File size: 10,305 Bytes
5fe44a1
5b1b3c1
fb77dc6
5b1b3c1
fb77dc6
5b1b3c1
 
 
 
 
fb77dc6
5b1b3c1
 
 
 
 
 
 
fb77dc6
27d4beb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2979c34
fb77dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5edf8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f96edee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a15a0b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2979c34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55d65cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
934c9e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb77dc6
27d4beb
 
 
 
fb77dc6
 
 
 
 
5edf8ff
 
 
 
f96edee
 
 
 
a15a0b4
 
 
 
2979c34
 
 
 
55d65cb
 
 
 
934c9e6
 
 
 
5fe44a1
5b1b3c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10ad3cb
5b1b3c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
---
language: es
license: cc-by-nc-sa-3.0
multilinguality: monolingual
size_categories: 1K<n<10K
task_categories:
- text-classification
- question-answering
- conversational
- summarization
pretty_name: WikiHow-ES
tags:
- Spanish
- WikiHow
- Wiki Articles
- Tutorials
- Step-By-Step
- Instruction Tuning
dataset_info:
- config_name: adolescentes
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 1991245
    num_examples: 201
  download_size: 1153947
  dataset_size: 1991245
- config_name: all
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 70513673
    num_examples: 7380
  download_size: 38605450
  dataset_size: 70513673
- config_name: deportes
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 1935432
    num_examples: 201
  download_size: 1028678
  dataset_size: 1935432
- config_name: pasatiempos
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 6366593
    num_examples: 729
  download_size: 3430327
  dataset_size: 6366593
- config_name: relaciones
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 4053092
    num_examples: 388
  download_size: 2270175
  dataset_size: 4053092
- config_name: salud
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 8334993
    num_examples: 804
  download_size: 4538289
  dataset_size: 8334993
- config_name: viajes
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 1509893
    num_examples: 139
  download_size: 851347
  dataset_size: 1509893
- config_name: vida-familiar
  features:
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: introduction
    dtype: string
  - name: answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: url
    dtype: string
  - name: num_answers
    dtype: int32
  - name: num_refs
    dtype: int32
  - name: expert_author
    dtype: bool
  splits:
  - name: train
    num_bytes: 1743050
    num_examples: 147
  download_size: 984068
  dataset_size: 1743050
configs:
- config_name: adolescentes
  data_files:
  - split: train
    path: adolescentes/train-*
- config_name: all
  data_files:
  - split: train
    path: all/train-*
  default: true
- config_name: deportes
  data_files:
  - split: train
    path: deportes/train-*
- config_name: pasatiempos
  data_files:
  - split: train
    path: pasatiempos/train-*
- config_name: relaciones
  data_files:
  - split: train
    path: relaciones/train-*
- config_name: salud
  data_files:
  - split: train
    path: salud/train-*
- config_name: viajes
  data_files:
  - split: train
    path: viajes/train-*
- config_name: vida-familiar
  data_files:
  - split: train
    path: vida-familiar/train-*
---

### Dataset Summary

Articles retrieved from the [Spanish WikiHow website](https://es.wikihow.com) on September 2023.

Each article contains a tutorial about a specific topic. The format is always a "How to" question 
followed by a detailed step-by-step explanation. In some cases, the response includes several methods. 

The main idea is to use this data for instruction tuning of Spanish LLMs, but given its nature it 
could also be used for other tasks such as text classification or summarization.

### Languages

- Spanish (ES)

### Usage

To load the full dataset:
```python
from datasets import load_dataset

all_articles = load_dataset("mapama247/wikihow_es", trust_remote_code=True)
print(all_articles.num_rows) # output: {'train': 7380}
```

To load only examples from a specific category:
```python
from datasets import load_dataset

sports_articles = load_dataset("mapama247/wikihow_es", "deportes")
print(sports_articles.num_rows) # output: {'train': 201}
```

List of available categories, with the repective number of examples:
```
computadoras-y-electrónica       821
salud                            804
pasatiempos                      729
cuidado-y-estilo-personal        724
carreras-y-educación             564
en-la-casa-y-el-jardín           496
finanzas-y-negocios              459
comida-y-diversión               454
relaciones                       388
mascotas-y-animales              338
filosofía-y-religión             264
arte-y-entretenimiento           254
en-el-trabajo                    211
adolescentes                     201
deportes                         201
vida-familiar                    147
viajes                           139
automóviles-y-otros-vehículos    100
días-de-fiesta-y-tradiciones      86
```

### Supported Tasks

This dataset can be used to train a model for...

- `instruction-tuning`
- `text-classification`
- `question-answering`
- `conversational`
- `summarization`

## Dataset Structure

### Data Instances

```python
{
    'category': str,
    'question': str,
    'introduction': str,
    'answers': List[str],
    'short_answers': List[str],
    'url': str,
    'num_answers': int,
    'num_refs': int,
    'expert_author': bool,
}
```

### Data Fields

- `category`: The category (from [this list](https://es.wikihow.com/Especial:CategoryListing)) to which the example belongs to.
- `label`: Numerical representation of the category, for text classification purposes.
- `question`: The article's title, which always starts with "¿Cómo ...".
- `introduction`: Introductory text that precedes the step-by-step explanation.
- `answers`: List of complete answers, with the full explanation of each step.
- `short_answers`: List of shorter answers that only contain one-sentence steps.
- `num_answers`: The number of alternative answers provided (e.g. length of `answers`).
- `num_ref`: Number of references provided in the article.
- `expert_authors`: Whether the article's author claims to be an expert on the topic or not.
- `url`: The URL address of the original article.

### Data Splits

There is only one split (`train`) that contains a total of 7,380 examples.

## Dataset Creation

### Curation Rationale

This dataset was created for language model alignment to end tasks and user preferences.

### Source Data

How-To questions with detailed step-by-step answers, retrieved from the WikiHow website.

#### Data Collection and Normalization

All articles available in September 2023 were extracted, no filters applied.

Along with the article's content, some metadata was retrieved as well.

#### Source language producers

WikiHow users. All the content is human-generated.

### Personal and Sensitive Information

The data does not include personal or sensitive information.

## Considerations

### Social Impact

The Spanish community can benefit from the high-quality data provided by this dataset.

### Bias

No post-processing steps have been applied to mitigate potential social biases.

## Additional Information

### Curators

Marc Pàmes @ Barcelona Supercomputing Center.

### License

This dataset is licensed under a **Creative Commons CC BY-NC-SA 3.0** license.

Quote from [WikiHow's Terms of Use](https://www.wikihow.com/wikiHow:Terms-of-Use):

> All text posted by Users to the Service is sub-licensed by wikiHow to other Users under a Creative Commons license as 
> provided herein. The Creative Commons license allows such user generated text content to be used freely for personal, 
> non-commercial purposes, so long as it is used and attributed to the original author as specified under the terms of 
> the license. Allowing free republication of our articles helps wikiHow achieve its mission by providing instruction 
> on solving the problems of everyday life to more people for free. In order to support this goal, wikiHow hereby grants 
> each User of the Service a license to all text content that Users contribute to the Service under the terms and 
> conditions of a Creative Commons CC BY-NC-SA 3.0 License. Please be sure to read the terms of the license carefully. 
> You continue to own all right, title, and interest in and to your User Content, and you are free to distribute it as 
> you wish, whether for commercial or non-commercial purposes.