Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Urdu
Size:
10K - 100K
License:
parquet-converter
commited on
Commit
•
4ce8aa3
1
Parent(s):
d37d186
Update parquet files
Browse files- .gitattributes +0 -27
- README.md +0 -161
- dataset_infos.json +0 -1
- default/imdb_urdu_reviews-train.parquet +3 -0
- imdb_urdu_reviews.py +0 -73
.gitattributes
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
-
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
DELETED
@@ -1,161 +0,0 @@
|
|
1 |
-
---
|
2 |
-
annotations_creators:
|
3 |
-
- found
|
4 |
-
language_creators:
|
5 |
-
- machine-generated
|
6 |
-
language:
|
7 |
-
- ur
|
8 |
-
license:
|
9 |
-
- odbl
|
10 |
-
multilinguality:
|
11 |
-
- monolingual
|
12 |
-
size_categories:
|
13 |
-
- 10K<n<100K
|
14 |
-
source_datasets:
|
15 |
-
- original
|
16 |
-
task_categories:
|
17 |
-
- text-classification
|
18 |
-
task_ids:
|
19 |
-
- sentiment-classification
|
20 |
-
paperswithcode_id: null
|
21 |
-
pretty_name: ImDB Urdu Reviews
|
22 |
-
dataset_info:
|
23 |
-
features:
|
24 |
-
- name: sentence
|
25 |
-
dtype: string
|
26 |
-
- name: sentiment
|
27 |
-
dtype:
|
28 |
-
class_label:
|
29 |
-
names:
|
30 |
-
0: positive
|
31 |
-
1: negative
|
32 |
-
splits:
|
33 |
-
- name: train
|
34 |
-
num_bytes: 114670811
|
35 |
-
num_examples: 50000
|
36 |
-
download_size: 31510992
|
37 |
-
dataset_size: 114670811
|
38 |
-
---
|
39 |
-
|
40 |
-
# Dataset Card for ImDB Urdu Reviews
|
41 |
-
|
42 |
-
## Table of Contents
|
43 |
-
- [Dataset Description](#dataset-description)
|
44 |
-
- [Dataset Summary](#dataset-summary)
|
45 |
-
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
46 |
-
- [Languages](#languages)
|
47 |
-
- [Dataset Structure](#dataset-structure)
|
48 |
-
- [Data Instances](#data-instances)
|
49 |
-
- [Data Fields](#data-fields)
|
50 |
-
- [Data Splits](#data-splits)
|
51 |
-
- [Dataset Creation](#dataset-creation)
|
52 |
-
- [Curation Rationale](#curation-rationale)
|
53 |
-
- [Source Data](#source-data)
|
54 |
-
- [Annotations](#annotations)
|
55 |
-
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
56 |
-
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
57 |
-
- [Social Impact of Dataset](#social-impact-of-dataset)
|
58 |
-
- [Discussion of Biases](#discussion-of-biases)
|
59 |
-
- [Other Known Limitations](#other-known-limitations)
|
60 |
-
- [Additional Information](#additional-information)
|
61 |
-
- [Dataset Curators](#dataset-curators)
|
62 |
-
- [Licensing Information](#licensing-information)
|
63 |
-
- [Citation Information](#citation-information)
|
64 |
-
- [Contributions](#contributions)
|
65 |
-
|
66 |
-
## Dataset Description
|
67 |
-
|
68 |
-
- **Homepage:** [Github](https://github.com/mirfan899/Urdu)
|
69 |
-
- **Repository:** [Github](https://github.com/mirfan899/Urdu)
|
70 |
-
- **Paper:** [Aclweb](http://www.aclweb.org/anthology/P11-1015)
|
71 |
-
- **Leaderboard:**
|
72 |
-
- **Point of Contact:** [Ikram Ali](https://github.com/akkefa)
|
73 |
-
|
74 |
-
### Dataset Summary
|
75 |
-
|
76 |
-
[More Information Needed]
|
77 |
-
|
78 |
-
### Supported Tasks and Leaderboards
|
79 |
-
|
80 |
-
[More Information Needed]
|
81 |
-
|
82 |
-
### Languages
|
83 |
-
|
84 |
-
[More Information Needed]
|
85 |
-
|
86 |
-
## Dataset Structure
|
87 |
-
|
88 |
-
### Data Instances
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
### Data Fields
|
93 |
-
|
94 |
-
- sentence: The movie review which was translated into Urdu.
