parquet-converter commited on
Commit
4ce8aa3
1 Parent(s): d37d186

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,161 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - found
4
- language_creators:
5
- - machine-generated
6
- language:
7
- - ur
8
- license:
9
- - odbl
10
- multilinguality:
11
- - monolingual
12
- size_categories:
13
- - 10K<n<100K
14
- source_datasets:
15
- - original
16
- task_categories:
17
- - text-classification
18
- task_ids:
19
- - sentiment-classification
20
- paperswithcode_id: null
21
- pretty_name: ImDB Urdu Reviews
22
- dataset_info:
23
- features:
24
- - name: sentence
25
- dtype: string
26
- - name: sentiment
27
- dtype:
28
- class_label:
29
- names:
30
- 0: positive
31
- 1: negative
32
- splits:
33
- - name: train
34
- num_bytes: 114670811
35
- num_examples: 50000
36
- download_size: 31510992
37
- dataset_size: 114670811
38
- ---
39
-
40
- # Dataset Card for ImDB Urdu Reviews
41
-
42
- ## Table of Contents
43
- - [Dataset Description](#dataset-description)
44
- - [Dataset Summary](#dataset-summary)
45
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
46
- - [Languages](#languages)
47
- - [Dataset Structure](#dataset-structure)
48
- - [Data Instances](#data-instances)
49
- - [Data Fields](#data-fields)
50
- - [Data Splits](#data-splits)
51
- - [Dataset Creation](#dataset-creation)
52
- - [Curation Rationale](#curation-rationale)
53
- - [Source Data](#source-data)
54
- - [Annotations](#annotations)
55
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
56
- - [Considerations for Using the Data](#considerations-for-using-the-data)
57
- - [Social Impact of Dataset](#social-impact-of-dataset)
58
- - [Discussion of Biases](#discussion-of-biases)
59
- - [Other Known Limitations](#other-known-limitations)
60
- - [Additional Information](#additional-information)
61
- - [Dataset Curators](#dataset-curators)
62
- - [Licensing Information](#licensing-information)
63
- - [Citation Information](#citation-information)
64
- - [Contributions](#contributions)
65
-
66
- ## Dataset Description
67
-
68
- - **Homepage:** [Github](https://github.com/mirfan899/Urdu)
69
- - **Repository:** [Github](https://github.com/mirfan899/Urdu)
70
- - **Paper:** [Aclweb](http://www.aclweb.org/anthology/P11-1015)
71
- - **Leaderboard:**
72
- - **Point of Contact:** [Ikram Ali](https://github.com/akkefa)
73
-
74
- ### Dataset Summary
75
-
76
- [More Information Needed]
77
-
78
- ### Supported Tasks and Leaderboards
79
-
80
- [More Information Needed]
81
-
82
- ### Languages
83
-
84
- [More Information Needed]
85
-
86
- ## Dataset Structure
87
-
88
- ### Data Instances
89
-
90
- [More Information Needed]
91
-
92
- ### Data Fields
93
-
94
- - sentence: The movie review which was translated into Urdu.
95
- - sentiment: The sentiment exhibited in the review, either positive or negative.
96
-
97
- ### Data Splits
98
-
99
- [More Information Needed]
100
-
101
- ## Dataset Creation
102
-
103
- ### Curation Rationale
104
-
105
- [More Information Needed]
106
-
107
- ### Source Data
108
-
109
- #### Initial Data Collection and Normalization
110
-
111
- [More Information Needed]
112
-
113
- #### Who are the source language producers?
114
-
115
- [More Information Needed]
116
-
117
- ### Annotations
118
-
119
- #### Annotation process
120
-
121
- [More Information Needed]
122
-
123
- #### Who are the annotators?
