sefaria / scrape_script.py
tomersagi's picture
added cleaning processes: html markup removal, skip non en/he languages
0f77462
raw
history blame
3.51 kB
import os
import sys
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
import json
import re
from langdetect import detect
def traverse_directory(root_path, callback):
for dirpath, _, filenames in os.walk(root_path):
for filename in filenames:
file_path = os.path.join(dirpath, filename)
callback(file_path)
def process_file(file_path):
if not file_path.endswith(".txt"):
return
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
dirname = os.path.dirname(file_path)
dir_name = os.path.basename(dirname)
top_level_directory = os.path.relpath(dirname, root_directory).split(os.sep)[0]
if dir_name.lower() == "english":
append_to_parquet(content, file_path, "en", top_level_directory)
elif dir_name.lower() == "hebrew":
append_to_parquet(content, file_path, "he", top_level_directory)
def append_to_parquet(content, file_path, lang, top_level_directory, data_dir = "data"):
if not os.path.exists(data_dir):
os.makedirs(data_dir)
if lang == "en":
parquet_file = os.path.join(data_dir, f"train_{top_level_directory}_english.parquet")
elif lang == "he":
parquet_file = os.path.join(data_dir, f"train_{top_level_directory}_hebrew.parquet")
else:
return
# Check if file_path ends with the pattern [xx].txt
file_pattern = re.search(r'\[[a-zA-Z]{2}\]\.txt$', file_path)
if file_pattern:
print(f"Warning: File '{file_path}' was skipped due to the detected [xy] pattern.")
return
# Check if the content is in English when lang is "en"
if lang == "en":
sample_text = content[:500] if len(content) > 500 else content
detected_lang = detect(sample_text)
if detected_lang != 'en' and detected_lang != 'id':
print(f"Warning: Non-English content detected in file '{file_path}'. Detected language: {detected_lang}")
return
# Apply cleaning rules
content = re.sub(r'<(?:span|b|big|small|strong|br|sup[^>]*)[^>]*>|</(?:span|b|big|small|strong|sup)>', '', content) # Remove HTML tags
content = re.sub(r'https?://\S+', '', content) # Remove HTML links
# Remove Hebrew cantillation marks
if lang == "he":
content = re.sub(r'[\u0591-\u05AF]', '', content)
# Remove chapter markers
chapter_markers = ['Chapter', 'Halakhah','Siman','Mitzvah']
for marker in chapter_markers:
content = re.sub(rf'^{marker} +\d+$', '', content, flags=re.MULTILINE)
metadata = {"file": file_path}
meta_json = json.dumps(metadata)
data = pd.DataFrame({"meta": [meta_json], "text": [content]})
table = pa.Table.from_pandas(data)
if not os.path.exists(parquet_file) or os.path.getsize(parquet_file) == 0:
with pq.ParquetWriter(parquet_file, table.schema, compression="snappy") as writer:
writer.write_table(table)
else:
pf = pq.ParquetFile(parquet_file)
old_table = pf.read()
combined_table = pa.concat_tables([old_table, table])
with pq.ParquetWriter(parquet_file, combined_table.schema, compression="snappy") as writer:
writer.write_table(combined_table)
print(f"Successfully saved: {file_path}")
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Usage: python script.py <root_directory_path>")
sys.exit(1)
root_directory = sys.argv[1]
traverse_directory(root_directory, process_file)