Datasets:
File size: 17,828 Bytes
5fe44a1 5b1b3c1 fb77dc6 5b1b3c1 fb77dc6 5b1b3c1 fb77dc6 5b1b3c1 fb77dc6 27d4beb 2979c34 fb77dc6 e8c7537 2ca25a2 16441bd e0dc2ab 7d3643a 97f4749 5edf8ff 4817c91 e2c66a4 b98cf01 047e0ba 27fe985 ead1a38 f96edee a15a0b4 2979c34 55d65cb 934c9e6 fb77dc6 27d4beb fb77dc6 e8c7537 2ca25a2 16441bd e0dc2ab 7d3643a 97f4749 5edf8ff 4817c91 e2c66a4 b98cf01 047e0ba 27fe985 ead1a38 f96edee a15a0b4 2979c34 55d65cb 934c9e6 5fe44a1 5b1b3c1 10ad3cb 5b1b3c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 |
---
language: es
license: cc-by-nc-sa-3.0
multilinguality: monolingual
size_categories: 1K<n<10K
task_categories:
- text-classification
- question-answering
- conversational
- summarization
pretty_name: WikiHow-ES
tags:
- Spanish
- WikiHow
- Wiki Articles
- Tutorials
- Step-By-Step
- Instruction Tuning
dataset_info:
- config_name: adolescentes
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 1991245
num_examples: 201
download_size: 1153947
dataset_size: 1991245
- config_name: all
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 70513673
num_examples: 7380
download_size: 38605450
dataset_size: 70513673
- config_name: arte-y-entretenimiento
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 2567138
num_examples: 254
download_size: 1438019
dataset_size: 2567138
- config_name: automóviles-y-otros-vehículos
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 890122
num_examples: 100
download_size: 480587
dataset_size: 890122
- config_name: carreras-y-educación
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 6020903
num_examples: 564
download_size: 3261593
dataset_size: 6020903
- config_name: comida-y-diversión
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 3602835
num_examples: 454
download_size: 1866935
dataset_size: 3602835
- config_name: computadoras-y-electrónica
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 5457681
num_examples: 821
download_size: 2647916
dataset_size: 5457681
- config_name: cuidado-y-estilo-personal
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 7368188
num_examples: 724
download_size: 4088837
dataset_size: 7368188
- config_name: deportes
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 1935432
num_examples: 201
download_size: 1028678
dataset_size: 1935432
- config_name: días-de-fiesta-y-tradiciones
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 920660
num_examples: 86
download_size: 534900
dataset_size: 920660
- config_name: en-el-trabajo
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 2313935
num_examples: 211
download_size: 1274004
dataset_size: 2313935
- config_name: en-la-casa-y-el-jardín
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 4311584
num_examples: 496
download_size: 2293097
dataset_size: 4311584
- config_name: filosofía-y-religión
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 2717929
num_examples: 264
download_size: 1547991
dataset_size: 2717929
- config_name: finanzas-y-negocios
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 5183587
num_examples: 459
download_size: 2761337
dataset_size: 5183587
- config_name: mascotas-y-animales
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 3224822
num_examples: 338
download_size: 1772324
dataset_size: 3224822
- config_name: pasatiempos
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 6366593
num_examples: 729
download_size: 3430327
dataset_size: 6366593
- config_name: relaciones
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 4053092
num_examples: 388
download_size: 2270175
dataset_size: 4053092
- config_name: salud
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 8334993
num_examples: 804
download_size: 4538289
dataset_size: 8334993
- config_name: viajes
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 1509893
num_examples: 139
download_size: 851347
dataset_size: 1509893
- config_name: vida-familiar
features:
- name: category
dtype: string
- name: question
dtype: string
- name: introduction
dtype: string
- name: answers
sequence: string
- name: short_answers
sequence: string
- name: url
dtype: string
- name: num_answers
dtype: int32
- name: num_refs
dtype: int32
- name: expert_author
dtype: bool
splits:
- name: train
num_bytes: 1743050
num_examples: 147
download_size: 984068
dataset_size: 1743050
configs:
- config_name: adolescentes
data_files:
- split: train
path: adolescentes/train-*
- config_name: all
data_files:
- split: train
path: all/train-*
default: true
- config_name: arte-y-entretenimiento
data_files:
- split: train
path: arte-y-entretenimiento/train-*
- config_name: automóviles-y-otros-vehículos
data_files:
- split: train
path: automóviles-y-otros-vehículos/train-*
- config_name: carreras-y-educación
data_files:
- split: train
path: carreras-y-educación/train-*
- config_name: comida-y-diversión
data_files:
- split: train
path: comida-y-diversión/train-*
- config_name: computadoras-y-electrónica
data_files:
- split: train
path: computadoras-y-electrónica/train-*
- config_name: cuidado-y-estilo-personal
data_files:
- split: train
path: cuidado-y-estilo-personal/train-*
- config_name: deportes
data_files:
- split: train
path: deportes/train-*
- config_name: días-de-fiesta-y-tradiciones
data_files:
- split: train
path: días-de-fiesta-y-tradiciones/train-*
- config_name: en-el-trabajo
data_files:
- split: train
path: en-el-trabajo/train-*
- config_name: en-la-casa-y-el-jardín
data_files:
- split: train
path: en-la-casa-y-el-jardín/train-*
- config_name: filosofía-y-religión
data_files:
- split: train
path: filosofía-y-religión/train-*
- config_name: finanzas-y-negocios
data_files:
- split: train
path: finanzas-y-negocios/train-*
- config_name: mascotas-y-animales
data_files:
- split: train
path: mascotas-y-animales/train-*
- config_name: pasatiempos
data_files:
- split: train
path: pasatiempos/train-*
- config_name: relaciones
data_files:
- split: train
path: relaciones/train-*
- config_name: salud
data_files:
- split: train
path: salud/train-*
- config_name: viajes
data_files:
- split: train
path: viajes/train-*
- config_name: vida-familiar
data_files:
- split: train
path: vida-familiar/train-*
---
### Dataset Summary
Articles retrieved from the [Spanish WikiHow website](https://es.wikihow.com) on September 2023.
