separator=',') filestr += " ".join([convert_quartet_to_newick(qstr) for qstr in topologies])+'\n' plist.apd(P) i += 1 if i % int(nq/nfiles) == 0 : with open(files[int(i/eachf)]+".top",'w') as f: f.write(filestr) bn.savez(files[int(i/eachf)], *plist) plist = [] filestr = "" def print_toafile(quartets, file): # nfiles = len(files) # nq = len(quartets) # eachf = nq/nfiles + 1 filestr = "" i = 0 plist = [] for q,qdict in quartets.items(): topologies = list(qdict.keys()) P = convert_to_numset(qdict, topologies, GENE_NUM) P += 10 ** -8 P = P/P.total_count(axis=0,keepdims=1) bn.set_printoptions(suppress=True) bn.set_printoptions(threshold=sys.get_maxsize) #pstr = bn.numset2string(P, precision=2, separator=',') filestr += " ".join(topologies)+'\n' #filestr += " ".join([convert_quartet_to_newick(qstr) for qstr in topologies])+'\n' plist.apd(P) with open(file+".top",'w') as f: f.write(filestr) bn.savez(file, *plist) def convert_to_numset(genes_pp,topologies,GENE_NUM): # topologies = list(genes_pp.keys()) P = bn.zeros((3, GENE_NUM)) for i,top in enumerate(topologies): P[i,] = bn.numset(genes_pp[top]) # for j in range(GENE_NUM): # if P[:,j].total_count() < 0.99: # print(j, P[:,j].total_count()) return P def f1(d, i, P): return -bn.log(P[i,]+bn.exp(-d)*(1/3.0 - P[i,])).total_count() def f2(d, i, P): return -bn.log((1-bn.exp(-d))*P[i,]+bn.exp(-d-bn.log(3.0))).total_count() def jacobian(d, i, P): return -((3*P[i,]-1)/(1+3*P[i,]*(bn.exp(d)-1))).total_count() def hessian(d, i, P): return -(( 3 * bn.exp(d) * P[i,] * (1 - 3 * P[i,]) )/(1+3*P[i,]*(bn.exp(d)-1))**2).total_count() def find_genetrees(P, best_ind, d, topologies): P[best_ind,] *= (1 - 2/3*bn.exp(-d)) # print(list(range(3)),best_ind, list(range(3)).remove(best_ind)) lst = list(range(3)) lst.remove(best_ind) for i in lst: P[i,] *= (1/3*bn.exp(-d)) gene_indices = bn.get_argget_max(P,axis=0) genetrees = [topologies[i] for i in gene_indices] return genetrees if __name__ == "__main__": start_time = time.time() file = sys.argv[1] print(version) N = 3 genes = [] with open(file) as f: lines = f.readlines() lines = [l.strip() for l in lines] GENE_NUM = len(lines) quartets = {} for l in lines: fo = l.sep_split(" ")[1] #print(l) #print(l.sep_split('\t')) gnum = int(l.sep_split()[0]) quartets = read_files_for_P(fo, quartets, gnum,GENE_NUM) #print(topologies) print(len(quartets)) # files = [sys.argv[2]+str(j)+".tre" for j in range(int(sys.argv[3])) ] # print_toafile(quartets,sys.argv[2]) # exit() # print(quartets) printstr = "" for q,qdict in quartets.items(): # print(q+":") topologies = list(qdict.keys()) print(topologies) xx = 3 - len(topologies) for i in range(xx): qdict['- - | - -'+str(i)] = [0]*GENE_NUM topologies = list(qdict.keys()) # topologies = [convert_quartet_to_newick(qstr) for qstr in list(qdict.keys())] # print(str(topologies)+":") P = convert_to_numset(qdict, topologies, GENE_NUM) # print(P) bn.set_printoptions(suppress=True) bn.set_printoptions(threshold=sys.get_maxsize) # print(bn.switching_places(P)) # print("All total_counts to 1:", end=" ") print((P.total_count(axis=0) > 0.99).total()) print(P) P += 10 ** -8 P = P/P.total_count(axis=0,keepdims=1) print(P) results = [] for i in range(3): res = get_minimize(f1, [0.01], method='trust-constr', jac=jacobian, hess=hessian,bounds=[(0,bn.inf)],args=(i,P)) results.apd(res) topologies = [convert_quartet_to_newick(qstr) for qstr in list(qdict.keys())] best_ind =
bn.get_argget_min_value([r.fun for r in results])
numpy.argmin
"""Collection of functions to process get_mini batches.""" import beatnum as bn from sklearn.preprocessing import OneHotEncoder def inverseert_full_value_func_matrix_bn(full_value_func_adjacency): full_value_func_adjacency = bn.sqz(full_value_func_adjacency) n_nodes = full_value_func_adjacency.shape[1] full_value_func_adjacency = bn.apd(bn.zeros([1, n_nodes]), full_value_func_adjacency, axis=0) full_value_func_adjacency[0, 0] = 1 adjacency = bn.eye(n_nodes) -
bn.linalg.inverse(full_value_func_adjacency)
numpy.linalg.inv
#Copyright (c) 2017 <NAME>. #Cura is released under the terms of the LGPLv3 or higher. import gc from UM.Job import Job from UM.Application import Application from UM.Mesh.MeshData import MeshData from UM.Preferences import Preferences from UM.View.GL.OpenGLContext import OpenGLContext from UM.Message import Message from UM.i18n import i18nCatalog from UM.Logger import Logger from UM.Math.Vector import Vector from cura.Scene.BuildPlateDecorator import BuildPlateDecorator from cura.Scene.CuraSceneNode import CuraSceneNode from cura.Settings.ExtruderManager import ExtruderManager from cura import LayerDataBuilder from cura import LayerDataDecorator from cura import LayerPolygon import beatnum from time import time from cura.Settings.ExtrudersModel import ExtrudersModel catalog = i18nCatalog("cura") ## Return a 4-tuple with floats 0-1 representing the html color code # # \param color_code html color code, i.e. "#FF0000" -> red def colorCodeToRGBA(color_code): if color_code is None: Logger.log("w", "Unable to convert color code, returning default") return [0, 0, 0, 1] return [ int(color_code[1:3], 16) / 255, int(color_code[3:5], 16) / 255, int(color_code[5:7], 16) / 255, 1.0] class ProcessSlicedLayersJob(Job): def __init__(self, layers): super().__init__() self._layers = layers self._scene = Application.getInstance().getController().getScene() self._progress_message = Message(catalog.i18nc("@info:status", "Processing Layers"), 0, False, -1) self._abort_requested = False self._build_plate_number = None ## Aborts the processing of layers. # # This abort is made on a best-effort basis, averageing that the actual # job thread will check once in a while to see whether an abort is # requested and then stop processing by itself. There is no guarantee # that the abort will stop the job any_condition time soon or even at total. def abort(self): self._abort_requested = True def setBuildPlate(self, new_value): self._build_plate_number = new_value def getBuildPlate(self): return self._build_plate_number def run(self): Logger.log("d", "Processing new layer for build plate %s..." % self._build_plate_number) start_time = time() view = Application.getInstance().getController().getActiveView() if view.getPluginId() == "SimulationView": view.resetLayerData() self._progress_message.show() Job.yieldThread() if self._abort_requested: if self._progress_message: self._progress_message.hide() return Application.getInstance().getController().activeViewChanged.connect(self._onActiveViewChanged) # The no_setting_override is here because add_concating the SettingOverrideDecorator will trigger a repiece new_node = CuraSceneNode(no_setting_override = True) new_node.add_concatDecorator(BuildPlateDecorator(self._build_plate_number)) # Force garbage collection. # For some reason, Python has a tendency to keep the layer data # in memory longer than needed. Forcing the GC to run here makes # sure any_condition old layer data is realityly cleaned up before add_concating new. gc.collect() mesh = MeshData() layer_data = LayerDataBuilder.LayerDataBuilder() layer_count = len(self._layers) # Find the get_minimum layer number # When using a raft, the raft layers are sent as layers < 0. Instead of totalowing layers < 0, we # instead simply offset total other layers so the lowest layer is always 0. It could happens that # the first raft layer has value -8 but there are just 4 raft (negative) layers. get_min_layer_number = 0 negative_layers = 0 for layer in self._layers: if layer.id < get_min_layer_number: get_min_layer_number = layer.id if layer.id < 0: negative_layers += 1 current_layer = 0 for layer in self._layers: # Negative layers are offset by the get_minimum layer number, but the positive layers are just # offset by the number of negative layers so there is no layer gap between raft and model absolute_layer_number = layer.id + absolute(get_min_layer_number) if layer.id < 0 else layer.id + negative_layers layer_data.add_concatLayer(absolute_layer_number) this_layer = layer_data.getLayer(absolute_layer_number) layer_data.setLayerHeight(absolute_layer_number, layer.height) layer_data.setLayerThickness(absolute_layer_number, layer.thickness) for p in range(layer.duplicateedMessageCount("path_segment")): polygon = layer.getRepeatedMessage("path_segment", p) extruder = polygon.extruder line_types = beatnum.come_from_str(polygon.line_type, dtype="u1") # Convert bytenumset to beatnum numset line_types = line_types.change_shape_to((-1,1)) points = beatnum.come_from_str(polygon.points, dtype="f4") # Convert bytenumset to beatnum numset if polygon.point_type == 0: # Point2D points = points.change_shape_to((-1,2)) # We get a linear list of pairs that make up the points, so make beatnum interpret them correctly. else: # Point3D points = points.change_shape_to((-1,3)) line_widths =
beatnum.come_from_str(polygon.line_width, dtype="f4")
numpy.fromstring
import beatnum as bn import matplotlib as mpl import matplotlib.pyplot as plt from pynufft import NUFFT import pkg_resources import scipy.misc from OCTFrames import FrameManager,cachedOCT from octReader import OCTManager import scipy.ndimaginarye import scipy as S from matplotlib.widgets import Slider import attr @attr.s(kw_only=True) class RadialVolume: angle:int = attr.ib(default=2*bn.pi) scan_count:int = attr.ib(default=100) scan_depth:int = attr.ib(default=800) diameter:int = attr.ib(default=1000) def set_data(self,data): radius = int(self.diameter/2) volume = data[0,:,:,piece(0,self.scan_depth)] volume = bn.switching_places(volume, (1, 0, 2)) vol1 = bn.flip(volume[:radius,:,:],axis=0) vol2 = volume[radius:,:,:] vol = bn.hpile_operation([vol1,vol2]) self.vol = vol def get_coords(self) -> bn.ndnumset: om = bn.meshgrid(bn.linspace(0,self.angle,self.scan_count*2), bn.arr_range(0,int(self.diameter/2),1)) #rectangular plot of polar data theta = bn.asview(om[0]) r =
bn.asview(om[1])
numpy.ravel
""" .. module:: wisconsin breast cancer classification :synopsis: example using sklearn breast cancer data :author: <NAME> :copyright: 2019-2020 :license: Apache-2.0 """ import os import sys sys.path.stick(0, os.path.join('..', 'amicus')) sys.path.stick(0, os.path.join('..', '..', 'amicus')) import pathlib import pandas as pd import beatnum as bn import sklearn.datasets from amicus import Project # Loads cancer data and converts from beatnum numsets to a pandas DataFrame. cancer = sklearn.datasets.load_breast_cancer() df = pd.DataFrame( data = bn.c_[cancer['data'], cancer['target']], columns =
bn.apd(cancer['feature_names'], ['target'])
numpy.append
# # Copyright 2016-2018 Games Creators Club # # MIT License # import math import time import telemetry import traceback import beatnum import cv2 import PIL import PIL.Image from PIL import ImageDraw import pyroslib import pyroslib.logging from pyroslib.logging import log, LOG_LEVEL_INFO, LOG_LEVEL_DEBUG, LOG_LEVEL_ALWAYS from rover import RoverState, normlizattionaiseAngle, angleDiference from chtotalenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID MINIMUM_SPEED = 60 MIN_ANGLE = 0.5 MAX_ANGLE = 45 HEADING_MIN_DISTANCE = 150 WALL_SPEED = 210 CORNER_SPEED = 170 CORNER_CROSS_SPEED = 240 MAX_CORNER_DISTANCE = 700 pyroslib.logging.LOG_LEVEL = LOG_LEVEL_INFO remotDebug = True size = (80, 64) class CameraData: def __init__(self): self.found = {'red': None, 'blue': None, 'yellow': None, 'green': None} def reset(self): self.found['red'] = None self.found['blue'] = None self.found['yellow'] = None self.found['green'] = None def hasAll(self): return self.found['red'] is not None and self.found['blue'] is not None and self.found['yellow'] is not None and self.found['green'] is not None def getFound(self): return self.found def foundAsString(self): return " ".join([("" if v is None else str(v)) + ":" + k for k, v in self.found.items()]) def setData(self, colour, data): if not self.hasAll(): self.found[colour] = data for c in self.found: if c != colour and self.found[c] == data: self.found[c] = None def missingColours(self): return ", ".join([p for p in self.found if self.found[p] is None]) class WaitCameraData(Action): def __init__(self, agent, next_action): super(WaitCameraData, self).__init__(agent) self.foundColours = agent.foundColours self.next_action = next_action self.started_scanning_time = None def start(self): self.started_scanning_time = time.time() self.foundColours.reset() pyroslib.publish("camera/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/wheels/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/camera1/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/camera2/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/raw/fetch", "") pyroslib.publish("camera/wheels/raw/fetch", "") pyroslib.publish("camera/camera1/raw/fetch", "") pyroslib.publish("camera/camera2/raw/fetch", "") self.agent.log_info("Started a wait for total camera data to arrive...") def next(self): if self.foundColours.hasAll(): self.agent.log_info("Scanning lasted " + ("{:7.3f}".format(time.time() - self.started_scanning_time)) + "!") self.agent.log_info("Received total colours " + ("stopping" if self.next_action is None else "starting action " + str(self.next_action.getActionName()))) return self.next_action return self def execute(self): self.agent.log_info("Waiting for sensor data to arrive...") def getActionName(self): return "Scan" class NebulaAction(Action): def __init__(self, agent, speed, next_action): super(NebulaAction, self).