content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
from django.conf.urls import url from . import views urlpatterns = [ url( r"^control/event/(?P<organizer>[^/]+)/(?P<event>[^/]+)/key-file-upload/$", views.KeyFileUploadView.as_view(), name="key_file_upload", ), ]
19.076923
82
0.58871
[ "MIT" ]
ayanginet/pretix-attestation-placeholder-plugin
pretix_attestation_plugin/urls.py
248
Python
import time from check_lang import check_py,check_rb,check_j,check_c,check_cpp from flask import Flask, request, jsonify from flask_cors import CORS, cross_origin import subprocess import json from json import JSONEncoder from main import predict app = Flask(__name__) CORS(app) @app.route("/") def hello(): return '<form action="/check" method="POST"><input name="code" size="135"><input type="submit" value="Code Here"></form>' @app.route("/check", methods=['POST']) def echo(): codes = [] filename = str(int(time.time())) dataDict = json.loads(request.data) # print dataDict # print "------------" with open('code/'+filename,'w+') as outfile: outfile.write(str(dataDict['sc'])) codes.append(int(check_c("code/"+filename))) codes.append(int(check_cpp("code/"+filename))) codes.append(int(check_py("code/"+filename))) codes.append(int(check_rb("code/"+filename))) codes.append(1) print codes zero = 0 count = 0 correct_count = 0 for code in codes: count = count+1 if code==0: zero = zero + 1 correct_count = count print zero if(zero == 1): if(correct_count==1): jsonString = {'cpp': 0.0, 'ruby': 0.0, 'c': 1.0, 'py': 0.0, 'java': 0.0} return jsonify(jsonString) elif(correct_count==2): jsonString = {'cpp': 1.0, 'ruby': 0.0, 'c': 0.0, 'py': 0.0, 'java': 0.0} return jsonify(jsonString) elif(correct_count==3): jsonString = {'cpp': 0.0, 'ruby': 0.0, 'c': 0.0, 'py': 1.0, 'java': 0.0} return jsonify(jsonString) elif(correct_count==4): jsonString = {'cpp': 0.0, 'ruby': 1.0, 'c': 0.0, 'py': 0.0, 'java': 0.0} return jsonify(jsonString) else: x = predict(dataDict['sc']) print x # return JSONEncoder().encode(x) return jsonify({'cpp': round(x['cpp'], 2), 'ruby': round(x['ruby'], 2), 'c': round(x['c'], 2), 'py': round(x['py'], 2), 'java': round(x['java'], 2)}) #if score of cpp is eqgreater than 0.5 then run it to check if it runs then cpp else java # sa = [] # score_cpp = x['cpp'] # score_ruby = x['ruby'] # score_c = x['c'] # score_py = x['py'] # score_java = x['java'] # # sa.append(score_c) # sa.append(score_cpp) # sa.append(score_java) # sa.append(score_py) # sa.append(score_ruby) # # print sa # return ''.join([str(code) for code in codes])+" "+str(x) if __name__ == "__main__": app.run(host= '0.0.0.0')
28.473118
157
0.554003
[ "MIT", "Unlicense" ]
poke19962008/Source-Code-Classifier
server/home.py
2,648
Python
import numpy as np import matplotlib.pyplot as plt from UTILS.Calculus import Calculus from UTILS.SetAxisLimit import SetAxisLimit from UTILS.Tools import Tools from UTILS.Errors import Errors import sys # Theoretical background https://arxiv.org/abs/1401.5176 # Mocak, Meakin, Viallet, Arnett, 2014, Compressible Hydrodynamic Mean-Field # # Equations in Spherical Geometry and their Application to Turbulent Stellar # # Convection Data # class InternalEnergyEquation(Calculus, SetAxisLimit, Tools, Errors, object): def __init__(self, filename, ig, fext, intc, tke_diss, data_prefix): super(InternalEnergyEquation, self).__init__(ig) # load data to structured array eht = self.customLoad(filename) # load grid xzn0 = self.getRAdata(eht, 'xzn0') nx = self.getRAdata(eht, 'nx') # pick equation-specific Reynolds-averaged mean fields according to: # https://github.com/mmicromegas/ransX/blob/master/DOCS/ransXimplementationGuide.pdf dd = self.getRAdata(eht, 'dd')[intc] ux = self.getRAdata(eht, 'ux')[intc] pp = self.getRAdata(eht, 'pp')[intc] ddux = self.getRAdata(eht, 'ddux')[intc] ddei = self.getRAdata(eht, 'ddei')[intc] ddeiux = self.getRAdata(eht, 'ddeiux')[intc] divu = self.getRAdata(eht, 'divu')[intc] ppdivu = self.getRAdata(eht, 'ppdivu')[intc] ddenuc1 = self.getRAdata(eht, 'ddenuc1')[intc] ddenuc2 = self.getRAdata(eht, 'ddenuc2')[intc] # store time series for time derivatives t_timec = self.getRAdata(eht, 'timec') t_dd = self.getRAdata(eht, 'dd') t_ddei = self.getRAdata(eht, 'ddei') t_fht_ei = t_ddei / t_dd # construct equation-specific mean fields fht_ux = ddux / dd fht_ei = ddei / dd fei = ddeiux - ddux * ddei / dd ########################## # INTERNAL ENERGY EQUATION ########################## # LHS -dq/dt self.minus_dt_dd_fht_ei = -self.dt(t_dd * t_fht_ei, xzn0, t_timec, intc) # LHS -div dd fht_ux fht_ei self.minus_div_dd_fht_ux_fht_ei = -self.Div(dd * fht_ux * fht_ei, xzn0) # RHS -div fei self.minus_div_fei = -self.Div(fei, xzn0) # RHS -div ftt (not included) heat flux self.minus_div_ftt = -np.zeros(nx) # RHS -P d = - pp Div ux self.minus_pp_div_ux = -pp * self.Div(ux, xzn0) # RHS -Wp = -eht_ppf_df self.minus_eht_ppf_df = -(ppdivu - pp * divu) # RHS source + dd enuc self.plus_dd_fht_enuc = ddenuc1 + ddenuc2 # RHS dissipated turbulent kinetic energy self.plus_disstke = +tke_diss # -res self.minus_resEiEquation = -(self.minus_dt_dd_fht_ei + self.minus_div_dd_fht_ux_fht_ei + self.minus_div_fei + self.minus_div_ftt + self.minus_pp_div_ux + self.minus_eht_ppf_df + self.plus_dd_fht_enuc + self.plus_disstke) ############################## # END INTERNAL ENERGY EQUATION ############################## # assign global data to be shared across whole class self.data_prefix = data_prefix self.xzn0 = xzn0 self.fht_ei = fht_ei self.fext = fext def plot_ei(self, LAXIS, bconv, tconv, xbl, xbr, ybu, ybd, ilg): """Plot mean Favrian internal energy stratification in the model""" if self.ig != 1 and self.ig != 2: print("ERROR(InternalEnergyEquation.py):" + self.errorGeometry(self.ig)) sys.exit() # load x GRID grd1 = self.xzn0 # load DATA to plot plt1 = self.fht_ei # create FIGURE plt.figure(figsize=(7, 6)) # format AXIS, make sure it is exponential plt.gca().yaxis.get_major_formatter().set_powerlimits((0, 0)) # set plot boundaries to_plot = [plt1] self.set_plt_axis(LAXIS, xbl, xbr, ybu, ybd, to_plot) # plot DATA plt.title(r'internal energy') plt.plot(grd1, plt1, color='brown', label=r'$\widetilde{\varepsilon}_I$') # convective boundary markers plt.axvline(bconv, linestyle='--', linewidth=0.7, color='k') plt.axvline(tconv, linestyle='--', linewidth=0.7, color='k') # define and show x/y LABELS if self.ig == 1: setxlabel = r"x (cm)" setylabel = r"$\widetilde{\varepsilon}_I$ (erg g$^{-1}$)" plt.xlabel(setxlabel) plt.ylabel(setylabel) elif self.ig == 2: setxlabel = r"r (cm)" setylabel = r"$\widetilde{\varepsilon}_I$ (erg g$^{-1}$)" plt.xlabel(setxlabel) plt.ylabel(setylabel) # show LEGEND plt.legend(loc=ilg, prop={'size': 18}) # display PLOT plt.show(block=False) # save PLOT if self.fext == 'png': plt.savefig('RESULTS/' + self.data_prefix + 'mean_ei.png') elif self.fext == 'eps': plt.savefig('RESULTS/' + self.data_prefix + 'mean_ei.eps') def plot_ei_equation(self, LAXIS, bconv, tconv, xbl, xbr, ybu, ybd, ilg): """Plot internal energy equation in the model""" if self.ig != 1 and self.ig != 2: print("ERROR(InternalEnergyEquation.py):" + self.errorGeometry(self.ig)) sys.exit() # load x GRID grd1 = self.xzn0 lhs0 = self.minus_dt_dd_fht_ei lhs1 = self.minus_div_dd_fht_ux_fht_ei rhs0 = self.minus_div_fei rhs1 = self.minus_div_ftt rhs2 = self.minus_pp_div_ux rhs3 = self.minus_eht_ppf_df rhs4 = self.plus_dd_fht_enuc rhs5 = self.plus_disstke res = self.minus_resEiEquation # create FIGURE plt.figure(figsize=(7, 6)) # format AXIS, make sure it is exponential plt.gca().yaxis.get_major_formatter().set_powerlimits((0, 0)) # set plot boundaries to_plot = [lhs0, lhs1, rhs0, rhs1, rhs2, rhs3, rhs4, rhs5, res] self.set_plt_axis(LAXIS, xbl, xbr, ybu, ybd, to_plot) # plot DATA plt.title('internal energy equation') if self.ig == 1: plt.plot(grd1, lhs0, color='#FF6EB4', label=r"$-\partial_t (\overline{\rho} \widetilde{\epsilon}_I )$") plt.plot(grd1, lhs1, color='k', label=r"$-\nabla_x (\overline{\rho}\widetilde{u}_x \widetilde{\epsilon}_I$)") plt.plot(grd1, rhs0, color='#FF8C00', label=r"$-\nabla_x f_I $") plt.plot(grd1, rhs1, color='c', label=r"$-\nabla_x f_T$ (not incl.)") plt.plot(grd1, rhs2, color='#802A2A', label=r"$-\bar{P} \bar{d}$") plt.plot(grd1, rhs3, color='r', label=r"$-W_P$") plt.plot(grd1, rhs4, color='b', label=r"$+\overline{\rho}\widetilde{\epsilon}_{nuc}$") plt.plot(grd1, rhs5, color='m', label=r"$+\varepsilon_k$") plt.plot(grd1, res, color='k', linestyle='--', label=r"res $\sim N_\epsilon$") elif self.ig == 2: plt.plot(grd1, lhs0, color='#FF6EB4', label=r"$-\partial_t (\overline{\rho} \widetilde{\epsilon}_I )$") plt.plot(grd1, lhs1, color='k', label=r"$-\nabla_r (\overline{\rho}\widetilde{u}_r \widetilde{\epsilon}_I$)") plt.plot(grd1, rhs0, color='#FF8C00', label=r"$-\nabla_r f_I $") plt.plot(grd1, rhs1, color='c', label=r"$-\nabla_r f_T$ (not incl.)") plt.plot(grd1, rhs2, color='#802A2A', label=r"$-\bar{P} \bar{d}$") plt.plot(grd1, rhs3, color='r', label=r"$-W_P$") plt.plot(grd1, rhs4, color='b', label=r"$+\overline{\rho}\widetilde{\epsilon}_{nuc}$") plt.plot(grd1, rhs5, color='m', label=r"$+\varepsilon_k$") plt.plot(grd1, res, color='k', linestyle='--', label=r"res $\sim N_\epsilon$") # convective boundary markers plt.axvline(bconv, linestyle='--', linewidth=0.7, color='k') plt.axvline(tconv, linestyle='--', linewidth=0.7, color='k') # define and show x/y LABELS if self.ig == 1: setxlabel = r"x (cm)" setylabel = r"erg cm$^{-3}$ s$^{-1}$" plt.xlabel(setxlabel) plt.ylabel(setylabel) elif self.ig == 2: setxlabel = r"r (cm)" setylabel = r"erg cm$^{-3}$ s$^{-1}$" plt.xlabel(setxlabel) plt.ylabel(setylabel) # show LEGEND plt.legend(loc=ilg, prop={'size': 10}, ncol=2) # display PLOT plt.show(block=False) # save PLOT if self.fext == 'png': plt.savefig('RESULTS/' + self.data_prefix + 'ei_eq.png') elif self.fext == 'eps': plt.savefig('RESULTS/' + self.data_prefix + 'ei_eq.eps')
36.874477
125
0.572336
[ "BSD-2-Clause" ]
mmicromegas/ransX
EQUATIONS/InternalEnergyEquation.py
8,813
Python
#----------------------------------------------------------------------------- # Copyright (c) 2015-2017, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License with exception # for distributing bootloader. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- # netCDF4 (tested with v.1.1.9) has some hidden imports hiddenimports = ['netCDF4.utils', 'netcdftime']
39.538462
78
0.529183
[ "MIT" ]
JohnWJackson/arcadePython
venv/Lib/site-packages/PyInstaller/hooks/hook-netCDF4.py
514
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================= # Copyright (c) Ostap developers. # ============================================================================= # @file test_fitting_efficiency.py # Test module for ostap/fitting/efficiency.py # ============================================================================= """ Test module for ostap/fitting/efficiency.py """ # ============================================================================= __author__ = "Ostap developers" __all__ = () ## nothing to import # ============================================================================= import ROOT, random, math import ostap.fitting.roofit import ostap.fitting.models as Models from ostap.core.core import cpp, VE, dsID, Ostap from ostap.logger.utils import rooSilent from ostap.fitting.efficiency import Efficiency1D from ostap.utils.timing import timing from ostap.plotting.canvas import use_canvas from ostap.utils.utils import wait # ============================================================================= # logging # ============================================================================= from ostap.logger.logger import getLogger if '__main__' == __name__ or '__builtin__' == __name__ : logger = getLogger ( 'test_fitting_efficiency' ) else : logger = getLogger ( __name__ ) # ============================================================================= ## make x = ROOT.RooRealVar ( 'x', 'test' , 0 , 10 ) xmin , xmax = x.minmax() acc = ROOT.RooCategory( 'cut','cut') acc.defineType('accept',1) acc.defineType('reject',0) varset = ROOT.RooArgSet ( x , acc ) ds = ROOT.RooDataSet ( dsID() , 'test data' , varset ) eff0 = Models.Monotonic_pdf ( 'E0' , xvar = x , power = 3 , increasing = True ) eff0.phis = 3.1415/1 , 3.1415/2 , 3.1415/3 margin = 1.25 emax = margin * eff0 ( x.getMax() ) N = 20000 for i in range ( N ) : xv = random.uniform ( xmin , xmax ) x.setVal ( xv ) ev = random.uniform ( 0 , emax ) if eff0( xv ) > ev : acc.setIndex(1) else : acc.setIndex(0) ds.add ( varset ) np = 20 dx = (xmax-xmin)/np points = [ dx * i for i in range ( np + 1 ) ] # ================================================================================= ## make comparison table def make_table ( func , title , prefix = "# ") : rows = [ ( 'x' , 'fitted eff [%]' , 'true eff [%]' , 'delta [%]' ) ] for p in points : e1 = 100 * func ( p , error = True ) e2 = 100 * eff0 ( p ) / emax d = e1 - e2 row = "%4.2f" % p , \ "%s" % e1.toString ( '(%5.2f+-%4.2f)' ) ,\ "%.2f" % e2 ,\ "%s" % d .toString ( '(%5.2f+-%4.2f)' ) rows.append ( row ) from ostap.logger.table import table return table ( rows , title = title , prefix = prefix ) # ============================================================================= # use some PDF to parameterize efficiciency def test_pdf () : logger = getLogger ( 'test_pdf' ) effPdf = Models.Monotonic_pdf ( 'P6' , xvar = x , power = 4 , increasing = True ) maxe = margin * effPdf ( xmax ) s0 = min ( 1.0 / emax , 1.0 / maxe ) scale = ROOT.RooRealVar ( 'scaleX' , 'scaleX' , s0 , 0.2 * s0 , 5.0 * s0 ) eff2 = Efficiency1D ( 'E2' , effPdf , cut = acc , scale = scale ) r2 = eff2.fitTo ( ds ) logger.info ( "Fit result using-Monotonic_pdf \n%s" % r2.table ( prefix = "# ") ) logger.info ( "Compare with true efficiency (using Monotonic_pdf)\n%s" % make_table ( eff2 , title = 'using Monotonic_pdf') ) with wait ( 2 ) , use_canvas ( 'test_pdf' ) : f2 = eff2.draw ( ds , nbins = 25 ) # ============================================================================= # use some functions to parameterize efficiciency def test_vars1 () : from ostap.fitting.roofuncs import BernsteinPoly as BP logger = getLogger ( 'test_vars1' ) f = BP ( 'G' , xvar = x , power = 4 ) f.pars = 0.2 , 0.2 , 0.2 , 0.2 eff2 = Efficiency1D ( 'E3' , f.fun , cut = acc , xvar = x ) r2 = eff2.fitTo ( ds ) logger.info ( "Fit result using-BernsteinPoly \n%s" % r2.table ( prefix = "# ") ) logger.info ( "Compare with true efficiency (using BernsteinPoly)\n%s" % make_table ( eff2 , title = 'using BernsteinPoly') ) with wait ( 2 ) , use_canvas ( 'test_pdf' ) : f2 = eff2.draw ( ds , nbins = 25 ) # ============================================================================= # use some functions to parameterize efficiciency def test_vars2 () : logger = getLogger ( 'test_vars2' ) from ostap.fitting.roofuncs import MonotonicPoly as MP f = MP ( 'G' , xvar = x , increasing = True , power = 4 ) f.pars = 0.6 , 0.8 , -0.1 , -0.6 f.a = 0.06 f.b = 2.72 f.a.release () f.b.release () eff2 = Efficiency1D ( 'E4' , f , cut = acc , xvar = x ) r2 = eff2.fitTo ( ds ) logger.info ( "Fit result using-MonotonicPoly \n%s" % r2.table ( prefix = "# ") ) logger.info ( "Compare with true efficiency (using MonotonicPoly)\n%s" % make_table ( eff2 , title = 'using MonotonicPoly') ) with wait ( 2 ) , use_canvas ( 'test_pdf' ) : f2 = eff2.draw ( ds , nbins = 25 ) # ============================================================================= # use some functions to parameterize efficiciency def test_vars3 () : logger = getLogger ( 'test_vars3' ) a = ROOT.RooRealVar ( 'A', 'a' , 0.05 , 0 , 1 ) b = ROOT.RooRealVar ( 'B', 'b' , 0.02 , -0.05 , 0.1 ) c = ROOT.RooRealVar ( 'C', 'c' , 0.005 , 0 , 0.1 ) import ostap.fitting.roofuncs as R from ostap.fitting.funbasic import Fun1D X = Fun1D ( x , xvar = x , name = 'X' ) ##F = (X**2) * c + X * b + a F = a + b * X + c * X**2 eff2 = Efficiency1D ( 'E5' , F , cut = acc , xvar = x ) r2 = eff2.fitTo ( ds ) logger.info ( "Fit result using-Fun1D \n%s" % r2.table ( prefix = "# ") ) logger.info ( "Compare with true efficiency (using Fun1D)\n%s" % make_table ( eff2 , title = 'using Fnu1D') ) with wait ( 2 ) , use_canvas ( 'test_vars3' ) : f2 = eff2.draw ( ds , nbins = 25 ) # ============================================================================= if '__main__' == __name__ : with timing ("PDF" , logger ) : test_pdf () with timing ("Vars1" , logger ) : test_vars1 () with timing ("Vars2" , logger ) : test_vars2 () with timing ("Vars3" , logger ) : test_vars3 () # ============================================================================= ## The END # =============================================================================
34.657143
89
0.436796
[ "BSD-3-Clause" ]
MohamedElashri/ostap
ostap/fitting/tests/test_fitting_efficiency.py
7,278
Python
# # @file TestConstraint_newSetters.py # @brief Constraint unit tests for new set function API # # @author Akiya Jouraku (Python conversion) # @author Sarah Keating # # $Id$ # $HeadURL$ # # This test file was converted from src/sbml/test/TestConstraint_newSetters.c # with the help of conversion sciprt (ctest_converter.pl). # #<!--------------------------------------------------------------------------- # This file is part of libSBML. Please visit http://sbml.org for more # information about SBML, and the latest version of libSBML. # # Copyright 2005-2009 California Institute of Technology. # Copyright 2002-2005 California Institute of Technology and # Japan Science and Technology Corporation. # # This library is free software; you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation. A copy of the license agreement is provided # in the file named "LICENSE.txt" included with this software distribution # and also available online as http://sbml.org/software/libsbml/license.html #--------------------------------------------------------------------------->*/ import sys import unittest import libsbml class TestConstraint_newSetters(unittest.TestCase): C = None def setUp(self): self.C = libsbml.Constraint(2,4) if (self.C == None): pass pass def tearDown(self): self.C = None pass def test_Constraint_setMath1(self): math = libsbml.parseFormula("2 * k") i = self.C.setMath(math) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( self.C.getMath() != math ) self.assertEqual( True, self.C.isSetMath() ) i = self.C.setMath(None) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( self.C.getMath() == None ) self.assertEqual( False, self.C.isSetMath() ) math = None pass def test_Constraint_setMath2(self): math = libsbml.ASTNode(libsbml.AST_TIMES) i = self.C.setMath(math) self.assert_( i == libsbml.LIBSBML_INVALID_OBJECT ) self.assertEqual( False, self.C.isSetMath() ) math = None pass def test_Constraint_setMessage1(self): node = libsbml.XMLNode() i = self.C.setMessage(node) self.assert_( i == libsbml.LIBSBML_INVALID_OBJECT ) self.assert_( self.C.isSetMessage() == False ) i = self.C.unsetMessage() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( False, self.C.isSetMessage() ) if (self.C.getMessage() != None): pass node = None pass def test_Constraint_setMessage2(self): text = libsbml.XMLNode.convertStringToXMLNode(" Some text ",None) triple = libsbml.XMLTriple("p", "http://www.w3.org/1999/xhtml", "") att = libsbml.XMLAttributes() xmlns = libsbml.XMLNamespaces() xmlns.add( "http://www.w3.org/1999/xhtml", "") p = libsbml.XMLNode(triple,att,xmlns) p.addChild(text) triple1 = libsbml.XMLTriple("message", "", "") att1 = libsbml.XMLAttributes() node = libsbml.XMLNode(triple1,att1) node.addChild(p) i = self.C.setMessage(node) self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assert_( self.C.isSetMessage() == True ) i = self.C.unsetMessage() self.assert_( i == libsbml.LIBSBML_OPERATION_SUCCESS ) self.assertEqual( False, self.C.isSetMessage() ) if (self.C.getMessage() != None): pass node = None pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestConstraint_newSetters)) return suite if __name__ == "__main__": if unittest.TextTestRunner(verbosity=1).run(suite()).wasSuccessful() : sys.exit(0) else: sys.exit(1)
32.947368
79
0.660011
[ "BSD-3-Clause" ]
dchandran/evolvenetworks
external/sbml/bindings/python/test/sbml/TestConstraint_newSetters.py
3,756
Python
#!/usr/bin/env python3 import sys import os import argparse scriptpath = os.path.abspath(os.path.dirname(__file__)) includepath = os.path.dirname(scriptpath) sys.path.insert(0, includepath) from audio.audiofilefactory import AudioFileFactory from audio.audioconversionservice import AudioConversionService from filesystem.filelist import FileList parser = argparse.ArgumentParser(description="Convert music files", epilog="File types are auto-derived from the filename extensions.") parser.add_argument("source_path", help="The source path") parser.add_argument("destination_path", help="The destination path") parser.add_argument("list_of_favourites", help="The list of favourites") args = parser.parse_args() source_path = args.source_path destination_path = args.destination_path list_of_favourites = args.list_of_favourites with open(list_of_favourites) as f: content = f.readlines() content = [x.strip() for x in content] factory = AudioFileFactory() for favourite in content: statvfs = os.statvfs(destination_path) free_space = statvfs.f_bavail * statvfs.f_bsize print("Space left: " + str(free_space / 1024 / 1024 / 1024) + " Gb") if free_space < 700 * 1024 * 1024: print("Skipping " + favourite + ", less than 700 Mb left on device (" + str(free_space / 1024 / 1024) + " Mb)") continue target_dir = os.path.join(destination_path, favourite) if os.path.isdir(target_dir): print("Skipping " + favourite + ", path already exists") continue os.mkdir(target_dir) list = FileList(None, factory) list.add_path_to_list(os.path.join(source_path, favourite)) for f in list: source_file_path = f.get_path() destination_file_path = os.path.join(target_dir, os.path.splitext(os.path.basename(source_file_path))[0] + ".wav") destination_file = factory.create_file(destination_file_path) AudioConversionService().convert_audio_file(f, destination_file)
43.295455
135
0.76378
[ "BSD-3-Clause" ]
redmond-penguin/musicplayer
bin/convertfavourites.py
1,905
Python
from pymavlink import mavutil #import time mavutil.set_dialect("video_monitor") # create a connection to FMU hoverGames = mavutil.mavlink_connection("/dev/ttymxc2", baud=921600) # wait for the heartbeat message to find the system id hoverGames.wait_heartbeat() print("Heartbeat from system (system %u component %u)" %(hoverGames.target_system, hoverGames.target_component)) while (True) : msg = hoverGames.recv_match(type='VIDEO_MONITOR', blocking=True) #check that the message is valid before attempting to use it if not msg: print('No message!\n') continue if msg.get_type() == "BAD_DATA": if mavutil.all_printable(msg.data): sys.stdout.write(msg.data) sys.stdout.flush() else: #Message is valid, so use the attribute print('Info: %s' % msg.info) print('Latitude : %d' % msg.lat) print('Longitude: %d' % msg.lon) print('No.people: %d' % msg.no_people) print('Confidence: %f' % msg.confidence) print('\n') #time.sleep(1.0):
30.742857
112
0.643123
[ "BSD-3-Clause" ]
dmdobrea/HoverGames_Challenge2
02_commCustom/receiveCustomMavlinkMSG.py
1,076
Python
import numpy as np from .utils import make_dir class Evaluater(object): def __init__(self, logger, size, original_size, tag='paper_figure'): self.pixel_spaceing = 0.1 self.tag = tag make_dir(tag) self.tag += '/' self.logger = logger self.scale_rate_y = original_size[0] / size[0] self.scale_rate_x = original_size[1] / size[1] self.RE_list = list() self.recall_radius = [2, 2.5, 3, 4] # 2mm etc self.recall_rate = list() self.Attack_RE_list = list() self.Defend_RE_list = list() self.dict_Attack = dict() self.dict_Defend = dict() self.total_list = dict() self.mode_list = [0, 1, 2, 3] self.mode_dict = {0: "Iterative FGSM", 1: "Adaptive Iterative FGSM", \ 2: "Adaptive_Rate", 3: "Proposed"} for mode in self.mode_list: self.dict_Defend[mode] = dict() self.dict_Attack[mode] = dict() self.total_list[mode] = list() self.best_mre = 100.0 def reset(self): self.RE_list.clear() for mode in self.mode_list: self.dict_Defend[mode] = dict() self.dict_Attack[mode] = dict() self.total_list[mode] = list() self.Attack_RE_list.clear() self.Defend_RE_list.clear() def record(self, pred, landmark): # n = batchsize = 1 # pred : list[ c(y) ; c(x) ] # landmark: list [ (x , y) * c] c = pred[0].shape[0] diff = np.zeros([c, 2], dtype=float) # y, x for i in range(c): diff[i][0] = abs(pred[0][i] - landmark[i][1]) * self.scale_rate_y diff[i][1] = abs(pred[1][i] - landmark[i][0]) * self.scale_rate_x Radial_Error = np.sqrt(np.power(diff[:, 0], 2) + np.power(diff[:, 1], 2)) Radial_Error *= self.pixel_spaceing self.RE_list.append(Radial_Error) # for i in range(len(Radial_Error)): # if Radial_Error[i] > 10: # print("Landmark {} RE {}".format(i, Radial_Error[i])) # if Radial_Error.max() > 10: # return Radial_Error.argmax() return None def record_attack(self, pred, landmark, attack_list, mode=0, iteration=0): # n = batchsize = 1 # pred : list[ c(y) ; c(x) ] # landmark: list [ (x , y) * c] assert (mode in [0, 1, 2, 3]) c = pred[0].shape[0] diff = np.zeros([c, 2], dtype=float) # y, x attack_temp = list() defend_temp = list() for i in range(c): diff[i][0] = abs(pred[0][i] - landmark[i][1]) * self.scale_rate_y diff[i][1] = abs(pred[1][i] - landmark[i][0]) * self.scale_rate_x Radial_Error = np.sqrt(np.power(diff[i, 0], 2) + np.power(diff[i, 1], 2)) if i in attack_list: attack_temp.append([i, Radial_Error * self.pixel_spaceing]) else: defend_temp.append([i, Radial_Error * self.pixel_spaceing]) if iteration not in self.dict_Attack[mode].keys(): self.dict_Attack[mode][iteration] = list() self.dict_Attack[mode][iteration].append(attack_temp) if iteration not in self.dict_Defend[mode].keys(): self.dict_Defend[mode][iteration] = list() self.dict_Defend[mode][iteration].append(defend_temp) def cal_metrics(self, ex=False): # calculate MRE SDR temp = np.array(self.RE_list) Mean_RE_channel = temp.mean(axis=0) self.logger.info(Mean_RE_channel) # with open('./tmp/results.csv', 'w') as f: # writer = csv.writer(f) # writer.writerow(Mean_RE_channel.tolist()) mre = Mean_RE_channel.mean() self.logger.info("ALL MRE {}".format(mre)) for radius in self.recall_radius: total = temp.size shot = (temp < radius).sum() self.logger.info("ALL SDR {}mm {}".format\ (radius, shot * 100 / total)) if ex: return mre, None return mre
37.300885
86
0.530724
[ "Apache-2.0" ]
Curli-quan/oneshot-medical-landmark
utils/eval.py
4,215
Python
