File size: 4,445 Bytes
d258b9f 7b60efa 876fa24 d258b9f 7b60efa d258b9f 876fa24 d258b9f 583fb2d d258b9f 4699640 583fb2d 7b60efa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import datasets
from datasets.download.download_manager import DownloadManager
import pyarrow.parquet as pq
import json
_DESCRIPTION = """\
The Weibo NER dataset is a Chinese Named Entity Recognition dataset
drawn from the social media website Sina Weibo.
"""
_CITATION = """\
@inproceedings{peng-dredze-2015-named,
title = "Named Entity Recognition for {C}hinese
Social Media with Jointly Trained Embeddings",
author = "Peng, Nanyun and Dredze, Mark",
booktitle = "Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing",
month = sep,
year = "2015",
address = "Lisbon, Portugal",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D15-1064",
doi = "10.18653/v1/D15-1064",
pages = "548--554",
}
"""
_URL = "https://huggingface.co/datasets/minskiter/weibo/resolve/main/"
_URLS = {
"train": _URL + "data/train.parquet",
"validation": _URL + "data/validation.parquet",
"test": _URL + "data/test.parquet",
}
class WeiboNamedEntities(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Sequence(datasets.Value("string")),
"labels": datasets.Sequence(
datasets.features.ClassLabel(
names=[
'O',
'B-PER.NAM',
'I-PER.NAM',
'E-PER.NAM',
'S-PER.NAM',
'B-ORG.NAM',
'I-ORG.NAM',
'E-ORG.NAM',
'S-ORG.NAM',
'B-LOC.NAM',
'I-LOC.NAM',
'E-LOC.NAM',
'S-LOC.NAM',
'B-GPE.NAM',
'I-GPE.NAM',
'E-GPE.NAM',
'S-GPE.NAM',
'B-PER.NOM',
'I-PER.NOM',
'E-PER.NOM',
'S-PER.NOM',
'B-ORG.NOM',
'I-ORG.NOM',
'E-ORG.NOM',
'S-ORG.NOM',
'B-LOC.NOM',
'I-LOC.NOM',
'E-LOC.NOM',
'S-LOC.NOM',
'B-GPE.NOM',
'I-GPE.NOM',
'E-GPE.NOM',
'S-GPE.NOM',
]
)
),
}
),
supervised_keys=None,
homepage="https://aclanthology.org/D15-1064/",
citation=_CITATION,
)
def _split_generators(self, dl_manager: DownloadManager):
urls_to_download = _URLS
download_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": download_files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": download_files["validation"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": download_files["test"]},
),
]
def _generate_examples(self, filepath):
# fix: https://discuss.huggingface.co/t/dataset-preview-error-with-a-dataset-script-and-parquet-files/43160
with open(filepath, "rb") as f:
with pq.ParquetFile(f) as file:
_id = -1
for i in file.iter_batches(batch_size=64):
rows = i.to_pylist()
for row in rows:
_id+=1
yield _id, row
|