File size: 4,445 Bytes
d258b9f
 
7b60efa
876fa24
d258b9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b60efa
 
 
d258b9f
 
 
876fa24
d258b9f
 
 
 
 
 
583fb2d
d258b9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4699640
 
 
 
 
 
 
 
 
583fb2d
 
 
 
 
 
7b60efa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import datasets
from datasets.download.download_manager import DownloadManager
import pyarrow.parquet as pq
import json

_DESCRIPTION = """\
The Weibo NER dataset is a Chinese Named Entity Recognition dataset 
drawn from the social media website Sina Weibo.
"""

_CITATION = """\
@inproceedings{peng-dredze-2015-named,
    title = "Named Entity Recognition for {C}hinese 
        Social Media with Jointly Trained Embeddings",
    author = "Peng, Nanyun  and Dredze, Mark",
    booktitle = "Proceedings of the 2015 Conference on 
        Empirical Methods in Natural Language Processing",
    month = sep,
    year = "2015",
    address = "Lisbon, Portugal",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D15-1064",
    doi = "10.18653/v1/D15-1064",
    pages = "548--554",
}
"""

_URL = "https://huggingface.co/datasets/minskiter/weibo/resolve/main/"
_URLS = {
    "train": _URL + "data/train.parquet",
    "validation": _URL + "data/validation.parquet",
    "test": _URL + "data/test.parquet",
}

class WeiboNamedEntities(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "text": datasets.Sequence(datasets.Value("string")),
                    "labels": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                'O',
                                'B-PER.NAM',
                                'I-PER.NAM',
                                'E-PER.NAM',
                                'S-PER.NAM',
                                'B-ORG.NAM',
                                'I-ORG.NAM',
                                'E-ORG.NAM',
                                'S-ORG.NAM',
                                'B-LOC.NAM',
                                'I-LOC.NAM',
                                'E-LOC.NAM',
                                'S-LOC.NAM',
                                'B-GPE.NAM',
                                'I-GPE.NAM',
                                'E-GPE.NAM',
                                'S-GPE.NAM',
                                'B-PER.NOM',
                                'I-PER.NOM',
                                'E-PER.NOM',
                                'S-PER.NOM',
                                'B-ORG.NOM',
                                'I-ORG.NOM',
                                'E-ORG.NOM',
                                'S-ORG.NOM',
                                'B-LOC.NOM',
                                'I-LOC.NOM',
                                'E-LOC.NOM',
                                'S-LOC.NOM',
                                'B-GPE.NOM',
                                'I-GPE.NOM',
                                'E-GPE.NOM',
                                'S-GPE.NOM',
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://aclanthology.org/D15-1064/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: DownloadManager):
        urls_to_download = _URLS
        download_files = dl_manager.download_and_extract(urls_to_download)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": download_files["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": download_files["validation"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": download_files["test"]},
            ),
        ]

    def _generate_examples(self, filepath):
        # fix: https://discuss.huggingface.co/t/dataset-preview-error-with-a-dataset-script-and-parquet-files/43160
        with open(filepath, "rb") as f:
            with pq.ParquetFile(f) as file:
                _id = -1
                for i in file.iter_batches(batch_size=64):
                    rows = i.to_pylist()
                    for row in rows:
                        _id+=1
                        yield _id, row