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import time from oslo_log import log as logging from tempest.common import compute from tempest.common import waiters from tempest import config from tempest import exceptions from tempest.lib.common import api_microversion_fixture from tempest.lib.common import api_version_request from tempest.lib.common import api_version_utils from tempest.lib.common.utils import data_utils from tempest.lib.common.utils import test_utils from tempest.lib import exceptions as lib_exc import tempest.test CONF = config.CONF LOG = logging.getLogger(__name__) class BaseV2ComputeTest(api_version_utils.BaseMicroversionTest, tempest.test.BaseTestCase): """Base test case class for all Compute API tests.""" force_tenant_isolation = False # Set this to True in subclasses to create a default network. See # https://bugs.launchpad.net/tempest/+bug/1844568 create_default_network = False # TODO(andreaf) We should care also for the alt_manager here # but only once client lazy load in the manager is done credentials = ['primary'] @classmethod def skip_checks(cls): super(BaseV2ComputeTest, cls).skip_checks() if not CONF.service_available.nova: raise cls.skipException("Nova is not available") api_version_utils.check_skip_with_microversion( cls.min_microversion, cls.max_microversion, CONF.compute.min_microversion, CONF.compute.max_microversion) api_version_utils.check_skip_with_microversion( cls.volume_min_microversion, cls.volume_max_microversion, CONF.volume.min_microversion, CONF.volume.max_microversion) api_version_utils.check_skip_with_microversion( cls.placement_min_microversion, cls.placement_max_microversion, CONF.placement.min_microversion, CONF.placement.max_microversion) @classmethod def setup_credentials(cls): # Setting network=True, subnet=True creates a default network cls.set_network_resources( network=cls.create_default_network, subnet=cls.create_default_network) super(BaseV2ComputeTest, cls).setup_credentials() @classmethod def setup_clients(cls): super(BaseV2ComputeTest, cls).setup_clients() cls.servers_client = cls.os_primary.servers_client cls.server_groups_client = cls.os_primary.server_groups_client cls.flavors_client = cls.os_primary.flavors_client cls.compute_images_client = cls.os_primary.compute_images_client cls.extensions_client = cls.os_primary.extensions_client cls.floating_ip_pools_client = cls.os_primary.floating_ip_pools_client cls.floating_ips_client = cls.os_primary.compute_floating_ips_client cls.keypairs_client = cls.os_primary.keypairs_client cls.security_group_rules_client = ( cls.os_primary.compute_security_group_rules_client) cls.security_groups_client =\ cls.os_primary.compute_security_groups_client cls.quotas_client = cls.os_primary.quotas_client cls.compute_networks_client = cls.os_primary.compute_networks_client cls.limits_client = cls.os_primary.limits_client cls.volumes_extensions_client =\ cls.os_primary.volumes_extensions_client cls.snapshots_extensions_client =\ cls.os_primary.snapshots_extensions_client cls.interfaces_client = cls.os_primary.interfaces_client cls.fixed_ips_client = cls.os_primary.fixed_ips_client cls.availability_zone_client = cls.os_primary.availability_zone_client cls.agents_client = cls.os_primary.agents_client cls.aggregates_client = cls.os_primary.aggregates_client cls.services_client = cls.os_primary.services_client cls.instance_usages_audit_log_client = ( cls.os_primary.instance_usages_audit_log_client) cls.hypervisor_client = cls.os_primary.hypervisor_client cls.certificates_client = cls.os_primary.certificates_client cls.migrations_client = cls.os_primary.migrations_client cls.security_group_default_rules_client = ( cls.os_primary.security_group_default_rules_client) cls.versions_client = cls.os_primary.compute_versions_client if CONF.service_available.cinder: cls.volumes_client = cls.os_primary.volumes_client_latest cls.attachments_client = cls.os_primary.attachments_client_latest cls.snapshots_client = cls.os_primary.snapshots_client_latest if CONF.service_available.glance: if CONF.image_feature_enabled.api_v1: cls.images_client = cls.os_primary.image_client elif CONF.image_feature_enabled.api_v2: cls.images_client = cls.os_primary.image_client_v2 else: raise lib_exc.InvalidConfiguration( 'Either api_v1 or api_v2 must be True in ' '[image-feature-enabled].') cls._check_depends_on_nova_network() @classmethod def _check_depends_on_nova_network(cls): # Since nova-network APIs were removed from Nova in the Rocky release, # determine, based on the max version from the version document, if # the compute API is >Queens and if so, skip tests that rely on # nova-network. if not getattr(cls, 'depends_on_nova_network', False): return versions = cls.versions_client.list_versions()['versions'] # Find the v2.1 version which will tell us our max version for the # compute API we're testing against. for version in versions: if version['id'] == 'v2.1': max_version = api_version_request.APIVersionRequest( version['version']) break else: LOG.warning( 'Unable to determine max v2.1 compute API version: %s', versions) return # The max compute API version in Queens is 2.60 so we cap # at that version. queens = api_version_request.APIVersionRequest('2.60') if max_version > queens: raise cls.skipException('nova-network is gone') @classmethod def resource_setup(cls): super(BaseV2ComputeTest, cls).resource_setup() cls.request_microversion = ( api_version_utils.select_request_microversion( cls.min_microversion, CONF.compute.min_microversion)) cls.volume_request_microversion = ( api_version_utils.select_request_microversion( cls.volume_min_microversion, CONF.volume.min_microversion)) cls.placement_request_microversion = ( api_version_utils.select_request_microversion( cls.placement_min_microversion, CONF.placement.min_microversion)) cls.build_interval = CONF.compute.build_interval cls.build_timeout = CONF.compute.build_timeout cls.image_ref = CONF.compute.image_ref cls.image_ref_alt = CONF.compute.image_ref_alt cls.flavor_ref = CONF.compute.flavor_ref cls.flavor_ref_alt = CONF.compute.flavor_ref_alt cls.ssh_user = CONF.validation.image_ssh_user cls.ssh_alt_user = CONF.validation.image_alt_ssh_user cls.image_ssh_user = CONF.validation.image_ssh_user cls.image_alt_ssh_user = CONF.validation.image_alt_ssh_user cls.image_ssh_password = CONF.validation.image_ssh_password cls.image_alt_ssh_password = CONF.validation.image_alt_ssh_password @classmethod def is_requested_microversion_compatible(cls, max_version): """Check the compatibility of selected request microversion This method will check if selected request microversion (cls.request_microversion) for test is compatible with respect to 'max_version'. Compatible means if selected request microversion is in the range(<=) of 'max_version'. :param max_version: maximum microversion to compare for compatibility. Example: '2.30' :returns: True if selected request microversion is compatible with 'max_version'. False in other case. """ try: req_version_obj = api_version_request.APIVersionRequest( cls.request_microversion) # NOTE(gmann): This is case where this method is used before calling # resource_setup(), where cls.request_microversion is set. There may # not be any such case but still we can handle this case. except AttributeError: request_microversion = ( api_version_utils.select_request_microversion( cls.min_microversion, CONF.compute.min_microversion)) req_version_obj = api_version_request.APIVersionRequest( request_microversion) max_version_obj = api_version_request.APIVersionRequest(max_version) return req_version_obj <= max_version_obj @classmethod def server_check_teardown(cls): """Checks is the shared server clean enough for subsequent test. Method will delete the server when it's dirty. The setUp method is responsible for creating a new server. Exceptions raised in tearDown class are fails the test case, This method supposed to use only by tearDown methods, when the shared server_id is stored in the server_id of the class. """ if getattr(cls, 'server_id', None) is not None: try: waiters.wait_for_server_status(cls.servers_client, cls.server_id, 'ACTIVE') except Exception as exc: LOG.exception(exc) cls.servers_client.delete_server(cls.server_id) waiters.wait_for_server_termination(cls.servers_client, cls.server_id) cls.server_id = None raise @classmethod def create_test_server(cls, validatable=False, volume_backed=False, validation_resources=None, clients=None, **kwargs): """Wrapper utility that returns a test server. This wrapper utility calls the common create test server and returns a test server. The purpose of this wrapper is to minimize the impact on the code of the tests already using this function. :param validatable: Whether the server will be pingable or sshable. :param volume_backed: Whether the instance is volume backed or not. :param validation_resources: Dictionary of validation resources as returned by `get_class_validation_resources`. :param clients: Client manager, defaults to os_primary. :param kwargs: Extra arguments are passed down to the `compute.create_test_server` call. """ if 'name' not in kwargs: kwargs['name'] = data_utils.rand_name(cls.__name__ + "-server") request_version = api_version_request.APIVersionRequest( cls.request_microversion) v2_37_version = api_version_request.APIVersionRequest('2.37') tenant_network = cls.get_tenant_network() # NOTE(snikitin): since microversion v2.37 'networks' field is required if (request_version >= v2_37_version and 'networks' not in kwargs and not tenant_network): kwargs['networks'] = 'none' if clients is None: clients = cls.os_primary body, servers = compute.create_test_server( clients, validatable, validation_resources=validation_resources, tenant_network=tenant_network, volume_backed=volume_backed, **kwargs) # For each server schedule wait and delete, so we first delete all # and then wait for all for server in servers: cls.addClassResourceCleanup(waiters.wait_for_server_termination, clients.servers_client, server['id']) for server in servers: cls.addClassResourceCleanup( test_utils.call_and_ignore_notfound_exc, clients.servers_client.delete_server, server['id']) return body @classmethod def create_security_group(cls, name=None, description=None): if name is None: name = data_utils.rand_name(cls.__name__ + "-securitygroup") if description is None: description = data_utils.rand_name('description') body = cls.security_groups_client.create_security_group( name=name, description=description)['security_group'] cls.addClassResourceCleanup( test_utils.call_and_ignore_notfound_exc, cls.security_groups_client.delete_security_group, body['id']) return body @classmethod def create_test_server_group(cls, name="", policy=None): if not name: name = data_utils.rand_name(cls.__name__ + "-Server-Group") if policy is None: policy = ['affinity'] body = cls.server_groups_client.create_server_group( name=name, policies=policy)['server_group'] cls.addClassResourceCleanup( test_utils.call_and_ignore_notfound_exc, cls.server_groups_client.delete_server_group, body['id']) return body def wait_for(self, condition): """Repeatedly calls condition() until a timeout.""" start_time = int(time.time()) while True: try: condition() except Exception: pass else: return if int(time.time()) - start_time >= self.build_timeout: condition() return time.sleep(self.build_interval) @classmethod def prepare_instance_network(cls): if (CONF.validation.auth_method != 'disabled' and CONF.validation.connect_method == 'floating'): cls.set_network_resources(network=True, subnet=True, router=True, dhcp=True) @classmethod def create_image_from_server(cls, server_id, **kwargs): """Wrapper utility that returns an image created from the server. If compute microversion >= 2.36, the returned image response will be from the image service API rather than the compute image proxy API. """ name = kwargs.pop('name', data_utils.rand_name(cls.__name__ + "-image")) wait_until = kwargs.pop('wait_until', None) wait_for_server = kwargs.pop('wait_for_server', True) image = cls.compute_images_client.create_image(server_id, name=name, **kwargs) if api_version_utils.compare_version_header_to_response( "OpenStack-API-Version", "compute 2.45", image.response, "lt"): image_id = image['image_id'] else: image_id = data_utils.parse_image_id(image.response['location']) # The compute image proxy APIs were deprecated in 2.35 so # use the images client directly if the API microversion being # used is >=2.36. if not cls.is_requested_microversion_compatible('2.35'): client = cls.images_client else: client = cls.compute_images_client cls.addClassResourceCleanup(test_utils.call_and_ignore_notfound_exc, client.delete_image, image_id) if wait_until is not None: try: wait_until = wait_until.upper() if not cls.is_requested_microversion_compatible('2.35'): wait_until = wait_until.lower() waiters.wait_for_image_status(client, image_id, wait_until) except lib_exc.NotFound: if wait_until.upper() == 'ACTIVE': # If the image is not found after create_image returned # that means the snapshot failed in nova-compute and nova # deleted the image. There should be a compute fault # recorded with the server in that case, so get the server # and dump some details. server = ( cls.servers_client.show_server(server_id)['server']) if 'fault' in server: raise exceptions.SnapshotNotFoundException( server['fault'], image_id=image_id) else: raise exceptions.SnapshotNotFoundException( image_id=image_id) else: raise image = client.show_image(image_id) # Compute image client returns response wrapped in 'image' element # which is not the case with Glance image client. if 'image' in image: image = image['image'] if wait_until.upper() == 'ACTIVE': if wait_for_server: waiters.wait_for_server_status(cls.servers_client, server_id, 'ACTIVE') return image @classmethod def recreate_server(cls, server_id, validatable=False, **kwargs): """Destroy an existing class level server and creates a new one Some test classes use a test server that can be used by multiple tests. This is done to optimise runtime and test load. If something goes wrong with the test server, it can be rebuilt using this helper. This helper can also be used for the initial provisioning if no server_id is specified. :param server_id: UUID of the server to be rebuilt. If None is specified, a new server is provisioned. :param validatable: whether to the server needs to be validatable. When True, validation resources are acquired via the `get_class_validation_resources` helper. :param kwargs: extra paramaters are passed through to the `create_test_server` call. :return: the UUID of the created server. """ if server_id: cls.delete_server(server_id) cls.password = data_utils.rand_password() server = cls.create_test_server( validatable, validation_resources=cls.get_class_validation_resources( cls.os_primary), wait_until='ACTIVE', adminPass=cls.password, **kwargs) return server['id'] @classmethod def delete_server(cls, server_id): """Deletes an existing server and waits for it to be gone.""" try: cls.servers_client.delete_server(server_id) waiters.wait_for_server_termination(cls.servers_client, server_id) except Exception: LOG.exception('Failed to delete server %s', server_id) def resize_server(self, server_id, new_flavor_id, **kwargs): """resize and confirm_resize an server, waits for it to be ACTIVE.""" self.servers_client.resize_server(server_id, new_flavor_id, **kwargs) waiters.wait_for_server_status(self.servers_client, server_id, 'VERIFY_RESIZE') self.servers_client.confirm_resize_server(server_id) waiters.wait_for_server_status( self.servers_client, server_id, 'ACTIVE') server = self.servers_client.show_server(server_id)['server'] self.assert_flavor_equal(new_flavor_id, server['flavor']) @classmethod def delete_volume(cls, volume_id): """Deletes the given volume and waits for it to be gone.""" try: cls.volumes_client.delete_volume(volume_id) # TODO(mriedem): We should move the wait_for_resource_deletion # into the delete_volume method as a convenience to the caller. cls.volumes_client.wait_for_resource_deletion(volume_id) except lib_exc.NotFound: LOG.warning("Unable to delete volume '%s' since it was not found. " "Maybe it was already deleted?", volume_id) @classmethod def get_server_ip(cls, server, validation_resources=None): """Get the server fixed or floating IP. Based on the configuration we're in, return a correct ip address for validating that a guest is up. :param server: The server dict as returned by the API :param validation_resources: The dict of validation resources provisioned for the server. """ if CONF.validation.connect_method == 'floating': if validation_resources: return validation_resources['floating_ip']['ip'] else: msg = ('When validation.connect_method equals floating, ' 'validation_resources cannot be None') raise lib_exc.InvalidParam(invalid_param=msg) elif CONF.validation.connect_method == 'fixed': addresses = server['addresses'][CONF.validation.network_for_ssh] for address in addresses: if address['version'] == CONF.validation.ip_version_for_ssh: return address['addr'] raise exceptions.ServerUnreachable(server_id=server['id']) else: raise lib_exc.InvalidConfiguration() def setUp(self): super(BaseV2ComputeTest, self).setUp() self.useFixture(api_microversion_fixture.APIMicroversionFixture( compute_microversion=self.request_microversion, volume_microversion=self.volume_request_microversion, placement_microversion=self.placement_request_microversion)) @classmethod def create_volume(cls, image_ref=None, **kwargs): """Create a volume and wait for it to become 'available'. :param image_ref: Specify an image id to create a bootable volume. :param kwargs: other parameters to create volume. :returns: The available volume. """ if 'size' not in kwargs: kwargs['size'] = CONF.volume.volume_size if 'display_name' not in kwargs: vol_name = data_utils.rand_name(cls.__name__ + '-volume') kwargs['display_name'] = vol_name if image_ref is not None: kwargs['imageRef'] = image_ref if CONF.compute.compute_volume_common_az: kwargs.setdefault('availability_zone', CONF.compute.compute_volume_common_az) volume = cls.volumes_client.create_volume(**kwargs)['volume'] cls.addClassResourceCleanup( cls.volumes_client.wait_for_resource_deletion, volume['id']) cls.addClassResourceCleanup(test_utils.call_and_ignore_notfound_exc, cls.volumes_client.delete_volume, volume['id']) waiters.wait_for_volume_resource_status(cls.volumes_client, volume['id'], 'available') return volume def _detach_volume(self, server, volume): """Helper method to detach a volume. Ignores 404 responses if the volume or server do not exist, or the volume is already detached from the server. """ try: volume = self.volumes_client.show_volume(volume['id'])['volume'] # Check the status. You can only detach an in-use volume, otherwise # the compute API will return a 400 response. if volume['status'] == 'in-use': self.servers_client.detach_volume(server['id'], volume['id']) except lib_exc.NotFound: # Ignore 404s on detach in case the server is deleted or the volume # is already detached. pass def attach_volume(self, server, volume, device=None, tag=None): """Attaches volume to server and waits for 'in-use' volume status. The volume will be detached when the test tears down. :param server: The server to which the volume will be attached. :param volume: The volume to attach. :param device: Optional mountpoint for the attached volume. Note that this is not guaranteed for all hypervisors and is not recommended. :param tag: Optional device role tag to apply to the volume. """ attach_kwargs = dict(volumeId=volume['id']) if device: attach_kwargs['device'] = device if tag: attach_kwargs['tag'] = tag attachment = self.servers_client.attach_volume( server['id'], **attach_kwargs)['volumeAttachment'] # On teardown detach the volume and for multiattach volumes wait for # the attachment to be removed. For non-multiattach volumes wait for # the state of the volume to change to available. This is so we don't # error out when trying to delete the volume during teardown. if volume['multiattach']: att = waiters.wait_for_volume_attachment_create( self.volumes_client, volume['id'], server['id']) self.addCleanup(waiters.wait_for_volume_attachment_remove, self.volumes_client, volume['id'], att['attachment_id']) else: self.addCleanup(waiters.wait_for_volume_resource_status, self.volumes_client, volume['id'], 'available') waiters.wait_for_volume_resource_status(self.volumes_client, volume['id'], 'in-use') # Ignore 404s on detach in case the server is deleted or the volume # is already detached. self.addCleanup(self._detach_volume, server, volume) return attachment def create_volume_snapshot(self, volume_id, name=None, description=None, metadata=None, force=False): name = name or data_utils.rand_name( self.__class__.__name__ + '-snapshot') snapshot = self.snapshots_client.create_snapshot( volume_id=volume_id, force=force, display_name=name, description=description, metadata=metadata)['snapshot'] self.addCleanup(self.snapshots_client.wait_for_resource_deletion, snapshot['id']) self.addCleanup(self.snapshots_client.delete_snapshot, snapshot['id']) waiters.wait_for_volume_resource_status(self.snapshots_client, snapshot['id'], 'available') snapshot = self.snapshots_client.show_snapshot( snapshot['id'])['snapshot'] return snapshot def assert_flavor_equal(self, flavor_id, server_flavor): """Check whether server_flavor equals to flavor. :param flavor_id: flavor id :param server_flavor: flavor info returned by show_server. """ # Nova API > 2.46 no longer includes flavor.id, and schema check # will cover whether 'id' should be in flavor if server_flavor.get('id'): msg = ('server flavor is not same as flavor!') self.assertEqual(flavor_id, server_flavor['id'], msg) else: flavor = self.flavors_client.show_flavor(flavor_id)['flavor'] self.assertEqual(flavor['name'], server_flavor['original_name'], "original_name in server flavor is not same as " "flavor name!") for key in ['ram', 'vcpus', 'disk']: msg = ('attribute %s in server flavor is not same as ' 'flavor!' % key) self.assertEqual(flavor[key], server_flavor[key], msg) class BaseV2ComputeAdminTest(BaseV2ComputeTest): """Base test case class for Compute Admin API tests.""" credentials = ['primary', 'admin'] @classmethod def setup_clients(cls): super(BaseV2ComputeAdminTest, cls).setup_clients() cls.availability_zone_admin_client = ( cls.os_admin.availability_zone_client) cls.admin_flavors_client = cls.os_admin.flavors_client cls.admin_servers_client = cls.os_admin.servers_client cls.image_client = cls.os_admin.image_client_v2 cls.admin_assisted_volume_snapshots_client = \ cls.os_admin.assisted_volume_snapshots_client def create_flavor(self, ram, vcpus, disk, name=None, is_public='True', **kwargs): if name is None: name = data_utils.rand_name(self.__class__.__name__ + "-flavor") id = kwargs.pop('id', data_utils.rand_int_id(start=1000)) client = self.admin_flavors_client flavor = client.create_flavor( ram=ram, vcpus=vcpus, disk=disk, name=name, id=id, is_public=is_public, **kwargs)['flavor'] self.addCleanup(client.wait_for_resource_deletion, flavor['id']) self.addCleanup(client.delete_flavor, flavor['id']) return flavor @classmethod def get_host_for_server(cls, server_id): server_details = cls.admin_servers_client.show_server(server_id) return server_details['server']['OS-EXT-SRV-ATTR:host'] def get_host_other_than(self, server_id): source_host = self.get_host_for_server(server_id) svcs = self.os_admin.services_client.list_services( binary='nova-compute')['services'] hosts = [] for svc in svcs: if svc['state'] == 'up' and svc['status'] == 'enabled': if CONF.compute.compute_volume_common_az: if svc['zone'] == CONF.compute.compute_volume_common_az: hosts.append(svc['host']) else: hosts.append(svc['host']) for target_host in hosts: if source_host != target_host: return target_host
45.637703
79
0.639635
[ "Apache-2.0" ]
AurelienLourot/tempest
tempest/api/compute/base.py
30,988
Python
"""Script that generates a refresh token for a specific user.""" import os import sys import spotipy.util as util import json if len(sys.argv) == 2: username = str(sys.argv[1]) else: print('Usage: {} username'.format(sys.argv[0])) sys.exit(1) scope = 'user-read-currently-playing user-read-playback-state' # Get tokens from Spotify. try: util.prompt_for_user_token(username, scope) except: raise RuntimeError('Could not fetch token.') # Print refresh token. with open('.cache-{}'.format(username)) as json_file: data = json.load(json_file) print('Refresh token for {}: {}'.format(username, data['refresh_token']))
24.923077
77
0.699074
[ "MIT" ]
Georgej5/Colorfy
spotify_setup.py
648
Python
from sdklib.http import HttpSdk class SampleHttpsHttpSdk(HttpSdk): DEFAULT_HOST = "https://www.google.com" API_IVANPRJCTS_PATH = "/ivanprjcts" def get_ivanprjcts(self): return self.get(self.API_IVANPRJCTS_PATH)
19.666667
49
0.728814
[ "BSD-2-Clause" ]
ivanprjcts/sdklib
tests/sample_sdk_https.py
236
Python
from django.forms import ModelForm from .models import Post, Comment from loginsignup.utils import getBeaverInstance class PostForm(ModelForm): class Meta: model = Post exclude = ["likes", "posted_on", "post_creator"] def checkPost(self, request): if self.is_valid(): post = self.save(commit=False) beaver = getBeaverInstance(request) post.post_creator = beaver post.save() return True return False class CommentForm(ModelForm): class Meta: model = Comment fields = ["comment"] def checkComment(self, request, post): if self.is_valid(): comment = self.save(commit=False) comment.comment_creator = getBeaverInstance(request) comment.post = post comment.save() return True return False
26.176471
64
0.602247
[ "MIT" ]
BastaAditya/Quiver
Quiver/posts/forms.py
890
Python
''' Equations are given in the format A / B = k, where A and B are variables represented as strings, and k is a real number (floating point number). Given some queries, return the answers. If the answer does not exist, return -1.0. Example: Given a / b = 2.0, b / c = 3.0. queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? . return [6.0, 0.5, -1.0, 1.0, -1.0 ]. The input is: vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries , where equations.size() == values.size(), and the values are positive. This represents the equations. Return vector<double>. According to the example above: equations = [ ["a", "b"], ["b", "c"] ], values = [2.0, 3.0], queries = [ ["a", "c"], ["b", "a"], ["a", "e"], ["a", "a"], ["x", "x"] ]. The input is always valid. You may assume that evaluating the queries will result in no division by zero and there is no contradiction. ''' class Solution(object): def buildGraph(self, edges, vals): """ :type edge: List[[str, str]] :type vals: List[Double] :rtype: dict[dict] """ import collections graph = collections.defaultdict(dict) for index, val in enumerate(vals): start = edges[index][0] end = edges[index][1] graph[start][end] = val graph[end][start] = 1 / val return graph def insert(self, start, end, val): self.graph[start][end] = val self.graph[end][start] = 1 / val def search(self, start, end): val = 1.0 visited = dict() size = len(self.graph) mark = set() mark.add(start) visited[start] = 1.0 while (len(mark) > 0) and (end not in visited): src = mark.pop() for (dest, val) in self.graph[src].items(): if dest not in visited: mark.add(dest) visited[dest] = visited[src] * val return visited.get(end, -1.0) def calcEquation(self, equations, values, queries): """ :type equations: List[List[str]] :type values: List[float] :type queries: List[List[str]] :rtype: List[float] """ self.graph = self.buildGraph(equations, values) output = list() for (start, end) in queries: if start not in self.graph or end not in self.graph: output.append(-1.0) continue val = self.search(start, end) if val > 0: output.append(val) self.insert(start, end, val) else: output.append(-1.0) return output solution = Solution() equations = [["x1","x2"],["x2","x3"],["x3","x4"],["x4","x5"]] values = [3.0,4.0,5.0,6.0] queries = [["x1","x5"],["x5","x2"],["x2","x4"],["x2","x2"],["x2","x9"],["x9","x9"]] print solution.calcEquation(equations, values, queries)