Each article contains a tutorial about a specific topic. The format is always a "How to" question
followed by a detailed step-by-step explanation. In some cases, the response includes several methods.
The main idea is to use this data for instruction tuning of Spanish LLMs, but given its nature it
could also be used for other tasks such as text classification or summarization.
### Languages
- Spanish (ES)
### Usage
To load the full dataset:
```python
from datasets import load_dataset
all_articles = load_dataset("mapama247/wikihow_es", trust_remote_code=True)
print(all_articles.num_rows) # output: {'train': 7380}
```
To load only examples from a specific category:
```python
from datasets import load_dataset
sports_articles = load_dataset("mapama247/wikihow_es", "deportes")
print(sports_articles.num_rows) # output: {'train': 201}
```
List of available categories, with the repective number of examples:
```
computadoras-y-electrónica 821
salud 804
pasatiempos 729
cuidado-y-estilo-personal 724
carreras-y-educación 564
en-la-casa-y-el-jardín 496
finanzas-y-negocios 459
comida-y-diversión 454
relaciones 388
mascotas-y-animales 338
filosofía-y-religión 264
arte-y-entretenimiento 254
en-el-trabajo 211
adolescentes 201
deportes 201
vida-familiar 147
viajes 139
automóviles-y-otros-vehículos 100
días-de-fiesta-y-tradiciones 86
```
### Supported Tasks
This dataset can be used to train a model for...
- `instruction-tuning`
- `text-classification`
- `question-answering`
- `conversational`
- `summarization`
## Dataset Structure
### Data Instances
```python
{
'category': str,
'question': str,
'introduction': str,
'answers': List[str],
'short_answers': List[str],
'url': str,
'num_answers': int,
'num_refs': int,
'expert_author': bool,
}
```
### Data Fields
- `category`: The category (from [this list](https://es.wikihow.com/Especial:CategoryListing)) to which the example belongs to.
- `label`: Numerical representation of the category, for text classification purposes.
- `question`: The article's title, which always starts with "¿Cómo ...".
- `introduction`: Introductory text that precedes the step-by-step explanation.
- `answers`: List of complete answers, with the full explanation of each step.
- `short_answers`: List of shorter answers that only contain one-sentence steps.
- `num_answers`: The number of alternative answers provided (e.g. length of `answers`).
- `num_ref`: Number of references provided in the article.
- `expert_authors`: Whether the article's author claims to be an expert on the topic or not.
- `url`: The URL address of the original article.
### Data Splits
There is only one split (`train`) that contains a total of 7,380 examples.
## Dataset Creation
### Curation Rationale
This dataset was created for language model alignment to end tasks and user preferences.
### Source Data
How-To questions with detailed step-by-step answers, retrieved from the WikiHow website.
#### Data Collection and Normalization
All articles available in September 2023 were extracted, no filters applied.
Along with the article's content, some metadata was retrieved as well.
#### Source language producers
WikiHow users. All the content is human-generated.
### Personal and Sensitive Information
The data does not include personal or sensitive information.
## Considerations
### Social Impact
The Spanish community can benefit from the high-quality data provided by this dataset.
### Bias
No post-processing steps have been applied to mitigate potential social biases.
## Additional Information
### Curators
Marc Pàmes @ Barcelona Supercomputing Center.
### License
This dataset is licensed under a **Creative Commons CC BY-NC-SA 3.0** license.
Quote from [WikiHow's Terms of Use](https://www.wikihow.com/wikiHow:Terms-of-Use):
> All text posted by Users to the Service is sub-licensed by wikiHow to other Users under a Creative Commons license as
> provided herein. The Creative Commons license allows such user generated text content to be used freely for personal,
> non-commercial purposes, so long as it is used and attributed to the original author as specified under the terms of
> the license. Allowing free republication of our articles helps wikiHow achieve its mission by providing instruction
> on solving the problems of everyday life to more people for free. In order to support this goal, wikiHow hereby grants
> each User of the Service a license to all text content that Users contribute to the Service under the terms and
> conditions of a Creative Commons CC BY-NC-SA 3.0 License. Please be sure to read the terms of the license carefully.
> You continue to own all right, title, and interest in and to your User Content, and you are free to distribute it as
> you wish, whether for commercial or non-commercial purposes.
|