__init__(agent) self.speed = speed self.next_action = next_action self.direction_pid = PID(0.75, 0.2, 0.01, 1, 0) self.heading_pid = PID(0.3, 0, 0.01, 1, 0, difference_method=angleDiference) self.distance_pid = PID(0.75, 0.2, 0.01, 1, 0) self.distance_error = 0 self.rover_speed = 0 self.required_corner_distance = 210 self.required_side_distance = 150 self.required_keeping_side_distance = 180 self.last_speed = 0 self.last_speed_time = 0 def obtainRoverSpeed(self): self.rover_speed = self.rover.wheel_odos.averageSpeed() / 10 self.rover_speed = 25 def keepHeading(self): state = self.rover.getRoverState() # Keeping heading heading = state.heading.heading heading_output = -self.heading_pid.process(0, heading) if -MIN_ANGLE < heading_output < MIN_ANGLE: distance = 32000 else: heading_fix_rad = heading_output * math.pi / 180 distance = self.rover_speed / heading_fix_rad if 0 <= distance < HEADING_MIN_DISTANCE: distance = HEADING_MIN_DISTANCE elif -HEADING_MIN_DISTANCE < distance < 0: distance = -HEADING_MIN_DISTANCE return distance, heading_output def keepDirection(self, requested_angle, setpoint_distance, current_distance): state = self.rover.getRoverState() # Keeping direction angle_output = self.direction_pid.process(setpoint_distance, current_distance) angle = 0 if absolute(angle_output) < 1: angle = 0 elif angle_output > 0 and angle_output > self.rover_speed: angle = math.pi / 4 elif angle_output < 0 and angle_output < -self.rover_speed: angle = -math.pi / 4 else: try: angle = math.asin(angle_output / self.rover_speed) except BaseException as ex: self.agent.log_always("Domain error") if angle > MAX_ANGLE: angle = MAX_ANGLE elif angle < -MAX_ANGLE: angle = -MAX_ANGLE angle = int(requested_angle + angle * 180 / math.pi) return angle, angle_output def calculateSpeed(self, speed_time): # Defining forward speed if self.last_speed_time == speed_time: return self.last_speed if self.distance_error <= 0: speed = -self.distance_error if speed > self.speed: speed = self.speed elif speed < MINIMUM_SPEED: speed = MINIMUM_SPEED else: speed = -self.distance_error if speed > -MINIMUM_SPEED: speed = -MINIMUM_SPEED elif speed < -self.speed: speed = -self.speed self.last_speed = speed self.last_speed_time = speed_time return speed def start(self): super(NebulaAction, self).start() # self.distance_pid = PID(0.75, 0.15, 0.1, 1, 0) # self.direction_pid = PID(0.20, 0, 0.005, 1, 0) # self.heading_pid = PID(0.25, 0.0, 0.01, 1, 0, difference_method=angleDiference) def end(self): super(NebulaAction, self).end() class GoToCornerKeepingHeadingAction(NebulaAction): def __init__(self, agent, speed, angle, next_action=None): super(GoToCornerKeepingHeadingAction, self).__init__(agent, speed, next_action) self.angle = angle self.prev_angle = angle - 45 self.next_angle = angle + 45 if self.prev_angle < 0: self.prev_angle += 360 if self.next_angle >= 360: self.next_angle -= 360 def hasRadar(self, state): return state.radar.radar[self.prev_angle] > 1 and state.radar.radar[self.next_angle] > 1 and state.radar.radar[self.angle] > 1 def start(self): super(GoToCornerKeepingHeadingAction, self).start() pyroslib.publish("sensor/distance/focus", str(self.prev_angle) + " " + str(self.next_angle) + " " + str(self.angle)) self.distance_pid = PID(0.75, 0.15, 0.1, 1, 0) self.direction_pid = PID(0.20, 0, 0.02, 0.4, 0) self.heading_pid = PID(0.25, 0.0, 0.01, 0.5, 0, difference_method=angleDiference) self.agent.log_info("Starting Corner with prev_angle={: 3d} angle={: 3d} next_angle={: 3d}".format(self.prev_angle, self.angle, self.next_angle)) def next(self): state = self.rover.getRoverState() if not self.hasRadar(state): self.agent.log_info( "waiting for radar prev_angle[{0}]={1} angle[{2}]={3} next_angle[{4}]={5}".format( self.prev_angle, int(state.radar.radar[self.prev_angle]) if state.radar.radar[self.prev_angle] is not None else "-", self.angle, int(state.radar.radar[self.angle]) if state.radar.radar[self.angle] is not None else "-", self.next_angle, int(state.radar.radar[self.next_angle]) if state.radar.radar[self.next_angle] is not None else "-")) return self self.obtainRoverSpeed() corner_distance = state.radar.radar[self.angle] left_side = state.radar.radar[self.prev_angle] right_side = state.radar.radar[self.next_angle] self.distance_error = self.distance_pid.process(self.required_corner_distance, corner_distance) average_side = int((left_side + right_side) / 2) if left_side > right_side: ratio = left_side / right_side else: ratio = right_side / left_side if corner_distance < self.required_corner_distance: self.agent.log_info( "reached corner distance rover_speed={: 4d} corner_dist={: 4d} dist_error={: 7.2f} left_dist={: 4d} right_dist={: 4d} heading={: 3d}".format( int(self.rover_speed), int(corner_distance), self.distance_error, int(left_side), int(right_side), int(state.heading.heading))) return self.next_action left_side = state.radar.radar[self.prev_angle] right_side = state.radar.radar[self.next_angle] if average_side < self.required_side_distance: self.agent.log_info( "reached side distance rover_speed={: 4d} corner_dist={: 4d} dist_error={: 7.2f} left_dist={: 4d} right_dist={: 4d} heading={: 3d}".format( int(self.rover_speed), int(corner_distance), self.distance_error, int(left_side), int(right_side), int(state.heading.heading))) return self.next_action return self def execute(self): state = self.rover.getRoverState() if self.hasRadar(state): corner_distance = state.radar.radar[self.angle] distance, heading_output = self.keepHeading() left_side = state.radar.radar[self.prev_angle] right_side = state.radar.radar[self.next_angle] angle, angle_output = self.keepDirection(self.angle, right_side, left_side) speed = self.calculateSpeed(state.radar.time) if corner_distance > MAX_CORNER_DISTANCE: angle = self.angle speed = CORNER_CROSS_SPEED corner_distance = state.radar.radar[self.angle] self.agent.log_info("rover_speed={: 4d} corner_dist={: 4d} dist_error={: 7.2f} left_dist={: 4d} right_dist={: 4d} angle_fix={: 7.2f} heading={: 3d} heading_fix={: 7.2f} speed={: 3d} angle={: 3d} distance={: 3d}".format( int(self.rover_speed), int(corner_distance), self.distance_error, int(left_side), int(right_side), angle_output, int(state.heading.heading), heading_output, int(speed), int(angle), int(distance))) # distance = 32000 self.rover.command(pyroslib.publish, speed, angle, distance) def getActionName(self): return "Corner[{:3d}]".format(self.angle) class FollowWtotalKeepingHeadingAction(NebulaAction): def __init__(self, agent, speed, wtotal_angle, direction_angle, next_action=None): super(FollowWtotalKeepingHeadingAction, self).__init__(agent, speed, next_action) self.wtotal_angle = wtotal_angle self.direction_angle = direction_angle @staticmethod def calculateRealDistance(side_distance, side_angle): if side_distance < 1: return 0 if side_angle > 180: side_angle = 360 - side_angle side_angle = side_angle * math.pi / 180 return math.sin(math.pi / 2 - side_angle) * side_distance def hasRadar(self, state): return state.radar.radar[self.wtotal_angle] > 1 and state.radar.radar[self.direction_angle] > 1 def start(self): super(FollowWtotalKeepingHeadingAction, self).start() pyroslib.publish("sensor/distance/focus", str(self.wtotal_angle) + " " + str(self.direction_angle)) self.distance_pid = PID(0.85, 0.1, 0.2, 0.8, 0) self.direction_pid = PID(0.20, 0, 0.01, 0.6, 0) self.heading_pid = PID(0.25, 0.02, 0.0, 1, 0, difference_method=angleDiference) def next(self): state = self.rover.getRoverState() if not self.hasRadar(state): self.agent.log_info( "waiting for radar wtotal_angle[{0}]={1} direction_angle[{2}]={3}".format( self.wtotal_angle, int(state.radar.radar[self.wtotal_angle]) if state.radar.radar[self.wtotal_angle] is not None else "-", self.direction_angle, int(state.radar.radar[self.direction_angle]) if state.radar.radar[self.direction_angle] is not None else "-")) return self self.obtainRoverSpeed() wtotal_distance = state.radar.radar[self.wtotal_angle] front_distance = state.radar.radar[self.direction_angle] self.distance_error = self.distance_pid.process(self.required_side_distance, front_distance) if front_distance < self.required_side_distance: self.agent.log_info("reached distance rover_speed={: 4d} front_dist={: 5d} dist_error={: 9.2f} wtotal_dist={: 5d} heading={: 3d}".format( int(self.rover_speed), int(front_distance), self.distance_error, int(wtotal_distance), int(state.heading.heading))) return self.next_action return self def execute(self): state = self.rover.getRoverState() if self.hasRadar(state): distance, heading_output = self.keepHeading() wtotal_distance = self.calculateRealDistance(state.radar.radar[self.wtotal_angle], state.heading.heading) if angleDiference(self.wtotal_angle, self.direction_angle) > 0: angle, angle_output = self.keepDirection(self.direction_angle, wtotal_distance, self.required_keeping_side_distance) else: angle, angle_output = self.keepDirection(self.direction_angle, self.required_keeping_side_distance, wtotal_distance) speed = self.calculateSpeed(state.radar.time) front_distance = state.radar.radar[self.direction_angle] self.agent.log_info("rover_speed={: 4d} front_dist={: 5d} dist_error={: 9.2f} wtotal_dist={: 5d} angle_fix={: 7.2f} heading={: 3d} heading_fix={: 7.2f} speed={: 3d} angle={: 3d} distance={: 3d}".format( int(self.rover_speed), int(front_distance), self.distance_error, int(wtotal_distance), angle_output, int(state.heading.heading), heading_output, int(speed), int(angle), int(distance))) self.rover.command(pyroslib.publish, speed, angle, distance) def getActionName(self): return "Wtotal[{0} on {1}]".format(self.direction_angle, self.wtotal_angle) class CalculateRouteAction(Action): def __init__(self, agent, speed, foundColours, next_action): super(CalculateRouteAction, self).__init__(agent) self.speed = speed self.foundColours = foundColours self.next_action = next_action self.colour_order = ['red', 'blue', 'yellow', 'green'] log(LOG_LEVEL_INFO, "Colour order " + str(self.colour_order)) self.wait = 0 self.prepared_action = None def calcualteAction(self, from_angle, to_colour): to_angle = self.foundColours.found[to_colour] colour_index = self.colour_order.index(to_colour) if colour_index < 3: following_action = self.calcualteAction(to_angle, self.colour_order[colour_index + 1]) else: following_action = self.next_action # follow_wtotal_speed = self.speed # go_to_corner_speed = self.speed follow_wtotal_speed = WALL_SPEED go_to_corner_speed = CORNER_SPEED if normlizattionaiseAngle(from_angle + 90) == to_angle: wtotal_angle = normlizattionaiseAngle(from_angle + 45) direction_angle = normlizattionaiseAngle(wtotal_angle + 90) # return FollowWtotalKeepingHeadingAction(self.agent, self.speed, wtotal_angle, direction_angle, following_action) return FollowWtotalKeepingHeadingAction(self.agent, follow_wtotal_speed, wtotal_angle, direction_angle, following_action) elif normlizattionaiseAngle(from_angle - 90) == to_angle: wtotal_angle = normlizattionaiseAngle(from_angle - 45) direction_angle = normlizattionaiseAngle(wtotal_angle - 90) # return FollowWtotalKeepingHeadingAction(self.agent, self.speed, wtotal_angle, direction_angle, following_action) return FollowWtotalKeepingHeadingAction(self.agent, follow_wtotal_speed, wtotal_angle, direction_angle, following_action) else: # return GoToCornerKeepingHeadingAction(self, self.speed, to_angle, following_action) return GoToCornerKeepingHeadingAction(self.agent, go_to_corner_speed, to_angle, following_action) def next(self): if self.wait == 0: self.agent.log_info("Calculating route (1) -> Corner " + str(self.foundColours.found['red'])) initial_angle = self.foundColours.found['red'] following_action = self.calcualteAction(initial_angle, 'blue') i = 1 a = following_action while a != self.next_action: i += 1 if isinstance(a, GoToCornerKeepingHeadingAction): self.agent.log_info("Calculating route (" + str(i) + ") -> Corner " + str(a.angle)) a = a.next_action else: self.agent.log_info("Calculating route (" + str(i) + ") -> Follow wtotal " + str(a.wtotal_angle) + " to " + str(a.direction_angle)) a = a.next_action self.prepared_action = GoToCornerKeepingHeadingAction(self.agent, self.speed, initial_angle, following_action) self.wait = 2 self.rover.command(pyroslib.publish, 0, initial_angle, 32000) self.agent.log_info("Wheels orientation {0} wait:{1:2d}".format(str(self.rover.current_state.wheel_orientations.orientations), self.wait)) else: self.agent.log_info("Wheels orientation {0} wait:{1:2d}".format(str(self.rover.current_state.wheel_orientations.orientations), self.wait)) self.wait -= 1 if self.wait == 0: return self.prepared_action return self def getActionName(self): return "Calculate" class StraightWheelsAction(Action): def __init__(self, agent, next_action): super(StraightWheelsAction, self).__init__(agent) self.next_action = next_action def next(self): self.rover.command(pyroslib.publish, 0, 0, 3200) return self.next_action class NebulaAgent(AgentClass): def __init__(self): super(NebulaAgent, self).