35.566265
240
0.542005
[ "BSD-3-Clause" ]
shub0/algorithm-data-structure
python/evaluate_division.py
2,952
Python
# -*- coding: utf-8 -*- import hmac import requests from json import dumps from hashlib import sha1 from .app import api, env def match_any_if_any(event, events): return events is None or event in events class Subscription: def __init__(self, data): self.data = data self.events = data['data'].get('events') # user defined def __getitem__(self, config): return self.data[config] class Subscriptions: store = {} @classmethod def add(cls, sub): Subscriptions.store[sub['id']] = Subscription(sub) @classmethod def is_listening_for(cls, event): for id, sub in Subscriptions.store.items(): if match_any_if_any(event, sub.events): return True return False @classmethod def publish(cls, eventid, event, data): for id, sub in Subscriptions.store.items(): if match_any_if_any(event, sub.events): requests.post( sub['endpoint'], headers={'Content-Type': 'application/json'}, data=dumps(dict( eventType=event, cloudEventsVersion='0.1', contentType='application/vnd.omg.object+json', eventID=eventid, data=data )) ) @classmethod def remove(cls, eventid): Subscriptions.store.pop(eventid, None) @api.route('/webhooks/subscribe') async def subscribe(req, resp): data = await req.media() Subscriptions.add(data) resp.text = 'Subscribed' @api.route('/webhooks/unsubscribe') async def unsubscribe(req, resp): data = await req.media() Subscriptions.remove(data['id']) resp.text = 'Unsubscribed' @api.route('/webhooks') async def webhooks(req, resp): """ Handle incoming GitHub webhooks """ data = await req.media() eventid = req.headers.get('X-GitHub-Delivery') event = req.headers.get('X-GitHub-Event') if not Subscriptions.is_listening_for(event): resp.text = f'Accepted, but not listening for {event} events.' return if env.webhook_secret: signature = req.headers.get('X-Hub-Signature') assert signature, 'X-Hub-Signature not found in the header.' sha_name, signature = signature.split('=') assert sha_name == 'sha1' mac = hmac.new(env.webhook_secret, msg=data, digestmod='sha1') assert str(mac.hexdigest()) == str(signature) Subscriptions.publish(eventid, event, {'event': event, 'payload': data}) resp.text = 'Accepted'
26.78
76
0.590739
[ "MIT" ]
adnrs96/github
app/webhooks.py
2,678
Python
import json import requests from cklib.args import ArgumentParser from cklib.logging import log from cklib.jwt import encode_jwt_to_headers from cklib.graph import Graph, GraphExportIterator def send_to_ckcore(graph: Graph): if not ArgumentParser.args.ckcore_uri: return log.info("ckcore Event Handler called") base_uri = ArgumentParser.args.ckcore_uri.strip("/") ckcore_graph = ArgumentParser.args.ckcore_graph dump_json = ArgumentParser.args.debug_dump_json create_graph(base_uri, ckcore_graph) update_model(graph, base_uri, dump_json=dump_json) send_graph(graph, base_uri, ckcore_graph, dump_json=dump_json) def create_graph(ckcore_base_uri: str, ckcore_graph: str): graph_uri = f"{ckcore_base_uri}/graph/{ckcore_graph}" log.debug(f"Creating graph {ckcore_graph} via {graph_uri}") headers = {"accept": "application/json"} if getattr(ArgumentParser.args, "psk", None): encode_jwt_to_headers(headers, {}, ArgumentParser.args.psk) r = requests.post(graph_uri, data="", headers=headers) if r.status_code != 200: log.error(r.content) raise RuntimeError(f"Failed to create graph: {r.content}") def update_model(graph: Graph, ckcore_base_uri: str, dump_json: bool = False): model_uri = f"{ckcore_base_uri}/model" log.debug(f"Updating model via {model_uri}") model_json = json.dumps(graph.export_model(), indent=4) if dump_json: with open("model.dump.json", "w") as model_outfile: model_outfile.write(model_json) headers = {} if getattr(ArgumentParser.args, "psk", None): encode_jwt_to_headers(headers, {}, ArgumentParser.args.psk) r = requests.patch(model_uri, data=model_json, headers=headers) if r.status_code != 200: log.error(r.content) raise RuntimeError(f"Failed to create model: {r.content}") def send_graph( graph: Graph, ckcore_base_uri: str, ckcore_graph: str, dump_json: bool = False ): merge_uri = f"{ckcore_base_uri}/graph/{ckcore_graph}/merge" log.debug(f"Sending graph via {merge_uri}") graph_outfile = None if dump_json: graph_outfile = open("graph.dump.json", "w") try: graph_export_iterator = GraphExportIterator(graph, graph_outfile) headers = { "Content-Type": "application/x-ndjson", "Cloudkeeper-Ckworker-Nodes": str(graph.number_of_nodes()), "Cloudkeeper-Ckworker-Edges": str(graph.number_of_edges()), } if getattr(ArgumentParser.args, "psk", None): encode_jwt_to_headers(headers, {}, ArgumentParser.args.psk) r = requests.post( merge_uri, data=graph_export_iterator, headers=headers, ) if r.status_code != 200: log.error(r.content) raise RuntimeError(f"Failed to send graph: {r.content}") log.debug(f"ckcore reply: {r.content.decode()}") log.debug( f"Sent {graph_export_iterator.nodes_sent} nodes and" f" {graph_export_iterator.edges_sent} edges to ckcore" ) finally: if graph_outfile is not None: graph_outfile.close() def add_args(arg_parser: ArgumentParser) -> None: arg_parser.add_argument( "--ckcore-uri", help="ckcore URI (default: http://localhost:8900)", default="http://localhost:8900", dest="ckcore_uri", ) arg_parser.add_argument( "--ckcore-ws-uri", help="ckcore Websocket URI (default: ws://localhost:8900)", default="ws://localhost:8900", dest="ckcore_ws_uri", ) arg_parser.add_argument( "--ckcore-graph", help="ckcore graph name (default: ck)", default="ck", dest="ckcore_graph", ) arg_parser.add_argument( "--debug-dump-json", help="Dump the generated json data (default: False)", dest="debug_dump_json", action="store_true", )
32.096774
82
0.654271
[ "Apache-2.0" ]
mesosphere/cloudkeeper
ckworker/ckworker/ckcore.py
3,980
Python
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import uuid from openstack import resource class Queue(resource.Resource): # FIXME(anyone): The name string of `location` field of Zaqar API response # is lower case. That is inconsistent with the guide from API-WG. This is # a workaround for this issue. location = resource.Header("location") resources_key = "queues" base_path = "/queues" # capabilities allow_create = True allow_list = True allow_fetch = True allow_delete = True # Properties #: The default TTL of messages defined for a queue, which will effect for #: any messages posted to the queue. default_message_ttl = resource.Body("_default_message_ttl") #: Description of the queue. description = resource.Body("description") #: The max post size of messages defined for a queue, which will effect #: for any messages posted to the queue. max_messages_post_size = resource.Body("_max_messages_post_size") #: Name of the queue. The name is the unique identity of a queue. It #: must not exceed 64 bytes in length, and it is limited to US-ASCII #: letters, digits, underscores, and hyphens. name = resource.Body("name", alternate_id=True) #: The ID to identify the client accessing Zaqar API. Must be specified #: in header for each API request. client_id = resource.Header("Client-ID") #: The ID to identify the project accessing Zaqar API. Must be specified #: in case keystone auth is not enabled in Zaqar service. project_id = resource.Header("X-PROJECT-ID") def create(self, session, prepend_key=True): request = self._prepare_request(requires_id=True, prepend_key=prepend_key) headers = { "Client-ID": self.client_id or str(uuid.uuid4()), "X-PROJECT-ID": self.project_id or session.get_project_id() } request.headers.update(headers) response = session.put(request.url, json=request.body, headers=request.headers) self._translate_response(response, has_body=False) return self @classmethod def list(cls, session, paginated=False, **params): """This method is a generator which yields queue objects. This is almost the copy of list method of resource.Resource class. The only difference is the request header now includes `Client-ID` and `X-PROJECT-ID` fields which are required by Zaqar v2 API. """ more_data = True query_params = cls._query_mapping._transpose(params) uri = cls.base_path % params headers = { "Client-ID": params.get('client_id', None) or str(uuid.uuid4()), "X-PROJECT-ID": params.get('project_id', None ) or session.get_project_id() } while more_data: resp = session.get(uri, headers=headers, params=query_params) resp = resp.json() resp = resp[cls.resources_key] if not resp: more_data = False yielded = 0 new_marker = None for data in resp: value = cls.existing(**data) new_marker = value.id yielded += 1 yield value if not paginated: return if "limit" in query_params and yielded < query_params["limit"]: return query_params["limit"] = yielded query_params["marker"] = new_marker def fetch(self, session, requires_id=True, error_message=None): request = self._prepare_request(requires_id=requires_id) headers = { "Client-ID": self.client_id or str(uuid.uuid4()), "X-PROJECT-ID": self.project_id or session.get_project_id() } request.headers.update(headers) response = session.get(request.url, headers=headers) self._translate_response(response) return self def delete(self, session): request = self._prepare_request() headers = { "Client-ID": self.client_id or str(uuid.uuid4()), "X-PROJECT-ID": self.project_id or session.get_project_id() } request.headers.update(headers) response = session.delete(request.url, headers=headers) self._translate_response(response, has_body=False) return self
38.240602
78
0.624853
[ "Apache-2.0" ]
TeutoNet/openstacksdk
openstack/message/v2/queue.py
5,086
Python
from dataclasses import dataclass, field __NAMESPACE__ = "NISTSchema-SV-IV-union-short-gYear-pattern-3-NS" @dataclass class NistschemaSvIvUnionShortGYearPattern3: class Meta: name = "NISTSchema-SV-IV-union-short-gYear-pattern-3" namespace = "NISTSchema-SV-IV-union-short-gYear-pattern-3-NS" value: str = field( default="", metadata={ "pattern": r"\d\d50", } )
23.777778
69
0.64486
[ "MIT" ]
tefra/xsdata-w3c-tests
output/models/nist_data/union/short_g_year/schema_instance/nistschema_sv_iv_union_short_g_year_pattern_3_xsd/nistschema_sv_iv_union_short_g_year_pattern_3.py
428
Python
''' setup module ''' from distutils.core import setup # TEMPLATE setup( name='mask-query-aide', version='0.0', description='python code to train ML for detecting people with masks', long_description=open('README.rst').read(), author='Christine Madden', license=open('LICENSE').read(), author_email='[email protected]', packages=['mask_query_aide'], # python_requires="<3.8", install_requires=[ "numpy==1.16.1", "pandas", "matplotlib", "opencv-python<=4.1.2.30", "keras==2.2.4", "tensorflow<2.0", "tensorflow-gpu<2.0", "imageai", "jupyterlab", "requests", ], entry_points={ 'console_scripts': [ 'mask_query_aide = mask_query_aide.__main__:main', ] } )
23.166667
74
0.570743
[ "MIT" ]
usckiki82/mask-query-aide
setup.py
834
Python
#!/usr/bin/env python # -*- coding: UTF-8 -*- import numpy as np __all__ = ["Config"] class Config(object): """ Config: Holds configuration settings. Parameters ---------- fitParameters : list Parameters to fit. parameterPriors : dict Dictionary with parameters as keys, and a dictionary as the value for each key. This dictionary is called to setup the pymc3 priors for each parameter not in fitParameters. columnMapping : dict This dictionary should define the column names of the user's data relative to the internally used names. tableParameterLimits : dict This is dictionary is called when building model tables to set the grid in subsolar temperature and phase angle. It should have 'T_ss' and 'alpha' as keys. Values should be a list: the first element should be another list with the lower and upper bounds, the second element should be the step size. threads : int The number of threads to use when bulding model tables and running the multi-fit script. numSamples : int Number of samples to draw from the posterior distribution. numBurnIn : int Number of the drawn samples to discard from summary statistics and plotting. numChains : int Number of Markov chains to sample the posterior distribution. phaseAngleFluxCorrection : float The default value to correct for phase-angle effects in the Standard Thermal Model. The canonical value is 0.01. verbose : bool Print progress statements? """ fitParameters = ["logT1", "logD", "eps"] parameterPriors = { "logD": { "lower": 1, "upper": 8, }, "eps": { "lower": 0.0, "upper": 1.0}, "logT1": { "lower": 0.01, "upper": 5, }, "T_ss": { "lower": 10, "upper": 1200.0 }, "alpha_rad": { "lower": 0, "upper": np.pi }, "r_au": { "lower": 0, "upper": 10 }, "delta_au": { "lower": 0, "upper": 10 }, "G": { "lower": 0, "upper": 1}, "p": { "lower": 0, "upper": 5 }, "eta": { "lower": 0, "upper": 10 } } columnMapping = { "designation" : "designation", "obs_id": "obs_id", "exp_mjd": "mjd", "r_au": "r_au", "delta_au": "delta_au", "alpha_rad": "alpha_rad", "G": "G", "logD": "logD", "logT1" : "logT1", "eta": "eta", "eps": "eps", "flux_si": ["flux_W1_si", "flux_W2_si", "flux_W3_si", "flux_W4_si"], "fluxErr_si": ["fluxErr_W1_si", "fluxErr_W2_si", "fluxErr_W3_si", "fluxErr_W4_si"], "mag" : ["mag_W1", "mag_W2", "mag_W3", "mag_W4"], "magErr" : ["magErr_W1", "magErr_W2", "magErr_W3", "magErr_W4"] } tableParameterLimits = { "T_ss": [[100.0, 1200.0], 0.5], "alpha": [[0.0, np.pi], np.pi/360] } threads = 10 samples = 2500 burnInSamples = 500 chains = 20 phaseAngleFluxCorrection = 0.01 verbose = True
28.180328
91
0.513962
[ "BSD-3-Clause" ]
moeyensj/atm
atm/config.py
3,438
Python
from attr import dataclass #s4 teng https://t.me/shuraim1/https:/ #S5 teng https://t.me/alquran30juzsaadalghamidi/5 #s6 teng https://t.me/bandar_abdulaziz_balilah/5 #s7 teng https://t.me/Idriss_Akbar/388 #s8 teng https://t.me/yasseraldosari_mp3/2 sura = { '0': {'s1':'42', 's2':'257', 's3':'18', 's4':'3', 's5':'5', 's6':'5', 's7':'388', 's8':'2',}, '1': {'s1':'42', 's2':'257', 's3':'18', 's4':'3', 's5':'5', 's6':'5', 's7':'388', 's8':'2',}, '2': {'s1':'43', 's2':'258', 's3':'19', 's4':'4', 's5':'6', 's6':'6', 's7':'389', 's8':'3',}, '3': {'s1':'44', 's2':'259', 's3':'20', 's4':'5', 's5':'7', 's6':'7', 's7':'390', 's8':'4',}, '4': {'s1':'45', 's2':'260', 's3':'21', 's4':'6', 's5':'8', 's6':'8', 's7':'391', 's8':'5',}, '5': {'s1':'46', 's2':'261', 's3':'22', 's4':'7', 's5':'9', 's6':'9', 's7':'392', 's8':'6',}, '6': {'s1':'47', 's2':'262', 's3':'23', 's4':'8', 's5':'10', 's6':'10', 's7':'393', 's8':'7',}, '7': {'s1':'48', 's2':'263', 's3':'24', 's4':'9', 's5':'11', 's6':'11', 's7':'394', 's8':'8',}, '8': {'s1':'49', 's2':'264', 's3':'25', 's4':'10', 's5':'12', 's6':'12', 's7':'395', 's8':'9',}, '9': {'s1':'50', 's2':'265', 's3':'26', 's4':'11', 's5':'13', 's6':'13', 's7':'396', 's8':'10',}, '10': {'s1':'51', 's2':'266', 's3':'27', 's4':'12', 's5':'14', 's6':'14', 's7':'397', 's8':'11',}, '11': {'s1': '52', 's2':'267', 's3':'28', 's4':'13', 's5':'15', 's6':'15', 's7':'398', 's8':'12',}, '12': {'s1':'53', 's2':'268', 's3':'29', 's4':'14', 's5':'16', 's6':'16', 's7':'399', 's8':'13',}, '13': {'s1': '54', 's2':'269', 's3':'30', 's4':'15', 's5':'17', 's6':'17', 's7':'401', 's8':'14',}, '14': {'s1':'55', 's2':'270', 's3':'31', 's4':'16', 's5':'18', 's6':'18', 's7':'402', 's8':'15',}, '15': {'s1':'56', 's2':'271', 's3':'32', 's4':'17', 's5':'19', 's6':'19', 's7':'403', 's8':'16',}, '16': {'s1':'59', 's2':'272', 's3':'33', 's4':'18', 's5':'20', 's6':'20', 's7':'404', 's8':'17',}, '17': {'s1':'60', 's2':'273', 's3':'34', 's4':'19', 's5':'21', 's6':'21', 's7':'405', 's8':'18',}, '18' : {'s1':'61', 's2':'274', 's3':'35', 's4':'20', 's5':'22', 's6':'22', 's7':'406', 's8':'19',}, '19': {'s1':'62', 's2':'275', 's3':'36', 's4':'21', 's5':'23', 's6':'23', 's7':'407', 's8':'20',}, '20': {'s1':'63', 's2':'276', 's3':'37', 's4':'22', 's5':'24', 's6':'24', 's7':'408', 's8':'21',}, '21': {'s1':'64', 's2':'277', 's3':'38', 's4':'23', 's5':'25', 's6':'25', 's7':'409', 's8':'22',}, '22': {'s1':'65', 's2':'278', 's3':'39', 's4':'24', 's5':'26', 's6':'26', 's7':'410', 's8':'23',}, '23': {'s1':'66', 's2':'279', 's3':'40', 's4':'25', 's5':'27', 's6':'27', 's7':'411', 's8':'24',}, '24': {'s1':'67', 's2':'280', 's3':'41', 's4':'26', 's5':'28', 's6':'28', 's7':'412', 's8':'25',}, '25': {'s1':'68', 's2':'281', 's3':'42', 's4':'27', 's5':'29', 's6':'29', 's7':'413', 's8':'26',}, '26': {'s1':'69', 's2':'282', 's3':'43', 's4':'28', 's5':'30', 's6':'30', 's7':'414', 's8':'27',}, '27': {'s1':'70', 's2':'283', 's3':'44', 's4':'29', 's5':'31', 's6':'31', 's7':'415', 's8':'28',}, '28': {'s1':'71', 's2':'284', 's3':'45', 's4':'30', 's5':'32', 's6':'32', 's7':'416', 's8':'29',}, '29': {'s1':'72', 's2':'285', 's3':'46', 's4':'31', 's5':'33', 's6':'33', 's7':'417', 's8':'30',}, '30': {'s1':'73', 's2':'286', 's3':'47', 's4':'32', 's5':'34', 's6':'34', 's7':'418', 's8':'31',}, '31': {'s1':'74', 's2':'287', 's3':'48', 's4':'33', 's5':'35', 's6':'35', 's7':'419', 's8':'32',}, '32': {'s1':'75', 's2':'288', 's3':'49', 's4':'34', 's5':'36', 's6':'36', 's7':'420', 's8':'33',}, '33': {'s1':'76', 's2':'289', 's3':'50', 's4':'35', 's5':'37', 's6':'37', 's7':'421', 's8':'34',}, '34': {'s1':'77', 's2':'290', 's3':'51', 's4':'36', 's5':'38', 's6':'38', 's7':'422', 's8':'35',}, '35': {'s1':'78', 's2':'291', 's3':'52', 's4':'37', 's5':'39', 's6':'39', 's7':'423', 's8':'36',}, '36': {'s1':'79', 's2':'292', 's3':'53', 's4':'38', 's5':'40', 's6':'40', 's7':'424', 's8':'37',}, '37': {'s1':'80', 's2':'293', 's3':'54', 's4':'39', 's5':'41', 's6':'41', 's7':'425', 's8':'38',}, '38': {'s1':'81', 's2':'294', 's3':'55', 's4':'40', 's5':'42', 's6':'42', 's7':'426', 's8':'39',}, '39': {'s1':'82', 's2':'295', 's3':'56', 's4':'41', 's5':'43', 's6':'43', 's7':'427', 's8':'40',}, '40': {'s1':'83', 's2':'296', 's3':'57', 's4':'42', 's5':'44', 's6':'44', 's7':'428', 's8':'41',}, '41': {'s1':'84', 's2':'297', 's3':'58', 's4':'43', 's5':'45', 's6':'45', 's7':'429', 's8':'42',}, '42': {'s1':'85', 's2':'298', 's3':'59', 's4':'44', 's5':'46', 's6':'46', 's7':'430', 's8':'43',}, '43': {'s1':'86', 's2':'299', 's3':'60', 's4':'45', 's5':'47', 's6':'47', 's7':'431', 's8':'44',}, '44': {'s1':'87', 's2':'300', 's3':'61', 's4':'46', 's5':'48', 's6':'48', 's7':'432', 's8':'45',}, '45': {'s1':'88', 's2':'301', 's3':'62', 's4':'47', 's5':'49', 's6':'49', 's7':'433', 's8':'46',}, '46': {'s1':'89', 's2':'302', 's3':'63', 's4':'48', 's5':'50', 's6':'50', 's7':'434', 's8':'47',}, '47': {'s1':'90', 's2':'303', 's3':'64', 's4':'49', 's5':'51', 's6':'51', 's7':'435', 's8':'48',}, '48': {'s1':'91', 's2':'304', 's3':'65', 's4':'50', 's5':'52', 's6':'52', 's7':'436', 's8':'49',}, '49': {'s1':'92', 's2':'305', 's3':'66', 's4':'51', 's5':'53', 's6':'53', 's7':'437', 's8':'50',}, '50': {'s1':'93', 's2':'306', 's3':'67', 's4':'52', 's5':'54', 's6':'54', 's7':'438', 's8':'51',}, '51': {'s1':'94', 's2':'307', 's3':'68', 's4':'53', 's5':'55', 's6':'55', 's7':'439', 's8':'52',}, '52': {'s1':'95', 's2':'308', 's3':'69', 's4':'54', 's5':'56', 's6':'56', 's7':'440', 's8':'53',}, '53': {'s1':'96', 's2':'309', 's3':'70', 's4':'55', 's5':'57', 's6':'57', 's7':'441', 's8':'54',}, '54': {'s1':'97', 's2':'310', 's3':'71', 's4':'56', 's5':'58', 's6':'58', 's7':'442', 's8':'55',}, '55': {'s1':'98', 's2':'311', 's3':'72', 's4':'57', 's5':'59', 's6':'59', 's7':'443', 's8':'56',}, '56': {'s1':'99', 's2':'312', 's3':'73', 's4':'58', 's5':'60', 's6':'60', 's7':'444', 's8':'57',}, '57': {'s1':'100', 's2':'313', 's3':'74', 's4':'59', 's5':'61', 's6':'61', 's7':'445', 's8':'58',}, '58': {'s1':'101', 's2':'314', 's3':'75', 's4':'60', 's5':'62', 's6':'62', 's7':'446', 's8':'59',}, '59': {'s1':'102', 's2':'315', 's3':'76', 's4':'61', 's5':'63', 's6':'63', 's7':'447', 's8':'60',}, '60': {'s1':'103', 's2':'316', 's3':'77', 's4':'62', 's5':'64', 's6':'64', 's7':'448', 's8':'61',}, #61 inlinekeyboard starts in here '61': {'s1':'104', 's2':'317', 's3':'78', 's4':'63', 's5':'65', 's6':'65', 's7':'449', 's8':'62',}, '62': {'s1':'105', 's2':'318', 's3':'79', 's4':'64', 's5':'66', 's6':'66', 's7':'450', 's8':'63',}, '63': {'s1':'106', 's2':'319', 's3':'80', 's4':'65', 's5':'67', 's6':'67', 's7':'451', 's8':'64',}, '64': {'s1':'107', 's2':'320', 's3':'81', 's4':'66', 's5':'68', 's6':'68', 's7':'452', 's8':'65',}, '65': {'s1':'108', 's2':'321', 's3':'82', 's4':'67', 's5':'69', 's6':'69', 's7':'453', 's8':'66',}, '66': {'s1':'109', 's2':'322', 's3':'83', 's4':'68', 's5':'70', 's6':'70', 's7':'454', 's8':'67',}, '67': {'s1':'110', 's2':'323', 's3':'84', 's4':'69', 's5':'71', 's6':'72', 's7':'455', 's8':'68',}, '68': {'s1':'111', 's2':'324', 's3':'85', 's4':'70', 's5':'72', 's6':'73', 's7':'456', 's8':'69',}, '69': {'s1':'112', 's2':'325', 's3':'86', 's4':'71', 's5':'73', 's6':'74', 's7':'457', 's8':'70',}, '70': {'s1':'113', 's2':'326', 's3':'87', 's4':'72', 's5':'74', 's6':'75', 's7':'458', 's8':'71',}, '71': {'s1':'114', 's2':'327', 's3':'88', 's4':'73', 's5':'75', 's6':'76', 's7':'459', 's8':'72',}, '72': {'s1':'115', 's2':'328', 's3':'89', 's4':'74', 's5':'76', 's6':'77', 's7':'460', 's8':'73',}, '73': {'s1':'116', 's2':'329', 's3':'90', 's4':'75', 's5':'77', 's6':'78', 's7':'461', 's8':'74',}, '74': {'s1':'117', 's2':'330', 's3':'91', 's4':'76', 's5':'78', 's6':'79', 's7':'462', 's8':'75',}, '75': {'s1':'118', 's2':'331', 's3':'92', 's4':'77', 's5':'79', 's6':'80', 's7':'463', 's8':'76',}, '76': {'s1':'119', 's2':'332', 's3':'93', 's4':'78', 's5':'80', 's6':'81', 's7':'464', 's8':'77',}, '77': {'s1':'120', 's2':'333', 's3':'94', 's4':'79', 's5':'81', 's6':'82', 's7':'465', 's8':'78',}, '78': {'s1':'121', 's2':'334', 's3':'95', 's4':'80', 's5':'82', 's6':'83', 's7':'466', 's8':'79',}, '79': {'s1':'122', 's2':'335', 's3':'96', 's4':'81', 's5':'83', 's6':'84', 's7':'467', 's8':'80',}, '80': {'s1':'123', 's2':'336', 's3':'97', 's4':'82', 's5':'84', 's6':'85', 's7':'468', 's8':'81',}, '81': {'s1':'124', 's2':'337', 's3':'98', 's4':'83', 's5':'85', 's6':'86', 's7':'469', 's8':'82',}, '82': {'s1':'125', 's2':'338', 's3':'99', 's4':'84', 's5':'86', 's6':'87', 's7':'470', 's8':'83',}, '83': {'s1':'126', 's2':'339', 's3':'100', 's4':'85', 's5':'87', 's6':'88', 's7':'471', 's8':'84',}, '84': {'s1':'127', 's2':'340', 's3':'101', 's4':'86', 's5':'88', 's6':'89', 's7':'472', 's8':'85',}, '85': {'s1':'128', 's2':'341', 's3':'102', 's4':'87', 's5':'89', 's6':'90', 's7':'473', 's8':'86',}, '86': {'s1':'129', 's2':'342', 's3':'103', 's4':'88', 's5':'90', 's6':'91', 's7':'474', 's8':'87',}, '87': {'s1':'130', 's2':'343', 's3':'104', 's4':'89', 's5':'91', 's6':'92', 's7':'475', 's8':'88',}, '88': {'s1':'131', 's2':'344', 's3':'105', 's4':'90', 's5':'92', 's6':'93', 's7':'476', 's8':'89',}, '89': {'s1':'132', 's2':'345', 's3':'106', 's4':'91', 's5':'93', 's6':'94', 's7':'477', 's8':'90',}, '90': {'s1':'133', 's2':'346', 's3':'107', 's4':'92', 's5':'94', 's6':'95', 's7':'478', 's8':'91',}, '91': {'s1':'134', 's2':'347', 's3':'108', 's4':'93', 's5':'95', 's6':'96', 's7':'479', 's8':'92',}, '92': {'s1':'135', 's2':'348', 's3':'109', 's4':'94', 's5':'96', 's6':'97', 's7':'480', 's8':'93',}, '93': {'s1':'136', 's2':'349', 's3':'110', 's4':'95', 's5':'97', 's6':'98', 's7':'481', 's8':'94',}, '94': {'s1':'137', 's2':'350', 's3':'111', 's4':'96', 's5':'98', 's6':'99', 's7':'482', 's8':'95',}, '95': {'s1':'138', 's2':'351', 's3':'112', 's4':'97', 's5':'99', 's6':'100', 's7':'483', 's8':'96',}, '96': {'s1':'139', 's2':'352', 's3':'113', 's4':'98', 's5':'100', 's6':'101', 's7':'484', 's8':'97',}, '97': {'s1':'140', 's2':'353', 's3':'114', 's4':'99', 's5':'101', 's6':'102', 's7':'485', 's8':'98',}, '98': {'s1':'141', 's2':'354', 's3':'115', 's4':'100', 's5':'102', 's6':'103', 's7':'486', 's8':'99',}, '99': {'s1':'142', 's2':'355', 's3':'116', 's4':'101', 's5':'103', 's6':'104', 's7':'487', 's8':'100',}, '100': {'s1':'143', 's2':'356', 's3':'117', 's4':'102', 's5':'104', 's6':'105', 's7':'488', 's8':'101',}, '101': {'s1':'144', 's2':'357', 's3':'118', 's4':'103', 's5':'105', 's6':'106', 's7':'489', 's8':'102',}, '102': {'s1':'145', 's2':'358', 's3':'119', 's4':'104', 's5':'106', 's6':'107', 's7':'490', 's8':'103',}, '103': {'s1':'146', 's2':'359', 's3':'120', 's4':'105', 's5':'107', 's6':'108', 's7':'491', 's8':'104',}, '104': {'s1':'147', 's2':'360', 's3':'121', 's4':'106', 's5':'108', 's6':'109', 's7':'492', 's8':'105',}, '105': {'s1':'148', 's2':'361', 's3':'122', 's4':'107', 's5':'109', 's6':'110', 's7':'493', 's8':'106',}, '106': {'s1':'149', 's2':'362', 's3':'123', 's4':'108', 's5':'110', 's6':'111', 's7':'494', 's8':'107',}, '107': {'s1':'150', 's2':'363', 's3':'124', 's4':'109', 's5':'111', 's6':'112', 's7':'495', 's8':'108',}, '108': {'s1':'151', 's2':'364', 's3':'125', 's4':'110', 's5':'112', 's6':'113', 's7':'496', 's8':'109',}, '109': {'s1':'152', 's2':'365', 's3':'126', 's4':'111', 's5':'113', 's6':'114', 's7':'497', 's8':'110',}, '110': {'s1':'153', 's2':'366', 's3':'127', 's4':'112', 's5':'114', 's6':'115', 's7':'498', 's8':'111',}, '111': {'s1':'154', 's2':'367', 's3':'128', 's4':'113', 's5':'115', 's6':'116', 's7':'499', 's8':'112',}, '112': {'s1':'155', 's2':'368', 's3':'129', 's4':'114', 's5':'116', 's6':'117', 's7':'500', 's8':'113',}, '113': {'s1':'156', 's2':'369', 's3':'130', 's4':'115', 's5':'117', 's6':'118', 's7':'501', 's8':'114',}, '114': {'s1':'157', 's2':'370', 's3':'131', 's4':'116', 's5':'118', 's6':'119', 's7':'502', 's8':'115',} } bbc = {'22':'11', 'n':{ '55':'56', '55':'58', '55':'59', '55':'555', }} hmuchun = { 'hm5':{ 'rep':257, 'rep2':287, }, 'hm6':{ 'rep':288, 'rep2':317, }, 'hm7':{ 'rep':317, 'rep2':347, }, 'hm8':{ 'rep':347, 'rep2':371, }, 'hm9':{ 'rep':18, 'rep2':48, }, 'hm10':{ 'rep':48, 'rep2':78, }, 'hm11':{ 'rep':78, 'rep2':108, }, 'hm12':{ 'rep':108, 'rep2':137, }, }
74.244444
112
0.348623
[ "BSD-2-Clause" ]
SarvarRaxmonov/december-2
pipuchun/jsonuz.py
13,364
Python
a, b = raw_input().split() a = int(a) b = int(b) if b > a: print(b) else: print(a)1
11.625
27
0.505376
[ "MIT" ]
KelwinKomka/URI
src/UOJ_1933 - (3425561) Accepted.py
93
Python
