init data
Browse files- data/Mishnah_english.parquet +3 -0
- data/Mishnah_hebrew.parquet +3 -0
- data/Talmud_english.parquet +3 -0
- data/Talmud_hebrew.parquet +3 -0
- scrape_script.py +72 -0
- sefaria.py +82 -0
data/Mishnah_english.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c370361d5bc54750bd0657840e8b5c71270122f09169f0fcabc0065bffd1cc7b
|
3 |
+
size 7291639
|
data/Mishnah_hebrew.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:477612cd11799ac1103055438a5e56fe774be5595bf5e96848678cca09645aee
|
3 |
+
size 88534468
|
data/Talmud_english.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14c0a6e0ac18c3efc20b6f8f2a06347f4baa101158d68d2c764a44c546a8842d
|
3 |
+
size 50222575
|
data/Talmud_hebrew.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:751245b158e12fb0a9c27f731df216df0d3de9f5b4161a3184ac85144dcaeb80
|
3 |
+
size 294414866
|
scrape_script.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import pandas as pd
|
4 |
+
import pyarrow as pa
|
5 |
+
import pyarrow.parquet as pq
|
6 |
+
import json
|
7 |
+
|
8 |
+
|
9 |
+
def traverse_directory(root_path, callback):
|
10 |
+
for dirpath, _, filenames in os.walk(root_path):
|
11 |
+
for filename in filenames:
|
12 |
+
file_path = os.path.join(dirpath, filename)
|
13 |
+
callback(file_path)
|
14 |
+
|
15 |
+
|
16 |
+
def process_file(file_path):
|
17 |
+
if not file_path.endswith(".txt"):
|
18 |
+
return
|
19 |
+
|
20 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
21 |
+
content = file.read()
|
22 |
+
|
23 |
+
dirname = os.path.dirname(file_path)
|
24 |
+
dir_name = os.path.basename(dirname)
|
25 |
+
top_level_directory = os.path.relpath(dirname, root_directory).split(os.sep)[0]
|
26 |
+
|
27 |
+
if dir_name.lower() == "english":
|
28 |
+
append_to_parquet(content, file_path, "en", top_level_directory)
|
29 |
+
elif dir_name.lower() == "hebrew":
|
30 |
+
append_to_parquet(content, file_path, "he", top_level_directory)
|
31 |
+
|
32 |
+
|
33 |
+
def append_to_parquet(content, file_path, lang, top_level_directory):
|
34 |
+
data_dir = "data"
|
35 |
+
if not os.path.exists(data_dir):
|
36 |
+
os.makedirs(data_dir)
|
37 |
+
|
38 |
+
if lang == "en":
|
39 |
+
parquet_file = os.path.join(data_dir, f"{top_level_directory}_english.parquet")
|
40 |
+
elif lang == "he":
|
41 |
+
parquet_file = os.path.join(data_dir, f"{top_level_directory}_hebrew.parquet")
|
42 |
+
else:
|
43 |
+
return
|
44 |
+
|
45 |
+
metadata = {"file": file_path}
|
46 |
+
meta_json = json.dumps(metadata)
|
47 |
+
|
48 |
+
data = pd.DataFrame({"meta": [meta_json], "text": [content]})
|
49 |
+
table = pa.Table.from_pandas(data)
|
50 |
+
|
51 |
+
if not os.path.exists(parquet_file) or os.path.getsize(parquet_file) == 0:
|
52 |
+
with pq.ParquetWriter(parquet_file, table.schema, compression="snappy") as writer:
|
53 |
+
writer.write_table(table)
|
54 |
+
else:
|
55 |
+
pf = pq.ParquetFile(parquet_file)
|
56 |
+
old_table = pf.read()
|
57 |
+
combined_table = pa.concat_tables([old_table, table])
|
58 |
+
|
59 |
+
with pq.ParquetWriter(parquet_file, combined_table.schema, compression="snappy") as writer:
|
60 |
+
writer.write_table(combined_table)
|
61 |
+
|
62 |
+
print(f"Successfully saved: {file_path}")
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == "__main__":
|
66 |
+
if len(sys.argv) != 2:
|
67 |
+
print("Usage: python script.py <root_directory_path>")
|
68 |
+
sys.exit(1)
|
69 |
+
|
70 |
+
root_directory = sys.argv[1]
|
71 |
+
traverse_directory(root_directory, process_file)
|
72 |
+
|
sefaria.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
_CITATION = """\
|
7 |
+
@misc{shmidman2022introducing,
|
8 |
+
title={Introducing BEREL: BERT Embeddings for Rabbinic-Encoded Language},
|
9 |
+
author={Avi Shmidman and Joshua Guedalia and Shaltiel Shmidman and Cheyn Shmuel Shmidman and Eli Handel and Moshe Koppel},
|
10 |
+
year={2022},
|
11 |
+
eprint={2208.01875},
|
12 |
+
archivePrefix={arXiv},
|
13 |
+
primaryClass={cs.CL}
|
14 |
+
}
|
15 |
+
"""
|
16 |
+
|
17 |
+
_DESCRIPTION = """\
|
18 |
+
This Dataset is a Hugging Face Reflection of the Sefaria Database.