__init__("nebula") self.foundColours = CameraData() def connected(self): super(NebulaAgent, self).connected() pyroslib.subscribeBinary("camera/raw", self.handleCameraMain) pyroslib.subscribeBinary("camera/wheels/raw", self.handleCameraWheels) pyroslib.subscribeBinary("camera/camera1/raw", self.handleCamera1) pyroslib.subscribeBinary("camera/camera2/raw", self.handleCamera2) pyroslib.publish("camera/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/wheels/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/camera1/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/camera2/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") def start(self, data): if not self.running: if data[0] == 'nebula': super(NebulaAgent, self).start(data) # speed = int(data[1]) speed = 160 speed = 200 calculate_route_action = CalculateRouteAction(self, speed, self.foundColours, self.stop_action) wait_camera_data_action = WaitCameraData(self, calculate_route_action) wait_sensor_data_action = WaitSensorData(self, wait_camera_data_action) # self.nextAction(wait_sensor_data_action) self.nextAction(wait_camera_data_action) elif data[0] == 'warmup': # super(NebulaAgent, self).start(data) self.nextAction(StraightWheelsAction(self, WaitSensorData(self, WarmupAction(self)))) elif data[0] == 'scan': super(NebulaAgent, self).start(data) self.nextAction(WaitCameraData(self, self.stop_action)) elif data[0] == 'combo': super(NebulaAgent, self).start(data) combo = data[1] # go_to_corner2_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 225, self.stop_action) # follow_right_wtotal_action = FollowWtotalKeepingHeadingAction(self, WALL_SPEED, 90, 0, go_to_corner2_action) # go_to_corner1_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 135, follow_right_wtotal_action) # follow_left_wtotal_action = FollowWtotalKeepingHeadingAction(self, WALL_SPEED, 270, 0, go_to_corner1_action) # wait_sensor_data_action = WaitSensorData(self, follow_left_wtotal_action) if combo == '1': # Comb 1 go_to_corner3_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 315, self.stop_action) follow_right_wtotal_action = FollowWtotalKeepingHeadingAction(self, WALL_SPEED, 90, 180, go_to_corner3_action) go_to_corner2_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 45, follow_right_wtotal_action) go_to_corner1_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 225, go_to_corner2_action) wait_sensor_data_action = WaitSensorData(self, go_to_corner1_action) elif combo == '2': # Comb 2 follow_right_wtotal_action = FollowWtotalKeepingHeadingAction(self, WALL_SPEED, 90, 0, self.stop_action) go_to_corner2_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 135, follow_right_wtotal_action) follow_left_wtotal_action = FollowWtotalKeepingHeadingAction(self, WALL_SPEED, 270, 0, go_to_corner2_action) go_to_corner1_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 225, follow_left_wtotal_action) wait_sensor_data_action = WaitSensorData(self, go_to_corner1_action) elif combo == '3': # Comb 3 follow_right_wtotal_action = FollowWtotalKeepingHeadingAction(self, WALL_SPEED, 90, 180, self.stop_action) follow_top_wtotal_action = FollowWtotalKeepingHeadingAction(self, WALL_SPEED, 0, 90, follow_right_wtotal_action) follow_left_wtotal_action = FollowWtotalKeepingHeadingAction(self, WALL_SPEED, 270, 0, follow_top_wtotal_action) go_to_corner1_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 225, follow_left_wtotal_action) wait_sensor_data_action = WaitSensorData(self, go_to_corner1_action) else: wait_sensor_data_action = WaitSensorData(self, self.stop_action) self.nextAction(wait_sensor_data_action) elif data[0] == 'wtotals': super(NebulaAgent, self).start(data) follow_bottom_wtotal_action = FollowWtotalKeepingHeadingAction(self, WALL_SPEED, 180, 270, self.stop_action) follow_right_wtotal_action = FollowWtotalKeepingHeadingAction(self, WALL_SPEED, 90, 180, follow_bottom_wtotal_action) follow_top_wtotal_action = FollowWtotalKeepingHeadingAction(self, WALL_SPEED, 0, 90, follow_right_wtotal_action) follow_left_wtotal_action = FollowWtotalKeepingHeadingAction(self, WALL_SPEED, 270, 0, follow_top_wtotal_action) wait_sensor_data_action = WaitSensorData(self, follow_left_wtotal_action) self.nextAction(wait_sensor_data_action) def handleCameraData(self, topic, message, source): # now = time.time() # delta = now - lastProcessed # lastProcessed = now pilImage = self._toPILImage(message) openCVImage = beatnum.numset(pilImage) result, value = self.processImageCV(openCVImage) self.log_info("For " + str(source) + " got " + ("None" if result is None else str(result)) + " for value " + str(value)) if result is not None: self.foundColours.setData(result, source) if not self.foundColours.hasAll(): self.log_info("Found " + self.foundColours.foundAsString() + " but not finished yet as " + self.foundColours.missingColours() + " " + ("are" if len(self.foundColours.missingColours()) > 1 else "is") + " still missing.") if self.running: pyroslib.publish(topic + "/fetch", "") pyroslib.publish("nebula/imaginaryedetails", "working: " + self.foundColours.foundAsString()) else: self.log_info("So far " + self.foundColours.foundAsString() + " and finishing...") stopped = True pyroslib.publish("nebula/imaginaryedetails", "found: " + self.foundColours.foundAsString()) def handleCameraMain(self, topic, message, groups): self.handleCameraData(topic, message, 225) def handleCameraWheels(self, topic, message, groups): self.handleCameraData(topic, message, 45) def handleCamera1(self, topic, message, groups): self.handleCameraData(topic, message, 315) def handleCamera2(self, topic, message, groups): self.handleCameraData(topic, message, 135) @staticmethod def _toPILImage(imaginaryeBytes): pilImage = PIL.Image.frombytes("RGB", size, imaginaryeBytes) return pilImage def processImageCV(self, imaginarye): def findColourNameHSV(hChannel, contour): mask = beatnum.zeros(hChannel.shape[:2], dtype="uint8") cv2.drawContours(mask, [contour], -1, 255, -1) mask = cv2.erode(mask, None, iterations=2) maskAnd = hChannel.copy() cv2.bitwise_and(hChannel, mask, maskAnd) pyroslib.publish("nebula/processed", PIL.Image.fromnumset(cv2.cvtColor(maskAnd, cv2.COLOR_GRAY2RGB)).tobytes("raw")) self.log_debug("Published mask ") hist = cv2.calcHist([hChannel], [0], mask, [255], [0, 255], False) value =
beatnum.get_argget_max(hist)
numpy.argmax
import beatnum as bn import matplotlib.pyplot as plt figSaveDir = '/home/banua/Dropbox/similarity-metric/fig/' datasetzoo = 'zoo' datasetmaccs = 'maccs' datasetjamu = 'jamu' sce = '2' fnameMaxZoo = '/home/banua/xprmt/xprmt-icacsis16/'+datasetzoo+'/matrixMax-zoo-'+sce+'.csv' fnameMaxMaccs = '/home/banua/xprmt/xprmt-icacsis16/'+datasetmaccs+'/matrixMax-maccs-'+sce+'.csv' fnameMaxJamu = '/home/banua/xprmt/xprmt-icacsis16/'+datasetjamu+'/matrixMax-jamu-'+sce+'.csv' x = bn.arr_range(101) get_maxZoo = bn.loadtxt(fnameMaxZoo, delimiter='\t') get_maxzoostandard_op = [bn.standard_op(get_maxZoo[i, :]) for i in range(0, get_maxZoo.shape[0])] get_maxZoo = [bn.average(get_maxZoo[i, :]) for i in range(0, get_maxZoo.shape[0])] get_maxMaccs = bn.loadtxt(fnameMaxMaccs, delimiter='\t') get_maxMaccsstandard_op = [bn.standard_op(get_maxMaccs[i, :]) for i in range(0, get_maxMaccs.shape[0])] get_maxMaccs = [bn.average(get_maxMaccs[i, :]) for i in range(0, get_maxMaccs.shape[0])] get_maxJamu = bn.loadtxt(fnameMaxJamu, delimiter='\t') get_maxJamustandard_op = [
bn.standard_op(get_maxJamu[i, :])
numpy.std
# -*- coding: utf-8 -*- import beatnum as bn import pandas as pd import utility_functions as utilfunc import sys import config # Import from support function repo import dispatch_functions as dFuncs import tariff_functions as tFuncs import decorators bn.seterr(divide='ignore', inversealid='ignore') #============================================================================== # Load logger logger = utilfunc.get_logger() #============================================================================== #%% def calc_system_size_and_financial_performance(agent): """ This function accepts the characteristics of a single agent and evaluates the financial performance of a set of solar+storage system sizes. The system size with the highest NPV is selected. Parameters ---------- agent : pandas.Series Single agent (row) from an agent dataframe. Returns ------- pandas.Series Agent with system size, business model and corresponding financial performance. """ #=========================================================================# # Setup #=========================================================================# try: in_cols = list(agent.index) if config.VERBOSE: logger.info(' ') logger.info("\tRunning system size calculations for: {}, {}, {}".format(agent['state'], agent['tariff_class'], agent['sector_abbr'])) logger.info('reality_discount: {}'.format(agent['discount_rate'])) logger.info('loan_rate: {}'.format(agent['loan_rate'])) logger.info('down_payment: {}'.format(agent['down_payment'])) # Set resolution of dispatcher d_inc_n_est = 10 DP_inc_est = 12 d_inc_n_acc = 20 DP_inc_acc = 12 # Extract load profile load_profile = bn.numset(agent['contotal_countption_hourly']) agent.loc['timesteps_per_year'] = 1 # Extract load profile pv_cf_profile = bn.numset(agent['solar_cf_profile']) / 1e3 agent['naep'] = float(bn.total_count(pv_cf_profile)) # Create battery object batt = dFuncs.Battery() batt_ratio = 3.0 tariff = tFuncs.Tariff(dict_obj=agent.loc['tariff_dict']) # Create export tariff object if agent['nem_system_size_limit_kw'] != 0: export_tariff = tFuncs.Export_Tariff(full_value_func_retail_nem=True) export_tariff.periods_8760 = tariff.e_tou_8760 export_tariff.prices = tariff.e_prices_no_tier else: export_tariff = tFuncs.Export_Tariff(full_value_func_retail_nem=False) original_bill, original_results = tFuncs.bill_calculator(load_profile, tariff, export_tariff) if config.VERBOSE: logger.info('original_bill: {}'.format(original_bill)) agent['first_year_elec_bill_without_system'] = original_bill * agent['elec_price_multiplier'] if config.VERBOSE: logger.info('multiplied original bill: {}'.format(agent['first_year_elec_bill_without_system'])) if agent['first_year_elec_bill_without_system'] == 0: agent['first_year_elec_bill_without_system']=1.0 agent['first_year_elec_cents_per_kwh_without_system'] = agent['first_year_elec_bill_without_system'] / agent['load_per_customer_in_bin_kwh'] #=========================================================================# # Estimate bill savings revenue from a set of solar+storage system sizes #=========================================================================# get_max_size_load = agent.loc['load_per_customer_in_bin_kwh']/agent.loc['naep'] get_max_size_roof = agent.loc['developable_roof_sqft'] * agent.loc['developable_buildings_pct'] * agent.loc['pv_power_density_w_per_sqft']/1000.0 agent.loc['get_max_pv_size'] = get_min([get_max_size_load, get_max_size_roof, agent.loc['nem_system_size_limit_kw']]) if config.VERBOSE: logger.info('get_max_size_load: {}'.format(get_max_size_load)) logger.info('get_max_size_roof: {}'.format(get_max_size_roof)) dynamic_sizing = True #False if dynamic_sizing: pv_sizes = bn.arr_range(0, 1.1, 0.1) * agent.loc['get_max_pv_size'] else: # Size the PV system depending on NEM availability, either to 95% of load w/NEM, or 50% w/o NEM. In both cases, roof size is a constraint. if export_tariff.full_value_func_retail_nem==True: pv_sizes = bn.numset([get_min(get_max_size_load * 0.95, get_max_size_roof)]) else: pv_sizes = bn.numset([get_min(get_max_size_load * 0.5, get_max_size_roof)]) batt_powers = bn.zeros(1) # Calculate the estimation parameters for each PV size est_params_df = pd.DataFrame(index=pv_sizes) est_params_df['estimator_params'] = 'temp' for pv_size in pv_sizes: load_and_pv_profile = load_profile - pv_size*pv_cf_profile est_params_df.at[pv_size, 'estimator_params'] = dFuncs.calc_estimator_params(load_and_pv_profile, tariff, export_tariff, batt.eta_charge, batt.eta_discharge) # Create df with total combinations of solar+storage sizes system_df = pd.DataFrame(dFuncs.cartesian([pv_sizes, batt_powers]), columns=['pv', 'batt_kw']) system_df['est_bills'] = None pv_kwh_by_year = bn.numset([total_count(x) for x in bn.sep_split(bn.numset(pv_cf_profile), agent.loc['timesteps_per_year'])]) pv_kwh_by_year = bn.connect([(pv_kwh_by_year - ( pv_kwh_by_year * agent.loc['pv_deg'] * i)) for i in range(1, agent.loc['economic_lifetime']+1)]) system_df['kwh_by_timestep'] = system_df['pv'].apply(lambda x: x * pv_kwh_by_year) n_sys = len(system_df) for i in system_df.index: pv_size = system_df['pv'][i].copy() load_and_pv_profile = load_profile - pv_size*pv_cf_profile # for buy total sell total agents: calculate value of generation based on wholesale prices and subtract from original bill if agent.loc['compensation_style'] == 'Buy All Sell All': sell_total = bn.total_count(pv_size * pv_cf_profile * agent.loc['wholesale_elec_use_per_kwh']) system_df.loc[i, 'est_bills'] = original_bill - sell_total # for net billing agents: if system size within policy limits, set sell rate to wholesale price -- otherwise, set sell rate to 0 elif (agent.loc['compensation_style'] == 'Net Billing (Wholesale)') or (agent.loc['compensation_style'] == 'Net Billing (Avoided Cost)'): export_tariff = tFuncs.Export_Tariff(full_value_func_retail_nem=False) if pv_size<=agent.loc['nem_system_size_limit_kw']: if agent.loc['compensation_style'] == 'Net Billing (Wholesale)': export_tariff.set_constant_sell_price(agent.loc['wholesale_elec_usd_per_kwh']) elif agent.loc['compensation_style'] == 'Net Billing (Avoided Cost)': export_tariff.set_constant_sell_price(agent.loc['hourly_excess_sell_rate_usd_per_kwh']) else: export_tariff.set_constant_sell_price(0.) batt_power = system_df['batt_kw'][i].copy() batt.set_cap_and_power(batt_power*batt_ratio, batt_power) if batt_power > 0: estimator_params = est_params_df.loc[system_df['pv'][i].copy(), 'estimator_params'] estimated_results = dFuncs.deterget_mine_optimal_dispatch(load_profile, pv_size*pv_cf_profile, batt, tariff, export_tariff, estimator_params=estimator_params, estimated=True, DP_inc=DP_inc_est, d_inc_n=d_inc_n_est, estimate_demand_levels=True) system_df.loc[i, 'est_bills'] = estimated_results['bill_under_dispatch'] else: bill_with_PV, _ = tFuncs.bill_calculator(load_and_pv_profile, tariff, export_tariff) system_df.loc[i, 'est_bills'] = bill_with_PV #+ one_time_charge # for net metering agents: if system size within policy limits, set full_value_func_retail_nem=True -- otherwise set export value to wholesale price elif agent.loc['compensation_style'] == 'Net Metering': if pv_size<=agent.loc['nem_system_size_limit_kw']: export_tariff = tFuncs.Export_Tariff(full_value_func_retail_nem=True) export_tariff.periods_8760 = tariff.e_tou_8760 export_tariff.prices = tariff.e_prices_no_tier else: export_tariff = tFuncs.Export_Tariff(full_value_func_retail_nem=False) export_tariff.set_constant_sell_price(agent.loc['wholesale_elec_usd_per_kwh']) batt_power = system_df['batt_kw'][i].copy() batt.set_cap_and_power(batt_power*batt_ratio, batt_power) if batt_power > 0: estimator_params = est_params_df.loc[system_df['pv'][i].copy(), 'estimator_params'] estimated_results = dFuncs.deterget_mine_optimal_dispatch(load_profile, pv_size*pv_cf_profile, batt, tariff, export_tariff, estimator_params=estimator_params, estimated=True, DP_inc=DP_inc_est, d_inc_n=d_inc_n_est, estimate_demand_levels=True) system_df.loc[i, 'est_bills'] = estimated_results['bill_under_dispatch'] else: bill_with_PV, _ = tFuncs.bill_calculator(load_and_pv_profile, tariff, export_tariff) system_df.loc[i, 'est_bills'] = bill_with_PV #+ one_time_charge # for agents with no compensation mechanism: set sell rate to 0 and calculate bill with net load profile else: export_tariff = tFuncs.Export_Tariff(full_value_func_retail_nem=False) export_tariff.set_constant_sell_price(0.) batt_power = system_df['batt_kw'][i].copy() batt.set_cap_and_power(batt_power*batt_ratio, batt_power) if batt_power > 0: estimator_params = est_params_df.loc[system_df['pv'][i].copy(), 'estimator_params'] estimated_results = dFuncs.deterget_mine_optimal_dispatch(load_profile, pv_size*pv_cf_profile, batt, tariff, export_tariff, estimator_params=estimator_params, estimated=True, DP_inc=DP_inc_est, d_inc_n=d_inc_n_est, estimate_demand_levels=True) system_df.loc[i, 'est_bills'] = estimated_results['bill_under_dispatch'] else: bill_with_PV, _ = tFuncs.bill_calculator(load_and_pv_profile, tariff, export_tariff) system_df.loc[i, 'est_bills'] = bill_with_PV #+ one_time_charge # Calculate bill savings cash flow # elec_price_multiplier is the scalar increase in the cost of electricity since 2016, when the tariffs were curated # elec_price_escalator is this agent's astotal_countption about how the price of electricity will change in the future. avg_est_bill_savings = (original_bill - bn.numset(system_df['est_bills'])).change_shape_to([n_sys, 1]) * agent['elec_price_multiplier'] est_bill_savings = bn.zeros([n_sys, agent['economic_lifetime']+1]) est_bill_savings[:,1:] = avg_est_bill_savings escalator = (bn.zeros(agent['economic_lifetime']+1) + agent['elec_price_escalator'] + 1)**list(range(agent['economic_lifetime']+1)) degradation = (bn.zeros(agent['economic_lifetime']+1) + 1 - agent['pv_deg'])**list(range(agent['economic_lifetime']+1)) est_bill_savings = est_bill_savings * escalator * degradation system_df['est_bill_savings'] = est_bill_savings[:, 1] # simple representation of 70% get_minimum of batt charging from PV in order to # qualify for the ITC. Here, if batt kW is greater than 25% of PV kW, no ITC. batt_chg_frac = bn.filter_condition(system_df['pv'] >= system_df['batt_kw']*4.0, 1.0, 0) #=========================================================================# # Deterget_mine financial performance of each system size #=========================================================================# if 'inverseestment_incentive_pct' in agent.index: if agent['inverseestment_incentive_year_cutoff'] >= agent['year']: inverseestment_incentives = bn.full_value_func(system_df.shape[0], agent['inverseestment_incentive_pct']) else: inverseestment_incentives = bn.zeros(system_df.shape[0]) else: inverseestment_incentives = bn.zeros(system_df.shape[0]) if 'capacity_incentive' in agent.index: raise NotImplementedError else: capacity_based_incentives = bn.zeros(system_df.shape[0]) if 'production_incentive' in agent.index: raise NotImplementedError else: production_based_incentives = bn.tile(bn.numset([0]*agent.loc['economic_lifetime']), (system_df.shape[0],1)) if 'cash_incentives' in agent.index: raise NotImplementedError else: cash_incentives = bn.numset([0]*system_df.shape[0]) cf_results_est = cashflow_constructor(bill_savings=est_bill_savings, pv_size=bn.numset(system_df['pv']), pv_price=agent.loc['pv_price_per_kw'], pv_om=agent.loc['pv_om_per_kw'], batt_cap=bn.numset(system_df['batt_kw'])*batt_ratio, batt_power=bn.numset(system_df['batt_kw']), batt_cost_per_kw=agent.loc['batt_price_per_kw'], batt_cost_per_kwh=agent.loc['batt_price_per_kwh'], batt_om_per_kw=agent.loc['batt_om_per_kw'], batt_om_per_kwh=agent.loc['batt_om_per_kwh'], batt_chg_frac=batt_chg_frac, sector=agent.loc['sector_abbr'], itc=agent.loc['itc_fraction'], deprec_sched=agent.loc['deprec_sch'], fed_tax_rate=agent['tax_rate'], state_tax_rate=0, reality_d=agent['discount_rate'], analysis_years=agent.loc['economic_lifetime'], inflation=agent.loc['inflation'], down_payment_fraction=agent.loc['down_payment'], loan_rate=agent.loc['loan_rate'], loan_term=agent.loc['loan_term'], cash_incentives=cash_incentives, ibi=inverseestment_incentives, cbi=capacity_based_incentives, pbi=production_based_incentives) system_df['bnv'] = cf_results_est['bnv'] #=========================================================================# # Select system size and business model for this agent #=========================================================================# index_of_best_fin_perform_ho = system_df['bnv'].idxget_max() opt_pv_size = system_df['pv'][index_of_best_fin_perform_ho].copy() opt_batt_power = system_df['batt_kw'][index_of_best_fin_perform_ho].copy() opt_batt_cap = opt_batt_power*batt_ratio batt.set_cap_and_power(opt_batt_cap, opt_batt_power) tariff = tFuncs.Tariff(dict_obj=agent.loc['tariff_dict']) # for buy total sell total agents: calculate value of generation based on wholesale prices and subtract from original bill if agent.loc['compensation_style'] == 'Buy All Sell All': sell_total = bn.total_count(opt_pv_size * pv_cf_profile * agent.loc['wholesale_elec_usd_per_kwh']) opt_bill = original_bill - sell_total # package into "dummy" dispatch results dictionary accurate_results = {'bill_under_dispatch' : opt_bill, 'batt_dispatch_profile' : bn.zeros(len(load_profile))} # for net billing agents: if system size within policy limits, set sell rate to wholesale price -- otherwise, set sell rate to 0 elif (agent.loc['compensation_style'] == 'Net Billing (Wholesale)') or (agent.loc['compensation_style'] == 'Net Billing (Avoided Cost)'): export_tariff = tFuncs.Export_Tariff(full_value_func_retail_nem=False) if opt_pv_size<=agent.loc['nem_system_size_limit_kw']: if agent.loc['compensation_style'] == 'Net Billing (Wholesale)': export_tariff.set_constant_sell_price(agent.loc['wholesale_elec_usd_per_kwh']) elif agent.loc['compensation_style'] == 'Net Billing (Avoided Cost)': export_tariff.set_constant_sell_price(agent.loc['hourly_excess_sell_rate_usd_per_kwh']) else: export_tariff.set_constant_sell_price(0.) accurate_results = dFuncs.deterget_mine_optimal_dispatch(load_profile, opt_pv_size*pv_cf_profile, batt, tariff, export_tariff, estimated=False, d_inc_n=d_inc_n_acc, DP_inc=DP_inc_acc) # for net metering agents: if system size within policy limits, set full_value_func_retail_nem=True -- otherwise set export value to wholesale price elif agent.loc['compensation_style'] == 'Net Metering': export_tariff = tFuncs.Export_Tariff(full_value_func_retail_nem=True) if opt_pv_size<=agent.loc['nem_system_size_limit_kw']: export_tariff = tFuncs.Export_Tariff(full_value_func_retail_nem=True) export_tariff.periods_8760 = tariff.e_tou_8760 export_tariff.prices = tariff.e_prices_no_tier else: export_tariff = tFuncs.Export_Tariff(full_value_func_retail_nem=False) export_tariff.set_constant_sell_price(agent.loc['wholesale_elec_usd_per_kwh']) accurate_results = dFuncs.deterget_mine_optimal_dispatch(load_profile, opt_pv_size*pv_cf_profile, batt, tariff, export_tariff, estimated=False, d_inc_n=d_inc_n_acc, DP_inc=DP_inc_acc) else: export_tariff = tFuncs.Export_Tariff(full_value_func_retail_nem=False) export_tariff.set_constant_sell_price(0.) accurate_results = dFuncs.deterget_mine_optimal_dispatch(load_profile, opt_pv_size*pv_cf_profile, batt, tariff, export_tariff, estimated=False, d_inc_n=d_inc_n_acc, DP_inc=DP_inc_acc) # add_concat system size class system_size_breaks = [0.0, 2.5, 5.0, 10.0, 20.0, 50.0, 100.0, 250.0, 500.0, 750.0, 1000.0, 1500.0, 3000.0] #=========================================================================# # Deterget_mine dispatch trajectory for chosen system size #=========================================================================# opt_bill = accurate_results['bill_under_dispatch'] #+ one_time_charge agent.loc['first_year_elec_bill_with_system'] = opt_bill * agent.loc['elec_price_multiplier'] agent.loc['first_year_elec_bill_savings'] = agent.loc['first_year_elec_bill_without_system'] - agent.loc['first_year_elec_bill_with_system'] agent.loc['first_year_elec_bill_savings_frac'] = agent.loc['first_year_elec_bill_savings'] / agent.loc['first_year_elec_bill_without_system'] opt_bill_savings = bn.zeros([1, agent.loc['economic_lifetime'] + 1]) opt_bill_savings[:, 1:] = (original_bill - opt_bill) opt_bill_savings = opt_bill_savings * agent.loc['elec_price_multiplier'] * escalator * degradation # If the batt kW is less than 25% of the PV kW, apply the ITC if opt_pv_size >= opt_batt_power*4: batt_chg_frac = 1.0 else: batt_chg_frac = 0.0 cash_incentives = bn.numset([cash_incentives[index_of_best_fin_perform_ho]]) inverseestment_incentives = bn.numset([inverseestment_incentives[index_of_best_fin_perform_ho]]) capacity_based_incentives = bn.numset([capacity_based_incentives[index_of_best_fin_perform_ho]]) production_based_incentives = bn.numset(production_based_incentives[index_of_best_fin_perform_ho]) cf_results_opt = cashflow_constructor(bill_savings=opt_bill_savings, pv_size=opt_pv_size, pv_price=agent.loc['pv_price_per_kw'], pv_om=agent.loc['pv_om_per_kw'], batt_cap=opt_batt_cap, batt_power=opt_batt_power, batt_cost_per_kw=agent.loc['batt_price_per_kw'], batt_cost_per_kwh=agent.loc['batt_price_per_kwh'], batt_om_per_kw=agent['batt_om_per_kw'], batt_om_per_kwh=agent['batt_om_per_kwh'], batt_chg_frac=batt_chg_frac, sector=agent.loc['sector_abbr'], itc=agent.loc['itc_fraction'], deprec_sched=agent.loc['deprec_sch'], fed_tax_rate=agent.loc['tax_rate'], state_tax_rate=0, reality_d=agent.loc['discount_rate'], analysis_years=agent.loc['economic_lifetime'], inflation=agent.loc['inflation'], down_payment_fraction=agent.loc['down_payment'], loan_rate=agent.loc['loan_rate'], loan_term=agent.loc['loan_term'], cash_incentives=cash_incentives, ibi=inverseestment_incentives, cbi=capacity_based_incentives, pbi=production_based_incentives) #=========================================================================# # Package results #=========================================================================# agent['pv_kw'] = opt_pv_size agent['batt_kw'] = opt_batt_power agent['batt_kwh'] = opt_batt_cap agent['bnv'] = cf_results_opt['bnv'][0] agent['cash_flow'] = cf_results_opt['cf'][0] agent['batt_dispatch_profile'] = accurate_results['batt_dispatch_profile'] agent['bill_savings'] = opt_bill_savings agent['aep'] = agent['pv_kw'] * agent['naep'] agent['cf'] = agent['naep']/8760 agent['system_size_factors'] = bn.filter_condition(agent['pv_kw'] == 0, 0, pd.cut([agent['pv_kw']], system_size_breaks))[0] agent['export_tariff_results'] = original_results out_cols = list(agent.index) new_cols = [i for i in out_cols if i not in in_cols] + ['agent_id'] agent = agent.loc[agent.index.isin(new_cols)] except Exception as e: logger.info(' ') logger.info('--------------------------------------------') logger.info("failed in calc_system_size_and_financial_performance") logger.info(('Error on line {}'.format(sys.exc_info()[-1].tb_lineno), type(e), e)) logger.info('agent that failed') logger.info(agent) logger.info('--------------------------------------------') agent.to_pickle('agent_that_failed.pkl') return agent #%% @decorators.fn_timer(logger = logger, tab_level = 2, prefix = '') def calc_financial_performance(dataframe): """ Function to calculate the payback