#!/usr/bin/python2 import re, sys from pygments import highlight from pygments.lexers import get_lexer_by_name, JavascriptLexer, FactorLexer from pygments.formatters import HtmlFormatter from pygments.token import * from pygments.lexer import RegexLexer class UnlambdaLexer(RegexLexer): name = 'Unlambda' aliases = ['unlambda'] filenames = ['*.u'] tokens = { 'root': [ (r'#.*\n', Comment.Single), (r'd', Comment.Preproc), (r'\..', Generic.Output), (r'[sk]', Keyword.Declaration), (r'[cv]', Keyword.Type), (r'i', Keyword.Constant), (r'[@ried|?]', Keyword.Pseudo), (r'`', Operator), (r'.', Text), ] } class QBasicLexer(RegexLexer): name = 'QBasic' aliases = ['qbasic'] filenames = ['*.bas'] tokens = { 'root': [ (r'\'.*\n', Comment.Single), (r'\"[^"]*\"', Literal.String), (r'&H[\da-fA-F]+|\d*\.\d+|\d+', Literal.Number), (r'[-+*/<>=\\]', Operator), (r'[()\[\]]', Punctuation), (r'\b(AND|AS|CASE|CONST|DATA|DECLARE|DEF|DEFINT|DIM|DO|ELSE|END|EXIT|FOR|FUNCTION|GOSUB|GOTO|IF|INPUT|LINE|LOOP|MOD|NEXT|NOT|OR|POKE|PRINT|RESTORE|RETURN|SEG|SELECT|SHARED|STATIC|STEP|SUB|TAB|THEN|TO|TYPE|UNTIL|USING|VIEW|WEND|WHILE|XOR)\b', Keyword), (r'^([a-zA-Z][a-zA-Z0-9_]*:|\d+)', Name.Label), (r'[a-zA-Z_][a-zA-Z0-9_]*(\$|%|#|&|!)?', Name.Variable), (r'.', Text), ] } class LOLCODELexer(RegexLexer): name = 'LOLCODE' aliases = ['lolcode'] filenames = ['*.bas'] tokens = { 'root': [ (r'^OBTW\b.*?\bTLDR\b', Comment.Multiline), (r'\bBTW\b.*\n', Comment.Single), (r'\b(NERFIN|YA\s+RLY|BUKKIT|IS\s+NOW\s+A|MEBBE|GIMMEH|TIL|UPPIN|MKAY|TROOF|INTA|YR|!|NUMBR|OMG|NUMBAR|IF\s+U\s+SAY\s+SO|YARN|VISIBLE|I\s+HAS\s+A|IM\s+OUTTA\s+YR|IM\s+IN\s+YR|A|HAI|NO\s+WAI|GTFO|AN|R|FOUND\s+YR|OMGWTF|FAIL|O\s+RLY?|WTF\?|NOOB|HOW\s+DUZ\s+I|WIN|MAEK|OIC|PUTZ|KTHXBYE|ITZ|WILE|AT)(\b|(?=\s))', Keyword), (r'\b(NOT|LENGZ\s+OF|CHARZ\s+OF|ORDZ\s+OF|SUM\s+OF|DIFF\s+OF|PRODUKT\s+OF|QUOSHUNT\s+OF|MOD\s+OF|BIGGR\s+OF|SMALLR\s+OF|BOTH\s+OF|EITHER\s+OF|WON\s+OF|BOTH\s+SAEM|DIFFRINT|ALL\s+OF|ANY\s+OF|SMOOSH|N)\b', Operator.Word), (r'"(?::(?:[)>o":]|\([\dA-Fa-f]+\)|\{[A-Za-z]\w*\}|\[[^\[\]]+\])|[^":])*"', Literal.String), (r'-?(\d+|\d+\.\d*|\.\d+)', Literal.Number), (r'[a-zA-Z]\w*', Name.Variable), (r',', Punctuation), (r'.', Text), ] } class BloopLexer(RegexLexer): name = 'Bloop' aliases = ['bloop'] filenames = ['*.bloop'] flags = re.IGNORECASE | re.DOTALL tokens = { 'root': [ (r'/\*.*?\*/', Comment.Multiline), (r"'[^']*'", Literal.String), (r'-?\d+', Literal.Number), (r'\b(DEFINE|PROCEDURE|BLOCK|LOOP|AT|MOST|TIMES|MU_LOOP|CELL|OUTPUT|YES|NO|QUIT|ABORT|IF|THEN|AND|OR|PRINT|BEGIN|END)(\b|(?=\s))', Keyword), (r'[A-Z]\w*', Name), (r'[+*!=<>(){}":;,.-\[\]]', Punctuation), (r'.', Text), ] } class EmoticonLexerHelper(RegexLexer): tokens = { 'root': [ (r'\*\*([^*]|\*[^*])*\*\*', Comment), (r'\S+[OC<>\[\]VD@PQ7L#${}\\/()|3E*]((?=\s)|$)', Keyword), (r'\S+', Literal.String), (r'-?\d+', Literal.Number), (r'.', Text), ] } class EmoticonLexer(EmoticonLexerHelper): name = 'Emoticon' aliases = ['emoticon'] filenames = ['*.emo'] def get_tokens_unprocessed(self, text): for index, token, value in EmoticonLexerHelper.get_tokens_unprocessed(self, text): if token is Keyword: yield index, Name, value[:-2] yield index + len(value) - 2, Operator, value[-2] yield index + len(value) - 2, Keyword, value[-1] else: yield index, token, value class KaffeineLexer(JavascriptLexer): name = 'Kaffeine' aliases = ['kaffeine'] filenames = ['*.k'] def get_tokens_unprocessed(self, text): for index, token, value in JavascriptLexer.get_tokens_unprocessed(self, text): if token is Error and value in ['#', '@']: token_type = Name.Tag if value == '#' else Keyword yield index, token_type, value else: yield index, token, value class JavascriptNextLexer(JavascriptLexer): name = 'Javascript.next' aliases = ['javascript.next', 'traceur'] filenames = ['*.jsn'] EXTRA_KEYWORDS = ['let', 'yield'] def get_tokens_unprocessed(self, text): for index, token, value in JavascriptLexer.get_tokens_unprocessed(self, text): if token is Name.Other and value in self.EXTRA_KEYWORDS: yield index, Keyword, value else: yield index, token, value class MoveLexer(JavascriptLexer): name = 'Move' aliases = ['move'] filenames = ['*.mv'] class ForthLexer(FactorLexer): name = 'Forth' aliases = ['forth'] filenames = ['*.4th'] class RoyLexer(RegexLexer): name = 'Roy' aliases = ['roy'] filenames = ['*.roy'] tokens = { 'root': [ (r'//.*\n', Comment.Single), (r'\b(true|false|let|fn|if|then|else|data|type|match|case|do|return|macro|with)\b', Keyword), (r'-?\d+', Literal.Number), (r'\"[^"]*\"', Literal.String), (r'<-|->|=|==|!=|\*|\+\+|\\', Operator), (r'.', Text) ] } class APLLexer(RegexLexer): name = 'APL' aliases = ['apl'] filenames = ['*.apl'] tokens = { 'root': [ (r'.+', Text) ] } def getLexer(lexer_name): lexers = [value for name, value in globals().items() if name.endswith('Lexer') and hasattr(value, 'aliases')] for lexer in lexers: if lexer_name in lexer.aliases: return lexer() return get_lexer_by_name(lexer_name) def main(): if len(sys.argv) == 2: lexer = getLexer(sys.argv[1]) if lexer: result = highlight(sys.stdin.read().decode('utf8'), lexer, HtmlFormatter()) result = result.replace('<div class="highlight"><pre>', '') result = result.replace('</pre></div>', '') print result.strip().encode('utf8') else: print 'Unknown language:', sys.argv[1] else: print 'Usage: pyg.py language < code.txt' if __name__ == '__main__': main()
30.744898
324
0.578659
[ "MIT" ]
1930sc/repl.it
pyg.py
6,026
Python
# Lint as: python2, python3 # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common conv layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from lingvo.core import base_layer from lingvo.core import bn_layers from lingvo.core import py_utils from lingvo.core import tshape def ComputeConvOutputShape(in_shape, t_stride, f_stride, outc=None, padding='SAME'): """Computes output shape for convolution and pooling layers. If `in_shape` is a dynamic shape, the output will be Tensors, while if `in_shape` is a list of ints then the output will also be a list of ints. Args: in_shape: A length 4 Tensor or list representing the input shape. t_stride: The stride along the time dimension. f_stride: The stride along the frequency dimension. outc: The expected output channel. If None, will use the input channel. padding: 'SAME' or 'VALID'. Returns: The expected output shape. """ # In the order of batch, time, frequency, channel n = in_shape[0] t = in_shape[1] f = in_shape[2] c = in_shape[3] # Last two dimensions has to be specified. assert f is not None and c is not None if padding == 'VALID': if t: t -= t_stride - 1 f -= f_stride - 1 ot = t if ot is not None: ot = (ot + t_stride - 1) // t_stride of = (f + f_stride - 1) // f_stride if outc is None: outc = c return [n, ot, of, outc] def ComputeConvOutputPadding(paddings, window, stride, padding_algorithm='SAME'): """Computes paddings for convolution and pooling output. out_padding[i] == 1 iff any in_padding corresponding to that output is 1. Args: paddings: The paddings tensor. It is expected to be of shape [batch, time]. window: The size of the windows. stride: The time-stride between adjacent windows. padding_algorithm: 'SAME' or 'VALID'. Returns: out_padding, The new padding tensor of size [batch, ceil(time / stride)]. """ if stride == 1: return paddings # Pad so input_length divides stride. input_length = py_utils.GetShape(paddings)[1] pad_len = (input_length + stride - 1) // stride * stride - input_length paddings = tf.pad(paddings, [[0, 0], [0, pad_len]], constant_values=1.0) out_padding = tf.nn.pool( tf.expand_dims(paddings, -1), [window], 'MAX', padding_algorithm, strides=[stride], ) return tf.squeeze(out_padding, -1) class BaseConv2DLayerWithPadding(base_layer.BaseLayer): """Base class for 2D convolution layers.""" @classmethod def Params(cls): p = super(BaseConv2DLayerWithPadding, cls).Params() p.Define( 'filter_shape', (0, 0, 0, 0), 'Filter shape. Must be a sequence of length 4. Elements are in' ' the order of height (time), width (frequency), in_channel,' ' out_channel. For causal convolution, filter_shape[0]' ' is the actual number of trained weights in the time dimension' ' of the kernel.') p.Define( 'filter_stride', (1, 1), 'Filter stride to use. Must be a pair of ints. The first int' ' specifies the stride on the time dimension. The second int' ' specifies the stride on the frequency dimension.') p.Define( 'dilation_rate', (1, 1), 'If > 1, dilation rate for atrous convolution. ' 'Must be a pair of ints. ' 'The first int specifies the dilation rate on the time dimension. ' 'The second int specifies the dilation rate on the frequency ' 'dimension. ' 'If any value of dilation_rate is > 1, then all values of strides ' 'must be 1.') p.Define( 'weight_norm', False, 'If true, apply weight normalization to weights as proposed by' ' Salimans and Kingma, 2016: https://arxiv.org/abs/1602.07868') return p @base_layer.initializer def __init__(self, params): super(BaseConv2DLayerWithPadding, self).__init__(params) p = self.params assert p.name assert len(p.filter_shape) == 4 assert len(p.filter_stride) == 2 assert all(x > 0 for x in p.filter_shape) assert all(x > 0 for x in p.filter_stride) assert len(p.dilation_rate) == 2 assert all(x > 0 for x in p.dilation_rate) # Dilation and stride can't be combined. if any(x > 1 for x in p.dilation_rate): assert all(x == 1 for x in p.filter_stride) @property def output_channels(self): """The number of output channels for this conv layer.""" raise NotImplementedError() @property def input_channels(self): """The number of input channels for this conv layer.""" return self.params.filter_shape[2] def OutShape(self, in_shape): """Compute the output shape given the input shape.""" p = self.params return ComputeConvOutputShape(in_shape, p.filter_stride[0], p.filter_stride[1], self.output_channels) def FProp(self, theta, inputs, paddings): """Apply convolution to inputs. Args: theta: A `.NestedMap` object containing weights' values of this layer and its children layers. inputs: The inputs tensor. It is expected to be of shape [batch, time, frequency, channel]. The time dimension corresponds to the height dimension as in images and the frequency dimension corresponds to the width dimension as in images. paddings: The paddings tensor, expected to be of shape [batch, time]. Returns: outputs, out_paddings pair. """ p = self.params with tf.name_scope(p.name): inputs = py_utils.with_dependencies([ py_utils.assert_shape_match(tf.shape(paddings), [-1, -1]), py_utils.assert_shape_match( tf.shape(inputs), tf.concat([tf.shape(paddings), [-1, self.input_channels]], 0)) ], inputs) def _ApplyPadding(tensor_in, padding_in): padding_expanded = tf.expand_dims(tf.expand_dims(padding_in, -1), -1) return tensor_in * (1.0 - padding_expanded) # Zeroing out padded inputs. inputs = _ApplyPadding(inputs, paddings) # Evaluate the conv kernel on 'inputs'. out = self._EvaluateConvKernel(theta, inputs) # NOTE: this may be slightly inaccurate when p.dilation_rate[0] > 1. # But there's likely no real problems. Trying to set it gives an error: # pooling with SAME padding is not implemented for dilation_rate > 1. # NOTE: we use window=p.filter_stride[0] to be compatible with legacy # implementation. Consider updating it to be the actual shape. conv_padding = ComputeConvOutputPadding( paddings, window=p.filter_stride[0], stride=p.filter_stride[0]) # Assuming padded nodes will be properly zero-ed out if necessary by # sub-sequent layers. # out = _ApplyPadding(out, conv_padding) out = py_utils.HasShape(out, self.OutShape(tf.shape(inputs))) return out, conv_padding def _EvaluateConvKernel(self, theta, conv_input): """Evaluate the convolution kernel on input 'conv_input'.""" raise NotImplementedError class Conv2DLayerWithPadding(BaseConv2DLayerWithPadding): """Conv2D layer.""" @base_layer.initializer def __init__(self, params): super(Conv2DLayerWithPadding, self).__init__(params) p = self.params assert p.name w_pc = py_utils.WeightParams( shape=p.filter_shape, init=p.params_init, dtype=p.dtype, collections=[self.__class__.__name__ + '_vars']) with tf.variable_scope(p.name): self.CreateVariable('w', w_pc) if p.weight_norm: self.CreateVariable( 'g', py_utils.WeightParams( shape=[p.filter_shape[-1]], init=py_utils.WeightInit.Constant(0.0), dtype=p.dtype, collections=[self.__class__.__name__ + '_vars'])) @property def output_channels(self): """The number of output channels for this conv layer.""" p = self.params return p.filter_shape[-1] def _GetWeight(self, theta): p = self.params if p.weight_norm: # Normalize along the last dim (standard conv). filter_w = tf.nn.l2_normalize(theta.w, [0, 1, 2]) * tf.reshape( (theta.g + 1.0), [1, 1, 1, p.filter_shape[-1]]) else: filter_w = theta.w return filter_w def _EvaluateConvKernel(self, theta, inputs): """Apply convolution to inputs.""" p = self.params filter_w = self._GetWeight(theta) return tf.nn.convolution( inputs, filter_w, strides=p.filter_stride, dilation_rate=p.dilation_rate, data_format='NHWC', padding='SAME') class CausalConv2DLayerWithPadding(Conv2DLayerWithPadding): """2D conv layer with causal dependency on the time axis.""" @base_layer.initializer def __init__(self, params): super(CausalConv2DLayerWithPadding, self).__init__(params) p = self.params assert p.filter_shape[1] == 1, 'Only 1d causal convolution is supported.' def _EvaluateConvKernel(self, theta, inputs): """Apply convolution to inputs.""" p = self.params assert p.filter_shape[1] == 1, 'Only 1D causal convolutions supported.' # Use VALID padding and shift the inputs to the right to ensure that the # first output only depends on the first input and so on. The output is # the same size as the input, as if the convolution used SAME padding. padding_algorithm = 'VALID' # The effective spatial filter width for dilated convolutions is # (kernel_width - 1) * dilation_rate + 1 as according to # https://www.tensorflow.org/api_docs/python/tf/nn/convolution. causal_pad_size = (p.filter_shape[0] - 1) * p.dilation_rate[0] inputs = tf.pad(inputs, [[0, 0], [causal_pad_size, 0], [0, 0], [0, 0]]) filter_w = self._GetWeight(theta) return tf.nn.convolution( inputs, filter_w, strides=p.filter_stride, dilation_rate=p.dilation_rate, data_format='NHWC', padding=padding_algorithm) class DepthwiseConv2DLayer(BaseConv2DLayerWithPadding): """Depthwise conv 2D layer. paper: https://arxiv.org/abs/1610.02357 """ @classmethod def Params(cls): p = super(DepthwiseConv2DLayer, cls).Params() # Redefine 'filter_shape' since the semantic of shape elements is different # from regular Conv2D. p.Delete('filter_shape') p.Define( 'filter_shape', (0, 0, 0, 0), 'Filter shape. Must be a sequence of length 4. Elements are in' ' the order of height (time), width (frequency), in_channel,' ' channel_multipliers. ') return p @base_layer.initializer def __init__(self, params): super(DepthwiseConv2DLayer, self).__init__(params) p = self.params assert p.name w_pc = py_utils.WeightParams( shape=p.filter_shape, init=p.params_init, dtype=p.dtype, collections=[self.__class__.__name__ + '_vars']) with tf.variable_scope(p.name): self.CreateVariable('w', w_pc) if p.weight_norm: self.CreateVariable( 'g', py_utils.WeightParams( shape=[p.filter_shape[2], p.filter_shape[3]], init=py_utils.WeightInit.Constant(0.0), dtype=p.dtype, collections=[self.__class__.__name__ + '_vars'])) @property def output_channels(self): """The number of output channels for this conv layer.""" p = self.params # Depthwise convolution filter shape is: # [..., in_channels, channel_multiplier]. return p.filter_shape[2] * p.filter_shape[3] def _GetWeight(self, theta): p = self.params if p.weight_norm: # Normalize along the last two dims. filter_w = tf.nn.l2_normalize(theta.w, [0, 1]) * tf.reshape( (theta.g + 1.0), [1, 1, p.filter_shape[2], p.filter_shape[3]]) else: filter_w = theta.w return filter_w def _EvaluateConvKernel(self, theta, inputs): """Apply convolution to inputs.""" p = self.params filter_w = self._GetWeight(theta) return tf.nn.depthwise_conv2d( inputs, filter_w, strides=[1, p.filter_stride[0], p.filter_stride[1], 1], rate=p.dilation_rate, data_format='NHWC', padding='SAME') class CausalDepthwiseConv2DLayer(DepthwiseConv2DLayer): """Depthwise conv layer with causal dependency on the time axis.""" @base_layer.initializer def __init__(self, params): super(CausalDepthwiseConv2DLayer, self).__init__(params) p = self.params assert p.filter_shape[1] == 1, 'Only 1d causal convolution is supported.' def _EvaluateConvKernel(self, theta, inputs): """Apply convolution to inputs.""" p = self.params assert p.filter_shape[1] == 1, 'Only 1D causal convolutions supported.' # Use VALID padding and shift the inputs to the right to ensure that the # first output only depends on the first input and so on. The output is # the same size as the input, as if the convolution used SAME padding. padding_algorithm = 'VALID' # The effective spatial filter width for dilated convolutions is # (kernel_width - 1) * dilation_rate + 1 as according to # https://www.tensorflow.org/api_docs/python/tf/nn/convolution. causal_pad_size = (p.filter_shape[0] - 1) * p.dilation_rate[0] inputs = tf.pad(inputs, [[0, 0], [causal_pad_size, 0], [0, 0], [0, 0]]) filter_w = self._GetWeight(theta) return tf.nn.depthwise_conv2d( inputs, filter_w, strides=[1, p.filter_stride[0], p.filter_stride[1], 1], rate=p.dilation_rate, data_format='NHWC', padding=padding_algorithm) class NormalizedDepthwiseConv2DLayer(DepthwiseConv2DLayer): """DepthwiseConv2DLayer where weights are normalized over the time dim. https://arxiv.org/abs/1901.10430 """ @classmethod def Params(cls): p = super(NormalizedDepthwiseConv2DLayer, cls).Params() p.Define('dropconnect_prob', 0.0, 'Prob at which DropConnect regularization is performed.') p.Define('deterministic_dropout', False, 'Use determnisitc dropout or not.') p.Define('temperature', 1.0, 'Temperature for the softmax normalization of the weights.') p.Define('weight_tiling_factor', 1, 'Number of times weights are tiled over the input channels.') return p @base_layer.initializer def __init__(self, params): super(NormalizedDepthwiseConv2DLayer, self).__init__(params) p = self.params assert p.filter_shape[1] == 1, 'Only 1d convolution is supported.' assert p.temperature > 0.0, 'Absolute zero temperature is not possible.' @property def output_channels(self): """The number of output channels for this conv layer.""" p = self.params # Depthwise convolution filter shape is: # [kernel_size, 1, in_channels, channel_multiplier]. return p.filter_shape[2] * p.filter_shape[3] * p.weight_tiling_factor @property def input_channels(self): """The number of output channels for this conv layer.""" p = self.params return p.filter_shape[2] * p.weight_tiling_factor def _GetWeight(self, theta): p = self.params filter_w = theta.w # First normalize filter_w over the temporal dimension here. filter_w = tf.nn.softmax(filter_w / p.temperature, axis=0) # Add dropconnect on the weights for regularization. if p.dropconnect_prob > 0.0 and not p.is_eval: if p.deterministic_dropout: filter_w = py_utils.DeterministicDropout( filter_w, 1.0 - p.dropconnect_prob, py_utils.GenerateStepSeedPair(p, theta.global_step)) else: filter_w = tf.nn.dropout( filter_w, 1.0 - p.dropconnect_prob, seed=p.random_seed) # Tie the parameters of every subsequent number of weight_tiling_factor # channels. filter_w = tf.tile(filter_w, [1, 1, p.weight_tiling_factor, 1]) return filter_w @classmethod def FPropMeta(cls, p, inputs, paddings): py_utils.CheckShapes((inputs, paddings)) b, t, f, ic = inputs assert f == 1 oc = p.filter_shape[2] * p.filter_shape[3] * p.weight_tiling_factor outputs = tshape.Shape([b, t, f, oc]) flops = b * t * f * p.filter_shape[0] * ic * oc * 5 return py_utils.NestedMap(flops=flops, out_shapes=(outputs, paddings)) class CausalNormalizedDepthwiseConv2DLayer(NormalizedDepthwiseConv2DLayer): """Depthwise conv layer with causal dependency on the time axis.""" def _EvaluateConvKernel(self, theta, inputs): """Apply convolution to inputs.""" # Same as CausalDepthwiseConv2DLayer. p = self.params assert p.filter_shape[1] == 1, 'Only 1D causal convolutions supported.' padding_algorithm = 'VALID' causal_pad_size = (p.filter_shape[0] - 1) * p.dilation_rate[0] inputs = tf.pad(inputs, [[0, 0], [causal_pad_size, 0], [0, 0], [0, 0]]) filter_w = self._GetWeight(theta) return tf.nn.depthwise_conv2d( inputs, filter_w, strides=[1, p.filter_stride[0], p.filter_stride[1], 1], rate=p.dilation_rate, data_format='NHWC', padding=padding_algorithm) class ConvBatchNormLayer(bn_layers.BatchNormLayer): """A wrapper around regular BatchNormLayer that pass around the ... paddings layers. """ def FProp(self, theta, inputs, paddings): paddings_expanded = tf.expand_dims(tf.expand_dims(paddings, -1), -1) bned = super(ConvBatchNormLayer, self).FProp( theta, inputs, paddings_expanded) return bned, paddings # Supported activation functions. _ACTIVATIONS = { 'RELU': tf.nn.relu, 'RELU6': tf.nn.relu6, 'SIGMOID': tf.sigmoid, 'TANH': tf.tanh, 'SWISH': tf.nn.swish, 'NONE': tf.identity, } class ActivationLayer(base_layer.BaseLayer): """Applies activation function to the inputs.""" @classmethod def Params(cls): p = super(ActivationLayer, cls).Params() p.Define('activation', 'RELU', 'The activation function to apply') return p def FProp(self, theta, inputs, paddings): p = self.params out = _ACTIVATIONS[p.activation](inputs) return out, paddings class PaddingLayer(base_layer.BaseLayer): """Zeros out padded positions.""" def FProp(self, theta, inputs, paddings): paddings_expanded = tf.expand_dims(tf.expand_dims(paddings, -1), -1) return inputs * (1.0 - paddings_expanded), paddings
35.155393
80
0.663599
[ "Apache-2.0" ]
zhoudoufu/lingvo
lingvo/core/conv_layers_with_time_padding.py
19,230
Python
import torch from recstudio.ann import sampler from recstudio.data import dataset from recstudio.model import basemodel, loss_func, scorer r""" HGN ######## Paper Reference: Chen ma, et al. "HGN: Hierarchical Gating Networks for Sequential Recommendation" in KDD2019. https://dl.acm.org/doi/abs/10.1145/3292500.3330984 """ class HGNQueryEncoder(torch.nn.Module): def __init__(self, fuid, fiid, num_users, embed_dim, max_seq_len, item_encoder, pooling_type='mean') -> None: super().__init__() self.fuid = fuid self.fiid = fiid self.item_encoder = item_encoder self.pooling_type = pooling_type self.user_embedding = torch.nn.Embedding(num_users, embed_dim, 0) self.W_g_1 = torch.nn.Linear(embed_dim, embed_dim, bias=False) self.W_g_2 = torch.nn.Linear(embed_dim, embed_dim, bias=False) self.b_g = torch.nn.Parameter(torch.empty(embed_dim), requires_grad=True) self.w_g_3 = torch.nn.Linear(embed_dim, 1, bias=False) self.W_g_4 = torch.nn.Linear(embed_dim, max_seq_len) def forward(self, batch): U = self.user_embedding(batch[self.fuid]) S = self.item_encoder(batch['in_'+self.fiid]) S_F = S * torch.sigmoid(self.W_g_1(S) + self.W_g_2(U).view(U.size(0), 1, -1) + self.b_g) weight = torch.sigmoid(self.w_g_3(S_F) + ([email protected]_g_4.weight[:S.size(1)].T).view(U.size(0), -1, 1)) # BxLx1 S_I = S_F * weight if self.pooling_type == 'mean': s = S_I.sum(1) / weight.sum(1) elif self.pooling_type == 'max': s = torch.max(S_I, dim=1).values else: raise ValueError("`pooling_type` only support `avg` and `max`") query = U + s + S.sum(1) return query class HGN(basemodel.BaseRetriever): r"""HGN proposes a hierarchical gating network, integrated with the Bayesian Personalized Ranking (BPR) to capture both the long-term and short-term user interests. HGN consists of a feature gating module, an instance gating module, and an item-item product module.""" def _get_dataset_class(self): r"""The dataset is SeqDataset.""" return dataset.SeqDataset def _get_query_encoder(self, train_data): return HGNQueryEncoder(self.fuid, self.fiid, train_data.num_users, self.embed_dim, \ train_data.config['max_seq_len'], self.item_encoder, self.config['pooling_type']) def _get_scorer_func(self): return scorer.InnerProductScorer() def _get_loss_func(self): r"""BPR loss is used.""" return loss_func.BPRLoss() def _get_sampler(self, train_data): return sampler.UniformSampler(train_data.num_items-1)
36.797297
120
0.662505
[ "MIT" ]
ustc-recsys/Torchrec
recstudio/model/seq/hgn.py
2,723
Python
import time import board import debouncer import busio as io import digitalio import pulseio import adafruit_ssd1306 i2c = io.I2C(board.SCL, board.SDA) reset_pin = digitalio.DigitalInOut(board.D11) oled = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c, reset=reset_pin) button_select = debouncer.Debouncer(board.D7, mode=digitalio.Pull.UP) button_play = debouncer.Debouncer(board.D9, mode=digitalio.Pull.UP) C4 = 261 C_SH_4 = 277 D4 = 293 D_SH_4 = 311 E4 = 329 F4 = 349 F_SH_4 = 369 G4 = 392 G_SH_4 = 415 A4 = 440 A_SH_4 = 466 B4 = 493 # pylint: disable=line-too-long songbook = {'Twinkle Twinkle': [(C4, 0.5), (C4, 0.5), (G4, 0.5), (G4, 0.5), (A4, 0.5), (A4, 0.5), (G4, 1.0), (0, 0.5), (F4, 0.5), (F4, 0.5), (E4, 0.5), (E4, 0.5), (D4, 0.5), (D4, 0.5), (C4, 0.5), (0, 0.5), (G4, 0.5), (G4, 0.5), (F4, 0.5), (F4, 0.5), (E4, 0.5), (E4, 0.5), (D4, 0.5), (0, 0.5), (G4, 0.5), (G4, 0.5), (F4, 0.5), (F4, 0.5), (E4, 0.5), (E4, 0.5), (D4, 0.5), (0, 0.5), (C4, 0.5), (C4, 0.5), (G4, 0.5), (G4, 0.5), (A4, 0.5), (A4, 0.5), (G4, 1.0), (0, 0.5), (F4, 0.5), (F4, 0.5), (E4, 0.5), (E4, 0.5), (D4, 0.5), (D4, 0.5), (C4, 0.5), (0, 0.5)], 'ItsyBitsy Spider': [(G4, 0.5), (C4, 0.5), (C4, 0.5), (C4, 0.5), (D4, 0.5), (E4, 0.5), (E4, 0.5), (E4, 0.5), (D4, 0.5), (C4, 0.5), (D4, 0.5), (E4, 0.5), (C4, 0.5), (0, 0.5), (E4, 0.5), (E4, 0.5), (F4, 0.5), (G4, 0.5), (G4, 0.5), (F4, 0.5), (E4, 0.5), (F4, 0.5), (G4, 0.5), (E4, 0.5), (0, 0.5)], 'Old MacDonald': [(G4, 0.5), (G4, 0.5), (G4, 0.5), (D4, 0.5), (E4, 0.5), (E4, 0.5), (D4, 0.5), (0, 0.5), (B4, 0.5), (B4, 0.5), (A4, 0.5), (A4, 0.5), (G4, 0.5), (0, 0.5), (D4, 0.5), (G4, 0.5), (G4, 0.5), (G4, 0.5), (D4, 0.5), (E4, 0.5), (E4, 0.5), (D4, 0.5), (0, 0.5), (B4, 0.5), (B4, 0.5), (A4, 0.5), (A4, 0.5), (G4, 0.5), (0, 0.5), (D4, 0.5), (D4, 0.5), (G4, 0.5), (G4, 0.5), (G4, 0.5), (D4, 0.5), (D4, 0.5), (G4, 0.5), (G4, 0.5), (G4, 0.5), (0, 0.5), (G4, 0.5), (G4, 0.5), (G4, 0.5), (G4, 0.5), (G4, 0.5), (G4, 0.5), (0, 0.5), (G4, 0.5), (G4, 0.5), (G4, 0.5), (G4, 0.5), (G4, 0.5), (G4, 0.5), (0, 0.5), (G4, 0.5), (G4, 0.5), (G4, 0.5), (D4, 0.5), (E4, 0.5), (E4, 0.5), (D4, 0.5), (0, 0.5), (B4, 0.5), (B4, 0.5), (A4, 0.5), (A4, 0.5), (G4, 0.5), (0, 0.5)] } # pylint: enable=line-too-long def play_note(note): if note[0] != 0: pwm = pulseio.PWMOut(board.D12, duty_cycle = 0, frequency=note[0]) # Hex 7FFF (binary 0111111111111111) is half of the largest value for a 16-bit int, # i.e. 50% pwm.duty_cycle = 0x7FFF time.sleep(note[1]) if note[0] != 0: pwm.deinit() def play_song(songname): for note in songbook[songname]: play_note(note) def update(songnames, selected): oled.fill(0) line = 0 for songname in songnames: if line == selected: oled.text(">", 0, line * 8) oled.text(songname, 10, line * 8) line += 1 oled.show() selected_song = 0 song_names = sorted(list(songbook.keys())) while True: button_select.update() button_play.update() update(song_names, selected_song) if button_select.fell: print("select") selected_song = (selected_song + 1) % len(songbook) elif button_play.fell: print("play") play_song(song_names[selected_song])
