Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Size:
100K - 1M
ArXiv:
License:
Upload 2 files
Browse files- README.md +260 -2
- masakhaner2.py +186 -0
README.md
CHANGED
@@ -1,3 +1,261 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language:
|
5 |
+
- bm
|
6 |
+
- bbj
|
7 |
+
- ee
|
8 |
+
- fon
|
9 |
+
- ha
|
10 |
+
- ig
|
11 |
+
- rw
|
12 |
+
- lg
|
13 |
+
- luo
|
14 |
+
- mos
|
15 |
+
- ny
|
16 |
+
- pcm
|
17 |
+
- sn
|
18 |
+
- sw
|
19 |
+
- tn
|
20 |
+
- tw
|
21 |
+
- wo
|
22 |
+
- xh
|
23 |
+
- yo
|
24 |
+
- zu
|
25 |
+
language_creators:
|
26 |
+
- expert-generated
|
27 |
+
license:
|
28 |
+
- afl-3.0
|
29 |
+
multilinguality:
|
30 |
+
- multilingual
|
31 |
+
pretty_name: masakhaner2.0
|
32 |
+
size_categories:
|
33 |
+
- 1K<n<10K
|
34 |
+
source_datasets:
|
35 |
+
- original
|
36 |
+
tags:
|
37 |
+
- ner
|
38 |
+
- masakhaner
|
39 |
+
- masakhane
|
40 |
+
task_categories:
|
41 |
+
- token-classification
|
42 |
+
task_ids:
|
43 |
+
- named-entity-recognition---
|
44 |
+
|
45 |
+
# Dataset Card for [Dataset Name]
|
46 |
+
|
47 |
+
## Table of Contents
|
48 |
+
- [Table of Contents](#table-of-contents)
|
49 |
+
- [Dataset Description](#dataset-description)
|
50 |
+
- [Dataset Summary](#dataset-summary)
|
51 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
52 |
+
- [Languages](#languages)
|
53 |
+
- [Dataset Structure](#dataset-structure)
|
54 |
+
- [Data Instances](#data-instances)
|
55 |
+
- [Data Fields](#data-fields)
|
56 |
+
- [Data Splits](#data-splits)
|
57 |
+
- [Dataset Creation](#dataset-creation)
|
58 |
+
- [Curation Rationale](#curation-rationale)
|
59 |
+
- [Source Data](#source-data)
|
60 |
+
- [Annotations](#annotations)
|
61 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
62 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
63 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
64 |
+
- [Discussion of Biases](#discussion-of-biases)
|
65 |
+
- [Other Known Limitations](#other-known-limitations)
|
66 |
+
- [Additional Information](#additional-information)
|
67 |
+
- [Dataset Curators](#dataset-curators)
|
68 |
+
- [Licensing Information](#licensing-information)
|
69 |
+
- [Citation Information](#citation-information)
|
70 |
+
- [Contributions](#contributions)
|
71 |
+
|
72 |
+
## Dataset Description
|
73 |
+
|
74 |
+
- **Homepage:** [homepage](https://github.com/masakhane-io/masakhane-ner)
|
75 |
+
- **Repository:** [github](https://github.com/masakhane-io/masakhane-ner)
|
76 |
+
- **Paper:** [paper](https://arxiv.org/abs/2103.11811)
|
77 |
+
- **Point of Contact:** [Masakhane](https://www.masakhane.io/) or [email protected]
|
78 |
+
|
79 |
+
### Dataset Summary
|
80 |
+
|
81 |
+
MasakhaNER 2.0 is the largest publicly available high-quality dataset for named entity recognition (NER) in 20 African languages created by the Masakhane community.
|
82 |
+
|
83 |
+
Named entities are phrases that contain the names of persons, organizations, locations, times and quantities. Example:
|
84 |
+
|
85 |
+
[PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] .
|
86 |
+
|
87 |
+
MasakhaNER 2.0 is a named entity dataset consisting of PER, ORG, LOC, and DATE entities annotated by Masakhane for 20 African languages
|
88 |
+
|
89 |
+
The train/validation/test sets are available for all the ten languages.