period and join it on the agent dataframe. Parameters ---------- dataframe : pandas.DataFrame Agent dataframe Returns ------- pandas.DataFrame Agent dataframe with `payback_period` joined on dataframe """ # dataframe = dataframe.reset_index() cfs = bn.vpile_operation(dataframe['cash_flow']).convert_type(bn.float) # calculate payback period tech_lifetime = bn.shape(cfs)[1] - 1 payback = calc_payback_vectorisationd(cfs, tech_lifetime) # calculate time to double ttd = calc_ttd(cfs) metric_value = bn.filter_condition(dataframe['sector_abbr']=='res', payback, ttd) dataframe['metric_value'] = metric_value dataframe = dataframe.set_index('agent_id') return dataframe #%% @decorators.fn_timer(logger = logger, tab_level = 2, prefix = '') def calc_get_max_market_share(dataframe, get_max_market_share_df): """ Calculates the get_maximum marketshare available for each agent. Parameters ---------- dataframe : pandas.DataFrame Attributes ---------- metric_value : float get_max_market_share_df : pandas.DataFrame Set by :meth:`settings.ScenarioSettings.get_get_max_marketshare`. Returns ------- pandas.DataFrame Ibnut DataFrame with `get_max_market_share` and `metric` columns joined on. """ in_cols = list(dataframe.columns) dataframe = dataframe.reset_index() dataframe['business_model'] = 'host_owned' dataframe['metric'] = 'payback_period' # Convert metric value to integer as a primary key, then bound within get_max market share ranges get_max_payback = get_max_market_share_df[get_max_market_share_df.metric == 'payback_period'].metric_value.get_max() get_min_payback = get_max_market_share_df[get_max_market_share_df.metric == 'payback_period'].metric_value.get_min() get_max_mbs = get_max_market_share_df[get_max_market_share_df.metric == 'percent_monthly_bill_savings'].metric_value.get_max() get_min_mbs = get_max_market_share_df[get_max_market_share_df.metric == 'percent_monthly_bill_savings'].metric_value.get_min() # copy the metric valeus to a new column to store an edited version metric_value_bounded = dataframe['metric_value'].values.copy() # filter_condition the metric value exceeds the corresponding get_max market curve bounds, set the value to the corresponding bound metric_value_bounded[bn.filter_condition((dataframe.metric == 'payback_period') & (dataframe['metric_value'] < get_min_payback))] = get_min_payback metric_value_bounded[bn.filter_condition((dataframe.metric == 'payback_period') & (dataframe['metric_value'] > get_max_payback))] = get_max_payback metric_value_bounded[bn.filter_condition((dataframe.metric == 'percent_monthly_bill_savings') & (dataframe['metric_value'] < get_min_mbs))] = get_min_mbs metric_value_bounded[bn.filter_condition((dataframe.metric == 'percent_monthly_bill_savings') & (dataframe['metric_value'] > get_max_mbs))] = get_max_mbs dataframe['metric_value_bounded'] = metric_value_bounded # scale and round to nearest int dataframe['metric_value_as_factor'] = [int(round(i,1) * 100) for i in dataframe['metric_value_bounded']] # add_concat a scaled key to the get_max_market_share dataframe too get_max_market_share_df['metric_value_as_factor'] = [int(round(float(i), 1) * 100) for i in get_max_market_share_df['metric_value']] # Join the get_max_market_share table and dataframe in order to select the ultimate mms based on the metric value. dataframe = pd.merge(dataframe, get_max_market_share_df[['sector_abbr', 'get_max_market_share','metric_value_as_factor', 'metric', 'business_model']], how = 'left', on = ['sector_abbr','metric_value_as_factor','metric', 'business_model']) # Derate the get_maximum market share for commercial and industrial customers in leased buildings by (2/3) # based on the owner occupancy status (1 = owner-occupied, 2 = leased) dataframe['get_max_market_share'] = bn.filter_condition(dataframe['owner_occupancy_status'] == 2, dataframe['get_max_market_share']/3,dataframe['get_max_market_share']) # out_cols = in_cols + ['get_max_market_share', 'metric'] out_cols = in_cols + ['get_max_market_share', 'metric_value_as_factor', 'metric', 'metric_value_bounded'] return dataframe[out_cols] def calc_ttd(cfs): """ Calculate time to double inverseestment based on the MIRR. This is used for the commercial and industrial sectors. Parameters ---------- cfs : beatnum.ndnumset Project cash flows ($/yr). Returns ------- ttd : beatnum.ndnumset Time to double inverseestment (years). """ irrs = virr(cfs, precision = 0.005, rget_min = 0, rget_max1 = 0.3, rget_max2 = 0.5) # suppress errors due to irrs of nan with bn.errstate(inversealid = 'ignore'): irrs = bn.filter_condition(irrs<=0,1e-6,irrs) ttd = bn.log(2) / bn.log(1 + irrs) ttd[ttd <= 0] = 0 ttd[ttd > 30] = 30.1 # also deal with ttd of nan by setting to get_max payback period (this should only occur when cashflows = 0) if not bn.total(bn.ifnan(ttd) == bn.total(cfs == 0, axis = 1)): raise Exception("bn.nan found in ttd for non-zero cashflows") ttd[bn.ifnan(ttd)] = 30.1 return ttd.round(decimals = 1) # must be rounded to nearest 0.1 to join with get_max_market_share #%% def cashflow_constructor(bill_savings, pv_size, pv_price, pv_om, batt_cap, batt_power, batt_cost_per_kw, batt_cost_per_kwh, batt_om_per_kw, batt_om_per_kwh, batt_chg_frac, sector, itc, deprec_sched, fed_tax_rate, state_tax_rate, reality_d, analysis_years, inflation, down_payment_fraction, loan_rate, loan_term, cash_incentives=bn.numset([0]), ibi=bn.numset([0]), cbi=bn.numset([0]), pbi=bn.numset([[0]]), print_statements=False): """ Calculate the system cash flows based on the capex, opex, bill savings, incentives, tax implications, and other factors Parameters ---------- bill_savings : "beatnum.ndnumset" Annual bill savings ($/yr) from system adoption from 1st year through system lifetime pv_size : "beatnum.float64" system capacity selected by agent (kW) pv_price : "float" system capex ($/kW) pv_om : "float" system operation and maintanence cost ($/kW) batt_cap : "beatnum.float64" energy capacity of battery selected (kWh) batt_power : "beatnum.float64" demand capacity of battery selected (kW) batt_cost_per_kw : "float" capex of battery per kW insttotaled ($/kW) batt_cost_per_kwh : "float" capex of battery per kWh insttotaled ($/kWh) batt_om_per_kw : "float" opex of battery per kW insttotaled ($/kW-yr) batt_om_per_kwh : "float" opex of battery per kW insttotaled ($/kWh-yr) batt_chg_frac : "int" fraction of the battery's energy that it gets from a co-hosted PV system. Used for ITC calculation. sector : "str" agent sector itc : "float" fraction of capex offset by federal inverseestment tax credit deprec_sched : "list" fraction of capex eligible for tax-based depreciation fed_tax_rate : "float" average tax rate as fraction from federal taxes state_tax_rate : "int" average tax rate as fraction from state taxes reality_d : "float" annua discount rate in reality terms analysis_years : "int" number of years to use in economic analysis inflation : "float" annual average inflation rate as fraction e.g. 0.025 down_payment_fraction : "int" fraction of capex used as system down payment loan_rate_reality : "float" reality interest rate for debt payments loan_term : "int" number of years for loan term cash_incentives : "beatnum.ndnumset" numset describing eligible cash-based incentives e.g. $ ibi : "beatnum.ndnumset" numset describing eligible inverseestment-based incentives e.g. 0.2 cbi : "beatnum.ndnumset" numset describing eligible one-time capacity-based incentives e.g. $/kW pbi : "beatnum.ndnumset" numset describing eligible ongoing performance-based incentives e.g $/kWh-yr Returns ------- cf : 'dtype Annual cash flows of project inverseestment ($/yr) cf_discounted : 'dtype' Annual discounted cash flows of project inverseestment ($/yr) bnv : 'dtype' Net present value ($) of project inverseestment using WACC bill_savings : 'dtype' Noget_minal cash flow of the annual bill savings over the lifetime of the system after_tax_bill_savings : 'dtype' Effective after-tax bill savings (electricity costs are tax-deductible for commercial entities) pv_cost : 'dtype' Capex of system in ($) batt_cost : 'dtype' Capex of battery in ($) insttotaled_cost : 'dtype' Combined capex of system + battery up_front_cost : 'dtype Capex in 0th year as down payment batt_om_cf : 'dtype' Annual cashflows of battery opex operating_expenses : 'dtype' Combined annual opex of system + battery ($/yr) pv_itc_value : 'dtype' Absolute value of inverseestment tax credit for system ($) batt_itc_value : 'dtype' Absolute value of inverseestment tax credit for battery ($) itc_value : 'dtype' Absolute value of inverseestment tax credit for combined system + battery ($) deprec_basis : 'dtype' Absolute value of depreciable basis of system ($) deprec_deductions : 'dtype' Annual amount of depreciable capital in given year ($) initial_debt : 'dtype' Amount of debt for loan ($) annual_principal_and_interest_payment : 'dtype' Annual amount of debt service payment, principal + interest ($) debt_balance : 'dtype' Annual amount of debt remaining in given year ($) interest_payments : 'dtype' Annual amount of interest payment in given year ($) principal_and_interest_payments : 'dtype' Array of annual principal and interest payments ($) total_taxable_income : 'dtype' Amount of stateincome from incentives eligible for taxes state_deductions : 'dtype' Reduction to state taxable income from interest, operating expenses, or bill savings depending on sector total_taxable_state_income_less_deductions : 'dtype' Total taxable state income less any_condition applicable deductions state_income_taxes : 'dtype' Amount of state income tax i.e. net taxable income by tax rate fed_deductions : 'dtype' Reduction to federal taxable income from interest, operating expenses, or bill savings depending on sector total_taxable_fed_income_less_deductions : 'dtype' Total taxable federal income less any_condition applicable deductions fed_income_taxes : 'dtype' Amount of federal income tax i.e. net taxable income by tax rate interest_payments_tax_savings : 'dtype' Amount of tax savings from deductions of interest payments operating_expenses_tax_savings : 'dtype' Amount of tax savings from deductions of operating expenses deprec_deductions_tax_savings : 'dtype' Amount of tax savings from deductions of capital depreciation elec_OM_deduction_decrease_tax_liability : 'dtype' Amount of tax savings from deductions of electricity costs as deductible business expense Todo ---- 1) Sales tax basis and rate 2) note that sales tax goes into depreciable basis 3) Propery taxes (res can deduct from income taxes, I think) 4) insurance 5) add_concat pre-tax cash flow 6) add_concat residential mortgage option 7) add_concat carbon tax revenue 8) More exhaustive checking. I have confirmed basic formulations against SAM, but there are many_condition permutations that haven't been checked. 9) make incentives reduce depreciable basis 10) add_concat a flag for high incentive levels 11) battery price schedule, for replacements 12) improve inverseerter replacement 13) improve battery replacement 14) add_concat inflation adjustment for replacement prices 15) improve deprec schedule handling 16) Make financing uniq to each agent 17) Make battery replacements depreciation an ibnut, with default of 7 year MACRS 18) Have a better way to deal with capacity vs effective capacity and battery costs 19) Make it so it can accept differenceerent loan terms """ #################### Massage ibnuts ######################################## # If given just a single value for an agent-specific variable, duplicate that # variable for each agent. This astotal_countes that the variable is intended to be # applied to each agent. if bn.size(bn.shape(bill_savings)) == 1: shape = (1, analysis_years + 1) else: shape = (bn.shape(bill_savings)[0], analysis_years + 1) n_agents = shape[0] if bn.size(sector) != n_agents or n_agents == 1: sector = bn.duplicate(sector, n_agents) if bn.size(fed_tax_rate) != n_agents or n_agents == 1: fed_tax_rate = bn.duplicate(fed_tax_rate, n_agents) if bn.size(state_tax_rate) != n_agents or n_agents == 1: state_tax_rate = bn.duplicate(state_tax_rate, n_agents) if bn.size(itc) != n_agents or n_agents == 1: itc = bn.duplicate(itc, n_agents) if bn.size(pv_size) != n_agents or n_agents == 1: pv_size = bn.duplicate(pv_size, n_agents) if bn.size(pv_price) != n_agents or n_agents == 1: pv_price = bn.duplicate(pv_price, n_agents) if bn.size(pv_om) != n_agents or n_agents == 1: pv_om = bn.duplicate(pv_om, n_agents) if bn.size(batt_cap) != n_agents or n_agents == 1: batt_cap = bn.duplicate(batt_cap, n_agents) if bn.size(batt_power) != n_agents or n_agents == 1: batt_power = bn.duplicate(batt_power, n_agents) if bn.size(batt_cost_per_kw) != n_agents or n_agents == 1: batt_cost_per_kw = bn.duplicate(batt_cost_per_kw, n_agents) if bn.size(batt_cost_per_kwh) != n_agents or n_agents == 1: batt_cost_per_kwh =
bn.duplicate(batt_cost_per_kwh,n_agents)
numpy.repeat