41.433333
185
0.448914
[ "MIT" ]
ChrisKuhi/Adafruit_Learning_System_Guides
CircuitPython_101/basic_data_structures/song_book/code.py
3,729
Python
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2017-02-23 18:07 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('voting', '0002_auto_20170223_1054'), ] operations = [ migrations.RemoveField( model_name='voteballot', name='vote_candidate', ), migrations.AddField( model_name='voteballot', name='candidates', field=models.ManyToManyField(related_name='vote_ballot', to='voting.Candidate', verbose_name="Vote's Candidate"), ), migrations.AddField( model_name='voteballot', name='position', field=models.CharField(choices=[('P', 'President'), ('A', 'VP of Administration'), ('T', 'Treasurer'), ('S', 'VP of Service'), ('N', 'VP of New Member Services'), ('O', 'VP of Social Affairs'), ('J', 'VP of Standards'), ('R', 'Risk Management'), ('B', 'Standards Board')], default='P', max_length=1), ), ]
35.433333
312
0.594544
[ "MIT" ]
TexasLAN/texaslan.org
texaslan/voting/migrations/0003_auto_20170223_1207.py
1,063
Python
#!/usr/bin/env python3 # Copyright (c) 2017-2020 The Mantle Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test mempool acceptance of raw transactions.""" from decimal import Decimal from io import BytesIO import math from test_framework.test_framework import MantleTestFramework from test_framework.key import ECKey from test_framework.messages import ( BIP125_SEQUENCE_NUMBER, COIN, COutPoint, CTransaction, CTxOut, MAX_BLOCK_BASE_SIZE, MAX_MONEY, ) from test_framework.script import ( hash160, CScript, OP_0, OP_2, OP_3, OP_CHECKMULTISIG, OP_EQUAL, OP_HASH160, OP_RETURN, ) from test_framework.util import ( assert_equal, assert_raises_rpc_error, hex_str_to_bytes, ) class MempoolAcceptanceTest(MantleTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [[ '-txindex','-permitbaremultisig=0', ]] * self.num_nodes self.supports_cli = False def skip_test_if_missing_module(self): self.skip_if_no_wallet() def check_mempool_result(self, result_expected, *args, **kwargs): """Wrapper to check result of testmempoolaccept on node_0's mempool""" result_test = self.nodes[0].testmempoolaccept(*args, **kwargs) assert_equal(result_expected, result_test) assert_equal(self.nodes[0].getmempoolinfo()['size'], self.mempool_size) # Must not change mempool state def run_test(self): node = self.nodes[0] self.log.info('Start with empty mempool, and 200 blocks') self.mempool_size = 0 assert_equal(node.getblockcount(), 200) assert_equal(node.getmempoolinfo()['size'], self.mempool_size) coins = node.listunspent() self.log.info('Should not accept garbage to testmempoolaccept') assert_raises_rpc_error(-3, 'Expected type array, got string', lambda: node.testmempoolaccept(rawtxs='ff00baar')) assert_raises_rpc_error(-8, 'Array must contain exactly one raw transaction for now', lambda: node.testmempoolaccept(rawtxs=['ff00baar', 'ff22'])) assert_raises_rpc_error(-22, 'TX decode failed', lambda: node.testmempoolaccept(rawtxs=['ff00baar'])) self.log.info('A transaction already in the blockchain') coin = coins.pop() # Pick a random coin(base) to spend raw_tx_in_block = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': coin['txid'], 'vout': coin['vout']}], outputs=[{node.getnewaddress(): 0.3}, {node.getnewaddress(): 49}], ))['hex'] txid_in_block = node.sendrawtransaction(hexstring=raw_tx_in_block, maxfeerate=0) node.generate(1) self.mempool_size = 0 self.check_mempool_result( result_expected=[{'txid': txid_in_block, 'allowed': False, 'reject-reason': 'txn-already-known'}], rawtxs=[raw_tx_in_block], ) self.log.info('A transaction not in the mempool') fee = Decimal('0.000007') raw_tx_0 = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{"txid": txid_in_block, "vout": 0, "sequence": BIP125_SEQUENCE_NUMBER}], # RBF is used later outputs=[{node.getnewaddress(): Decimal('0.3') - fee}], ))['hex'] tx = CTransaction() tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': fee}}], rawtxs=[raw_tx_0], ) self.log.info('A final transaction not in the mempool') coin = coins.pop() # Pick a random coin(base) to spend output_amount = Decimal('0.025') raw_tx_final = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': coin['txid'], 'vout': coin['vout'], "sequence": 0xffffffff}], # SEQUENCE_FINAL outputs=[{node.getnewaddress(): output_amount}], locktime=node.getblockcount() + 2000, # Can be anything ))['hex'] tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_final))) fee_expected = coin['amount'] - output_amount self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': fee_expected}}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) node.sendrawtransaction(hexstring=raw_tx_final, maxfeerate=0) self.mempool_size += 1 self.log.info('A transaction in the mempool') node.sendrawtransaction(hexstring=raw_tx_0) self.mempool_size += 1 self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'txn-already-in-mempool'}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that replaces a mempool transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vout[0].nValue -= int(fee * COIN) # Double the fee tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER + 1 # Now, opt out of RBF raw_tx_0 = node.signrawtransactionwithwallet(tx.serialize().hex())['hex'] tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': (2 * fee)}}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that conflicts with an unconfirmed tx') # Send the transaction that replaces the mempool transaction and opts out of replaceability node.sendrawtransaction(hexstring=tx.serialize().hex(), maxfeerate=0) # take original raw_tx_0 tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vout[0].nValue -= int(4 * fee * COIN) # Set more fee # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'txn-mempool-conflict'}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) self.log.info('A transaction with missing inputs, that never existed') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14) # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with missing inputs, that existed once in the past') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vin[0].prevout.n = 1 # Set vout to 1, to spend the other outpoint (49 coins) of the in-chain-tx we want to double spend raw_tx_1 = node.signrawtransactionwithwallet(tx.serialize().hex())['hex'] txid_1 = node.sendrawtransaction(hexstring=raw_tx_1, maxfeerate=0) # Now spend both to "clearly hide" the outputs, ie. remove the coins from the utxo set by spending them raw_tx_spend_both = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[ {'txid': txid_0, 'vout': 0}, {'txid': txid_1, 'vout': 0}, ], outputs=[{node.getnewaddress(): 0.1}] ))['hex'] txid_spend_both = node.sendrawtransaction(hexstring=raw_tx_spend_both, maxfeerate=0) node.generate(1) self.mempool_size = 0 # Now see if we can add the coins back to the utxo set by sending the exact txs again self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_0], ) self.check_mempool_result( result_expected=[{'txid': txid_1, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_1], ) self.log.info('Create a signed "reference" tx for later use') raw_tx_reference = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': txid_spend_both, 'vout': 0}], outputs=[{node.getnewaddress(): 0.05}], ))['hex'] tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) # Reference tx should be valid on itself self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': True, 'vsize': tx.get_vsize(), 'fees': { 'base': Decimal('0.1') - Decimal('0.05')}}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) self.log.info('A transaction with no outputs') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout = [] # Skip re-signing the transaction for context independent checks from now on # tx.deserialize(BytesIO(hex_str_to_bytes(node.signrawtransactionwithwallet(tx.serialize().hex())['hex']))) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-empty'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A really large transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin = [tx.vin[0]] * math.ceil(MAX_BLOCK_BASE_SIZE / len(tx.vin[0].serialize())) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-oversize'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with negative output value') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].nValue *= -1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-negative'}], rawtxs=[tx.serialize().hex()], ) # The following two validations prevent overflow of the output amounts (see CVE-2010-5139). self.log.info('A transaction with too large output value') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].nValue = MAX_MONEY + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-toolarge'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with too large sum of output values') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout = [tx.vout[0]] * 2 tx.vout[0].nValue = MAX_MONEY self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-txouttotal-toolarge'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with duplicate inputs') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin = [tx.vin[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-inputs-duplicate'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A coinbase transaction') # Pick the input of the first tx we signed, so it has to be a coinbase tx raw_tx_coinbase_spent = node.getrawtransaction(txid=node.decoderawtransaction(hexstring=raw_tx_in_block)['vin'][0]['txid']) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_coinbase_spent))) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'coinbase'}], rawtxs=[tx.serialize().hex()], ) self.log.info('Some nonstandard transactions') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.nVersion = 3 # A version currently non-standard self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'version'}], rawtxs=[tx.serialize().hex()], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].scriptPubKey = CScript([OP_0]) # Some non-standard script self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptpubkey'}], rawtxs=[tx.serialize().hex()], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) key = ECKey() key.generate() pubkey = key.get_pubkey().get_bytes() tx.vout[0].scriptPubKey = CScript([OP_2, pubkey, pubkey, pubkey, OP_3, OP_CHECKMULTISIG]) # Some bare multisig script (2-of-3) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bare-multisig'}], rawtxs=[tx.serialize().hex()], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].scriptSig = CScript([OP_HASH160]) # Some not-pushonly scriptSig self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptsig-not-pushonly'}], rawtxs=[tx.serialize().hex()], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].scriptSig = CScript([b'a' * 1648]) # Some too large scriptSig (>1650 bytes) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptsig-size'}], rawtxs=[tx.serialize().hex()], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) output_p2sh_burn = CTxOut(nValue=540, scriptPubKey=CScript([OP_HASH160, hash160(b'burn'), OP_EQUAL])) num_scripts = 100000 // len(output_p2sh_burn.serialize()) # Use enough outputs to make the tx too large for our policy tx.vout = [output_p2sh_burn] * num_scripts self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'tx-size'}], rawtxs=[tx.serialize().hex()], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0] = output_p2sh_burn tx.vout[0].nValue -= 1 # Make output smaller, such that it is dust for our policy self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'dust'}], rawtxs=[tx.serialize().hex()], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].scriptPubKey = CScript([OP_RETURN, b'\xff']) tx.vout = [tx.vout[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'multi-op-return'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A timelocked transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].nSequence -= 1 # Should be non-max, so locktime is not ignored tx.nLockTime = node.getblockcount() + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'non-final'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction that is locked by BIP68 sequence logic') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].nSequence = 2 # We could include it in the second block mined from now, but not the very next one # Can skip re-signing the tx because of early rejection self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'non-BIP68-final'}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) if __name__ == '__main__': MempoolAcceptanceTest().main()
48.050296
154
0.634382
[ "MIT" ]
Mantle-One/mantlecoin
test/functional/mempool_accept.py
16,241
Python
#!/usr/bin/env python import os import sys import argparse import subprocess import glob import math from EMAN2 import * def file_base(movie): # return the filename and basename, exclude '.p3' return movie, os.path.basename(os.path.splitext(movie)[0]).replace('.p3', '') def check(log,c_p): with open(log) as log_r: lines = [line for line in log_r] x0 = 0 y0 = 0 f = c_p['throw'] bad = [] while len(lines) > 0: line1 = lines.pop(0) if "...... Frame (" in line1: line = line1.strip().split() x = float(line[-2]) y = float(line[-1]) if math.sqrt((x - x0)**2 + (y - y0)**2) * c_p['apixr'] > c_p['target']: bad += [f] f += 1 x0 = x y0 = y return bad def run_motioncor2(movie, c_p): movie, basename = file_base(movie) # generate the com file out = basename+'_throw{:03}'.format(c_p['throw']) o_com = out + '.com' o_log = out + '.log' o_mrc = out + '.mrc' common = 'motioncor2 -InMrc {} -OutMrc {} -Iter 10 -Bft 100 -FtBin {} -Throw {} -FmRef -1 -Tilt {} {}'.format(movie,o_mrc,c_p['bin'],c_p['throw'],c_p['tilt'], c_p['gainref']) with open(o_com, 'w') as o_com_w: if c_p['local'] == 0: o_com_w.write('{} -Patch 0 0'.format(common)) else: o_com_w.write('{} -Patch {} {} -LogFile {} -FmDose {} -PixSize {} -kV {}'.format(common,c_p['patch'],c_p['patch'],out+'_',c_p['dose'],c_p['apixr'],c_p['voltage'])) # run the com with open(o_log, 'w') as write_log: subprocess.call(['sh', o_com], stdout=write_log, stderr=subprocess.STDOUT) # check the shifts bad = check(o_log,c_p) # decide bad decide(movie, bad, c_p) def decide(movie, bad, c_p): if bad == []: if c_p['local'] == 0: print "No bad frames. Do local now." c_p['local'] = 1 run_motioncor2(movie, c_p) else: print "No bad frames. Local done for {}. Throwed the first {} frames.".format(movie, c_p['throw']) elif max(bad) < c_p['maxthrow']: c_p['throw'] = max(bad) print "Throw the first {} frames.".format(c_p['throw']), "Bad frames: ", bad run_motioncor2(movie, c_p) else: # if too many bad frames print '{} has too many bad frames: '.format(movie), bad def main(): progname = os.path.basename(sys.argv[0]) usage = progname + """ [options] <movies> Output unfiltered and filtered sum using MotionCor2. Automatically discard bad frames. Needs: 'motioncor2' command (v1, Zheng et al., 2017) 'EMAN2' python module (v2.11, Tang et al., 2007) """ args_def = {'apix':1.315, 'apixr':0.6575, 'bin':1, 'patch':5, 'voltage':300, 'time':200, 'rate':7, 'target':5, 'tilt':'0 0', 'gainref':''} parser = argparse.ArgumentParser() parser.add_argument("movie", nargs='*', help="specify movies (mrc, mrcs, dm4) to be processed") parser.add_argument("-a", "--apix", type=float, help="specify counting apix, by default {}".format(args_def['apix'])) parser.add_argument("-ar", "--apixr", type=float, help="specify real apix of input movie, by default {}".format(args_def['apixr'])) parser.add_argument("-b", "--bin", type=float, help="specify binning factor, by default {}".format(args_def['bin'])) parser.add_argument("-p", "--patch", type=int, help="specify the patch, by default {}".format(args_def['patch'])) parser.add_argument("-v", "--voltage", type=int, help="specify the voltage (kV), by default {}".format(args_def['voltage'])) parser.add_argument("-t", "--time", type=float, help="specify exposure time per frame in ms, by default {}".format(args_def['time'])) parser.add_argument("-r", "--rate", type=float, help="specify dose rate in e/pix/s (counting pixel, not superresolution), by default {}".format(args_def['rate'])) parser.add_argument("-ta", "--target", type=float, help="specify the target resolution, by default {}".format(args_def['target'])) parser.add_argument("-ti", "--tilt", type=str, help="specify the tilt, by default {}".format(args_def['tilt'])) parser.add_argument("-g", "--gainref", type=str, help="specify the gainref option, by default {}. e.g., '-Gain ../14sep05c_raw_196/norm-amibox05-0.mrc -RotGain 0 -FlipGain 1'".format(args_def['gainref'])) args = parser.parse_args() if len(sys.argv) == 1: print "usage: " + usage print "Please run '" + progname + " -h' for detailed options." sys.exit(1) # get default values for i in args_def: if args.__dict__[i] == None: args.__dict__[i] = args_def[i] # get common parameters dose = args.time/1000.0 * args.rate / args.apix ** 2 voltage = args.voltage c_p = {'dose':dose, 'apix':args.apix, 'apixr':args.apixr, 'bin':args.bin, 'patch':args.patch, 'voltage':voltage, 'target':args.target, 'tilt':args.tilt, 'throw':0, 'gainref':args.gainref} # loop over all the input movies for movie in args.movie: if movie[-3:] == '.gz': subprocess.call(['gunzip', movie]) movie = movie[:-3] basename = os.path.basename(os.path.splitext(movie)[0]) suffix = os.path.basename(os.path.splitext(movie)[1]) basename_raw = basename # unify mrc and mrcs to mrcs format m = basename+'.p3.mrcs' if suffix in ['.mrc','.mrcs']: os.symlink(movie, m) movie, basename = file_base(m) # get nimg c_p['nimg'] = EMUtil.get_image_count(movie) # convert dm4 to mrcs if suffix == '.dm4': for i in xrange(c_p['nimg']): d=EMData(movie, i) d.write_image(m, i) movie, basename = file_base(m) # here we assume 36e is the maximal dose that still contributes to visualization of protein side chains, and a total of 20e is the minimum to ensure good alignment. therefore, you can throw the first 16e at most. c_p['maxthrow'] = min(16/dose, c_p['nimg'] - 20/dose) # motioncor2 c_p['local'] = 0 #0 means no local, only global c_p['throw'] = 0 run_motioncor2(movie, c_p) # delete intermediate files, they contain '.p3.' for i in glob.glob(basename_raw + '*.p3.*'): os.unlink(i) if __name__ == '__main__': main()
41.092199
214
0.654298
[ "MIT" ]
emkailu/PAT3DEM
bin/p3motioncor2.py
5,794
Python
from django.conf.urls import url from . import views urlpatterns = [ url(r'tables/$', views.report_tables, name='tables'), url(r'^api/stop_enforcement/', views.stop_enforcement_json_view, name='stop_enforcement'), url(r'^api/residency/', views.resident_json_view, name='residency'), url(r'^api/nature_of_stops/', views.nature_of_stops_json_view, name='nature_of_stop'), url(r'^api/disposition/', views.disposition_json_view, name='disposition'), url(r'^api/statutory_authority/', views.statutory_authority_json_view, name='stop_authority'), url(r'^api/stops_by_month/', views.monthly_stops_json_view, name='stops_by_month'), url(r'^api/stops_by_hour/', views.stops_by_hour_json_view, name='stops_by_hour'), url(r'^api/stops_by_age/', views.stops_by_age_json_view, name='stops_by_age'), url(r'^api/search_information/', views.search_information_json_view, name='search_information'), url(r'^api/search_authority/', views.search_authority_json_view, name='search_authority'), url(r'^api/traffic_stops/', views.traffic_stops_json_view, name='stops'), url(r'^api/departments/', views.department_json_view, name='departments') ]
62.157895
100
0.751058
[ "MIT" ]
CT-Data-Collaborative/ctrp3_v2
ctrp3_py3/reports/urls.py
1,181
Python
""" Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from mo.front.extractor import FrontExtractorOp from mo.front.kaldi.extractors.fixed_affine_component_ext import FixedAffineComponentFrontExtractor from mo.front.kaldi.utils import read_learning_info from mo.graph.graph import Node class AffineComponentFrontExtractor(FrontExtractorOp): op = 'affinecomponent' enabled = True @staticmethod def extract(node: Node): read_learning_info(node.parameters) return FixedAffineComponentFrontExtractor.extract(node)
35.733333
99
0.785448
[ "Apache-2.0" ]
AlexeyAB/dldt
model-optimizer/mo/front/kaldi/extractors/affine_component_ext.py
1,072
Python
# import unittest import pytest # from ci_testing_python.app.identidock import app if __name__ == '__main__': # unittest.main() pytest.main()
14.7
50
0.741497
[ "MIT" ]
anirbanroydas/MChat-Mosquitto-MQTT
tests/contract/test_contract_identidock.py
147
Python
def solve(n): a = [] for _ in range(n): name, h = input().split() h = float(h) a.append((name, h)) a.sort(key = lambda t: t[1], reverse=True) m = a[0][1] for n, h in a: if h != m: break print(n, end = " ") print() while True: n = int(input()) if n == 0: break solve(n)
18.473684
46
0.433048
[ "MIT" ]
honux77/algorithm
prompt412/round-101/c.py
351
Python
import numpy as np import matplotlib.pyplot as plt import time import csv import os import scipy.io as mat4py import logging logger = logging.getLogger("logger") class ResultBuffer(object): def __init__(self, log_path, episode_types): self.log_path = log_path self.current_episode = None self.episodes = {e_type: list() for e_type in episode_types} self.average_reward = 0.0 self.initial_reward = 0.0 self.average_reward_counter = 0 self.n_cluster = 0 for episode_type in self.episodes.keys(): with open(os.path.join(self.log_path,'{}.csv'.format(episode_type)), mode='w') as result_file: writer = csv.writer(result_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) writer.writerow(self.title_csv()) def update_episode(self, **kwargs): if self.current_episode is None: raise ValueError("There is no initiated episodes object") self.current_episode.add(**kwargs) def add_episode(self, episode_type, lr, noise_std, buffer_size): if episode_type in self.episodes.keys(): idx = len(self.episodes[episode_type]) episode_name = "{}_{:03d}".format(episode_type,idx) self.episodes[episode_type].append(Episode(episode_name, lr, noise_std, buffer_size, self.average_reward)) self.current_episode = self.episodes[episode_type][-1] else: raise ValueError("Invalid episode type added to result buffer") def finalize_episode(self, update_average_reward=None): self.current_episode.summarize() if update_average_reward is not None: new_average = self.current_episode.final_stats['online_rewards'] if np.abs(new_average-self.initial_reward) > 0.05: self.initial_reward = new_average self.average_reward_counter = 0 self.average_reward = (self.average_reward_counter * self.average_reward + new_average) / (self.average_reward_counter + 1) self.average_reward_counter += 1 logger.info(self.current_episode) self.write_all() def write_all(self): for episode_type in self.episodes.keys(): with open(os.path.join(self.log_path,'{}.csv'.format(episode_type)), mode='a') as result_file: writer = csv.writer(result_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) for i, episode in enumerate(self.episodes[episode_type]): if episode is not None: if "eval" in episode.name: try: episode.save(self.log_path) except: logger.info("Saving state evolution failed") writer.writerow(episode.csv()) self.episodes[episode_type][i] = None @staticmethod def title(): text = list() text.append('{:^20}'.format('Epi')) text.append('{:^10}'.format('time')) text.append('{:^9}'.format('lr')) text.append('{:^9}'.format('noise')) text.append('{:^12}'.format('buffer size')) text.append('{:^9}'.format('#of updates')) text.append('{:^20}'.format('average_reward')) text.append('{:^20}'.format('actor grad norm')) text.append('{:^20}'.format('critic grad norm')) text.append('{:^9}'.format('q_loss')) text.append('{:^6}'.format('rewards')) return " | ".join(text) @staticmethod def title_csv(): text = list() text.append('{}'.format('Epi')) text.append('{}'.format('time')) text.append('{}'.format('lr')) text.append('{}'.format('noise')) text.append('{}'.format('buffer size')) text.append('{}'.format('#of updates')) text.append('{}'.format('average_reward')) text.append('{}'.format('actor grad norm')) text.append('{}'.format('critic grad norm')) text.append('{}'.format('q_loss')) text.append('{}'.format('rewards')) return text class Episode(object): def __init__(self, name, lr, noise_std, buffer_size, average_reward): # general stats self.name = name self.average_reward = average_reward self.lr = lr self.noise_std = noise_std self.buffer_size = buffer_size self.total_time = time.time() # training stats self.stats = dict() self.final_stats = dict() def add(self, **kwargs): for key,val in kwargs.items(): if key not in self.stats.keys(): self.stats[key] = list() self.stats[key].append(val) def summarize(self): # updates counter if 'global_step_critic' in self.stats.keys(): self.final_stats['global_step'] = self.stats['global_step_critic'] # average rewards if 'online_rewards' in self.stats.keys(): self.stats['online_rewards'] = np.array(self.stats['online_rewards']) self.stats['online_rewards'] = np.reshape(self.stats['online_rewards'], [self.stats['online_rewards'].shape[1], -1]) self.final_stats['online_rewards'] = np.mean(self.stats['online_rewards'][:,10:]) # value function error if 'q_loss' in self.stats.keys(): self.final_stats['q_loss'] = np.mean(self.stats['q_loss']) # state/action/disturbance evolution if 'states' in self.stats.keys(): self.final_stats['states'] = np.transpose(np.squeeze(np.array(self.stats['states']))) if 'actions' in self.stats.keys(): self.final_stats['actions'] = np.swapaxes(np.array(self.stats['actions']), 0, 1) if 'disturbance' in self.stats.keys(): self.final_stats['disturbance'] = np.transpose(np.array(self.stats['disturbance'])) # gradient stats if 'g_norm_critic' in self.stats.keys(): self.final_stats['g_norm_critic'] = (np.mean(np.squeeze(np.array(self.stats['g_norm_critic']))), np.min(np.squeeze(np.array(self.stats['g_norm_critic']))), np.max(np.squeeze(np.array(self.stats['g_norm_critic'])))) if 'g_norm_actor' in self.stats.keys(): self.final_stats['g_norm_actor'] = (np.mean(np.squeeze(np.array(self.stats['g_norm_actor']))), np.min(np.squeeze(np.array(self.stats['g_norm_actor']))), np.max(np.squeeze(np.array(self.stats['g_norm_actor'])))) if 'global_step_actor' in self.stats.keys(): self.final_stats['global_step'] = self.stats['global_step_actor'][-1] self.total_time = time.time() - self.total_time del self.stats def save(self, path): mat4py.savemat(os.path.join(path, "states", 'states_evol.mat'), {'states': self.final_stats['states']}) mat4py.savemat(os.path.join(path, "states", 'actions_evol.mat'), {'actions': self.final_stats['actions']}) mat4py.savemat(os.path.join(path, "states", 'outputs_evol.mat'), {'disturbance': self.final_stats['disturbance']}) def csv(self): text = list() text.append('{}'.format(self.name)) text.append('{:.1f}'.format(self.total_time)) if "eval" not in self.name: text.append('{:.2e}'.format(self.lr)) text.append('{:.2e}'.format(self.noise_std)) text.append('{}'.format(self.buffer_size)) text.append('{}'.format(self.final_stats['global_step'])) text.append('{:^20}'.format(self.average_reward)) if "eval" not in self.name: text.append('{}'.format(self.final_stats['g_norm_actor'])) text.append('{}'.format(self.final_stats['g_norm_critic'])) text.append('{:.2e}'.format(self.final_stats['q_loss'])) text.append('{:.5f}'.format(self.final_stats['online_rewards'])) return text def __repr__(self): text = list() text.append('{:^20}'.format(self.name)) text.append('{:^10.1f}'.format(self.total_time)) if "eval" not in self.name: text.append('{:^9.2e}'.format(self.lr)) text.append('{:^9.2e}'.format(self.noise_std)) text.append('{:^d}'.format(self.buffer_size)) text.append('{}'.format(self.final_stats['global_step'])) text.append('{:^20}'.format(self.average_reward)) if "eval" not in self.name: mi, ma, mea = self.final_stats['g_norm_actor'] text.append('{:5.2e},{:5.2e},{:5.2e}'.format(mi, ma, mea)) mi, ma, mea = self.final_stats['g_norm_critic'] text.append('{:5.2e},{:5.2e},{:5.2e}'.format(mi, ma, mea)) text.append('{:^10.2e}'.format(self.final_stats['q_loss'])) if "pol" in self.name: mi, ma, mea = self.final_stats['g_norm_critic'] text.append('{:5.2e},{:5.2e},{:5.2e}'.format(mi, ma, mea)) text.append('{:^10.2e}'.format(self.final_stats['q_loss'])) if len(self.final_stats.keys()) > 0 : text.append('{:^6.5f}'.format(self.final_stats['online_rewards'])) return " | ".join(text) class Figure(object): def __init__(self, name, log_path, y_data, x_data=None, options = None, labels = None): self.fig = plt.figure() self.fig.set_size_inches(18.5, 10.5) for y in y_data: plt.plot(x_data, y) plt.legend(labels) plt.title(" ".join(name.split("_"))) self.fig.savefig(os.path.join(log_path, "plots", name)) plt.close()