|
90 |
+
|
91 |
+
For more details see https://arxiv.org/abs/2103.11811
|
92 |
+
|
93 |
+
|
94 |
+
### Supported Tasks and Leaderboards
|
95 |
+
|
96 |
+
[More Information Needed]
|
97 |
+
|
98 |
+
- `named-entity-recognition`: The performance in this task is measured with [F1](https://huggingface.co/metrics/f1) (higher is better). A named entity is correct only if it is an exact match of the corresponding entity in the data.
|
99 |
+
|
100 |
+
### Languages
|
101 |
+
|
102 |
+
There are 20 languages available :
|
103 |
+
- Bambara (bam)
|
104 |
+
- Ghomala (bbj)
|
105 |
+
- Ewe (ewe)
|
106 |
+
- Fon (fon)
|
107 |
+
- Hausa (hau)
|
108 |
+
- Igbo (ibo)
|
109 |
+
- Kinyarwanda (kin)
|
110 |
+
- Luganda (lug)
|
111 |
+
- Dholuo (luo)
|
112 |
+
- Mossi (mos)
|
113 |
+
- Chichewa (nya)
|
114 |
+
- Nigerian Pidgin
|
115 |
+
- chShona (sna)
|
116 |
+
- Kiswahili (swą)
|
117 |
+
- Setswana (tsn)
|
118 |
+
- Twi (twi)
|
119 |
+
- Wolof (wol)
|
120 |
+
- isiXhosa (xho)
|
121 |
+
- Yorùbá (yor)
|
122 |
+
- isiZulu (zul)
|
123 |
+
|
124 |
+
## Dataset Structure
|
125 |
+
|
126 |
+
### Data Instances
|
127 |
+
|
128 |
+
The examples look like this for Yorùbá:
|
129 |
+
|
130 |
+
```
|
131 |
+
from datasets import load_dataset
|
132 |
+
data = load_dataset('masakhaner', 'yor')
|
133 |
+
|
134 |
+
# Please, specify the language code
|
135 |
+
|
136 |
+
# A data point consists of sentences seperated by empty line and tab-seperated tokens and tags.
|
137 |
+
{'id': '0',
|
138 |
+
'ner_tags': [B-DATE, I-DATE, 0, 0, 0, 0, 0, B-PER, I-PER, I-PER, O, O, O, O],
|
139 |
+
'tokens': ['Wákàtí', 'méje', 'ti', 'ré', 'kọjá', 'lọ', 'tí', 'Luis', 'Carlos', 'Díaz', 'ti', 'di', 'awati', '.']
|
140 |
+
}
|
141 |
+
```
|
142 |
+
|
143 |
+
### Data Fields
|
144 |
+
|
145 |
+
- `id`: id of the sample
|
146 |
+
- `tokens`: the tokens of the example text
|
147 |
+
- `ner_tags`: the NER tags of each token
|
148 |
+
|
149 |
+
The NER tags correspond to this list:
|
150 |
+
```
|
151 |
+
"O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-DATE", "I-DATE",
|
152 |
+
```
|
153 |
+
|
154 |
+
In the NER tags, a B denotes the first item of a phrase and an I any non-initial word. There are four types of phrases: person names (PER), organizations (ORG), locations (LOC) and dates & time (DATE).
|
155 |
+
|
156 |
+
It is assumed that named entities are non-recursive and non-overlapping. In case a named entity is embedded in another named entity usually, only the top level entity is marked.
|
157 |
+
|
158 |
+
### Data Splits
|
159 |
+
|
160 |
+
For all languages, there are three splits.
|
161 |
+
|
162 |
+
The original splits were named `train`, `dev` and `test` and they correspond to the `train`, `validation` and `test` splits.