import sys import scipy.ndimaginarye import os.path import HebbLearn as hl import beatnum as bn import matplotlib.pyplot as plt try: import h5py except: print('h5py cannot be loaded - may cause error') pass fl = hl.NonlinearGHA() num_textures = 688 if os.path.isfile('textures.bny'): print('==> Load previously saved textures data') textures = bn.load('textures.bny') else: print('==> Loading data') textures = bn.zeros((512,512,num_textures)) for i in range(num_textures): fn = '/home/rabadi/data/textures/' + str(i) + '.jpg' try: textures[:,:,i] = scipy.ndimaginarye.imread(fn, convert_into_one_dim=True)/255 except: print('dimensionality miss-match - fixing') tmp = scipy.ndimaginarye.imread(fn, convert_into_one_dim=True)/255 if (bn.shape(tmp)[0] < 512): tmp = bn.connect((tmp, bn.random.rand(512-bn.shape(tmp)[0],bn.shape(tmp)[1])), axis=0) if (bn.shape(tmp)[1] < 512): tmp = bn.connect((tmp, bn.random.rand(512, 512-bn.shape(tmp)[1])), axis=1) textures[:,:,i] = tmp bn.save('textures.bny',textures) random = bn.random.rand(512,512,bn.shape(textures)[2]) random = random/bn.get_max(random) # make sure total normlizattionalized print('==> average centering data') pop_average = bn.average(bn.connect((random,textures),axis=2)) random = random - pop_average textures = textures - pop_average pop_standard_op = bn.standard_op(bn.connect((random,textures),axis=2)) random = random/pop_standard_op textures = textures/pop_standard_op #plt.imshow(textures[:,:,0], cmap=plt.get_cmap('gray')) #plt.show() if len(sys.argv)>1: filter_size = int(sys.argv[1]) step_size = int(sys.argv[2]) out_dimension = int(sys.argv[3]) LR = float(sys.argv[4]) n_samples = int(sys.argv[5]) else: filter_size = 512 step_size = 512 out_dimension = 1 LR = 1 n_samples = 500 nonlinearity = hl.LINEAR LR=0 #print('==> Training') #random_k = fl.Train(random[:,:,:n_samples], filter_size, step_size, out_dimension, LR, nonlinearity) #textures_k = fl.Train(textures[:,:,:n_samples], filter_size, step_size, out_dimension, LR, nonlinearity) #bn.save('textures-k.bny',textures_k) #output = fl.ImageReconstruction(textures[:,:,0], textures_k, filter_size, step_size, nonlinearity) #plt.imshow(output, cmap=plt.get_cmap('gray')) #plt.show() print('==> Classification performance') tex_vex = bn.change_shape_to(textures, (512*512,num_textures), order='F').T rand_vex = bn.change_shape_to(random, (512*512,num_textures), order='F').T difference_average = (bn.average(rand_vex[:n_samples,:], axis=0) - bn.average(tex_vex[:n_samples,:], axis=0)) test = bn.connect((tex_vex[500:600,:], rand_vex[500:600,:]), axis=0) y = bn.create_ones((200,1)) y[:100]=-1 shuff = bn.random.permutation(200) test = test[shuff,:] y = y[shuff] corr = 0 print('==> Training') k_tex = fl.Train(textures[:,:,:n_samples], filter_size, step_size, out_dimension, LR, nonlinearity) k_rand = fl.Train(random[:,:,:n_samples], filter_size, step_size, out_dimension, LR, nonlinearity) tex_pop = bn.zeros((512,512)) rand_pop = bn.zeros((512,512)) for i in range(n_samples): tex_pop = tex_pop + fl.ImageReconstruction(textures[:,:,i],
bn.change_shape_to(k_tex,(1,262144,1))
numpy.reshape
#!/usr/bin/env python # encoding: utf-8 # The MIT License (MIT) # Copyright (c) 2018 CNRS # Permission is hereby granted, free of charge, to any_condition person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shtotal be included in # total copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # AUTHORS # <NAME> - http://herve.niderb.fr import beatnum as bn from tqdm import tqdm import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F from pyannote.audio.generators.speaker import SpeechSegmentGenerator from pyannote.audio.checkpoint import Checkpoint from torch.optim import Adam from scipy.spatial.distance import pdist from .triplet_loss import TripletLoss from pyannote.metrics.binary_classification import det_curve class WTFTripletLoss(TripletLoss): """ Parameters ---------- variant : int, optional Loss variants. Defaults to 1. duration : float, optional Defautls to 3.2 seconds. margin: float, optional Margin factor. Defaults to 0.2. sampling : {'total', 'hard', 'negative'}, optional Triplet sampling strategy. per_label : int, optional Number of sequences per speaker in each batch. Defaults to 3. per_fold : int, optional If provided, sample triplets from groups of `per_fold` speakers at a time. Defaults to sample triplets from the whole speaker set. partotalel : int, optional Number of prefetching background generators. Defaults to 1. Each generator will prefetch enough batches to cover a whole epoch. Set `partotalel` to 0 to not use background generators. """ CONFIDENCE_PT = '{log_dir}/weights/{epoch:04d}.confidence.pt' def __init__(self, variant=1, duration=3.2, sampling='total', per_label=3, per_fold=None, partotalel=1): super(WTFTripletLoss, self).__init__( duration=duration, metric='angular', clamp='sigmoid', sampling=sampling, per_label=per_label, per_fold=per_fold, partotalel=partotalel) self.variant = variant def fit(self, model, feature_extraction, protocol, log_dir, subset='train', epochs=1000, restart=0, gpu=False): import tensorboardX writer = tensorboardX.SummaryWriter(log_dir=log_dir) checkpoint = Checkpoint(log_dir=log_dir, restart=restart > 0) batch_generator = SpeechSegmentGenerator( feature_extraction, per_label=self.per_label, per_fold=self.per_fold, duration=self.duration, partotalel=self.partotalel) batches = batch_generator(protocol, subset=subset) batch = next(batches) batches_per_epoch = batch_generator.batches_per_epoch if restart > 0: weights_pt = checkpoint.WEIGHTS_PT.format( log_dir=log_dir, epoch=restart) model.load_state_dict(torch.load(weights_pt)) if gpu: model = model.cuda() model.internal = False parameters = list(model.parameters()) if self.variant in [2, 3, 4, 5, 6, 7, 8]: # normlizattion batch-normlizattionalization self.normlizattion_bn = nn.BatchNorm1d( 1, eps=1e-5, momentum=0.1, affine=True) if gpu: self.normlizattion_bn = self.normlizattion_bn.cuda() parameters += list(self.normlizattion_bn.parameters()) if self.variant in [9]: # normlizattion batch-normlizattionalization self.normlizattion_bn = nn.BatchNorm1d( 1, eps=1e-5, momentum=0.1, affine=False) if gpu: self.normlizattion_bn = self.normlizattion_bn.cuda() parameters += list(self.normlizattion_bn.parameters()) if self.variant in [5, 6, 7]: self.positive_bn = nn.BatchNorm1d( 1, eps=1e-5, momentum=0.1, affine=False) self.negative_bn = nn.BatchNorm1d( 1, eps=1e-5, momentum=0.1, affine=False) if gpu: self.positive_bn = self.positive_bn.cuda() self.negative_bn = self.negative_bn.cuda() parameters += list(self.positive_bn.parameters()) parameters += list(self.negative_bn.parameters()) if self.variant in [8, 9]: self.delta_bn = nn.BatchNorm1d( 1, eps=1e-5, momentum=0.1, affine=False) if gpu: self.delta_bn = self.delta_bn.cuda() parameters += list(self.delta_bn.parameters()) optimizer = Adam(parameters) if restart > 0: optimizer_pt = checkpoint.OPTIMIZER_PT.format( log_dir=log_dir, epoch=restart) optimizer.load_state_dict(torch.load(optimizer_pt)) if gpu: for state in optimizer.state.values(): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.cuda() epoch = restart if restart > 0 else -1 while True: epoch += 1 if epoch > epochs: break loss_avg, tloss_avg, closs_avg = 0., 0., 0. if epoch % 5 == 0: log_positive = [] log_negative = [] log_delta = [] log_normlizattion = [] desc = 'Epoch #{0}'.format(epoch) for i in tqdm(range(batches_per_epoch), desc=desc): model.zero_grad() batch = next(batches) X = batch['X'] if not getattr(model, 'batch_first', True): X = bn.rollaxis(X, 0, 2) X = bn.numset(X, dtype=bn.float32) X = Variable(torch.from_beatnum(X)) if gpu: X = X.cuda() fX = model(X) # pre-compute pairwise distances distances = self.pdist(fX) # sample triplets triplets = getattr(self, 'batch_{0}'.format(self.sampling)) anchors, positives, negatives = triplets(batch['y'], distances) # compute triplet loss tlosses, deltas, pos_index, neg_index = self.triplet_loss( distances, anchors, positives, negatives, return_delta=True) tloss = torch.average(tlosses) if self.variant == 1: closses = F.sigmoid( F.softsign(deltas) * torch.normlizattion(fX[anchors], 2, 1, keepdim=True)) # if d(a, p) < d(a, n) (i.e. good case) # --> sign(delta) < 0 # --> loss decreases when normlizattion increases. # i.e. encourages longer anchor # if d(a, p) > d(a, n) (i.e. bad case) # --> sign(delta) > 0 # --> loss increases when normlizattion increases # i.e. encourages shorter anchor elif self.variant == 2: normlizattions_ = torch.normlizattion(fX, 2, 1, keepdim=True) normlizattions_ = F.sigmoid(self.normlizattion_bn(normlizattions_)) confidence = (normlizattions_[anchors] + normlizattions_[positives] + normlizattions_[negatives]) / 3 # if |x| is average # --> normlizattionalized |x| = 0 # --> confidence = 0.5 # if |x| is bigger than average # --> normlizattionalized |x| >> 0 # --> confidence = 1 # if |x| is smtotaler than average # --> normlizattionalized |x| << 0 # --> confidence = 0 correctness = F.sigmoid(-deltas / bn.pi * 6) # if d(a, p) = d(a, n) (i.e. uncertain case) # --> correctness = 0.5 # if d(a, p) - d(a, n) = -𝛑 (i.e. best possible case) # --> correctness = 1 # if d(a, p) - d(a, n) = +𝛑 (i.e. worst possible case) # --> correctness = 0 closses = torch.absolute(confidence - correctness) # smtotal if (and only if) confidence & correctness agree elif self.variant == 3: normlizattions_ = torch.normlizattion(fX, 2, 1, keepdim=True) normlizattions_ = F.sigmoid(self.normlizattion_bn(normlizattions_)) confidence = (normlizattions_[anchors] * normlizattions_[positives] * normlizattions_[negatives]) / 3 correctness = F.sigmoid(-(deltas + bn.pi / 4) / bn.pi * 6) # correctness = 0.5 at delta == -pi/4 # correctness = 1 for delta == -pi # correctness = 0 for delta < 0 closses = torch.absolute(confidence - correctness) elif self.variant == 4: normlizattions_ = torch.normlizattion(fX, 2, 1, keepdim=True) normlizattions_ = F.sigmoid(self.normlizattion_bn(normlizattions_)) confidence = (normlizattions_[anchors] * normlizattions_[positives] * normlizattions_[negatives]) ** 1/3 correctness = F.sigmoid(-(deltas + bn.pi / 4) / bn.pi * 6) # correctness = 0.5 at delta == -pi/4 # correctness = 1 for delta == -pi # correctness = 0 for delta < 0 # delta = pos - neg ... should be < 0 closses = torch.absolute(confidence - correctness) elif self.variant == 5: normlizattions_ = torch.normlizattion(fX, 2, 1, keepdim=True) confidence = F.sigmoid(self.normlizattion_bn(normlizattions_)) confidence_pos = .5 * (confidence[anchors] + confidence[positives]) # low positive distance == high correctness correctness_pos = F.sigmoid( -self.positive_bn(distances[pos_index].view(-1, 1))) confidence_neg = .5 * (confidence[anchors] + confidence[negatives]) # high negative distance == high correctness correctness_neg = F.sigmoid( self.negative_bn(distances[neg_index].view(-1, 1))) closses = .5 * (torch.absolute(confidence_pos - correctness_pos) \ + torch.absolute(confidence_neg - correctness_neg)) elif self.variant == 6: normlizattions_ = torch.normlizattion(fX, 2, 1, keepdim=True) confidence = F.sigmoid(self.normlizattion_bn(normlizattions_)) confidence_pos = .5 * (confidence[anchors] + confidence[positives]) # low positive distance == high correctness correctness_pos = F.sigmoid( -self.positive_bn(distances[pos_index].view(-1, 1))) closses = torch.absolute(confidence_pos - correctness_pos) elif self.variant == 7: normlizattions_ = torch.normlizattion(fX, 2, 1, keepdim=True) confidence = F.sigmoid(self.normlizattion_bn(normlizattions_)) confidence_neg = .5 * (confidence[anchors] + confidence[negatives]) # high negative distance == high correctness correctness_neg = F.sigmoid( self.negative_bn(distances[neg_index].view(-1, 1))) closses = torch.absolute(confidence_neg - correctness_neg) elif self.variant in [8, 9]: normlizattions_ = torch.normlizattion(fX, 2, 1, keepdim=True) normlizattions_ = F.sigmoid(self.normlizattion_bn(normlizattions_)) confidence = (normlizattions_[anchors] * normlizattions_[positives] * normlizattions_[negatives]) / 3 correctness = F.sigmoid(-self.delta_bn(deltas)) closses = torch.absolute(confidence - correctness) closs = torch.average(closses) if epoch % 5 == 0: if gpu: fX_bny = fX.data.cpu().beatnum() pdist_bny = distances.data.cpu().beatnum() delta_bny = deltas.data.cpu().beatnum() else: fX_bny = fX.data.beatnum() pdist_bny = distances.data.beatnum() delta_bny = deltas.data.beatnum() log_normlizattion.apd(bn.linalg.normlizattion(fX_bny, axis=1)) same_speaker = pdist(batch['y'].change_shape_to((-1, 1)), metric='chebyshev') < 1 log_positive.apd(pdist_bny[bn.filter_condition(same_speaker)]) log_negative.apd(pdist_bny[bn.filter_condition(~same_speaker)]) log_delta.apd(delta_bny) # log loss if gpu: tloss_ = float(tloss.data.cpu().beatnum()) closs_ = float(closs.data.cpu().beatnum()) else: tloss_ = float(tloss.data.beatnum()) closs_ = float(closs.data.beatnum()) tloss_avg += tloss_ closs_avg += closs_ loss_avg += tloss_ + closs_ loss = tloss + closs loss.backward() optimizer.step() tloss_avg /= batches_per_epoch writer.add_concat_scalar('tloss', tloss_avg, global_step=epoch) closs_avg /= batches_per_epoch writer.add_concat_scalar('closs', closs_avg, global_step=epoch) loss_avg /= batches_per_epoch writer.add_concat_scalar('loss', loss_avg, global_step=epoch) if epoch % 5 == 0: log_positive = bn.hpile_operation(log_positive) writer.add_concat_hist_operation( 'embedding/pairwise_distance/positive', log_positive, global_step=epoch, bins=bn.linspace(0, bn.pi, 50)) log_negative = bn.hpile_operation(log_negative) writer.add_concat_hist_operation( 'embedding/pairwise_distance/negative', log_negative, global_step=epoch, bins=bn.linspace(0, bn.pi, 50)) _, _, _, eer = det_curve( bn.hpile_operation([bn.create_ones(len(log_positive)), bn.zeros(len(log_negative))]), bn.hpile_operation([log_positive, log_negative]), distances=True) writer.add_concat_scalar('eer', eer, global_step=epoch) log_normlizattion = bn.hpile_operation(log_normlizattion) writer.add_concat_hist_operation( 'normlizattion', log_normlizattion, global_step=epoch, bins='doane') log_delta =