124
-
125
- [More Information Needed]
126
-
127
- ### Personal and Sensitive Information
128
-
129
- [More Information Needed]
130
-
131
- ## Considerations for Using the Data
132
-
133
- ### Social Impact of Dataset
134
-
135
- [More Information Needed]
136
-
137
- ### Discussion of Biases
138
-
139
- [More Information Needed]
140
-
141
- ### Other Known Limitations
142
-
143
- [More Information Needed]
144
-
145
- ## Additional Information
146
-
147
- ### Dataset Curators
148
-
149
- [More Information Needed]
150
-
151
- ### Licensing Information
152
-
153
- [More Information Needed]
154
-
155
- ### Citation Information
156
-
157
- [More Information Needed]
158
-
159
- ### Contributions
160
-
161
- Thanks to [@chaitnayabasava](https://github.com/chaitnayabasava) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "\nLarge Movie translated Urdu Reviews Dataset.\nThis is a dataset for binary sentiment classification containing substantially more data than previous\nbenchmark datasets. We provide a set of 40,000 highly polar movie reviews for training, and 10,000 for testing.\nTo increase the availability of sentiment analysis dataset for a low recourse language like Urdu,\nwe opted to use the already available IMDB Dataset. we have translated this dataset using google translator.\nThis is a binary classification dataset having two classes as positive and negative.\nThe reason behind using this dataset is high polarity for each class.\nIt contains 50k samples equally divided in two classes.\n", "citation": "\n@InProceedings{maas-EtAl:2011:ACL-HLT2011,\n author = {Maas, Andrew L. and Daly,nRaymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y...},\n title = {Learning Word Vectors for Sentiment Analysis},\n month = {June},\n year = {2011},\n address = {Portland, Oregon, USA},\n publisher = {Association for Computational Linguistics},\n pages = {142--150},\n url = {http://www.aclweb.org/anthology/P11-1015}\n}\n", "homepage": "https://github.com/mirfan899/Urdu", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "sentiment": {"num_classes": 2, "names": ["positive", "negative"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "text-classification", "text_column": "sentence", "label_column": "sentiment", "labels": ["negative", "positive"]}], "builder_name": "imdb_urdu_reviews", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 114670811, "num_examples": 50000, "dataset_name": "imdb_urdu_reviews"}}, "download_checksums": {"https://github.com/mirfan899/Urdu/blob/master/sentiment/imdb_urdu_reviews.csv.tar.gz?raw=true": {"num_bytes": 31510992, "checksum": "f60f7e9972661dc5d8ec1c867972ae35f86dac32de43a274a2a794095dccdf99"}}, "download_size": 31510992, "post_processing_size": null, "dataset_size": 114670811, "size_in_bytes": 146181803}}
 
 
default/imdb_urdu_reviews-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f989730fd4c2505afb07f499710853c0f264991209a82dba123c15eafad8788
3
+ size 56234402
imdb_urdu_reviews.py DELETED
@@ -1,73 +0,0 @@
1
- """IMDB Urdu movie reviews dataset."""
2
-
3
-
4
- import csv
5
- import os
6
-
7
- import datasets
8
- from datasets.tasks import TextClassification
9
-
10
-
11
- _CITATION = """
12
- @InProceedings{maas-EtAl:2011:ACL-HLT2011,
13
- author = {Maas, Andrew L. and Daly,nRaymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y...},
14
- title = {Learning Word Vectors for Sentiment Analysis},
15
- month = {June},
16
- year = {2011},
17
- address = {Portland, Oregon, USA},
18
- publisher = {Association for Computational Linguistics},
19
- pages = {142--150},
20
- url = {http://www.aclweb.org/anthology/P11-1015}
21
- }
22
- """
23
-
24
- _DESCRIPTION = """
25
- Large Movie translated Urdu Reviews Dataset.
26
- This is a dataset for binary sentiment classification containing substantially more data than previous
27
- benchmark datasets. We provide a set of 40,000 highly polar movie reviews for training, and 10,000 for testing.
28
- To increase the availability of sentiment analysis dataset for a low recourse language like Urdu,
29
- we opted to use the already available IMDB Dataset. we have translated this dataset using google translator.
30
- This is a binary classification dataset having two classes as positive and negative.
31
- The reason behind using this dataset is high polarity for each class.
32
- It contains 50k samples equally divided in two classes.
33
- """
34
-
35
- _URL = "https://github.com/mirfan899/Urdu/blob/master/sentiment/imdb_urdu_reviews.csv.tar.gz?raw=true"
36
-
37
- _HOMEPAGE = "https://github.com/mirfan899/Urdu"
38
-
39
-
40
- class ImdbUrduReviews(datasets.GeneratorBasedBuilder):
41
- VERSION = datasets.Version("1.0.0")
42
-
43
- def _info(self):
44
- return datasets.DatasetInfo(
45
- description=_DESCRIPTION,
46
- features=datasets.Features(
47
- {
48
- "sentence": datasets.Value("string"),
49
- "sentiment": datasets.ClassLabel(names=["positive", "negative"]),
50
- }
51
- ),
52
- citation=_CITATION,
53
- homepage=_HOMEPAGE,
54
- task_templates=[TextClassification(text_column="sentence", label_column="sentiment")],
55
- )
56
-
57
- def _split_generators(self, dl_manager):
58
- """Returns SplitGenerators."""
59
- dl_path = dl_manager.download_and_extract(_URL)
60
- return [
61
- datasets.SplitGenerator(
62
- name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dl_path, "imdb_urdu_reviews.csv")}
63
- ),
64
- ]
65
-
66
- def _generate_examples(self, filepath):
67
- """Yields examples."""
68
- with open(filepath, encoding="utf-8") as f:
69
- reader = csv.reader(f, delimiter=",")
70
- for id_, row in enumerate(reader):
71
- if id_ == 0:
72
- continue
73
- yield id_, {"sentiment": row[1], "sentence": row[0]}