|
163 |
+
|
164 |
+
The splits have the following sizes :
|
165 |
+
|
166 |
+
| Language | train | validation | test |
|
167 |
+
|-----------------|------:|-----------:|------:|
|
168 |
+
| Bambara | 4463 | 638 | 1274 |
|
169 |
+
| Ghomala | 3384 | 483 | 966 |
|
170 |
+
| Ewe | 3505 | 501 | 1001 |
|
171 |
+
| Fon. | 4343 | 621 | 1240 |
|
172 |
+
| Hausa | 5716 | 816 | 1633 |
|
173 |
+
| Igbo | 7634 | 1090 | 2181 |
|
174 |
+
| Kinyarwanda | 7825 | 1118 | 2235 |
|
175 |
+
| Luganda | 4942 | 706 | 1412 |
|
176 |
+
| Luo | 5161 | 737 | 1474 |
|
177 |
+
| Mossi | 4532 | 648 | 1613 |
|
178 |
+
| Nigerian-Pidgin | 5646 | 806 | 1294 |
|
179 |
+
| Chichewa | 6250 | 893 | 1785 |
|
180 |
+
| chiShona | 6207 | 887 | 1773 |
|
181 |
+
| Kiswahili | 6593 | 942 | 1883 |
|
182 |
+
| Setswana | 3289 | 499 | 996 |
|
183 |
+
| Akan/Twi | 4240 | 605 | 1211 |
|
184 |
+
| Wolof | 4593 | 656 | 1312 |
|
185 |
+
| isiXhosa | 5718 | 817 | 1633 |
|
186 |
+
| Yoruba | 6877 | 983 | 1964 |
|
187 |
+
| isiZulu | 5848 | 836 | 1670 |
|
188 |
+
|
189 |
+
## Dataset Creation
|
190 |
+
|
191 |
+
### Curation Rationale
|
192 |
+
|
193 |
+
The dataset was introduced to introduce new resources to ten languages that were under-served for natural language processing.
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
### Source Data
|
198 |
+
|
199 |
+
The source of the data is from the news domain, details can be found here https://arxiv.org/abs/2103.11811
|
200 |
+
|
201 |
+
#### Initial Data Collection and Normalization
|
202 |
+
|
203 |
+
The articles were word-tokenized, information on the exact pre-processing pipeline is unavailable.
|
204 |
+
|
205 |
+
#### Who are the source language producers?
|
206 |
+
|
207 |
+
The source language was produced by journalists and writers employed by the news agency and newspaper mentioned above.
|
208 |
+
|
209 |
+
### Annotations
|
210 |
+
|
211 |
+
#### Annotation process
|
212 |
+
|
213 |
+
Details can be found here https://arxiv.org/abs/2103.11811
|
214 |
+
|
215 |
+
#### Who are the annotators?
|
216 |
+
|
217 |
+
Annotators were recruited from [Masakhane](https://www.masakhane.io/)
|
218 |
+
|
219 |
+
### Personal and Sensitive Information
|
220 |
+
|
221 |
+
The data is sourced from newspaper source and only contains mentions of public figures or individuals
|
222 |
+
|
223 |
+
## Considerations for Using the Data
|
224 |
+
|
225 |
+
### Social Impact of Dataset
|
226 |
+
[More Information Needed]
|
227 |
+
|
228 |
+
|
229 |
+
### Discussion of Biases
|
230 |
+
[More Information Needed]
|
231 |
+
|
232 |
+
|
233 |
+
### Other Known Limitations
|
234 |
+
|
235 |
+
Users should keep in mind that the dataset only contains news text, which might limit the applicability of the developed systems to other domains.