41.651064
135
0.581324
[ "MIT" ]
zivaharoni/capacity-rl
result_buffer.py
9,788
Python
"""Import a file from Illumina BaseSpace.""" import atexit import gzip import os import time import traceback from pathlib import Path from requests import RequestException, Session from resolwe.process import ( BooleanField, FileField, GroupField, IntegerField, Persistence, Process, SecretField, StringField, ) class BaseSpaceDownloadError(Exception): """BaseSpace download error.""" pass def download_file_repeatedly( tries, session, file_id, file_name, expected_file_size, request_headers, error ): """Attempt to download BaseSpace file numerous times in case of errors.""" for i in range(tries): try: download_file( session=session, file_id=file_id, file_name=file_name, request_headers=request_headers, error=error, ) raise_for_file_corruption( file_name=file_name, expected_file_size=expected_file_size, error=error ) break except BaseSpaceDownloadError: if i + 1 == tries: error("Could not download file from BaseSpace.") else: time.sleep(3) def download_file(session, file_id, file_name, request_headers, error): """Download BaseSpace file.""" response = make_get_request( session=session, url=get_api_file_content_url(file_id=file_id), headers=request_headers, error=error, stream=True, ) try: with open(file_name, "wb") as f: chunk_size = 1024 * 1024 * 10 for chunk in response.iter_content(chunk_size=chunk_size): f.write(chunk) except FileNotFoundError: error(f"Could not save file to {file_name}, due to directory not being found") except PermissionError: error(f"Could not save file to {file_name}, due to insufficient permissions") except RequestException: error(f"Could not save file to {file_name}, due to a network error") def get_file_properties(session, file_id, request_headers, error): """Get file name and size (in bytes).""" response = make_get_request( session=session, url=get_api_file_url(file_id=file_id), headers=request_headers, error=error, ) info = response.json()["Response"] return info["Name"], info["Size"] def make_get_request(session, url, headers, error, stream=False): """Make a get request.""" response = session.get(url=url, headers=headers, stream=stream, timeout=60) if response.status_code == 401: error(f"Authentication failed on URL {url}") elif response.status_code == 404: error(f"BaseSpace file {url} not found") elif response.status_code != 200: error(f"Failed to retrieve content from {url}") return response def get_api_file_url(file_id): """Get BaseSpace API file URL.""" api_url = "https://api.basespace.illumina.com/v1pre3" return f"{api_url}/files/{file_id}" def get_api_file_content_url(file_id): """Get BaseSpace API file contents URL.""" return f"{get_api_file_url(file_id=file_id)}/content" def output(output_option, value): """Print to standard output.""" if output_option == "full": print(value) elif output_option == "filename": if value.startswith("filename="): print(value[len("filename=") :]) def get_token_from_secret_file(secret_file_path, error): """Read secret file to obtain access token.""" try: with open(secret_file_path, "r") as f: return f.readline() except FileNotFoundError: error("Secret file not found") except PermissionError: error("No permissions to read secret file") def on_exit(session): """Clean up function called on exit.""" session.close() def raise_for_file_corruption(file_name, expected_file_size, error): """Raise an error if file does not pass integrity check.""" # Check file size. actual_file_size = os.path.getsize(file_name) if expected_file_size != actual_file_size: error( f"File's ({file_name}) expected size ({expected_file_size}) " f"does not match its actual size ({actual_file_size})" ) # Check gzip integrity. if file_name.split(".")[-1] == "gz": try: with gzip.open(file_name, "rb") as f: chunk_size = 1024 * 1024 * 10 while bool(f.read(chunk_size)): pass except OSError: error(f"File {file_name} did not pass gzip integrity check") class BaseSpaceImport(Process): """Import a file from Illumina BaseSpace.""" slug = "basespace-file-import" name = "BaseSpace file" process_type = "data:file" version = "1.4.0" category = "Import" data_name = 'BaseSpace ({{ file_id|default("?") }})' persistence = Persistence.TEMP requirements = { "expression-engine": "jinja", "executor": { "docker": {"image": "public.ecr.aws/s4q6j6e8/resolwebio/common:3.0.0"} }, "resources": { "cores": 1, "memory": 1024, "network": True, "secrets": True, }, } class Input: """Input fields to process BaseSpaceImport.""" file_id = StringField(label="BaseSpace file ID") access_token_secret = SecretField( label="BaseSpace access token", description="BaseSpace access token secret handle needed to download the file.", ) show_advanced = BooleanField( label="Show advanced options", default=False, ) class Advanced: """Advanced options.""" output = StringField( label="Output", allow_custom_choice=False, choices=[("full", "Full"), ("filename", "Filename")], default="filename", description="Sets what is printed to standard output. " "Argument 'Full' outputs everything, " "argument 'Filename' outputs only file names of downloaded files.", ) tries = IntegerField( label="Tries", description="Number of tries to download a file before giving up.", range=[1, 10], default=3, ) verbose = BooleanField( label="Verbose", default=False, description="Print detailed exception information to standard output " "when error occurs. Output argument had no effect on this argument.", ) advanced = GroupField( Advanced, label="Advanced options", hidden="!show_advanced" ) class Output: """Output fields to process BaseSpaceImport.""" file = FileField(label="File with reads") def run(self, inputs, outputs): """Run import.""" secret_path = Path("/secrets") / inputs.access_token_secret["handle"] session = Session() atexit.register(on_exit, session) try: file_id = inputs.file_id access_token = get_token_from_secret_file( secret_file_path=secret_path, error=self.error ) headers = {"x-access-token": access_token} file_name, file_size = get_file_properties( session=session, file_id=file_id, request_headers=headers, error=self.error, ) download_file_repeatedly( tries=inputs.advanced.tries, session=session, file_id=file_id, file_name=file_name, expected_file_size=file_size, request_headers=headers, error=self.error, ) output(inputs.advanced.output, f"filename={file_name}") except Exception as error: if inputs.advanced.verbose: traceback.print_exc() self.error( "Unexpected error occurred while trying to download files from BaseSpace. " "Check standard output for more details." ) else: print(str(error)) self.error( "Unexpected error occurred while trying to download files from BaseSpace. " "Set Verbose to True to see the traceback." ) outputs.file = file_name
31.376812
95
0.588337
[ "Apache-2.0" ]
plojyon/resolwe-bio
resolwe_bio/processes/import_data/basespace.py
8,660
Python
from kafka import KafkaProducer from kafka import KafkaConsumer from kafka import KafkaAdminClient import json from json import dumps from json import loads import time import os import requests import sys import GE_GSCH_low_define as lowDefine ''' {'requestID': 'req-f6720a0e-e3df-455a-825d-f8c80cedc2d9', 'date': '2021-10-18 13:46:30', 'status': 'create', 'fileID': 'b469e54a-721f-4c55-b43e-d09088556031', 'failCnt': 0, 'env': { 'type': 'global', 'targetClusters': ['c1', ['c2', 'c3'], 'c4'], 'priority': 'GLowLatencyPriority', 'option': { 'sourceCluster': 'c1', 'sourceNode': 'a-worker-node01' } } } ''' class GLowLatencyPriority_Job: def __init__(self,request_data_dic): self.job_name = lowDefine.SELF_POLICY_NAME self.requestDataDic = request_data_dic self.requestID=request_data_dic['requestID'] self.fileID=request_data_dic['fileID'] self.failCnt=request_data_dic['failCnt'] self.env=request_data_dic['env'] self.targetClusters=self.env['targetClusters'] self.sourceCluster=self.env['option']['sourceCluster'] self.sourceNode=self.env['option']['sourceNode'] self.sharedClusters = self.get_shared_clusters() self.producer= KafkaProducer(acks=0, compression_type='gzip', bootstrap_servers=[lowDefine.KAFKA_SERVER_URL], value_serializer=lambda x: dumps(x).encode('utf-8')) def get_shared_clusters(self): for item in self.targetClusters : if type(item).__name__ == list : if len(item) > 1 : return item else : return None else : print() #apply low-latency yaml with def check_res_fail(self, res): if res == None: return True if 'hcode' not in res: return True if 'lcode' not in res: return True if 'msg' not in res: return True if 'result' not in res['msg']: return True return False def request_clusters_latency_from_clusterAgent(self,clusters): try : temp_msg = {'source':{'type':'none'}, 'target':{'type':'cluster', 'object':self.sourceCluster}, 'hcode':200, 'lcode':1, 'msg':{'requestID': self.requestID,'sourceNode': self.sourceNode,'targetClusters': clusters } } self.producer.send(lowDefine.GLOBAL_SCHEDULER_GLOBAL_TOPIC_NAME,value=temp_msg) self.producer.flush() except: return 'process_fail' return 'process_success' def wait_request_clusters_latency_from_clusterAgent(self): ordered_cluster_list =[] res = self.wait_consumer() if res == None: print('res is None') return 'process_fail', ordered_cluster_list is_process_fail = self.check_res_fail(res) hcode = res['hcode'] lcode = res['lcode'] result = res['msg']['result'] ''' result: [ {cluster: c3, latency: 11 }, {cluster: c2, latency: 34 } ] ''' if is_process_fail: print('Fail Job:', res) return 'process_fail', ordered_cluster_list else: if hcode == 200 and lcode == 2: for item in result : ordered_cluster_list.append(item['cluster']) return 'process_success', ordered_cluster_list else : return 'process_fail', ordered_cluster_list def apply_yaml_to_ClusterAgent(self,cluster): print('apply_yaml_to_ClusterAgent:',cluster) try : temp_msg = {'source':{'type':'none'}, 'target':{'type':'cluster', 'object':cluster}, 'hcode':210, 'lcode':1, 'msg':{'requestID': self.requestID,'fileID':self.fileID,'requestData':self.requestDataDic } } self.producer.send(lowDefine.GLOBAL_SCHEDULER_GLOBAL_TOPIC_NAME,value=temp_msg) self.producer.flush() except: return 'process_fail' return 'process_success' def wait_apply_yaml_to_ClusterAgent(self): res = self.wait_consumer() if res == None: print('res is None') return 'process_fail' is_process_fail = self.check_res_fail(res) hcode = res['hcode'] lcode = res['lcode'] result = res['msg']['result'] print('hcode :hcode,result',hcode,lcode,result) if is_process_fail: print('Fail Job:', res) return 'process_fail' else: if hcode == 210 and lcode == 2: if result == 'success' : return 'apply_success' elif result == 'fail' : return 'apply_fail' elif result == 'cancel' : return 'cancel' else : return 'process_fail' else: return 'process_fail' def wait_consumer(self): print('wait_consumer') consumer = KafkaConsumer( self.requestID, bootstrap_servers=[lowDefine.KAFKA_SERVER_URL], auto_offset_reset='earliest', enable_auto_commit=True, group_id=self.requestID, value_deserializer=lambda x: loads(x.decode('utf-8')), consumer_timeout_ms=1000*10 ) print('w-1') res = None for message in consumer: print("Topic: %s, Partition: %d, Offset: %d, Key: %s, Value: %s" % ( message.topic, message.partition, message.offset, message.key, message.value )) res = message.value break consumer.close() return res def start_job_processor(): print('start_job_processor') while 1 : #read dispatched queue print('1') try : res = requests.get(lowDefine.FRONT_SERVER_SERVER_URL+'/ge/sch/gm/fs/dispatched-queue/policys/'+lowDefine.SELF_POLICY_NAME) except: print('wait front server to run',lowDefine.FRONT_SERVER_SERVER_URL) time.sleep(5) continue if res.status_code == 200 : print('2') request_data_dic = json.loads(res.json()) print('request_data_dic',request_data_dic) GE_Request_Job = GLowLatencyPriority_Job(request_data_dic) print('3') #send topic message ''' return values 'apply_success' : apply is success 'process_success' : 'process_fail': raise error in process(apply or wait consumer, request latency) 'apply_fail' : apply is fail ''' is_whole_process_status = None for item in GE_Request_Job.targetClusters : print('type(item)',type(item),item) if type(item).__name__ == 'list' and len(item) > 1 : r = GE_Request_Job.request_clusters_latency_from_clusterAgent(item) if r == 'process_fail' : print('internal error : request_clusters_latency_from_clusterAgent') continue r,clusters = GE_Request_Job.wait_request_clusters_latency_from_clusterAgent() if r == 'process_fail' : print('internal error : wait_request_clusters_latency_from_clusterAgent') continue for t_cluster in clusters: r = GE_Request_Job.apply_yaml_to_ClusterAgent(t_cluster) if r == 'process_fail' : print('internal error : apply_yaml_to_ClusterAgent') continue r = GE_Request_Job.wait_apply_yaml_to_ClusterAgent() if r == 'process_fail' : print('internal error : wait_apply_yaml_to_ClusterAgent') continue elif r == 'apply_success' or r == 'cancel': print('---pply_success or cancel',r) is_whole_process_status = r break elif r == 'apply_fail' : is_whole_process_status = r continue if r == 'apply_success' or r == 'cancel': break else : r = GE_Request_Job.apply_yaml_to_ClusterAgent(item) if r == 'process_fail' : print('internal error : apply_yaml_to_ClusterAgent') continue r = GE_Request_Job.wait_apply_yaml_to_ClusterAgent() if r == 'process_fail' : print('internal error : wait_apply_yaml_to_ClusterAgent') continue elif r == 'apply_success' or r == 'cancel': is_whole_process_status = r print('apply_success or cancel:',r) break elif r == 'apply_fail': is_whole_process_status = r print('apply_fail') continue print('==============') if is_whole_process_status == 'apply_fail' : #GE_Request_Job.requestDataDic['status'] = 'failed' requests.put(lowDefine.FRONT_SERVER_SERVER_URL+'/ge/sch/gm/fs/dispatched-queue/'+GE_Request_Job.requestID+'/status/failed') elif is_whole_process_status == 'apply_success' : #GE_Request_Job.requestDataDic['status'] = 'completed' requests.put(lowDefine.FRONT_SERVER_SERVER_URL+'/ge/sch/gm/fs/dispatched-queue/'+GE_Request_Job.requestID+'/status/completed') elif is_whole_process_status == 'cancel' : #GE_Request_Job.requestDataDic['status'] = 'cancel' requests.put(lowDefine.FRONT_SERVER_SERVER_URL+'/ge/sch/gm/fs/dispatched-queue/'+GE_Request_Job.requestID+'/status/canceled') else : #GE_Request_Job.requestDataDic['status'] = 'cancel' requests.put(lowDefine.FRONT_SERVER_SERVER_URL+'/ge/sch/gm/fs/dispatched-queue/'+GE_Request_Job.requestID+'/status/canceled') else: print('despatched queue is empty') time.sleep(5) continue #time.sleep(1) if __name__ == '__main__': start_job_processor()
40.507407
161
0.540642
[ "Apache-2.0" ]
gedge-platform/GEdge-Platform
gs-scheduler/global_scheduler2/policy_dockerfile/lowlatency/GE_GSCH_low_latency.py
10,937
Python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables __all__ = [ 'ListTopicKeysResult', 'AwaitableListTopicKeysResult', 'list_topic_keys', ] @pulumi.output_type class ListTopicKeysResult: """ Namespace/ServiceBus Connection String """ def __init__(__self__, alias_primary_connection_string=None, alias_secondary_connection_string=None, key_name=None, primary_connection_string=None, primary_key=None, secondary_connection_string=None, secondary_key=None): if alias_primary_connection_string and not isinstance(alias_primary_connection_string, str): raise TypeError("Expected argument 'alias_primary_connection_string' to be a str") pulumi.set(__self__, "alias_primary_connection_string", alias_primary_connection_string) if alias_secondary_connection_string and not isinstance(alias_secondary_connection_string, str): raise TypeError("Expected argument 'alias_secondary_connection_string' to be a str") pulumi.set(__self__, "alias_secondary_connection_string", alias_secondary_connection_string) if key_name and not isinstance(key_name, str): raise TypeError("Expected argument 'key_name' to be a str") pulumi.set(__self__, "key_name", key_name) if primary_connection_string and not isinstance(primary_connection_string, str): raise TypeError("Expected argument 'primary_connection_string' to be a str") pulumi.set(__self__, "primary_connection_string", primary_connection_string) if primary_key and not isinstance(primary_key, str): raise TypeError("Expected argument 'primary_key' to be a str") pulumi.set(__self__, "primary_key", primary_key) if secondary_connection_string and not isinstance(secondary_connection_string, str): raise TypeError("Expected argument 'secondary_connection_string' to be a str") pulumi.set(__self__, "secondary_connection_string", secondary_connection_string) if secondary_key and not isinstance(secondary_key, str): raise TypeError("Expected argument 'secondary_key' to be a str") pulumi.set(__self__, "secondary_key", secondary_key) @property @pulumi.getter(name="aliasPrimaryConnectionString") def alias_primary_connection_string(self) -> str: """ Primary connection string of the alias if GEO DR is enabled """ return pulumi.get(self, "alias_primary_connection_string") @property @pulumi.getter(name="aliasSecondaryConnectionString") def alias_secondary_connection_string(self) -> str: """ Secondary connection string of the alias if GEO DR is enabled """ return pulumi.get(self, "alias_secondary_connection_string") @property @pulumi.getter(name="keyName") def key_name(self) -> str: """ A string that describes the authorization rule. """ return pulumi.get(self, "key_name") @property @pulumi.getter(name="primaryConnectionString") def primary_connection_string(self) -> str: """ Primary connection string of the created namespace authorization rule. """ return pulumi.get(self, "primary_connection_string") @property @pulumi.getter(name="primaryKey") def primary_key(self) -> str: """ A base64-encoded 256-bit primary key for signing and validating the SAS token. """ return pulumi.get(self, "primary_key") @property @pulumi.getter(name="secondaryConnectionString") def secondary_connection_string(self) -> str: """ Secondary connection string of the created namespace authorization rule. """ return pulumi.get(self, "secondary_connection_string") @property @pulumi.getter(name="secondaryKey") def secondary_key(self) -> str: """ A base64-encoded 256-bit primary key for signing and validating the SAS token. """ return pulumi.get(self, "secondary_key") class AwaitableListTopicKeysResult(ListTopicKeysResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return ListTopicKeysResult( alias_primary_connection_string=self.alias_primary_connection_string, alias_secondary_connection_string=self.alias_secondary_connection_string, key_name=self.key_name, primary_connection_string=self.primary_connection_string, primary_key=self.primary_key, secondary_connection_string=self.secondary_connection_string, secondary_key=self.secondary_key) def list_topic_keys(authorization_rule_name: Optional[str] = None, namespace_name: Optional[str] = None, resource_group_name: Optional[str] = None, topic_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListTopicKeysResult: """ Namespace/ServiceBus Connection String API Version: 2017-04-01. :param str authorization_rule_name: The authorization rule name. :param str namespace_name: The namespace name :param str resource_group_name: Name of the Resource group within the Azure subscription. :param str topic_name: The topic name. """ __args__ = dict() __args__['authorizationRuleName'] = authorization_rule_name __args__['namespaceName'] = namespace_name __args__['resourceGroupName'] = resource_group_name __args__['topicName'] = topic_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:servicebus:listTopicKeys', __args__, opts=opts, typ=ListTopicKeysResult).value return AwaitableListTopicKeysResult( alias_primary_connection_string=__ret__.alias_primary_connection_string, alias_secondary_connection_string=__ret__.alias_secondary_connection_string, key_name=__ret__.key_name, primary_connection_string=__ret__.primary_connection_string, primary_key=__ret__.primary_key, secondary_connection_string=__ret__.secondary_connection_string, secondary_key=__ret__.secondary_key)
43.629139
224
0.713418
[ "Apache-2.0" ]
pulumi/pulumi-azure-nextgen
sdk/python/pulumi_azure_nextgen/servicebus/list_topic_keys.py
6,588
Python
""" Base backend Trace and Database classes from the other modules should Subclass the base classes. """ import PyMC2 class Trace(object): """Dummy Trace class. """ def __init__(self,value=None, obj=None): """Assign an initial value and an internal PyMC object.""" self._trace = value if obj is not None: if isinstance(obj, PyMC2.PyMCBase): self._obj = obj else: raise AttributeError, 'Not PyMC object', obj def _initialize(self, length): """Dummy method. Subclass if necessary.""" pass def tally(self, index): """Dummy method. Subclass if necessary.""" pass def truncate(self, index): """Dummy method. Subclass if necessary.""" pass def gettrace(self, burn=0, thin=1, chain=-1, slicing=None): """Dummy method. Subclass if necessary. Input: - burn (int): The number of transient steps to skip. - thin (int): Keep one in thin. - chain (int): The index of the chain to fetch. If None, return all chains. - slicing: A slice, overriding burn and thin assignement. """ raise AttributeError, self._obj.__name__ + " has no trace" __call__ = gettrace ## def obj(): ## def fset(self, obj): ## if isinstance(obj, PyMC2.PyMCBase): ## self.__obj = obj ## else: ## raise AttributeError, 'Not PyMC object' ## def fget(self): ## return self.__obj ## return locals() ## obj = property(**obj()) def _finalize(self): pass class Database(object): """Dummy Database backend""" def __init__(self): """Get the Trace from the local scope.""" self.Trace = Trace def _initialize(self, length): """Tell the traces to initialize themselves.""" for o in self.model._pymc_objects_to_tally: o.trace._initialize(length) def tally(self, index): """Dummy method. Subclass if necessary.""" for o in self.model._pymc_objects_to_tally: o.trace.tally(index) def connect(self, sampler): """Link the Database to the Sampler instance. If database is loaded from a file, restore the objects trace to their stored value, if a new database is created, instantiate a Trace for the PyMC objects to tally. """ if isinstance(sampler, PyMC2.Sampler): self.model = sampler else: raise AttributeError, 'Not a Sampler instance.' if hasattr(self, '_state_'): # Restore the state of the Sampler. for o in sampler._pymc_objects_to_tally: o.trace = getattr(self, o.__name__) o.trace._obj = o else: # Set a fresh new state for o in sampler._pymc_objects_to_tally: o.trace = self.Trace(obj=o) for o in sampler._pymc_objects_to_tally: o.trace.db = self def _finalize(self): """Tell the traces to finalize themselves.""" for o in self.model._pymc_objects_to_tally: o.trace._finalize() def close(self): """Close the database.""" pass def savestate(self, state): """Store a dictionnary containing the state of the Sampler and its SamplingMethods.""" self._state_ = state def getstate(self): """Return a dictionary containing the state of the Sampler and its SamplingMethods.""" return self._state_
31.008264
86
0.559701
[ "Apache-2.0" ]
rsumner31/pymc3-23
PyMC2/database/base.py
3,752
Python
from utils import TreeNode, binary_tree class Solution: def __init__(self): self.index = 0 # 利用[中序遍历左边元素数量 = 左子树节点总数]可以省掉这个计数的字段 def buildTree(self, preorder, inorder): """ :type preorder: List[int] :type inorder: List[int] :rtype: TreeNode """ if not preorder: return None def build_node(lo, hi): node = TreeNode(preorder[self.index]) self.index += 1 j = inorder.index(node.val, lo, hi) # 有些解法生成字典加快这步,但这会增大空间复杂度 if self.index < len(preorder) and preorder[self.index] in inorder[lo:j]: node.left = build_node(lo, j) if self.index < len(preorder) and preorder[self.index] in inorder[j + 1:hi]: node.right = build_node(j + 1, hi) return node return build_node(0, len(preorder)) if __name__ == '__main__': x = Solution().buildTree([1, 2, 4, 6, 5, 7, 8, 3, 9], [4, 6, 2, 7, 5, 8, 1, 9, 3]) x = Solution().buildTree([3, 9, 20, 15, 7], [9, 3, 15, 20, 7])
26
83
0.642857
[ "MIT" ]
Kaciras/leetcode
medium/Q105_ConstructBinaryTreeFromPreorderAndInorderTraversal.py
1,016
Python
# # Copyright (c) 2019, 2021 by Delphix. All rights reserved. # import dlpx.virtualization.api from dlpx.virtualization.common.util import to_str def get_virtualization_api_version(): """Returns the Virutalization API version string. :return: version string """ return to_str(dlpx.virtualization.api.__version__)
23.714286
59
0.756024
[ "Apache-2.0" ]
Balamuruhan/virtualization-sdk
platform/src/main/python/dlpx/virtualization/platform/util.py
332
Python
