File size: 4,746 Bytes
e9f2b29
28b075f
 
 
 
 
 
 
3070687
28b075f
 
 
 
fd92f46
28b075f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9f2b29
28b075f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license:
- other
pretty_name: >-
  python copilot ai research coding dataset
dataset_info:
- config_name: view_schema
  splits:
  - name: view_schema
configs:
- config_name: view_schema
  data_files:
  - split: view_schema
    path: files/lok-python-code-ai-core-v1_00000002.parquet
size_categories:
- 100K<n<1M
tags:
- python-copilot
- python-coding
- fine-tuning
- training
- alpaca
- text
- coding
# supported task_categories
# text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, conversational, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, other
task_categories:
- text-generation
# supported task_ids
# acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-generation, dialogue-modeling, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering
task_ids:
- parsing
---

## Python Copilot AI Research Coding Dataset

This dataset is a subset of the matlok python copilot datasets. Please refer to the [Multimodal Python Copilot Training Overview](https://huggingface.co/datasets/matlok/multimodal-python-copilot-training-overview) for more details on how to use this dataset.

### Details

Each row contains python code, either a class method or a global function, imported modules, base classes (if any), exceptions (ordered based off the code), returns (ordered based off the code), arguments (ordered based off the code), and more.

- Rows: 514430
- Size: 674 MB
- Data type: text
- Format: Extracted code using python AST

### Schema

```json
{
    "args": "string",
    "class_bases": "string",
    "class_docstr": "string",
    "class_docstr_tok": "string",
    "class_name": "string",
    "code": "string",
    "code_tok": "string",
    "docstr": "string",
    "docstr_tok": "string",
    "file_path": "string",
    "filename": "string",
    "imports": "string",
    "is_member": "bool",
    "label_desc": "string",
    "label_desc_len": "int64",
    "label_id": "string",
    "lend": "int64",
    "lstart": "int64",
    "name": "string",
    "num_all_bases": "float64",
    "num_bases": "float64",
    "num_classes": "float64",
    "num_functions": "int64",
    "num_imports": "int64",
    "num_methods": "float64",
    "raises": "string",
    "returns": "string",
    "total_objects": "int64"
}
```

### How to use the dataset

```python
from datasets import load_dataset

ds = load_dataset("matlok/python-copilot-training-on-ai-research-repos", data_dir="files")
```