|
236 |
+
|
237 |
+
## Additional Information
|
238 |
+
|
239 |
+
### Dataset Curators
|
240 |
+
|
241 |
+
|
242 |
+
### Licensing Information
|
243 |
+
|
244 |
+
The licensing status of the data is CC 4.0 Non-Commercial
|
245 |
+
|
246 |
+
### Citation Information
|
247 |
+
|
248 |
+
Provide the [BibTex](http://www.bibtex.org/)-formatted reference for the dataset. For example:
|
249 |
+
```
|
250 |
+
@article{Adelani2022MasakhaNER2A,
|
251 |
+
title={MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity Recognition},
|
252 |
+
author={David Ifeoluwa Adelani and Graham Neubig and Sebastian Ruder and Shruti Rijhwani and Michael Beukman and Chester Palen-Michel and Constantine Lignos and Jesujoba Oluwadara Alabi and Shamsuddeen Hassan Muhammad and Peter Nabende and Cheikh M. Bamba Dione and Andiswa Bukula and Rooweither Mabuya and Bonaventure F. P. Dossou and Blessing K. Sibanda and Happy Buzaaba and Jonathan Mukiibi and Godson Kalipe and Derguene Mbaye and Amelia Taylor and Fatoumata Kabore and Chris C. Emezue and Anuoluwapo Aremu and Perez Ogayo and Catherine W. Gitau and Edwin Munkoh-Buabeng and Victoire Memdjokam Koagne and Allahsera Auguste Tapo and Tebogo Macucwa and Vukosi Marivate and Elvis Mboning and Tajuddeen R. Gwadabe and Tosin P. Adewumi and Orevaoghene Ahia and Joyce Nakatumba-Nabende and Neo L. Mokono and Ignatius M Ezeani and Chiamaka Ijeoma Chukwuneke and Mofetoluwa Adeyemi and Gilles Hacheme and Idris Abdulmumin and Odunayo Ogundepo and Oreen Yousuf and Tatiana Moteu Ngoli and Dietrich Klakow},
|
253 |
+
journal={ArXiv},
|
254 |
+
year={2022},
|
255 |
+
volume={abs/2210.12391}
|
256 |
+
}
|
257 |
+
```
|
258 |
+
|
259 |
+
### Contributions
|
260 |
+
|
261 |
+
Thanks to [@dadelani](https://github.com/dadelani) for adding this dataset.
|
masakhaner2.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""MasakhaNER: Named Entity Recognition for African Languages"""
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
|
22 |
+
logger = datasets.logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@article{Adelani2022MasakhaNER2A,
|
27 |
+
title={MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity Recognition},
|
28 |
+
author={David Ifeoluwa Adelani and Graham Neubig and Sebastian Ruder and Shruti Rijhwani and Michael Beukman and Chester Palen-Michel and Constantine Lignos and Jesujoba Oluwadara Alabi and Shamsuddeen Hassan Muhammad and Peter Nabende and Cheikh M. Bamba Dione and Andiswa Bukula and Rooweither Mabuya and Bonaventure F. P. Dossou and Blessing K. Sibanda and Happy Buzaaba and Jonathan Mukiibi and Godson Kalipe and Derguene Mbaye and Amelia Taylor and Fatoumata Kabore and Chris C. Emezue and Anuoluwapo Aremu and Perez Ogayo and Catherine W. Gitau and Edwin Munkoh-Buabeng and Victoire Memdjokam Koagne and Allahsera Auguste Tapo and Tebogo Macucwa and Vukosi Marivate and Elvis Mboning and Tajuddeen R. Gwadabe and Tosin P. Adewumi and Orevaoghene Ahia and Joyce Nakatumba-Nabende and Neo L. Mokono and Ignatius M Ezeani and Chiamaka Ijeoma Chukwuneke and Mofetoluwa Adeyemi and Gilles Hacheme and Idris Abdulmumin and Odunayo Ogundepo and Oreen Yousuf and Tatiana Moteu Ngoli and Dietrich Klakow},
|
29 |
+
journal={ArXiv},
|
30 |
+
year={2022},
|
31 |
+
volume={abs/2210.12391}
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
MasakhaNER 2.0 is the largest publicly available high-quality dataset for named entity recognition (NER) in 20 African languages.
|
37 |
+
|
38 |
+
Named entities are phrases that contain the names of persons, organizations, locations, times and quantities.
|
39 |
+
|
40 |
+
Example:
|
41 |
+
[PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] .