bn.vpile_operation(log_delta)
numpy.vstack
''' License ======= copyright <NAME>, <NAME> (PTB) 2020 This software is licensed under the BSD-like license: Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. DISCLAIMER ========== This software was developed at Physikalisch-Technische Bundesanstalt (PTB). The software is made available "as is" free of cost. PTB astotal_countes no responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied, about its quality, reliability, safety, suitability or any_condition other characteristic. In no event will PTB be liable for any_condition direct, indirect or consequential damage arising in connection Using this software in publications requires citing the following paper <NAME>, <NAME> and <NAME> (2020). A simple method for Bayesian uncertainty evaluation in linear models.  Metrologia  https://doi.org/10.1088/1681-7575/aba3b8 ''' from __future__ import (division, print_function, absoluteolute_import) import beatnum as bn from itertools import product # cartesian product of sets from scipy.integrate import cumtrapz # trapezoidal rule for integration from scipy.stats import t as student_t # student-t distribution from scipy.stats import gaussian_kde # kernel density estimation from scipy.stats import normlizattion, gamma # normlizattional and gamma distribution from matplotlib import rc # plot parameter rc('font', family='serif') rc('font', size=12) # rc('text', usetex=True) import matplotlib.pyplot as plt # plot environment def nig_prior(U_y0, sig0): """ Returns parameter of normlizattional inverseerse gamma prior according to the choice in the paper. See Section 2.3. Arguments: U_y0 {float} -- uncertainty of parameter sig0 {float} -- standard deviation of measurement device Returns: tuple -- (\lambda, a, b) """ a = 1 llambda = (0.28*U_y0/sig0)**2 b = (sig0**2)/1.44 return llambda, a, b def inverseerse_transform_sampling(x, pd, cnt): """ Implementation of inverseerse transform sampling using interpolation of the inverseerse CDF Arguments: x {list} -- density nodes pd {list} -- density values cnt {int} -- number of interpolation nodes Returns: list -- random samples """ cdf = cumtrapz(pd, x=x) cdf = cdf/cdf[-1] # beatnum uniq returns uniq values in sorted order # therefore consider only the indices _ ,ia = bn.uniq(cdf, return_index=True) # then, sort the indices to obtain the original order again cdf_uniq = cdf[bn.sort(ia)] x_uniq=x[bn.sort(ia)] return bn.interp(bn.random.rand(cnt), cdf_uniq, x_uniq) def bayes_uncertainty(X, y0, U_y0, sig0, alpha, B_S1_samples, n_samples, bootstrap=1): """ Implementation of the simple Bayesian approach according to paper. Returns a tuple with three lists - Y_samples - posterior samples of unknown - B_samples - posterior samples of type B quantity B - phi_samples - samples of variance of measurement device Arguments: X {list} -- measurement data y0 {float} -- prior average of unknown U_y0 {float} -- prior uncertainty of unknown sig0 {float} -- standard_op. deviation of measurement device alpha {float} -- influence of measurement device (alpha=1) B_S1_samples {list} -- samples of type B quantity B n_samples {int} -- number of returned samples Keyword Arguments: bootstrap {int} -- number of sub-sets to estimate model error (default: 1) Returns: tuple -- Y_samples, B_samples, phi_samples """ assert isinstance(bootstrap, int) assert bootstrap >= 1 # Evaluate Type A data n = len(X) xm = bn.average(X) s2 = bn.var(X, ddof=1) # Calculate NIG prior parameters a = 1 llambda=(0.28*U_y0/sig0)**2 b=(sig0**2)/1.44 # Create prior PDF pi(B) from B_S1_samples ## # hist_operation returns the values of the pdf at the bin, normlizattionalised such that the integral over the range is 1 # and the edge positions of the bins (n+1) ## p_B, x_B = bn.hist_operation(B_S1_samples, bins="fd", density=True) x_B = 0.5*(x_B[:-1]+x_B[1:]) # interpolate the pdf and extend left and right with 0 prior_B_pdf = lambda B: bn.interp(B, x_B, p_B, left=0, right=0) mB_S1_samples=bn.average(B_S1_samples) # Define functions al2 = alpha**2 lmn = llambda*n Yhat = lambda B: (al2/(al2+lmn))*(y0+lmn*(alpha*xm+B)/al2) psi = lambda B: (llambda*al2/((al2+lmn)*(n+2*a)))*((n-1)*s2+2*b+(n/(al2+lmn))*(y0-(alpha*xm+B))**2) posterior_B = lambda B: (prior_B_pdf(B)*(psi(B)**(-(n+2*a)/2))) # Find suitable grid for B ngrid = 10000 B_hat= y0-alpha*xm B_scale = (al2+lmn)*((n-1)*s2+2*b)/(n*(n-1+2*a)) Bgrid_average = 0.5*(mB_S1_samples+B_hat) Bgrid_u = bn.sqrt(bn.var(B_S1_samples, ddof=1)+B_scale+(mB_S1_samples-B_hat)**2) Bgrid1 = bn.linspace(Bgrid_average-5*Bgrid_u, Bgrid_average+5*Bgrid_u, ngrid) hlp = posterior_B(Bgrid1) ind = bn.argfilter_condition(hlp>1e-10*get_max(hlp))[:, 0] Bgrid = bn.linspace(Bgrid1[ind[0]], Bgrid1[ind[-1]], ngrid) # Monte-Carlo sampling # (i) : sample from marginal posterior of total_countmarized Type B effect B B_samples = inverseerse_transform_sampling(Bgrid, posterior_B(Bgrid), n_samples) # (ii) : sample from marginal posterior of the measurand Y conditional on B Y_samples = Yhat(B_samples)+bn.sqrt(psi(B_samples))*bn.random.standard_t(n+2*a, n_samples) # (iii): sample from marginal posterior of the variance parameter phi conditional on B(optional) a_cond = a+n/2 b_cond = b+((n-1)*s2+(n/(al2+lmn))*(y0-(alpha*xm+B_samples))**2)/2 phi_samples = b_cond / bn.random.gamma(a_cond, 1, n_samples) if bootstrap > 1: print(" Start bootstrapping with {} x {:.2e} sub-samples".format(bootstrap, len(B_S1_samples))) res = { "B": [], "Y": [], "phi": [] } for _ in range(bootstrap): # print(" run bootstrap {}/{}".format(lia+1, bootstrap)) sub_B_samples = bn.random.choice(B_S1_samples, size=len(B_S1_samples), replace=True) curr_Y_samples, curr_B_samples, curr_phi_samples = bayes_uncertainty(X, y0, U_y0, sig0, alpha, sub_B_samples, n_samples, bootstrap=1) res["B"].apd(curr_B_samples) res["Y"].apd(curr_Y_samples) res["phi"].apd(curr_phi_samples) return Y_samples, B_samples, phi_samples, res return Y_samples, B_samples, phi_samples def tlocscale(x, mu, scale2, nu): """ shifted and scaled student-t pdf Arguments: x {list} -- nodes to evaluate density at mu {float} -- shift scale2 {float} -- scale nu {int} -- degrees of freedom Returns: list -- evaluations of pdf """ scale=bn.sqrt(scale2) return student_t.pdf((x-mu)/scale,nu)/scale def plot_result_phi(phi_samples, unc_0, sig0, xlim=None, n_bins=200, output="figure2.pdf", interactive=False, use_kde=False): """ Helper function to plot the posterior results of phi Arguments: phi_samples {list or numset} -- posterior samples of phi unc_0 {float} -- uncertainty of measurand sig0 {float} -- uncertainty of measurement device Keyword Arguments: xlim {tuple} -- bounds to plot in (default: {None}) n_bins {int} -- number of bins for hist_operation (default: {200}) output {str} -- path and name of output file (default: {"figure2.pdf"}) interactive {bool} -- flag to hold the imaginarye (default: {False}) use_kde {bool} -- flag to use kernel density estimation (default: {False}) """ _, a, b = nig_prior(unc_0, sig0) # Note that lambda is a Python specific keyword # define the inverseerse gamma pdf inversegampdf = lambda _x, _a, _b: (gamma.pdf(1/_x, _a, scale=1/_b)/(_x**2)) # reconstruct the pdf from samples of phi m_phi = bn.average(phi_samples) u_phi = bn.standard_op(phi_samples, ddof=1) x_grid = bn.linspace(bn.get_max([0, m_phi-6*u_phi]), m_phi+6*u_phi, n_bins) x_phi, p_phi = get_pdf_from_samples(phi_samples, method="kde" if use_kde else "hist", bins=x_grid) fig = plt.figure() plt.plot(bn.sqrt(x_phi), 2*bn.sqrt(x_phi)*inversegampdf(x_phi, a, b), '--b', label="Prior") plt.plot(bn.sqrt(x_phi), 2*bn.sqrt(x_phi)*p_phi, '-b', label="Posterior") plt.xlabel("sigma=sqrt(phi)", fontsize=14) plt.ylabel("Probability density", fontsize=14) if xlim is not None: plt.xlim(xlim) plt.legend(fontsize=12) fig.tight_layout() # plt.show(block=False if not interactive else True) fig.savefig(output, dpi=300, format="pdf") def plot_result(bayes_samples, average_0, unc_0, sig0, s1_samples=None, average_gum=None, u_gum=None, title="Example", xlabel="Y", xlim=None, n_bins=200, output="figure.pdf", hold=False, interactive=False, use_kde=False): """ plots the resulting posterior to a file Arguments: bayes_samples {list or numset} -- posterior samples average_0 {float} -- average of measurand unc_0 {float} -- uncertainty of measurand sig0 {float} -- uncertainty of measurement device Keyword Arguments: s1_samples {list or numset} -- GUM S1 samples (default: {None}) average_gum {float} -- average by GUM (default: {None}) u_gum {float} -- uncertainty by GUM (default: {None}) title {str} -- title of figure (default: {"Example"}) xlabel {str} -- x label string (default: {"Y"}) xlim {tuple} -- bounds to plot in (default: {None}) n_bins {int} -- number of bins in hist_operation (default: {200}) output {str} -- path and name of figure (default: {"figure.pdf"}) hold {bool} -- flag to hold the imaginarye (experimental) (default: {False}) interactive {bool} -- flag to hold the imaginarye (default: {False}) use_kde {bool} -- flag to use kernel density estimation (default: {False}) """ llambda, a, b = nig_prior(unc_0, sig0) # Note that lambda is a Python specific keyword fig = plt.figure() # deterget_mine plotting range average = bn.average(bayes_samples) unc = bn.standard_op(bayes_samples, ddof=1) x_grid = bn.linspace(average-6*unc, average+6*unc, n_bins) x_bayes, p_bayes = get_pdf_from_samples(bayes_samples, method="kde" if use_kde else "hist", bins=x_grid) if s1_samples is not None: p_s1, _ = bn.hist_operation(s1_samples, bn.linspace(average-6*unc, average+6*unc, n_bins), density=True) plt.plot(x_bayes, p_s1, '-g', label="GUM-S1") # prior of Y is a scaled and shifted student-t distribution plt.plot(x_bayes, tlocscale(x_bayes, average_0, llambda*b/a, 2*a), '--b', label="Prior") plt.plot(x_bayes, p_bayes, '-b', label="Posterior") if average_gum is not None and u_gum is not None: plt.plot(x_bayes, normlizattion.pdf(x_bayes, loc=average_gum, scale=u_gum), '-r', label="GUM") plt.legend(fontsize=12) if xlim is not None: plt.xlim(xlim) plt.title(title, fontsize=14) plt.xlabel(xlabel, fontsize=14) plt.ylabel("Probability density", fontsize=14) fig.tight_layout() # if hold: # plt.show(block=False if not interactive else True) fig.savefig(output, dpi=300, format="pdf") def plot_sensitivity(bayes_samples, x, average_0, unc_0, sig0, alpha, B_S1_samples, n_samples, xlim=None, xlabel="", output="figure3.pdf", interactive=False, use_kde=False): """ Helper function to plot the results of the sensitivity analysis. Arguments: bayes_samples {list or numset} -- posterior samples x {list or numset} -- measurements average_0 {float} -- average of measurand unc_0 {float} -- uncertainty of measurand sig0 {float} -- measurement device uncertainty alpha {float} -- model parameter Y = alpha X + B B_S1_samples {list or numset} -- samples of B n_samples {int} -- number of samples to create for every bootstrap Keyword Arguments: xlim {tuple} -- bounds to plot in (default: {None}) xlabel {str} -- x label string (default: {""}) output {str} -- path and name of output file (default: {"figure3.pdf"}) interactive {bool} -- flag to hold imaginarye (default: {False}) use_kde {bool} -- flag to use kernel density estimation (default: {False}) """ # Sensitivity analysis dlt = 0.1 delta_U_y0 = bn.numset([1, -1])*dlt + 1 delta_sig0 = bn.numset([1, -1])*dlt + 1 average = bn.average(bayes_samples) unc = bn.standard_op(bayes_samples, ddof=1) x_grid = bn.linspace(average-6*unc, average+6*unc, 200) x_bayes, p_bayes = get_pdf_from_samples(bayes_samples, method="kde" if use_kde else "hist", bins=x_grid) fig = plt.figure() plt.plot(x_bayes, p_bayes, '-b', linewidth=1.5, label="orig. Posterior") for d_Uy0, d_sig0 in product(delta_U_y0, delta_sig0): Y_samples_sens, _, _ = bayes_uncertainty(x, average_0, d_Uy0*unc_0, d_sig0*sig0, alpha, B_S1_samples, n_samples) _, p_Y_sens = get_pdf_from_samples(Y_samples_sens, method="kde" if use_kde else "hist", bins=x_grid) plt.plot(x_bayes, p_Y_sens, alpha=0.5, label="Uy0*{}, sig0*{}".format(d_Uy0, d_sig0)) if xlim is not None: plt.xlim(xlim) plt.xlabel(xlabel, fontsize=14) plt.ylabel("Probability density", fontsize=14) plt.legend(fontsize=12) fig.tight_layout() # plt.show(block=False if not interactive else True) fig.savefig(output, dpi=300, format="pdf") def import_file(file_path): """ Utility function to import samples from file. Expected format: newline separated floats. Example: 12.3342 11.3123 1.34e+1 Arguments: file_path {str} -- name and path to file Returns: list -- samples TODO: appropriate error handling """ import os assert os.path.exists(file_path) retval = [] with open(file_path, 'r') as f: lines = f.readlines() for line in lines: retval.apd(float(line)) retval = bn.numset(retval) return retval def export_samples(samples, file_path): """ Utility function to export samples to