# -*- coding: utf-8 -*- from ..base import Property from .array import StateVector from .base import Type class Particle(Type): """ Particle type A particle type which contains a state and weight """ state_vector: StateVector = Property(doc="State vector") weight: float = Property(doc='Weight of particle') parent: 'Particle' = Property(default=None, doc='Parent particle') def __init__(self, state_vector, weight, parent=None, *args, **kwargs): if parent: parent.parent = None if state_vector is not None and not isinstance(state_vector, StateVector): state_vector = StateVector(state_vector) super().__init__(state_vector, weight, parent, *args, **kwargs) @property def ndim(self): return self.state_vector.shape[0]
29.321429
82
0.666261
[ "MIT" ]
0sm1um/Stone-Soup
stonesoup/types/particle.py
821
Python
from heapq import heappush, nsmallest import numpy as np class NearestNeighbor(): def __init__(self, embeddings, encodings, config): self.embeddings = embeddings self.encodings = encodings self.config = config def euclidian_distance(self, e1, e2): ''' https://stackoverflow.com/questions/1401712/how-can-the-euclidean-distance-be-calculated-with-numpy ''' return np.linalg.norm(e1 - e2) def get_embedding(self, word): if self.encodings.word_in_vocab(word): return self.embeddings[word] return self.embeddings[config.unknown_word] def nearest_neighbors(self, word, count=1): embedding = self.get_embedding(word) heap = [] # TODO: is it faster to not have the the string comparision and instead always # remove the first element of the array which will have a distance of 0 # TODO: implement faster solution than the heap where it only keeps track of K # values which should vastly reduce the number of operations required. for w in self.embeddings: if w == word: continue dist = self.euclidian_distance(embedding, self.embeddings[w]) heappush(heap, (dist, w)) return nsmallest(count, heap)
34.868421
107
0.644528
[ "MIT" ]
bi3mer/Word2Vec
Word2Vec/NearestNeighbor.py
1,325
Python
# Copyright (c) 2013, igrekus and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _ from dc_plc.custom.utils import add_completeness, add_query_relevance from dc_plc.controllers.stats_query import get_procmap_stats def execute(filters=None): columns = get_columns() data = get_data(filters) return columns, data def get_columns(): return [ "ID:Link/DC_PLC_Product_Summary", _("Relevance"), _("Progress"), _("RnD Title"), _("Function"), _("External number"), _("Process map"), _("Internal number") ] def get_data(filters): res = get_procmap_stats(filters) has_perms = 'DC_PLC_Process_Map_Specialist' in frappe.get_roles(frappe.session.user) res = [add_completeness(row, [4]) for row in res] res = [add_query_relevance(row, has_perms) for row in res] return res
21.609756
85
0.749436
[ "MIT" ]
igrekus/dc_plc
dc_plc/dc_plc/report/dc_product_procmap_stats/dc_product_procmap_stats.py
886
Python
un = 0 re = 0 gramo = 0 mientras que es cierto : numero = int ( entrada ( "" )) si ( numero == 4 ): descanso si ( numero == 1 ): un = un + 1 elif ( numero == 2 ): re = re + 1 elif ( numero == 3 ): gramo = gramo + 1 elif ( numero == 4 ): descanso print ( f"MUITO OBRIGADO \n Alcohol:, { a } \n Gasolina: { g } \n Diesel: { d } " )
24.470588
88
0.435096
[ "MIT" ]
Davidpadilla1234/Taller-de-Estrucuras-de-Control-Repeticion
Taller-de-Estrucuras-de-Control-Repeticion/ejercicio 9.py
416
Python
# module for distance computation; import numpy as np def dist(arraya, arrayb, mode): if mode == 0: dis = np.sum(np.abs(np.subtract(arraya, arrayb))) elif mode == 1: dis = np.sqrt(np.sum(np.power(np.subtract(arraya, arrayb), 2))) else: dis = 1 - np.dot(arraya, arrayb) / np.sqrt(np.sum(np.power(arraya, 2)) * np.sum(np.power(arrayb, 2))) return dis def corr(arraya, arrayb, show): a = np.subtract(arraya, np.mean(arraya)) b = np.subtract(arrayb, np.mean(arrayb)) corr = np.sum(np.multiply(a, b)) / np.sqrt(np.multiply(np.sum(np.power(a, 2)), np.sum(np.power(b, 2)))) return corr
35.444444
109
0.619122
[ "MIT" ]
Lan-Jing/Courses
DCS311 Artificial Intelligence/KNN/lab1_code/M3/dist.py
638
Python
"""Run CVEjob.""" import sys from decimal import Decimal import multiprocessing import nvdlib from nvdlib.manager import FeedManager from nvdlib.query_selectors import in_range from cvejob.filters.input import validate_cve from cvejob.config import Config from cvejob.identifiers import get_identifier_cls from cvejob.cpe2pkg import get_pkgfile_path, PackageNameCandidate from cvejob.selectors.basic import VersionSelector from cvejob.outputs.victims import VictimsYamlOutput from cvejob.versions import NVDVersions from cvejob.utils import parse_date_range import logging # logging configuration logging.basicConfig(level=logging.DEBUG, handlers=[nvdlib.get_logging_handler()]) # use nvdlib's handler logger = logging.getLogger('cvejob') FEED_NAME_PATTERN = r"nvdcve-" \ r"(?P<version>[\d.]+)-" \ r"(?P<name>(?P<name_string>(([A-Za-z]+)))|(?P<name_year>([\d]+)))" \ r".json" def _log_results(victims_output): """Log results.""" cve_id = victims_output.cve.id_ logger.info( "[{cve_id}] picked `{winner}` out of `{candidates}`".format( cve_id=cve_id, winner=victims_output.winner, candidates=victims_output.candidates )) logger.info( "[{cve_id}] Affected version range: {version_ranges}".format( cve_id=cve_id, version_ranges=victims_output.affected_versions )) logger.info( "[{cve_id}] Safe version range: {version_ranges}".format( cve_id=cve_id, version_ranges=victims_output.safe_versions )) def _filter_collection(collection, date_range, cherry_pick): """Filter Document collection.""" if date_range: collection_size_before = collection.count() collection = collection.find( {'published_date': in_range(*date_range)} ) logger.debug(("Filtered out {} Documents that do not fall " "in the given range.").format( collection_size_before - collection.count() )) if cherry_pick: logger.debug("Cherry-picked CVE `{cve_id}`".format( cve_id=cherry_pick )) collection = collection.find( {'cve.id_': cherry_pick} ) return collection def run(): """Run CVEjob.""" feed_dir = Config.feed_dir feed_names = Config.feed_names date_range = Config.date_range cherrypicked_cve_id = Config.cve_id cherrypicked_year = None if cherrypicked_cve_id: cherrypicked_year = cherrypicked_cve_id.split(sep='-')[1] if int(cherrypicked_year) < 2002: # all CVEs prior to 2002 are stored in 2002 feed cherrypicked_year = 2002 if date_range: date_range = parse_date_range(Config.date_range) feed_names = range(date_range[0].year, date_range[1].year + 1) if cherrypicked_cve_id: # optimization check if int(cherrypicked_year) not in feed_names: logger.info( "[{picked_cve_id}] does not belong to the given feed range:" " {date_range}".format( picked_cve_id=cherrypicked_cve_id, date_range=date_range )) return # prune the feed names as it is not necessary to iterate over all of them feed_names = [cherrypicked_year] if not feed_names: if cherrypicked_cve_id: feed_names = [cherrypicked_year] else: feed_names = ['modified'] with FeedManager(n_workers=multiprocessing.cpu_count()) as feed_manager: feeds = feed_manager.fetch_feeds( feed_names=feed_names, data_dir=feed_dir, update=True ) collection = feed_manager.collect(feeds) collection = _filter_collection(collection, date_range, cherrypicked_cve_id) if not collection: # collection is empty logger.info( "Collection is empty.".format( picked_cve_id=cherrypicked_cve_id, )) return logger.debug("Number of CVE Documents in the collection: {}".format( collection.count() )) if Config.package_name and Config.cve_id: # user knows the package name, so we don't have to guess ;) doc = [x for x in collection][0] # Collection doesn't support indexing affected, safe = NVDVersions(doc, Config.package_name, Config.ecosystem).run() victims_output = VictimsYamlOutput( ecosystem=Config.ecosystem, cve_doc=doc, winner=PackageNameCandidate(Config.package_name, Decimal('1.0')), candidates=[], affected=affected, fixedin=safe ) _log_results(victims_output) victims_output.write() sys.exit(0) for doc in collection: cve_id = doc.cve.id_ try: if not validate_cve(doc): logger.debug( "[{cve_id}] was filtered out by input checks".format( cve_id=cve_id )) continue pkgfile_path = get_pkgfile_path(Config.pkgfile_dir, Config.ecosystem) identifier = get_identifier_cls()(doc, Config.ecosystem, pkgfile_path) candidates = identifier.identify() if not candidates: logger.info( "[{cve_id}] no package name candidates found".format( cve_id=cve_id )) continue selector = VersionSelector(doc, candidates, Config.ecosystem) winner = selector.pick_winner() if not winner: logger.info( "[{cve_id}] no package name found".format( cve_id=cve_id )) continue affected, safe = NVDVersions(doc, winner.package, Config.ecosystem).run() victims_output = VictimsYamlOutput( ecosystem=Config.ecosystem, cve_doc=doc, winner=winner, candidates=candidates, affected=affected, fixedin=safe ) _log_results(victims_output) victims_output.write() except Exception as exc: logger.warning( "[{cve_id}] Unexpected exception occurred: {exc}".format( cve_id=cve_id, exc=exc ), exc_info=True) if __name__ == '__main__': run()
29.666667
88
0.582496
[ "Apache-2.0" ]
jparsai/cvejob
run.py
6,764
Python
# This file is generated by C:\projects\numpy-wheels\numpy\setup.py # It contains system_info results at the time of building this package. __all__ = ["get_info","show"] blas_opt_info={'library_dirs': ['C:\\projects\\numpy-wheels\\windows-wheel-builder\\atlas-builds\\atlas-3.11.38-sse2-64\\lib'], 'language': 'c', 'define_macros': [('HAVE_CBLAS', None), ('ATLAS_INFO', '"\\"None\\""')], 'libraries': ['numpy-atlas']} lapack_mkl_info={} lapack_opt_info={'library_dirs': ['C:\\projects\\numpy-wheels\\windows-wheel-builder\\atlas-builds\\atlas-3.11.38-sse2-64\\lib'], 'language': 'f77', 'libraries': ['numpy-atlas', 'numpy-atlas'], 'define_macros': [('ATLAS_INFO', '"\\"None\\""')]} atlas_3_10_blas_threads_info={'library_dirs': ['C:\\projects\\numpy-wheels\\windows-wheel-builder\\atlas-builds\\atlas-3.11.38-sse2-64\\lib'], 'language': 'c', 'define_macros': [('HAVE_CBLAS', None), ('ATLAS_INFO', '"\\"None\\""')], 'libraries': ['numpy-atlas']} atlas_3_10_threads_info={'library_dirs': ['C:\\projects\\numpy-wheels\\windows-wheel-builder\\atlas-builds\\atlas-3.11.38-sse2-64\\lib'], 'language': 'f77', 'libraries': ['numpy-atlas', 'numpy-atlas'], 'define_macros': [('ATLAS_INFO', '"\\"None\\""')]} openblas_info={} blas_mkl_info={} openblas_lapack_info={} def get_info(name): g = globals() return g.get(name, g.get(name + "_info", {})) def show(): for name,info_dict in globals().items(): if name[0] == "_" or type(info_dict) is not type({}): continue print(name + ":") if not info_dict: print(" NOT AVAILABLE") for k,v in info_dict.items(): v = str(v) if k == "sources" and len(v) > 200: v = v[:60] + " ...\n... " + v[-60:] print(" %s = %s" % (k,v))
62
263
0.609566
[ "CC0-1.0" ]
CSnap/photogate
python-3.4.4.amd64/Lib/site-packages/numpy/__config__.py
1,798
Python
from __future__ import absolute_import, division, print_function, unicode_literals import argparse import functools import logging from os import path import boto3 import jsonschema from c7n_mailer import deploy, utils from c7n_mailer.azure_mailer.azure_queue_processor import MailerAzureQueueProcessor from c7n_mailer.azure_mailer import deploy as azure_deploy from c7n_mailer.sqs_queue_processor import MailerSqsQueueProcessor from c7n_mailer.utils import get_provider, Providers from ruamel import yaml AZURE_KV_SECRET_SCHEMA = { 'type': 'object', 'properties': { 'type': {'enum': ['azure.keyvault']}, 'secret': {'type': 'string'} }, 'required': ['type', 'secret'], 'additionalProperties': False } SECURED_STRING_SCHEMA = { 'oneOf': [ {'type': 'string'}, AZURE_KV_SECRET_SCHEMA ] } CONFIG_SCHEMA = { 'type': 'object', 'additionalProperties': False, 'required': ['queue_url'], 'properties': { 'queue_url': {'type': 'string'}, 'from_address': {'type': 'string'}, 'contact_tags': {'type': 'array', 'items': {'type': 'string'}}, 'org_domain': {'type': 'string'}, # Standard Lambda Function Config 'region': {'type': 'string'}, 'role': {'type': 'string'}, 'runtime': {'type': 'string'}, 'memory': {'type': 'integer'}, 'timeout': {'type': 'integer'}, 'subnets': {'type': 'array', 'items': {'type': 'string'}}, 'security_groups': {'type': 'array', 'items': {'type': 'string'}}, 'dead_letter_config': {'type': 'object'}, 'lambda_name': {'type': 'string'}, 'lambda_description': {'type': 'string'}, 'lambda_tags': {'type': 'object'}, 'lambda_schedule': {'type': 'string'}, # Azure Function Config 'function_properties': { 'type': 'object', 'appInsights': { 'type': 'object', 'oneOf': [ {'type': 'string'}, {'type': 'object', 'properties': { 'name': 'string', 'location': 'string', 'resourceGroupName': 'string'} } ] }, 'storageAccount': { 'type': 'object', 'oneOf': [ {'type': 'string'}, {'type': 'object', 'properties': { 'name': 'string', 'location': 'string', 'resourceGroupName': 'string'} } ] }, 'servicePlan': { 'type': 'object', 'oneOf': [ {'type': 'string'}, {'type': 'object', 'properties': { 'name': 'string', 'location': 'string', 'resourceGroupName': 'string', 'skuTier': 'string', 'skuName': 'string'} } ] }, }, 'function_schedule': {'type': 'string'}, 'function_skuCode': {'type': 'string'}, 'function_sku': {'type': 'string'}, # Mailer Infrastructure Config 'cache_engine': {'type': 'string'}, 'smtp_server': {'type': 'string'}, 'smtp_port': {'type': 'integer'}, 'smtp_ssl': {'type': 'boolean'}, 'smtp_username': {'type': 'string'}, 'smtp_password': SECURED_STRING_SCHEMA, 'ldap_email_key': {'type': 'string'}, 'ldap_uid_tags': {'type': 'array', 'items': {'type': 'string'}}, 'debug': {'type': 'boolean'}, 'ldap_uid_regex': {'type': 'string'}, 'ldap_uri': {'type': 'string'}, 'ldap_bind_dn': {'type': 'string'}, 'ldap_bind_user': {'type': 'string'}, 'ldap_uid_attribute': {'type': 'string'}, 'ldap_manager_attribute': {'type': 'string'}, 'ldap_email_attribute': {'type': 'string'}, 'ldap_bind_password_in_kms': {'type': 'boolean'}, 'ldap_bind_password': {'type': 'string'}, 'cross_accounts': {'type': 'object'}, 'ses_region': {'type': 'string'}, 'redis_host': {'type': 'string'}, 'redis_port': {'type': 'integer'}, 'datadog_api_key': {'type': 'string'}, # TODO: encrypt with KMS? 'datadog_application_key': {'type': 'string'}, # TODO: encrypt with KMS? 'slack_token': {'type': 'string'}, 'slack_webhook': {'type': 'string'}, 'sendgrid_api_key': SECURED_STRING_SCHEMA, 'splunk_hec_url': {'type': 'string'}, 'splunk_hec_token': {'type': 'string'}, 'splunk_remove_paths': { 'type': 'array', 'items': {'type': 'string'} }, 'splunk_actions_list': {'type': 'boolean'}, 'splunk_max_attempts': {'type': 'integer'}, 'splunk_hec_max_length': {'type': 'integer'}, # SDK Config 'profile': {'type': 'string'}, 'http_proxy': {'type': 'string'}, 'https_proxy': {'type': 'string'}, # Mapping account / emails 'account_emails': {'type': 'object'} } } def session_factory(mailer_config): return boto3.Session( region_name=mailer_config['region'], profile_name=mailer_config.get('profile', None)) def get_logger(debug=False): log_format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(level=logging.INFO, format=log_format) logging.getLogger('botocore').setLevel(logging.WARNING) if debug: logging.getLogger('botocore').setLevel(logging.DEBUG) debug_logger = logging.getLogger('custodian-mailer') debug_logger.setLevel(logging.DEBUG) return debug_logger else: return logging.getLogger('custodian-mailer') def get_and_validate_mailer_config(args): with open(args.config) as fh: config = yaml.load(fh.read(), Loader=yaml.SafeLoader) jsonschema.validate(config, CONFIG_SCHEMA) utils.setup_defaults(config) return config def get_c7n_mailer_parser(): parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', required=True, help='mailer.yml config file') debug_help_msg = 'sets c7n_mailer logger to debug, for maximum output (the default is INFO)' parser.add_argument('--debug', action='store_true', help=debug_help_msg) max_num_processes_help_msg = 'will run the mailer in parallel, integer of max processes allowed' parser.add_argument('--max-num-processes', type=int, help=max_num_processes_help_msg) templates_folder_help_msg = 'message templates folder location' parser.add_argument('-t', '--templates', help=templates_folder_help_msg) group = parser.add_mutually_exclusive_group(required=True) update_lambda_help_msg = 'packages your c7n_mailer, uploads the zip to aws lambda as a function' group.add_argument('--update-lambda', action='store_true', help=update_lambda_help_msg) run_help_msg = 'run c7n-mailer locally, process sqs messages and send emails or sns messages' group.add_argument('--run', action='store_true', help=run_help_msg) return parser def run_mailer_in_parallel(processor, max_num_processes): max_num_processes = int(max_num_processes) if max_num_processes < 1: raise Exception processor.max_num_processes = max_num_processes processor.run(parallel=True) def main(): parser = get_c7n_mailer_parser() args = parser.parse_args() mailer_config = get_and_validate_mailer_config(args) args_dict = vars(args) logger = get_logger(debug=args_dict.get('debug', False)) module_dir = path.dirname(path.abspath(__file__)) default_templates = [path.abspath(path.join(module_dir, 'msg-templates')), path.abspath(path.join(module_dir, '..', 'msg-templates')), path.abspath('.')] templates = args_dict.get('templates', None) if templates: default_templates.append(path.abspath(path.expanduser(path.expandvars(templates)))) mailer_config['templates_folders'] = default_templates provider = get_provider(mailer_config) if args_dict.get('update_lambda'): if args_dict.get('debug'): print('\n** --debug is only supported with --run, not --update-lambda **\n') return if args_dict.get('max_num_processes'): print('\n** --max-num-processes is only supported ' 'with --run, not --update-lambda **\n') return if provider == Providers.Azure: azure_deploy.provision(mailer_config) elif provider == Providers.AWS: deploy.provision(mailer_config, functools.partial(session_factory, mailer_config)) if args_dict.get('run'): max_num_processes = args_dict.get('max_num_processes') # Select correct processor if provider == Providers.Azure: processor = MailerAzureQueueProcessor(mailer_config, logger) elif provider == Providers.AWS: aws_session = session_factory(mailer_config) processor = MailerSqsQueueProcessor(mailer_config, aws_session, logger) # Execute if max_num_processes: run_mailer_in_parallel(processor, max_num_processes) else: processor.run() if __name__ == '__main__': main()
37.527344
100
0.575518
[ "Apache-2.0" ]
CU-CommunityApps/cloud-custodian
tools/c7n_mailer/c7n_mailer/cli.py
9,607
Python
from sklearn.exceptions import NotFittedError class MockFunction: """ Mock utility function for testing. """ def __init__(self, return_val): self.return_val = return_val def __call__(self, *args): return self.return_val class MockEstimator: """ Mock classifier object for testing. """ def __init__( self, predict_proba_return=None, predict_return=None, score_return=None, classes_=None, fitted=True ): self.fitted = fitted if fitted: self.classes_ = classes_ self.predict_return = predict_return self.predict_proba_return = predict_proba_return self.score_return = score_return def fit(self, *args, **kwargs): pass def predict(self, *args, **kwargs): if not self.fitted: raise NotFittedError return self.predict_return def predict_proba(self, *args, **kwargs): if not self.fitted: raise NotFittedError return self.predict_proba_return def score(self, *args, **kwargs): return self.score_return class MockActiveLearner: """ Mock ActiveLearner for testing. """ def __init__( self, predictor=None, query_strategy=None, predict_proba_return=None, calculate_utility_return=None, predict_return=None, score_return=None, _X_initial=None, _y_initial=None ): self.estimator = predictor self.query_strategy = query_strategy self.predict_proba_return = predict_proba_return self.calculate_utility_return = calculate_utility_return self.predict_return = predict_return self.score_return = score_return def fit(self, *args, **kwargs): pass def predict(self, *args, **kwargs): return self.predict_return def predict_proba(self, *args, **kwargs): return self.predict_proba_return def score(self, *args, **kwargs): return self.score_return class MockCommittee: """ Mock Committee for testing. """ def __init__( self, n_learners=1, classes_=None, fitted=True, calculate_disagreement_return=None, predict_return=None, predict_proba_return=None, vote_return=None, vote_proba_return=None ): self.fitted = fitted self.n_learners = n_learners if fitted: self.classes_ = classes_ else: self.classes_ = None self.calculate_disagreement_return = calculate_disagreement_return self.predict_return = predict_return self.predict_proba_return = predict_proba_return self.vote_return = vote_return self.vote_proba_return = vote_proba_return def __len__(self): return self.n_learners def __iter__(self): for x in range(self.n_learners): yield x def _calculate_disagreement(self, *args, **kwargs): return self.calculate_disagreement_return def predict(self, *args, **kwargs): if not self.fitted: raise NotFittedError return self.predict_return def predict_proba(self, *args, **kwargs): if not self.fitted: raise NotFittedError return self.predict_proba_return def vote(self, *args, **kwargs): if not self.fitted: raise NotFittedError return self.vote_return def vote_proba(self, *args, **kwargs): if not self.fitted: raise NotFittedError return self.vote_proba_return
25.963768
109
0.640246
[ "MIT" ]
AlexandreAbraham/modAL
tests/mock.py
3,583
Python
class InkCanvasEditingMode(Enum,IComparable,IFormattable,IConvertible): """ Specifies the editing mode for the System.Windows.Controls.InkCanvas enum InkCanvasEditingMode,values: EraseByPoint (5),EraseByStroke (6),GestureOnly (2),Ink (1),InkAndGesture (3),None (0),Select (4) """ def __eq__(self,*args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self,*args): pass def __gt__(self,*args): pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self,*args): pass def __lt__(self,*args): pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __str__(self,*args): pass EraseByPoint=None EraseByStroke=None GestureOnly=None Ink=None InkAndGesture=None None=None Select=None value__=None
27.902439
215
0.682692
[ "MIT" ]
BCSharp/ironpython-stubs
release/stubs.min/System/Windows/Controls/__init___parts/InkCanvasEditingMode.py
1,144
Python
#!/usr/bin/env python from itertools import izip import xmlrpclib import rospy from rospy.rostime import Time, Duration from flexbe_core import EventState as Dummy from flexbe_core import Logger from flexbe_core.proxy import ProxyPublisher, ProxySubscriberCached, ProxyActionClient from sensor_msgs.msg import JointState from sweetie_bot_control_msgs.msg import SetOperationalAction, SetOperationalGoal, SetOperationalResult # This is helper class so trick FlexBe App to ignore it. # Dummy is actually EventState but FlexBe App is not able to recognize it. class SetJointStateBase(Dummy): ''' Base class for states which move robot to named pose using FollowJointState controller. Pose is loaded from binary parameter from Parameter Server as JointState message. Then state activate FollowJointState controller and publish pose. Movement is considered finished when position error is less then given tolerance. -- controller string FollowJointState controller namespace. -- tolerance float Position tolerance (rad). -- timeout float Movement timeout (s). -- joint_topic string Topic where actual pose published. <= done Finished. <= failed Failed to activate FollowJointState controller. <= timeout Timeout reached. ''' def __init__(self, controller = 'motion/controller/joint_state_head', tolerance = 0.17, timeout = 10.0, joint_topic = "joint_states", outcomes = ['done', 'failed', 'timeout']): super(SetJointStateBase, self).__init__(outcomes = outcomes) # Store topic parameter for later use. self._controller = controller self._joint_topic = joint_topic self._tolerance = tolerance self._timeout = Duration.from_sec(timeout) # create proxies self._action_client = ProxyActionClient({self._controller: SetOperationalAction}) self._pose_publisher = ProxyPublisher({ self._controller + '/in_joints_ref': JointState }) self._pose_subscriber = ProxySubscriberCached({ self._joint_topic: JointState }) # timestamp self._timestamp = None # error in enter hook self._error = False def load_joint_state_msg(self, pose_ns, pose_param): # derive parameter full name if pose_ns: pose_param = pose_ns + '/' + pose_param # Load JointState message from Parameter Server try: goal_raw = rospy.get_param(pose_param) except KeyError as e: raise KeyError, "SetJointStateBase: Unable to get '" + pose_param + "' parameter." if not isinstance(goal_raw, xmlrpclib.Binary): raise TypeError, "SetJointStateBase: ROS parameter '" + pose_param + "' is not a binary data." # deserialize self._target_joint_state = JointState() self._target_joint_state.deserialize(goal_raw.data) # create joint index to simplify tolerance check self._joint_target_pose = { name: position for name, position in izip(self._target_joint_state.name, self._target_joint_state.position) } def on_enter(self, userdata): self._error = False # activate controller actiavtion_request = SetOperationalGoal() actiavtion_request.operational = True actiavtion_request.resources = self._target_joint_state.name try: self._action_client.send_goal(self._controller, actiavtion_request) except Exception as e: Logger.logwarn('SetJointStateBase: Failed to send the SetOperational command:\n%s' % str(e)) self._error = True return # set start timestamp self._timestamp = Time.now() def execute(self, userdata): # error in start hook if self._error: return 'failed' # check if controller is active if not self._action_client.is_active(self._controller): Logger.loginfo('SetJointStateBase: controller was deactivated by external cause.') return 'failed'; # check if time elasped if Time.now() - self._timestamp > self._timeout: Logger.loginfo('SetJointStateBase: controller was deactivated by external cause.') return 'timeout' # publish goal pose self._pose_publisher.publish(self._controller+'/in_joints_ref', self._target_joint_state) # check tolerance joints_msg = self._pose_subscriber.get_last_msg(self._joint_topic) on_position = True for name, pos in izip(joints_msg.name, joints_msg.position): target_pos = self._joint_target_pose.get(name) if (target_pos != None): if abs(target_pos - pos) > self._tolerance: on_position = False break if on_position: Logger.loginfo('SetJointStateBase: on position') return 'done' def on_exit(self, userdata): if self._action_client.is_active(self._controller): try: self._action_client.cancel(self._controller) except Exception as e: Logger.logwarn('SetJointStateBase: failed to deactivate `' + self._controller + '` controller:\n%s' % str(e))
42.273438
145
0.656441
[ "BSD-3-Clause" ]
sweetie-bot-project/sweetie_bot_flexbe_behaviors
sweetie_bot_flexbe_states/src/sweetie_bot_flexbe_states/internal/set_joint_state_base.py
5,411
Python