|
19 |
+
The following is the description of Sefaria from the sefaria.org website:
|
20 |
+
|
21 |
+
Sefaria is home to 3,000 years of Jewish texts. We are a non-profit organization
|
22 |
+
offering free access to texts, translations, and commentaries so that everyone
|
23 |
+
can participate in the ongoing process of studying, interpreting, and creating Torah
|
24 |
+
"""
|
25 |
+
|
26 |
+
_HOMEPAGE = "https://github.com/Sefaria/Sefaria-Export"
|
27 |
+
_LICENSE = "Each text is licensed separately, so there is no overall license for this repository."
|
28 |
+
|
29 |
+
class Sefaria(datasets.GeneratorBasedBuilder):
|
30 |
+
VERSION = datasets.Version("1.0.0")
|
31 |
+
|
32 |
+
BUILDER_CONFIGS = [
|
33 |
+
datasets.BuilderConfig(name="english", version=VERSION, description="This configuration contains only English texts"),
|
34 |
+
datasets.BuilderConfig(name="hebrew", version=VERSION, description="This configuration contains only Hebrew texts"),
|
35 |
+
datasets.BuilderConfig(name="all", version=VERSION, description="This configuration contains both English and Hebrew texts"),
|
36 |
+
]
|
37 |
+
|
38 |
+
DEFAULT_CONFIG_NAME = "all"
|
39 |
+
|
40 |
+
def _info(self):
|
41 |
+
features = datasets.Features(
|
42 |
+
{
|
43 |
+
"text": datasets.Value("string"),
|
44 |
+
"meta": datasets.Value("string")
|
45 |
+
}
|
46 |
+
)
|
47 |
+
return datasets.DatasetInfo(
|
48 |
+
description=_DESCRIPTION,
|
49 |
+
features=features,
|
50 |
+
homepage=_HOMEPAGE,
|
51 |
+
license=_LICENSE,
|
52 |
+
citation=_CITATION,
|
53 |
+
)
|
54 |
+
|
55 |
+
def _split_generators(self, dl_manager):
|
56 |
+
data_dir = "data"
|
57 |
+
|
58 |
+
if self.config.name == "english":
|
59 |
+
filepaths = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith("_english.parquet")]
|
60 |
+
elif self.config.name == "hebrew":
|
61 |
+
filepaths = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith("_hebrew.parquet")]
|
62 |
+
else:
|
63 |
+
filepaths = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith(".parquet")]
|
64 |
+
|
65 |
+
return [
|
66 |
+
datasets.SplitGenerator(
|
67 |
+
name=datasets.Split.TRAIN,
|
68 |
+
gen_kwargs={
|
69 |
+
"filepaths": filepaths,
|
70 |
+
},
|
71 |
+
),
|
72 |
+
]
|
73 |
+
|
74 |
+
def _generate_examples(self, filepaths):
|
75 |
+
for filepath in filepaths:
|
76 |
+
df = pd.read_parquet(filepath)
|
77 |
+
for idx, row in df.iterrows():
|
78 |
+
yield idx, {
|
79 |
+
"text": row["text"],
|
80 |
+
"language": row["language"],
|
81 |
+
}
|
82 |
+
|