|
42 |
+
MasakhaNER is a named entity dataset consisting of PER, ORG, LOC, and DATE entities annotated by Masakhane for 20 African languages:
|
43 |
+
- Bambara (bam)
|
44 |
+
- Ghomala (bbj)
|
45 |
+
- Ewe (ewe)
|
46 |
+
- Fon (fon)
|
47 |
+
- Hausa (hau)
|
48 |
+
- Igbo (ibo)
|
49 |
+
- Kinyarwanda (kin)
|
50 |
+
- Luganda (lug)
|
51 |
+
- Dholuo (luo)
|
52 |
+
- Mossi (mos)
|
53 |
+
- Chichewa (nya)
|
54 |
+
- Nigerian Pidgin
|
55 |
+
- chShona (sna)
|
56 |
+
- Kiswahili (swą)
|
57 |
+
- Setswana (tsn)
|
58 |
+
- Twi (twi)
|
59 |
+
- Wolof (wol)
|
60 |
+
- isiXhosa (xho)
|
61 |
+
- Yorùbá (yor)
|
62 |
+
- isiZulu (zul)
|
63 |
+
|
64 |
+
The train/validation/test sets are available for all the ten languages.
|
65 |
+
|
66 |
+
For more details see https://arxiv.org/abs/2103.11811
|
67 |
+
"""
|
68 |
+
|
69 |
+
_URL = "https://github.com/masakhane-io/masakhane-ner/raw/main/MasakhaNER2.0/data/"
|
70 |
+
_TRAINING_FILE = "train.txt"
|
71 |
+
_DEV_FILE = "dev.txt"
|
72 |
+
_TEST_FILE = "test.txt"
|
73 |
+
|
74 |
+
|
75 |
+
class MasakhanerConfig(datasets.BuilderConfig):
|
76 |
+
"""BuilderConfig for Masakhaner"""
|
77 |
+
|
78 |
+
def __init__(self, **kwargs):
|
79 |
+
"""BuilderConfig for Masakhaner.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
**kwargs: keyword arguments forwarded to super.
|
83 |
+
"""
|
84 |
+
super(MasakhanerConfig, self).__init__(**kwargs)
|
85 |
+
|
86 |
+
|
87 |
+
class Masakhaner(datasets.GeneratorBasedBuilder):
|
88 |
+
"""Masakhaner dataset."""
|
89 |
+
|
90 |
+
BUILDER_CONFIGS = [
|
91 |
+
MasakhanerConfig(name="bam", version=datasets.Version("1.0.0"), description="Masakhaner Bambara dataset"),
|
92 |
+
MasakhanerConfig(name="bbj", version=datasets.Version("1.0.0"), description="Masakhaner Ghomala dataset"),
|
93 |
+
MasakhanerConfig(name="ewe", version=datasets.Version("1.0.0"), description="Masakhaner Ewe dataset"),
|
94 |
+
MasakhanerConfig(name="fon", version=datasets.Version("1.0.0"), description="Masakhaner Fon dataset"),
|
95 |
+
MasakhanerConfig(name="hau", version=datasets.Version("1.0.0"), description="Masakhaner Hausa dataset"),
|
96 |
+
MasakhanerConfig(name="ibo", version=datasets.Version("1.0.0"), description="Masakhaner Igbo dataset"),
|
97 |
+
MasakhanerConfig(name="kin", version=datasets.Version("1.0.0"), description="Masakhaner Kinyarwanda dataset"),
|
98 |
+
MasakhanerConfig(name="lug", version=datasets.Version("1.0.0"), description="Masakhaner Luganda dataset"),
|
99 |
+
MasakhanerConfig(name="mos", version=datasets.Version("1.0.0"), description="Masakhaner Mossi dataset"),
|
100 |
+
MasakhanerConfig(name="nya", version=datasets.Version("1.0.0"), description="Masakhaner Chichewa` dataset"),
|
101 |
+
MasakhanerConfig(
|
102 |
+
name="pcm", version=datasets.Version("1.0.0"), description="Masakhaner Nigerian-Pidgin dataset"
|
103 |
+
),
|
104 |
+
MasakhanerConfig(name="sna", version=datasets.Version("1.0.0"), description="Masakhaner Shona dataset"),
|
105 |
+
