import datasets from datasets.download.download_manager import DownloadManager import pyarrow.parquet as pq _DESCRIPTION = """\ The Weibo NER dataset is a Chinese Named Entity Recognition dataset drawn from the social media website Sina Weibo. """ _CITATION = """\ @inproceedings{peng-dredze-2015-named, title = "Named Entity Recognition for {C}hinese Social Media with Jointly Trained Embeddings", author = "Peng, Nanyun and Dredze, Mark", booktitle = "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/D15-1064", doi = "10.18653/v1/D15-1064", pages = "548--554", } """ _URL = "https://huggingface.co/datasets/minskiter/weibo/resolve/main/" _URLS = { "train": _URL + "data/train.parquet", "validation": _URL + "data/validation.parquet", "test": _URL + "data/test.parquet", } class WeiboNamedEntities(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.2") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Sequence(datasets.Value("string")), "labels": datasets.Sequence( datasets.features.ClassLabel( names=[ 'O', 'B-PER.NAM', 'I-PER.NAM', 'E-PER.NAM', 'S-PER.NAM', 'B-ORG.NAM', 'I-ORG.NAM', 'E-ORG.NAM', 'S-ORG.NAM', 'B-LOC.NAM', 'I-LOC.NAM', 'E-LOC.NAM', 'S-LOC.NAM', 'B-GPE.NAM', 'I-GPE.NAM', 'E-GPE.NAM', 'S-GPE.NAM', 'B-PER.NOM', 'I-PER.NOM', 'E-PER.NOM', 'S-PER.NOM', 'B-ORG.NOM', 'I-ORG.NOM', 'E-ORG.NOM', 'S-ORG.NOM', 'B-LOC.NOM', 'I-LOC.NOM', 'E-LOC.NOM', 'S-LOC.NOM', 'B-GPE.NOM', 'I-GPE.NOM', 'E-GPE.NOM', 'S-GPE.NOM', ] ) ), } ), supervised_keys=None, homepage="https://aclanthology.org/D15-1064/", citation=_CITATION, ) def _split_generators(self, dl_manager: DownloadManager): urls_to_download = _URLS download_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": download_files["train"]}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": download_files["validation"]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": download_files["test"]}, ), ] def _generate_examples(self, filepath): file = pq.ParquetFile(filepath) _id = -1 for i in file.iter_batches(batch_size=64): rows = i.to_pylist() for row in rows: _id+=1 yield _id, row