system HF staff commited on
Commit
3a14920
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - found
4
+ language_creators:
5
+ - machine-generated
6
+ languages:
7
+ - ur
8
+ licenses:
9
+ - odbl-1-0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - text-classification
18
+ task_ids:
19
+ - sentiment-classification
20
+ ---
21
+
22
+ # Dataset Card for ImDB Urdu Reviews
23
+
24
+ ## Table of Contents
25
+
26
+ - [Dataset Description](#dataset-description)
27
+ - [Dataset Summary](#dataset-summary)
28
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
29
+ - [Languages](#languages)
30
+ - [Dataset Structure](#dataset-structure)
31
+ - [Data Instances](#data-instances)
32
+ - [Data Fields](#data-instances)
33
+ - [Data Splits](#data-instances)
34
+ - [Dataset Creation](#dataset-creation)
35
+ - [Curation Rationale](#curation-rationale)
36
+ - [Source Data](#source-data)
37
+ - [Annotations](#annotations)
38
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
39
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
40
+ - [Social Impact of Dataset](#social-impact-of-dataset)
41
+ - [Discussion of Biases](#discussion-of-biases)
42
+ - [Other Known Limitations](#other-known-limitations)
43
+ - [Additional Information](#additional-information)
44
+ - [Dataset Curators](#dataset-curators)
45
+ - [Licensing Information](#licensing-information)
46
+ - [Citation Information](#citation-information)
47
+
48
+ ## Dataset Description
49
+
50
+ - **Homepage:** [Github](https://github.com/mirfan899/Urdu)
51
+ - **Repository:** [Github](https://github.com/mirfan899/Urdu)
52
+ - **Paper:** [Aclweb](http://www.aclweb.org/anthology/P11-1015)
53
+ - **Leaderboard:**
54
+ - **Point of Contact:** [Ikram Ali](https://github.com/akkefa)
55
+
56
+ ### Dataset Summary
57
+
58
+ [More Information Needed]
59
+
60
+ ### Supported Tasks and Leaderboards
61
+
62
+ [More Information Needed]
63
+
64
+ ### Languages
65
+
66
+ [More Information Needed]
67
+
68
+ ## Dataset Structure
69
+
70
+ ### Data Instances
71
+
72
+ [More Information Needed]
73
+
74
+ ### Data Fields
75
+
76
+ - sentence: The movie review which was translated into Urdu.
77
+ - sentiment: The sentiment exhibited in the review, either positive or negative.
78
+
79
+ ### Data Splits
80
+
81
+ [More Information Needed]
82
+
83
+ ## Dataset Creation
84
+
85
+ ### Curation Rationale
86
+
87
+ [More Information Needed]
88
+
89
+ ### Source Data
90
+
91
+ #### Initial Data Collection and Normalization
92
+
93
+ [More Information Needed]
94
+
95
+ #### Who are the source language producers?
96
+
97
+ [More Information Needed]
98
+
99
+ ### Annotations
100
+
101
+ #### Annotation process
102
+
103
+ [More Information Needed]
104
+
105
+ #### Who are the annotators?