MasakhanerConfig(name="swa", version=datasets.Version("1.0.0"), description="Masakhaner Swahili dataset"),
|
106 |
+
MasakhanerConfig(name="tsn", version=datasets.Version("1.0.0"), description="Masakhaner Setswana dataset"),
|
107 |
+
MasakhanerConfig(name="twi", version=datasets.Version("1.0.0"), description="Masakhaner Twi dataset"),
|
108 |
+
MasakhanerConfig(name="wol", version=datasets.Version("1.0.0"), description="Masakhaner Wolof dataset"),
|
109 |
+
MasakhanerConfig(name="xho", version=datasets.Version("1.0.0"), description="Masakhaner Xhosa dataset"),
|
110 |
+
MasakhanerConfig(name="yor", version=datasets.Version("1.0.0"), description="Masakhaner Yoruba dataset"),
|
111 |
+
MasakhanerConfig(name="zul", version=datasets.Version("1.0.0"), description="Masakhaner Zulu dataset"),
|
112 |
+
]
|
113 |
+
|
114 |
+
def _info(self):
|
115 |
+
return datasets.DatasetInfo(
|
116 |
+
description=_DESCRIPTION,
|
117 |
+
features=datasets.Features(
|
118 |
+
{
|
119 |
+
"id": datasets.Value("string"),
|
120 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
121 |
+
"ner_tags": datasets.Sequence(
|
122 |
+
datasets.features.ClassLabel(
|
123 |
+
names=[
|
124 |
+
"O",
|
125 |
+
"B-PER",
|
126 |
+
"I-PER",
|
127 |
+
"B-ORG",
|
128 |
+
"I-ORG",
|
129 |
+
"B-LOC",
|
130 |
+
"I-LOC",
|
131 |
+
"B-DATE",
|
132 |
+
"I-DATE",
|
133 |
+
]
|
134 |
+
)
|
135 |
+
),
|
136 |
+
}
|
137 |
+
),
|
138 |
+
supervised_keys=None,
|
139 |
+
homepage="https://arxiv.org/abs/2210.12391",
|
140 |
+
citation=_CITATION,
|
141 |
+
)
|
142 |
+
|
143 |
+
def _split_generators(self, dl_manager):
|
144 |
+
"""Returns SplitGenerators."""
|
145 |
+
urls_to_download = {
|
146 |
+
"train": f"{_URL}{self.config.name}/{_TRAINING_FILE}",
|
147 |
+
"dev": f"{_URL}{self.config.name}/{_DEV_FILE}",
|
148 |
+
"test": f"{_URL}{self.config.name}/{_TEST_FILE}",
|
149 |
+
}
|
150 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
151 |
+
|
152 |
+
return [
|
153 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
154 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
155 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
156 |
+
]
|
157 |
+
|
158 |
+
def _generate_examples(self, filepath):
|
159 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
160 |
+
with open(filepath, encoding="utf-8") as f:
|
161 |
+
guid = 0
|
162 |
+
tokens = []
|
163 |
+
ner_tags = []
|
164 |
+
for line in f:
|
165 |
+
if line == "" or line == "\n":
|
166 |
+
if tokens:
|
167 |
+
yield guid, {
|
168 |
+
"id": str(guid),
|
169 |
+
"tokens": tokens,
|
170 |
+
"ner_tags": ner_tags,
|
171 |
+
}
|
172 |
+
guid += 1
|
173 |
+
tokens = []
|
174 |
+
ner_tags = []
|
175 |
+
else:
|
176 |
+
# Masakhaner tokens are space separated
|
177 |
+
splits = line.split(" ")
|
178 |
+
tokens.append(splits[0])
|
179 |
+
ner_tags.append(splits[1].rstrip())
|
180 |
+
# last example
|
181 |
+
if tokens:
|
182 |
+
yield guid, {
|
183 |
+
"id": str(guid),
|
184 |
+
"tokens": tokens,
|
185 |
+
"ner_tags": ner_tags,
|
186 |
+
}
|