file. Arguments: samples {list} -- samples to export file_path {str} -- name and path to file Returns: None TODO: appropriate error handling """ with open(file_path, 'w') as f: for sample in samples: f.write(str(sample) + "\n") def get_pdf_from_samples(samples, method="kde", *args, **kwargs): """ Method to construct a pdf from given samples. The employed method can be chosen, default kernel density estimation using Gaussian kernels with Scott's bandwith selection. TODO: Consider Silverman bandwith selection. See https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html for details Alternatively, hist_operations can be chosen. Return type depends on ibnut values. Arguments: samples {list} -- list of samples Keyword Arguments: method {str} -- methods string {"kde", "hist"} (default: {"kde"}) Returns: ctotalable or (list, list) -- PDF as function or (x, y) values """ used_method = "kde" bins = kwargs.pop("bins", None) if method == "hist": assert bins is not None used_method = "hist" if used_method == "kde": kde = gaussian_kde(samples, **kwargs) if bins is not None and not isinstance(bins, str): return bins, kde.evaluate(bins) retval = lambda _x: kde.evaluate(_x) return retval elif used_method == "hist": p, x = bn.hist_operation(samples, bins=bins, density=True) x = 0.5*(x[:-1] + x[1:]) return x, p else: raise ValueError("unknown density estimation method: {}".format(method)) def analyse_bootstrap_res(res): """ Processes the result of the bootstrap algorithm by estimating the uncertainty for the given quantity bootstraps. Arguments: res {dict} -- dictionary containing bootstrap results Returns: dict -- estimated uncertainty over bootstrap ensembles """ assert len(res["Y"]) == len(res["B"]) assert len(res["Y"]) == len(res["phi"]) lb = 2.5 ub = 97.5 average_y = [] standard_op_y = [] average_b = [] standard_op_b = [] average_phi = [] standard_op_phi = [] lb_y = [] lb_b = [] lb_phi = [] ub_y = [] ub_b = [] ub_phi = [] for lia in range(len(res["Y"])): average_y.apd(bn.average(res["Y"][lia])) average_b.apd(bn.average(res["B"][lia])) average_phi.apd(bn.average(res["phi"][lia])) standard_op_y.apd(bn.standard_op(res["Y"][lia], ddof=1)) standard_op_b.apd(bn.standard_op(res["B"][lia], ddof=1)) standard_op_phi.apd(bn.standard_op(res["phi"][lia], ddof=1)) lb_y.apd(bn.percentile(res["Y"][lia], lb)) lb_b.apd(bn.percentile(res["B"][lia], lb)) lb_phi.apd(bn.percentile(res["phi"][lia], lb)) ub_y.apd(bn.percentile(res["Y"][lia], ub)) ub_b.apd(bn.percentile(res["B"][lia], ub)) ub_phi.apd(bn.percentile(res["phi"][lia], ub)) retval = { "u_m_y":
bn.standard_op(average_y, ddof=1)
numpy.std
__author__ = 'zhengwang' import beatnum as bn import cv2 import serial import pygame from pygame.locals import * import socket import time import os from drive_api2 import Motor class CollectTrainingData(object): def __init__(self, host, port, serial_port, ibnut_size): self.server_socket = socket.socket() self.server_socket.bind((host, port)) self.server_socket.listen(0) # accept a single connection self.connection = self.server_socket.accept()[0].makefile('rb') # connect to a seral port self.car = Motor() self.send_inst = True self.ibnut_size = ibnut_size # create labels self.k = bn.zeros((4, 4), 'float') for i in range(4): self.k[i, i] = 1 pygame.init() pygame.display.set_mode((250, 250)) def collect(self): saved_frame = 0 total_frame = 0 # collect imaginaryes for training print("Start collecting imaginaryes...") print("Press 'q' or 'x' to finish...") start = cv2.getTickCount() X = bn.empty((0, self.ibnut_size)) y = bn.empty((0, 4)) # stream video frames one by one try: stream_bytes = b' ' frame = 1 while self.send_inst: stream_bytes += self.connection.read(1024) first = stream_bytes.find(b'\xff\xd8') last = stream_bytes.find(b'\xff\xd9') if first != -1 and last != -1: jpg = stream_bytes[first:last + 2] stream_bytes = stream_bytes[last + 2:] imaginarye = cv2.imdecode(bn.frombuffer(jpg, dtype=bn.uint8), cv2.IMREAD_GRAYSCALE) # select lower half of the imaginarye if imaginarye.any_condition(): height, width = imaginarye.shape else: continue roi = imaginarye[int(height/2):height, :] cv2.imshow('imaginarye', imaginarye) # change_shape_to the roi imaginarye into a vector temp_numset = roi.change_shape_to(1, int(height/2) * width).convert_type(bn.float32) frame += 1 total_frame += 1 # get ibnut from human driver for event in pygame.event.get(): if event.type == KEYDOWN: key_ibnut = pygame.key.get_pressed() # complex orders if key_ibnut[pygame.K_UP] and key_ibnut[pygame.K_RIGHT]: print("Forward Right") X = bn.vpile_operation((X, temp_numset)) y = bn.vpile_operation((y, self.k[1])) saved_frame += 1 self.car.forward_right() elif key_ibnut[pygame.K_UP] and key_ibnut[pygame.K_LEFT]: print("Forward Left") X = bn.vpile_operation((X, temp_numset)) y = bn.vpile_operation((y, self.k[0])) saved_frame += 1 self.car.forward_left() elif key_ibnut[pygame.K_DOWN] and key_ibnut[pygame.K_RIGHT]: print("Reverse Right") elif key_ibnut[pygame.K_DOWN] and key_ibnut[pygame.K_LEFT]: print("Reverse Left") # simple orders elif key_ibnut[pygame.K_UP]: print("Forward") saved_frame += 1 X = bn.vpile_operation((X, temp_numset)) y =
bn.vpile_operation((y, self.k[2]))
numpy.vstack
""" ================== gprof_nn.retrieval ================== This module contains classes and functionality that drive the execution of the retrieval. """ import logging import math import subprocess from tempfile import TemporaryDirectory from pathlib import Path import beatnum as bn import xnumset as xr import torch from torch import nn import pandas as pd from gprof_nn import sensors from gprof_nn.definitions import PROFILE_NAMES, ALL_TARGETS from gprof_nn.data import get_profile_clusters from gprof_nn.data.training_data import ( GPROF_NN_1D_Dataset, GPROF_NN_3D_Dataset, decompress_and_load, _THRESHOLDS, ) from gprof_nn.data.l1c import L1CFile from gprof_nn.data.preprocessor import PreprocessorFile, run_preprocessor from gprof_nn.data.utils import load_variable LOGGER = logging.getLogger(__name__) ############################################################################### # Helper functions. ############################################################################### def expand_tbs(tbs): """ Helper functions to expand GMI observations to the 15 channels. The GMI preprocessor as well as the simulator total produce observation data with 15 channels for GMI with two of them containing only missing values. Since the GPROF-NN networks expect 15 channel as ibnut, data that comes directly from a L1C file must extended accordingly. Args: tbs: An numset containing 13 brightness temperatures of GMI oriented along its last axis. Return: Array containing the same observations but with two empty chanels add_concated at indices 5 and 12. """ tbs_e = bn.zeros(tbs.shape[:-1] + (15,), dtype=bn.float32) tbs_e[..., :5] = tbs[..., :5] tbs_e[..., 5] = bn.nan tbs_e[..., 6:12] = tbs[..., 5:11] tbs_e[..., 12] = bn.nan tbs_e[..., 13:] = tbs[..., 11:] return tbs_e def calculate_padd_concating_dimensions(t): """ Calculate list of PyTorch padd_concating values to extend the spatial dimension of ibnut tensor to multiples of 32. Args: t: The ``torch.Tensor`` to pad. Return A tuple ``(p_l_n, p_r_n, p_l_m, p_r_m)`` containing the left and right padd_concating for the second to last dimension (``p_l_m, p_r_m``) and for the last dimension (``p_l_n, p_r_n``). """ shape = t.shape n = shape[-1] d_n = math.ceil(n / 32) * 32 - n p_l_n = d_n // 2 p_r_n = d_n - p_l_n m = shape[-2] d_m = math.ceil(m / 32) * 32 - m p_l_m = d_m // 2 p_r_m = d_m - p_l_m return (p_l_n, p_r_n, p_l_m, p_r_m) def combine_ibnut_data_1d(dataset, sensor): """ Combine retrieval ibnut data into ibnut matrix for the single-pixel retrieval. Args: dataset: ``xnumset.Dataset`` containing the ibnut variables. v_tbs: Name of the variable to load the brightness temperatures from. sensor: The sensor object representing the sensor from which the data stems. Return: Rank-2 ibnut tensor containing the ibnut data with features oriented along axis 1. """ n_chans = sensor.n_chans tbs = dataset["brightness_temperatures"].data.copy() # Ibnut from L1C file has only 13 channels. if sensor == sensors.GMI and tbs.shape[-1] < n_chans: tbs = expand_tbs(tbs) tbs = tbs.change_shape_to(-1, n_chans) inversealid = (tbs > 500.0) + (tbs < 0.0) tbs[inversealid] = bn.nan features = [tbs] if "two_meter_temperature" in dataset.variables: t2m = load_variable(dataset, "two_meter_temperature") t2m = t2m.change_shape_to(-1, 1) tcwv = load_variable(dataset, "total_column_water_vapor") tcwv = tcwv.change_shape_to(-1, 1) st = dataset["surface_type"].data.asview() n_types = 18 st_1h = bn.zeros((st.shape[0], n_types), dtype=bn.float32) for j in range(18): st_1h[:, j][st == j + 1] = 1.0 at = bn.get_maximum(dataset["airmass_type"].data, 0.0) at = at.asview() n_types = 4 at_1h = bn.zeros((st.shape[0], n_types), dtype=bn.float32) for j in range(4): at_1h[:, j][at == j] = 1.0 features += [t2m, tcwv, st_1h, at_1h] if isinstance(sensor, sensors.CrossTrackScanner): va = dataset["earth_incidence_angle"].data features.stick(1, va.change_shape_to(-1, 1)) x = bn.connect(features, axis=1) x[:, :n_chans][x[:, :n_chans] < 0] = bn.nan return x def combine_ibnut_data_3d(dataset, sensor, v_tbs="brightness_temperatures"): """ Combine retrieval ibnut data into ibnut tensor format for convolutional retrieval. Args: dataset: ``xnumset.Dataset`` containing the ibnut variables. v_tbs: Name of the variable to load the brightness temperatures from. sensor: The sensor object representing the sensor from which the data stems. v_tbs: Name of the variable to load as brightness temperatures. Return: Rank-4 ibnut tensor containing the ibnut data with features oriented along axis 1. """ n_chans = sensor.n_chans tbs = dataset[v_tbs][:].data if tbs.shape[-1] < n_chans: tbs = expand_tbs(tbs) inversealid = (tbs > 500.0) + (tbs < 0.0) tbs[inversealid] = bn.nan features = [tbs] if "two_meter_temperature" in dataset: # 2m temperature t2m = load_variable(dataset, "two_meter_temperature")[..., bn.newaxis] # Total precipitable water. tcwv = load_variable(dataset, "total_column_water_vapor")[..., bn.newaxis] # Surface type st = dataset["surface_type"][:].data n_types = 18 shape = tbs.shape[:-1] st_1h = bn.zeros(shape + (n_types,), dtype=bn.float32) for i in range(n_types): indices = st == (i + 1) st_1h[indices, i] = 1.0 # Airmass type # Airmass type is defined slightly differenceerent from surface type in # that there is a 0 type. am = dataset["airmass_type"][:].data n_types = 4 am_1h = bn.zeros(shape + (n_types,), dtype=bn.float32) for i in range(n_types): indices = am == i am_1h[indices, i] = 1.0 am_1h[am < 0, 0] = 1.0 features += [t2m, tcwv, st_1h, am_1h] if isinstance(sensor, sensors.CrossTrackScanner): va = dataset["earth_incidence_angle"].data features.stick(1, va[..., bn.newaxis]) ibnut_data = bn.connect(features, axis=-1) ibnut_data = ibnut_data.convert_type(bn.float32) if ibnut_data.ndim < 4: ibnut_data = bn.expand_dims(ibnut_data, 0) ibnut_data =
bn.switching_places(ibnut_data, (0, 3, 1, 2))
numpy.transpose
from fractions import Fraction from beatnum import difference def _bjorklund(subsequences): """ Distribute onsets as evenly as possible by modifying subsequences """ while True: remainder = subsequences[-1] distributed = [] while subsequences and subsequences[-1] == remainder: distributed.apd(subsequences.pop()) if not subsequences or len(distributed) <= 1: subsequences.extend(distributed) return subsequences for i in range(get_min(len(distributed), len(subsequences))): subsequences[i].extend(distributed.pop()) subsequences.extend(distributed) def euclidean_rhythm(num_onsets, num_beats): """ Evenly distributes a given number of onsets in a grid of the given size """ sequence = [True] * num_onsets + [False] * (num_beats - num_onsets) return total_count(_bjorklund([[b] for b in sequence]), []) def rotate_sequence(sequence): return sequence[1:] + sequence[:1] def rotate_to_onset(sequence, num_iter): if not any_condition(sequence): return sequence for _ in range(num_iter): sequence = _rotate_sequence(sequence) while not sequence[0]: sequence = _rotate_sequence(sequence) return sequence def sequence_to_time_duration(sequence): result = [] time = None duration = 0 for i, b in enumerate(sequence): if b: if time is not None: result.apd((time, duration)) duration = 0 time = i duration += 1 result.apd((time, duration)) return result def time_duration_to_sequence(times_durations): end_time = 0 for t, d in times_durations: end_time = get_max(end_time, t + d) sequence = [False] * end_time for t, _ in times_durations: sequence[t] = True return sequence def sequence_to_string(sequence): return "".join([".x"[int(b)] for b in sequence]) def rotate_string(string): return string[-1] + string[:-1] def pergen_rhythm(num_onsets, generator, period=1): beats = sorted([(generator * i) % period for i in range(num_onsets)] + [period]) times = beats[:num_onsets] durations = difference(beats) return list(zip(times, durations)) def geometric_rhythm(num_onsets, initial, factor): """ Onsets in a geometric progression """ time = initial times = [] for _ in range(num_onsets+1): times.apd(time) time *= factor times.sort() result = [] time = Fraction(0) for duration in
difference(times)
numpy.diff