106
+
107
+ [More Information Needed]
108
+
109
+ ### Personal and Sensitive Information
110
+
111
+ [More Information Needed]
112
+
113
+ ## Considerations for Using the Data
114
+
115
+ ### Social Impact of Dataset
116
+
117
+ [More Information Needed]
118
+
119
+ ### Discussion of Biases
120
+
121
+ [More Information Needed]
122
+
123
+ ### Other Known Limitations
124
+
125
+ [More Information Needed]
126
+
127
+ ## Additional Information
128
+
129
+ ### Dataset Curators
130
+
131
+ [More Information Needed]
132
+
133
+ ### Licensing Information
134
+
135
+ [More Information Needed]
136
+
137
+ ### Citation Information
138
+
139
+ [More Information Needed]
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "\nLarge Movie translated Urdu Reviews Dataset.\nThis is a dataset for binary sentiment classification containing substantially more data than previous\nbenchmark datasets. We provide a set of 40,000 highly polar movie reviews for training, and 10,000 for testing.\nTo increase the availability of sentiment analysis dataset for a low recourse language like Urdu,\nwe opted to use the already available IMDB Dataset. we have translated this dataset using google translator.\nThis is a binary classification dataset having two classes as positive and negative.\nThe reason behind using this dataset is high polarity for each class.\nIt contains 50k samples equally divided in two classes.\n", "citation": "\n@InProceedings{maas-EtAl:2011:ACL-HLT2011,\n author = {Maas, Andrew L. and Daly,nRaymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y...},\n title = {Learning Word Vectors for Sentiment Analysis},\n month = {June},\n year = {2011},\n address = {Portland, Oregon, USA},\n publisher = {Association for Computational Linguistics},\n pages = {142--150},\n url = {http://www.aclweb.org/anthology/P11-1015}\n}\n", "homepage": "https://github.com/mirfan899/Urdu", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "sentiment": {"num_classes": 2, "names": ["positive", "negative"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "imdb", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 114670811, "num_examples": 50000, "dataset_name": "imdb"}}, "download_checksums": {"https://github.com/mirfan899/Urdu/blob/master/sentiment/imdb_urdu_reviews.csv.tar.gz?raw=true": {"num_bytes": 31510992, "checksum": "f60f7e9972661dc5d8ec1c867972ae35f86dac32de43a274a2a794095dccdf99"}}, "download_size": 31510992, "post_processing_size": null, "dataset_size": 114670811, "size_in_bytes": 146181803}}
dummy/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72e09af3bdf2910efa7e7ed2f9a8c699b52ac65da537da7c5f2edfe80b985790
3
+ size 1649
imdb_urdu_reviews.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """IMDB Urdu movie reviews dataset."""
2
+
3
+ from __future__ import absolute_import, division, print_function
4
+
5
+ import csv
6
+ import os
7
+
8
+ import datasets
9
+
10
+
11
+ _CITATION = """
12
+ @InProceedings{maas-EtAl:2011:ACL-HLT2011,
13
+ author = {Maas, Andrew L. and Daly,nRaymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y...},
14
+ title = {Learning Word Vectors for Sentiment Analysis},
15
+ month = {June},
16
+ year = {2011},
17
+ address = {Portland, Oregon, USA},
18
+ publisher = {Association for Computational Linguistics},
19
+ pages = {142--150},
20
+ url = {http://www.aclweb.org/anthology/P11-1015}
21
+ }
22
+ """
23
+
24
+ _DESCRIPTION = """
25
+ Large Movie translated Urdu Reviews Dataset.
26
+ This is a dataset for binary sentiment classification containing substantially more data than previous
27
+ benchmark datasets. We provide a set of 40,000 highly polar movie reviews for training, and 10,000 for testing.
28
+ To increase the availability of sentiment analysis dataset for a low recourse language like Urdu,
29
+ we opted to use the already available IMDB Dataset. we have translated this dataset using google translator.
30
+ This is a binary classification dataset having two classes as positive and negative.
31
+ The reason behind using this dataset is high polarity for each class.
32
+ It contains 50k samples equally divided in two classes.
33
+ """
34
+
35
+ _URL = "https://github.com/mirfan899/Urdu/blob/master/sentiment/imdb_urdu_reviews.csv.tar.gz?raw=true"
36
+
37
+ _HOMEPAGE = "https://github.com/mirfan899/Urdu"
38
+
39
+
40
+ class ImdbUrduReviews(datasets.GeneratorBasedBuilder):
41
+ VERSION = datasets.Version("1.0.0")
42
+
43
+ def _info(self):
44
+ return datasets.DatasetInfo(
45
+ description=_DESCRIPTION,
46
+ features=datasets.Features(
47
+ {
48
+ "sentence": datasets.Value("string"),
49
+ "sentiment": datasets.ClassLabel(names=["positive", "negative"]),
50
+ }
51
+ ),
52
+ citation=_CITATION,
53
+ homepage=_HOMEPAGE,
54
+ )
55
+
56
+ def _split_generators(self, dl_manager):
57
+ """Returns SplitGenerators."""
58
+ dl_path = dl_manager.download_and_extract(_URL)
59
+ return [
60
+ datasets.SplitGenerator(
61
+ name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dl_path, "imdb_urdu_reviews.csv")}
62
+ ),
63
+ ]
64
+
65
+ def _generate_examples(self, filepath):
66
+ """Yields examples."""
67
+ with open(filepath, encoding="utf-8") as f:
68
+ reader = csv.reader(f, delimiter=",")
69
+ for id_, row in enumerate(reader):
70
+ if id_ == 0:
71
+ continue
72
+ yield id_, {"sentiment": row[1], "sentence": row[0]}