|
95 |
-
- sentiment: The sentiment exhibited in the review, either positive or negative.
|
96 |
-
|
97 |
-
### Data Splits
|
98 |
-
|
99 |
-
[More Information Needed]
|
100 |
-
|
101 |
-
## Dataset Creation
|
102 |
-
|
103 |
-
### Curation Rationale
|
104 |
-
|
105 |
-
[More Information Needed]
|
106 |
-
|
107 |
-
### Source Data
|
108 |
-
|
109 |
-
#### Initial Data Collection and Normalization
|
110 |
-
|
111 |
-
[More Information Needed]
|
112 |
-
|
113 |
-
#### Who are the source language producers?
|
114 |
-
|
115 |
-
[More Information Needed]
|
116 |
-
|
117 |
-
### Annotations
|
118 |
-
|
119 |
-
#### Annotation process
|
120 |
-
|
121 |
-
[More Information Needed]
|
122 |
-
|
123 |
-
#### Who are the annotators?
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Personal and Sensitive Information
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
## Considerations for Using the Data
|
132 |
-
|
133 |
-
### Social Impact of Dataset
|
134 |
-
|
135 |
-
[More Information Needed]
|
136 |
-
|
137 |
-
### Discussion of Biases
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
### Other Known Limitations
|
142 |
-
|
143 |
-
[More Information Needed]
|
144 |
-
|
145 |
-
## Additional Information
|
146 |
-
|
147 |
-
### Dataset Curators
|
148 |
-
|
149 |
-
[More Information Needed]
|
150 |
-
|
151 |
-
### Licensing Information
|
152 |
-
|
153 |
-
[More Information Needed]
|
154 |
-
|
155 |
-
### Citation Information
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Contributions
|
160 |
-
|
161 |
-
Thanks to [@chaitnayabasava](https://github.com/chaitnayabasava) for adding this dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "\nLarge Movie translated Urdu Reviews Dataset.\nThis is a dataset for binary sentiment classification containing substantially more data than previous\nbenchmark datasets. We provide a set of 40,000 highly polar movie reviews for training, and 10,000 for testing.\nTo increase the availability of sentiment analysis dataset for a low recourse language like Urdu,\nwe opted to use the already available IMDB Dataset. we have translated this dataset using google translator.\nThis is a binary classification dataset having two classes as positive and negative.\nThe reason behind using this dataset is high polarity for each class.\nIt contains 50k samples equally divided in two classes.\n", "citation": "\n@InProceedings{maas-EtAl:2011:ACL-HLT2011,\n author = {Maas, Andrew L. and Daly,nRaymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y...},\n title = {Learning Word Vectors for Sentiment Analysis},\n month = {June},\n year = {2011},\n address = {Portland, Oregon, USA},\n publisher = {Association for Computational Linguistics},\n pages = {142--150},\n url = {http://www.aclweb.org/anthology/P11-1015}\n}\n", "homepage": "https://github.com/mirfan899/Urdu", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "sentiment": {"num_classes": 2, "names": ["positive", "negative"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "text-classification", "text_column": "sentence", "label_column": "sentiment", "labels": ["negative", "positive"]}], "builder_name": "imdb_urdu_reviews", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 114670811, "num_examples": 50000, "dataset_name": "imdb_urdu_reviews"}}, "download_checksums": {"https://github.com/mirfan899/Urdu/blob/master/sentiment/imdb_urdu_reviews.csv.tar.gz?raw=true": {"num_bytes": 31510992, "checksum": "f60f7e9972661dc5d8ec1c867972ae35f86dac32de43a274a2a794095dccdf99"}}, "download_size": 31510992, "post_processing_size": null, "dataset_size": 114670811, "size_in_bytes": 146181803}}
|
|
|
|
default/imdb_urdu_reviews-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f989730fd4c2505afb07f499710853c0f264991209a82dba123c15eafad8788
|
3 |
+
size 56234402
|
imdb_urdu_reviews.py
DELETED
@@ -1,73 +0,0 @@
|
|
1 |
-
"""IMDB Urdu movie reviews dataset."""
