Upload hlm-dataset-README.md
Browse files- hlm-dataset-README.md +71 -0
hlm-dataset-README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1
|
3 |
+
# Doc / guide: https://huggingface.co/docs/hub/datasets-cards
|
4 |
+
{}
|
5 |
+
---
|
6 |
+
|
7 |
+
# Dataset Card for `hlm-paraphrase-multilingual-mpnet-base-v2`
|
8 |
+
|
9 |
+
### Dataset Summary
|
10 |
+
|
11 |
+
Chromadb vectorstore for 红楼梦, created with
|
12 |
+
```
|
13 |
+
import os
|
14 |
+
from langchain.document_loaders import TextLoader
|
15 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
16 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
17 |
+
from langchain.vectorstores import Chroma
|
18 |
+
|
19 |
+
model_name = 'paraphrase-multilingual-mpnet-base-v2'
|
20 |
+
embedding = SentenceTransformerEmbeddings(model_name=model_name)
|
21 |
+
|
22 |
+
url = 'https://raw.githubusercontent.com/ffreemt/multilingual-dokugpt/master/docs/hlm.txt'
|
23 |
+
os.system(f'wget -c {url}')
|
24 |
+
doc = TextLoader('hlm.txt').load()
|
25 |
+
|
26 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
27 |
+
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
|
28 |
+
chunk_size=620,
|
29 |
+
chunk_overlap=60,
|
30 |
+
length_function=len
|
31 |
+
)
|
32 |
+
|
33 |
+
doc_chunks = text_splitter.split_documents(doc)
|
34 |
+
client_settings = Settings(chroma_db_impl="duckdb+parquet", anonymized_telemetry=False, persist_directory='db')
|
35 |
+
|
36 |
+
# takes 8-20 minutes on CPU
|
37 |
+
vectorstore = Chroma.from_documents(
|
38 |
+
documents=doc_chunks,
|
39 |
+
embedding=embedding,
|
40 |
+
persist_directory='db',
|
41 |
+
client_settings=client_settings,
|
42 |
+
)
|
43 |
+
vectorstore.persist()
|
44 |
+
```
|
45 |
+
|
46 |
+
### How to use
|
47 |
+
|
48 |
+
Download the files to a local directory, e.g., `db`
|
49 |
+
|
50 |
+
|
51 |
+
```python
|
52 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
53 |
+
from langchain.vectorstores import Chroma
|
54 |
+
from chromadb.config import Settings
|
55 |
+
|
56 |
+
model_name = 'paraphrase-multilingual-mpnet-base-v2'
|
57 |
+
embedding = SentenceTransformerEmbeddings(model_name=model_name)
|
58 |
+
|
59 |
+
path_to_db_parent = '...'
|
60 |
+
client_settings = Settings(chroma_db_impl="duckdb+parquet", anonymized_telemetry=False, persist_directory=f'{path_to_db_parent}/db')
|
61 |
+
|
62 |
+
db = Chroma(
|
63 |
+
# persist_directory='docs',
|
64 |
+
embedding_function=embedding,
|
65 |
+
client_settings=client_settings,
|
66 |
+
)
|
67 |
+
|
68 |
+
res = db.search("红楼梦主线", search_type="similarity", k=2)
|
69 |
+
print(res)
|
70 |
+
# [Document(page_content='通灵宝玉正面图式\u3000通灵宝玉反面图式\n\n\n\n玉宝灵通\u3000\u3000\u3000\u3000\u3000三二一\n\n仙莫\u3000\u3000\u3000\u3000\u3000\u3000知疗除\n\n寿失\u3000\u3000\u3000\u3000\u3000\u3000祸冤邪\n\n恒莫\u3000\u3000\u3000\u3000\u3000\u3000福疾崇\n\n昌忘\n\n\n\n宝钗看毕,【甲戌双行。。。
|
71 |
+
```
|