|
2 |
-
|
3 |
-
|
4 |
-
import csv
|
5 |
-
import os
|
6 |
-
|
7 |
-
import datasets
|
8 |
-
from datasets.tasks import TextClassification
|
9 |
-
|
10 |
-
|
11 |
-
_CITATION = """
|
12 |
-
@InProceedings{maas-EtAl:2011:ACL-HLT2011,
|
13 |
-
author = {Maas, Andrew L. and Daly,nRaymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y...},
|
14 |
-
title = {Learning Word Vectors for Sentiment Analysis},
|
15 |
-
month = {June},
|
16 |
-
year = {2011},
|
17 |
-
address = {Portland, Oregon, USA},
|
18 |
-
publisher = {Association for Computational Linguistics},
|
19 |
-
pages = {142--150},
|
20 |
-
url = {http://www.aclweb.org/anthology/P11-1015}
|
21 |
-
}
|
22 |
-
"""
|
23 |
-
|
24 |
-
_DESCRIPTION = """
|
25 |
-
Large Movie translated Urdu Reviews Dataset.
|
26 |
-
This is a dataset for binary sentiment classification containing substantially more data than previous
|
27 |
-
benchmark datasets. We provide a set of 40,000 highly polar movie reviews for training, and 10,000 for testing.
|
28 |
-
To increase the availability of sentiment analysis dataset for a low recourse language like Urdu,
|
29 |
-
we opted to use the already available IMDB Dataset. we have translated this dataset using google translator.
|
30 |
-
This is a binary classification dataset having two classes as positive and negative.
|
31 |
-
The reason behind using this dataset is high polarity for each class.
|
32 |
-
It contains 50k samples equally divided in two classes.
|
33 |
-
"""
|
34 |
-
|
35 |
-
_URL = "https://github.com/mirfan899/Urdu/blob/master/sentiment/imdb_urdu_reviews.csv.tar.gz?raw=true"
|
36 |
-
|
37 |
-
_HOMEPAGE = "https://github.com/mirfan899/Urdu"
|
38 |
-
|
39 |
-
|
40 |
-
class ImdbUrduReviews(datasets.GeneratorBasedBuilder):
|
41 |
-
VERSION = datasets.Version("1.0.0")
|
42 |
-
|
43 |
-
def _info(self):
|
44 |
-
return datasets.DatasetInfo(
|
45 |
-
description=_DESCRIPTION,
|
46 |
-
features=datasets.Features(
|
47 |
-
{
|
48 |
-
"sentence": datasets.Value("string"),
|
49 |
-
"sentiment": datasets.ClassLabel(names=["positive", "negative"]),
|
50 |
-
}
|
51 |
-
),
|
52 |
-
citation=_CITATION,
|
53 |
-
homepage=_HOMEPAGE,
|
54 |
-
task_templates=[TextClassification(text_column="sentence", label_column="sentiment")],
|
55 |
-
)
|
56 |
-
|
57 |
-
def _split_generators(self, dl_manager):
|
58 |
-
"""Returns SplitGenerators."""
|
59 |
-
dl_path = dl_manager.download_and_extract(_URL)
|
60 |
-
return [
|
61 |
-
datasets.SplitGenerator(
|
62 |
-
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dl_path, "imdb_urdu_reviews.csv")}
|
63 |
-
),
|
64 |
-
]
|
65 |
-
|
66 |
-
def _generate_examples(self, filepath):
|
67 |
-
"""Yields examples."""
|
68 |
-
with open(filepath, encoding="utf-8") as f:
|
69 |
-
reader = csv.reader(f, delimiter=",")
|
70 |
-
for id_, row in enumerate(reader):
|
71 |
-
if id_ == 0:
|
72 |
-
continue
|
73 |
-
yield id_, {"sentiment": row[1], "sentence": row[0]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|