import logging import asyncio from steam.ext.csgo import Client from steam.ext.csgo.enums import Language from steam.ext.csgo.backpack import BaseInspectedItem from steam.protobufs import GCMsgProto, EMsg, MsgProto from steam.protobufs.client_server import CMsgClientLicenseListLicense from steam_tradeoffer_manager.base import SteamBot, SteamBotPool _log = logging.getLogger(__name__) # https://steamdb.info/app/730/subs/ _CSGO_PACKAGE_IDS = { 17039, 88535, 54029, 161243, 261665, 14, 211096, 133828, 4, 49, 16236, 16237, 17878, 18702, 18703, 18939, 27267, 29197, 29198, 36071, 39221, 39297, 51835, 51836, 53711, 59228, 62690, 88534, 88541, 88623, 88624, 61, 392171, 61986, 329385, 303386, 63290, 15740, 298963, 298962, 298961, 272766, 199420, 154735, 277644, 273865, 266388, 229740, 226979, 16222, 16223, 16018, 16019, 54030, 63289, 197847, 4116, 11470, 11758, 15990, 17905, 27618, 27762, 35043, 54627, 60765, 62486, 62606, 62688, 113904, 124041, 125313, } _CSGO_ID = 730 class InspectBot(SteamBot[int, "InspectPool"], Client): _licenses: dict[int, CMsgClientLicenseListLicense] async def on_ready(self) -> None: await super().on_ready() await asyncio.sleep(0.1) # ensure licenses event was emitted for package_id in _CSGO_PACKAGE_IDS: if package_id in self.licenses: break else: # TODO: errors requesting free license _log.info(f"Request free CSGO license for {self}") await self.request_free_license([_CSGO_ID]) # request CSGO license self.pool.queue.put_nowait(self) @property def licenses(self) -> dict[int, CMsgClientLicenseListLicense]: return getattr(self, "_licenses", {}) async def on_licenses(self, licenses: list[CMsgClientLicenseListLicense]): self._licenses = {} for steam_license in licenses: self.licenses[steam_license.package_id] = steam_license def timeout(self) -> asyncio.Task: async def _timeout(): await asyncio.sleep(1) self.pool.queue.put_nowait(self) return asyncio.create_task(_timeout()) def request_free_license(self, app_ids: list[int]): # pragma: no cover return self.ws.send_proto_and_wait(MsgProto(EMsg.ClientRequestFreeLicense, appids=app_ids)) async def inspect_item(self, s: int, a: int, d: int, m: int, timeout: int) -> BaseInspectedItem: # pragma: no cover await self.ws.send_gc_message( GCMsgProto( Language.Client2GCEconPreviewDataBlockRequest, param_s=s, param_a=a, param_d=d, param_m=m, ) ) return await self.wait_for("inspect_item_info", timeout=timeout, check=lambda item: item.id == a) class InspectPool(SteamBotPool[int, InspectBot]): INSPECT_TIMEOUT: int def __init__(self) -> None: super().__init__() self.queue: asyncio.Queue[InspectBot] = asyncio.Queue() async def startup(self) -> None: await super().startup() # waiting for first bot is ready and then return bot = await self.queue.get() self.queue.put_nowait(bot) async def inspect_item(self, s: int, a: int, d: int, m: int) -> BaseInspectedItem: bot = await self.queue.get() try: item = await bot.inspect_item(s, a, d, m, self.INSPECT_TIMEOUT) finally: bot.timeout() return item
22.704819
120
0.613425
[ "MIT" ]
somespecialone/clever-inspect
app/services/pool/pool.py
3,769
Python
import numpy as np class Reward: pass class StaticReward(Reward): def __init__(self, value): self.value = value def get(self): return value class NormalReward(Reward): def __init__(self, mean, std): self.mean = mean self.std = std def get(self): return np.random.normal(self.mean, self.std) class Bandit: def __init__(self, arms): self.no_of_arms = arms self.arms = [np.random.normal(0, 1) for _ in range(arms)] def step(self, arm): return np.random.normal(self.arms[arm], 1) class MDP: """ Represents a Markov Decision Process. """ def __init__(self, S, A, R, p): """ Parameters ---------- S : int Number of states A : matrix A[s][a] is True iff a is permitted in s R : list A list of reward generators p : matrix p[s][a][s'] = p(s'|s,a) """ self.S = list(range(S)) self.A, self.R, self.p = A, R, p self.no_of_states = S self.no_of_actions = len(A[0]) def step(self, s, a): """Given a state and an action, returns a new state and a reward. Parameters ---------- s : int Current state a : int Action to take """ s_prime = np.random.choice(self.no_of_states, p = self.p[s][a]) r = self.R[s_prime].get() return s_prime, r def epsilon_greedy(no_of_arms, epsilon, Q, N): if np.random.random() > epsilon: # greedy action = np.argmax(Q) else: # random action = np.random.choice(no_of_arms) return action def main(): no_of_arms = 10 no_of_steps = 1000 epsilon = 0.1 no_of_runs = 2000 #bandit = Bandit(no_of_arms) arms = np.random.normal(0, 1, no_of_arms) S = 1 A = [[True] * no_of_arms] R = [NormalReward(m, 1) for m in arms] p = [[[1] for _ in range(no_of_arms)]] bandit = MDP(S, A, R, p) #optimal_action = np.argmax(bandit.arms) optimal_action = np.argmax(arms) np.random.seed(1) Q = [[0] * no_of_arms] * no_of_runs N = [[0] * no_of_arms] * no_of_runs mean_rewards = [0] * no_of_steps for j in range(no_of_steps): for i in range(no_of_runs): action = epsilon_greedy(no_of_arms, epsilon, Q[i], N[i]) #reward = bandit.step(action) _, reward = bandit.step(0, action) mean_rewards[j] += reward N[i][action] += 1 Q[i][action] += (1 / N[i][action]) * (reward - Q[i][action]) mean_rewards[j] /= no_of_runs if __name__ == '__main__': main()
19
67
0.634624
[ "MIT" ]
ronaldosvieira/rl
main.py
2,299
Python
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.2 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_2 import models class Username(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'username': 'str' } attribute_map = { 'username': 'username' } required_args = { } def __init__( self, username=None, # type: str ): """ Keyword args: username (str): The username of the user. """ if username is not None: self.username = username def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `Username`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Username, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Username): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
27.633929
105
0.53958
[ "BSD-2-Clause" ]
Flav-STOR-WL/py-pure-client
pypureclient/flasharray/FA_2_2/models/username.py
3,095
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=39 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=9 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.H.on(input_qubit[0])) # number=5 c.append(cirq.Y.on(input_qubit[2])) # number=18 c.append(cirq.Z.on(input_qubit[3])) # number=28 c.append(cirq.H.on(input_qubit[1])) # number=6 c.append(cirq.H.on(input_qubit[2])) # number=7 c.append(cirq.H.on(input_qubit[3])) # number=8 c.append(cirq.H.on(input_qubit[3])) # number=20 c.append(cirq.CZ.on(input_qubit[0],input_qubit[3])) # number=21 c.append(cirq.H.on(input_qubit[3])) # number=22 c.append(cirq.X.on(input_qubit[3])) # number=13 c.append(cirq.H.on(input_qubit[3])) # number=23 c.append(cirq.CZ.on(input_qubit[0],input_qubit[3])) # number=24 c.append(cirq.H.on(input_qubit[3])) # number=25 c.append(cirq.H.on(input_qubit[0])) # number=33 c.append(cirq.CZ.on(input_qubit[2],input_qubit[0])) # number=34 c.append(cirq.H.on(input_qubit[0])) # number=35 c.append(cirq.H.on(input_qubit[1])) # number=19 c.append(cirq.H.on(input_qubit[0])) # number=15 c.append(cirq.CZ.on(input_qubit[2],input_qubit[0])) # number=16 c.append(cirq.H.on(input_qubit[0])) # number=17 c.append(cirq.Y.on(input_qubit[1])) # number=26 c.append(cirq.Y.on(input_qubit[1])) # number=27 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=29 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=30 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=36 c.append(cirq.X.on(input_qubit[0])) # number=37 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=38 c.append(cirq.X.on(input_qubit[0])) # number=32 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq2615.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
36.127907
77
0.679112
[ "BSD-3-Clause" ]
UCLA-SEAL/QDiff
benchmark/startCirq2615.py
3,107
Python
import simulations.simulation as simulation import simulations.simulation_runner as simrunner import cPickle import os import random import re import string import subprocess import sys from simulations.utils.optionparser import OptionParser from nose.tools import assert_equal from nose.tools import assert_raises def filename_generator(size=6, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for x in range(size)) class Sim(simulation.Simulation): def _run(self): return "runs" class Sim2(simulation.Simulation): def _run(self): print >> self.out, "runs" return "runs" class Batch(simrunner.SimulationRunner): def _add_listeners(self): self.on('oparser set up', self._set_options) self.on('options parsed', self._check_options) self.on('options parsed', self._set_data) self.on('done', self._when_done) @staticmethod def _set_options(self): self.oparser.add_option("-t", "--test", action="store_true", dest="test", default=False, help="Testing") @staticmethod def _check_options(self): if not self.options.test: self.oparser.error("Test flag not passed") @staticmethod def _set_data(self): self.data['test'] = self.options.test @staticmethod def _when_done(self): return "test" class TestSimulation: def setUp(self): self.sim = Sim(1, 2, None) def tearDown(self): self.sim = None def test_simulation_init(self): assert self.sim is not None, "Sim is not set up" assert_equal(self.sim.data, 1) assert_equal(self.sim.num, 2) assert self.sim.outfile is None, "_outfile is not None" assert self.sim.out is None assert_equal(self.sim.out_opened, False) def test_simulation_set_outfile(self): self.sim.set_output_file("/tmp/test") assert_equal(self.sim.outfile, "/tmp/test") assert self.sim.out is None, "Sim.out is set up" self.sim.is_running = True self.sim.set_output_file("/tmp/test") assert self.sim.out is not None, "Sim.out is not set up" simulation._close_out_fd(self.sim) assert self.sim.out is None, "Sim.out was not closed" assert_equal(self.sim.out_opened, False) simulation._open_out_fd(self.sim) assert self.sim.out is not None, "Sim.out was not opened" assert_equal(self.sim.out_opened, True) self.sim.set_output_file("/tmp/test2") simulation._open_out_fd(self.sim) assert self.sim.out is not None, "Sim.out was not opened" assert_equal(self.sim.out_opened, True) def test_simulation_run(self): assert_equal(self.sim.out_opened, False) self.sim.set_output_file(False) result = self.sim.run() assert_equal(self.sim.result, "runs") assert_equal(result, "runs") assert_equal(self.sim.out_opened, False) assert simulation.Simulation._run(self.sim) is None def test_delegation_method(self): self.sim.set_output_file(None) assert_equal(simrunner.run_simulation([Sim, 1, 2, None]), "runs") class TestSimulationBatch: def setUp(self): self.dir = "/tmp/" + filename_generator(8) self.batch = Batch(Sim2) def tearDown(self): self.batch = None if os.path.isdir(self.dir): files = os.listdir(self.dir) for f in files: if f == "." or f == "..": continue if f[-8:] == ".testout": os.remove(self.dir + os.sep + f) os.rmdir(self.dir) def test_batch_init(self): assert self.batch is not None, "Batch is not set up" assert isinstance(self.batch.oparser, OptionParser), "Option parser is not initialized" assert self.batch.options is None, "Options is initialized" assert self.batch.args is None, "Args is initialized" assert_equal(self.batch.data, {}) assert_equal(self.batch._task_dup_num, False) assert_equal(len(self.batch.identifier), 6) assert re.match('[{0}{1}]{{6}}'.format(string.ascii_uppercase, string.digits), self.batch.identifier) def test_handler_options(self): sim2 = Batch(Sim2, option_error_handler=2, option_exit_handler=3) assert_equal(sim2.oparser._errorhandler, 2) assert_equal(sim2.oparser._exithandler, 3) def test_batch_option_setup(self): assert self.batch.oparser.has_option("-D"), "No -D option" assert self.batch.oparser.has_option("--nofiledump"), "No --nofiledump option" assert self.batch.oparser.has_option("-F"), "No -F option" assert self.batch.oparser.has_option("--filename"), "No --filename option" assert self.batch.oparser.has_option("-N"), "No -N option" assert self.batch.oparser.has_option("--duplications"), "No --duplications option" assert self.batch.oparser.has_option("-O"), "No -O option" assert self.batch.oparser.has_option("--output"), "No --output option" assert self.batch.oparser.has_option("-P"), "No -P option" assert self.batch.oparser.has_option("--poolsize"), "No --poolsize option" assert self.batch.oparser.has_option("-Q"), "No -Q option" assert self.batch.oparser.has_option("--quiet"), "No --quiet option" assert self.batch.oparser.has_option("-S"), "No -S option" assert self.batch.oparser.has_option("--statsfile"), "No --statsfile option" assert self.batch.oparser.has_option("-t"), "No -t option" assert self.batch.oparser.has_option("--test"), "No --test option" def test_batch_go(self): args = ["-F", "iter_{0}.testout", "-N", "4", "-O", self.dir, "-S", "results.testout", "--test"] assert self.batch.go(option_args=args) is None assert_equal(self.batch.options.test, True) assert_equal(self.batch.options.dup, 4) assert_equal(self.batch.options.output_dir, self.dir) assert_equal(self.batch.options.output_file, "iter_{0}.testout") assert_equal(self.batch.options.file_dump, True) assert_equal(self.batch.options.stats_file, "results.testout") ## pp stuff #assert_equal(self.batch.options.pool_size, 'autodetect') assert self.batch.options.pool_size is None, "Pool size is not None" assert_equal(self.batch.options.quiet, False) assert_equal(self.batch.data['test'], True) for i in range(4): assert os.path.isfile(self.dir + os.sep + 'iter_{0}.testout'.format(i + 1)), "Dup file {0} is missing".format(i + 1) assert os.path.isfile(self.dir + os.sep + 'results.testout'), "Results file is missing" for i in range(4): with open(self.dir + os.sep + 'iter_{0}.testout'.format(i + 1), "r") as dup_file: assert_equal(dup_file.read(), "runs\n") with open(self.dir + os.sep + 'results.testout', "r") as results_file: should_be = '' should_be += cPickle.dumps(self.batch.options) + "\n" should_be += "\n" for _ in range(4): should_be += cPickle.dumps("runs") + "\n" should_be += "\n" assert_equal(results_file.read(), should_be) def test_batch_go2(self): args = ["-N", "6", "-P", "2", "-O", self.dir, "-S", "results.testout", "-Q", "--test", "-D"] assert self.batch.go(option_args=args) is None assert_equal(self.batch.options.test, True) assert_equal(self.batch.options.dup, 6) assert_equal(self.batch.options.output_dir, self.dir) assert_equal(self.batch.options.output_file, "duplication_{0}") assert_equal(self.batch.options.file_dump, False) assert_equal(self.batch.options.stats_file, "results.testout") assert_equal(self.batch.options.pool_size, 2) assert_equal(self.batch.options.quiet, True) assert_equal(self.batch.data['test'], True) for i in range(6): assert not os.path.isfile(self.dir + os.sep + 'iter_{0}.testout'.format(i + 1)), "Dup file {0} is missing".format(i + 1) assert os.path.isfile(self.dir + os.sep + 'results.testout'), "Results file is missing" with open(self.dir + os.sep + 'results.testout', "r") as results_file: should_be = '' should_be += cPickle.dumps(self.batch.options) + "\n" should_be += "\n" for _ in range(6): should_be += cPickle.dumps("runs") + "\n" should_be += "\n" assert_equal(results_file.read(), should_be) def test_batch_go3(self): args = ["-N", "6", "-P", "1", "-O", self.dir, "-S", "results.testout", "--test", "-D"] assert self.batch.go(option_args=args) is None assert_equal(self.batch.options.test, True) assert_equal(self.batch.options.dup, 6) assert_equal(self.batch.options.output_dir, self.dir) assert_equal(self.batch.options.output_file, "duplication_{0}") assert_equal(self.batch.options.file_dump, False) assert_equal(self.batch.options.stats_file, "results.testout") assert_equal(self.batch.options.pool_size, 1) assert_equal(self.batch.options.quiet, False) assert_equal(self.batch.data['test'], True) for i in range(6): assert not os.path.isfile(self.dir + os.sep + 'iter_{0}.testout'.format(i + 1)), "Dup file {0} is missing".format(i + 1) assert os.path.isfile(self.dir + os.sep + 'results.testout'), "Results file is missing" with open(self.dir + os.sep + 'results.testout', "r") as results_file: should_be = '' should_be += cPickle.dumps(self.batch.options) + "\n" should_be += "\n" for _ in range(6): should_be += cPickle.dumps("runs") + "\n" should_be += "\n" assert_equal(results_file.read(), should_be) def test_option_failure(self): args = ["-N", "-6", "-P", "2", "-O", self.dir, "-S", "results.testout", "-Q", "-D", "--test"] assert_raises(SystemExit, self.batch.go, option_args=args) assert_raises(SystemExit, self.batch.go, option_values=None) def test_option_failure2(self): args = ["-N", "6", "-P", "2", "-O", self.dir, "-S", "results.testout", "-Q", "-D"] assert_raises(SystemExit, self.batch.go, option_args=args) def test_option_failure3(self): args = ["-N", "6", "-P", "-1", "-O", self.dir, "-S", "results.testout", "-Q", "-D", "--test"] assert_raises(SystemExit, self.batch.go, option_args=args) ## pp stuff #class TestClustering: # # def setUp(self): # self.secret = filename_generator(6) # self.server = subprocess.Popen(["ppserver.py", "-s", self.secret]) # self.batch = Batch(Sim2) # self.dir = "/tmp/" + filename_generator(8) # # def tearDown(self): # self.batch = None # self.server.terminate() # if os.path.isdir(self.dir): # files = os.listdir(self.dir) # for f in files: # if f == "." or f == "..": continue # if f[-8:] == ".testout": # os.remove(self.dir + os.sep + f) # os.rmdir(self.dir) # # def test_batch_cluster_go(self): # args = ["-F", "iter_{0}.testout", "-N", "4", "-P", "2", "-O", self.dir, "-S", "results.testout", "--test", "--cluster=127.0.0.1", "--clustersecret="+self.secret] # assert self.batch.go(option_args=args) is None # assert_equal(self.batch.options.test, True) # assert_equal(self.batch.options.dup, 4) # assert_equal(self.batch.options.output_dir, self.dir) # assert_equal(self.batch.options.output_file, "iter_{0}.testout") # assert_equal(self.batch.options.file_dump, True) # assert_equal(self.batch.options.stats_file, "results.testout") # assert_equal(self.batch.options.pool_size, 2) # assert_equal(self.batch.options.quiet, False) # assert_equal(self.batch.options.cluster_string, '127.0.0.1') # assert_equal(self.batch.options.cluster_secret, self.secret) # # assert_equal(self.batch.data['test'], True) # # for i in range(4): # assert os.path.isfile(self.dir + os.sep + 'iter_{0}.testout'.format(i + 1)), "Dup file {0} is missing".format(i + 1) # assert os.path.isfile(self.dir + os.sep + 'results.testout'), "Results file is missing" # # for i in range(4): # with open(self.dir + os.sep + 'iter_{0}.testout'.format(i + 1), "r") as dup_file: # assert_equal(dup_file.read(), "runs\n") # # with open(self.dir + os.sep + 'results.testout', "r") as results_file: # should_be = '' # should_be += cPickle.dumps(self.batch.options) + "\n" # should_be += "\n" # for _ in range(4): # should_be += cPickle.dumps("runs") + "\n" # should_be += "\n" # assert_equal(results_file.read(), should_be) #
41.625397
171
0.616306
[ "MIT" ]
gsmcwhirter/simulations
test/simulation_tests.py
13,112
Python
"""Support for Blockchain.com sensors.""" from datetime import timedelta import logging from pyblockchain import get_balance, validate_address import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ATTR_ATTRIBUTION, CONF_NAME import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) ATTRIBUTION = "Data provided by blockchain.com" CONF_ADDRESSES = "addresses" DEFAULT_NAME = "Bitcoin Balance" ICON = "mdi:currency-btc" SCAN_INTERVAL = timedelta(minutes=5) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_ADDRESSES): [cv.string], vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, } ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the Blockchain.com sensors.""" addresses = config[CONF_ADDRESSES] name = config[CONF_NAME] for address in addresses: if not validate_address(address): _LOGGER.error("Bitcoin address is not valid: %s", address) return False add_entities([BlockchainSensor(name, addresses)], True) class BlockchainSensor(Entity): """Representation of a Blockchain.com sensor.""" def __init__(self, name, addresses): """Initialize the sensor.""" self._name = name self.addresses = addresses self._state = None self._unit_of_measurement = "BTC" @property def name(self): """Return the name of the sensor.""" return self._name @property def state(self): """Return the state of the sensor.""" return self._state @property def unit_of_measurement(self): """Return the unit of measurement this sensor expresses itself in.""" return self._unit_of_measurement @property def icon(self): """Return the icon to use in the frontend, if any.""" return ICON @property def extra_state_attributes(self): """Return the state attributes of the sensor.""" return {ATTR_ATTRIBUTION: ATTRIBUTION} def update(self): """Get the latest state of the sensor.""" self._state = get_balance(self.addresses)
26.453488
77
0.688791
[ "Apache-2.0" ]
CantankerousBullMoose/core
homeassistant/components/blockchain/sensor.py
2,275
Python
from typing import Any from copy import deepcopy class Model: def __init__(self, name: str, model, freq: str): self.name = name self.model = model self.freq = freq self.train = None self.test = None self.prediction = None self.pred_col = "prediction" self.y_col = "y" self.date_col = "ds" def fit(self, train_dataset): "Performs model training with standard settings" self.train = deepcopy(train_dataset) if "orbit" in self.name: self.model.fit(self.train) elif "nprophet" in self.name: self.model.fit(self.train, validate_each_epoch=True, valid_p=0.2, freq=self.freq, plot_live_loss=True, epochs=100) def predict(self, dataset: Any): "Performs prediction" self.test = deepcopy(dataset) if "orbit" in self.name: prediction = self.model.predict(self.test) elif "nprophet" in self.name: future = self.model.make_future_dataframe(self.train, periods=len(self.test)) prediction = self.model.predict(future).rename(columns={"yhat1": self.pred_col}) prediction = prediction[[self.date_col, self.pred_col]] self.prediction = prediction return self.prediction
27.612245
92
0.597931
[ "MIT" ]
MiguelMque/eafit-numerical-analysis-project
interpolML/interpolML/model/model.py
1,353
Python
#!/usr/bin/python # https://practice.geeksforgeeks.org/problems/knapsack-with-duplicate-items/0 def sol(n, w, wt, v): """ We do not need to create a 2d array here because all numbers are available always Try all items for weight ranging from 1 to w and check if weight can be picked. Take the max of the result """ dp = [0 for i in range(w+1)] for i in range(n): for j in range(w+1): if wt[i] <= j: dp[j] = max(dp[j], v[i]+dp[j-wt[i]]) return dp[w]
30.941176
78
0.587452
[ "Apache-2.0" ]
vikas-t/DS-Algo
full-problems/knapsackWithDuplicates.py
526
Python
# -*- coding: utf-8 -*- from .amount import Amount from .instance import BlockchainInstance from graphenecommon.account import ( Account as GrapheneAccount, AccountUpdate as GrapheneAccountUpdate, ) from bitsharesbase import operations @BlockchainInstance.inject class Account(GrapheneAccount): """ This class allows to easily access Account data. :param str account_name: Name of the account :param bitshares.bitshares.BitShares blockchain_instance: BitShares instance :param bool full: Obtain all account data including orders, positions, etc. :param bool lazy: Use lazy loading :param bool full: Obtain all account data including orders, positions, etc. :returns: Account data :rtype: dictionary :raises bitshares.exceptions.AccountDoesNotExistsException: if account does not exist Instances of this class are dictionaries that come with additional methods (see below) that allow dealing with an account and it's corresponding functions. .. code-block:: python from bitshares.account import Account account = Account("init0") print(account) .. note:: This class comes with its own caching function to reduce the load on the API server. Instances of this class can be refreshed with ``Account.refresh()``. """ def define_classes(self): self.type_id = 2 self.amount_class = Amount self.operations = operations @property def call_positions(self): """Alias for :func:bitshares.account.Account.callpositions.""" return self.callpositions() @property def callpositions(self): """List call positions (collateralized positions :doc:`mpa`)""" self.ensure_full() from .dex import Dex dex = Dex(blockchain_instance=self.blockchain) return dex.list_debt_positions(self) @property def openorders(self): """Returns open Orders.""" from .price import Order self.ensure_full() return [ Order(o, blockchain_instance=self.blockchain) for o in self["limit_orders"] ] @BlockchainInstance.inject class AccountUpdate(GrapheneAccountUpdate): """ This purpose of this class is to keep track of account updates as they are pushed through by :class:`bitshares.notify.Notify`. Instances of this class are dictionaries and take the following form: .. code-block: js {'id': '2.6.29', 'lifetime_fees_paid': '44261516129', 'most_recent_op': '2.9.0', 'owner': '1.2.29', 'pending_fees': 0, 'pending_vested_fees': 16310, 'total_core_in_orders': '6788845277634', 'total_ops': 0} """ def define_classes(self): self.account_class = Account
29.729167
87
0.662929
[ "MIT" ]
bangzi1001/python-nbs
bitshares/account.py
2,854
Python
"""BGEN reader implementation (using bgen_reader)""" import logging import tempfile import time from pathlib import Path from typing import ( Any, Dict, Hashable, List, Mapping, MutableMapping, Optional, Tuple, Union, ) import dask import dask.array as da import dask.dataframe as dd import numpy as np import pandas as pd import xarray as xr import zarr from cbgen import bgen_file, bgen_metafile from rechunker import api as rechunker_api from xarray import Dataset from sgkit import create_genotype_dosage_dataset from sgkit.io.utils import dataframe_to_dict, encode_contigs from sgkit.typing import ArrayLike, DType, NDArray, PathType logger = logging.getLogger(__name__) GT_DATA_VARS = [ "call_genotype_probability", "call_genotype_probability_mask", "call_dosage", "call_dosage_mask", ] METAFILE_DTYPE = dict( [ ("id", "S"), ("rsid", "S"), ("chrom", "S"), ("pos", "int32"), ("a1", "S"), ("a2", "S"), ("offset", "int64"), ] ) class BgenReader: name = "bgen_reader" def __init__( self, path: PathType, metafile_path: Optional[PathType] = None, dtype: DType = "float32", ) -> None: self.path = Path(path) self.metafile_path = ( Path(metafile_path) if metafile_path else self.path.with_suffix(".metafile") ) with bgen_file(self.path) as bgen: self.n_variants = bgen.nvariants self.n_samples = bgen.nsamples if not self.metafile_path.exists(): start = time.time() logger.info( f"Generating BGEN metafile for '{self.path}' (this may take a while)" ) bgen.create_metafile(self.metafile_path, verbose=False) stop = time.time() logger.info( f"BGEN metafile generation complete ({stop - start:.0f} seconds)" ) with bgen_metafile(self.metafile_path) as mf: assert self.n_variants == mf.nvariants self.npartitions = mf.npartitions self.partition_size = mf.partition_size self.shape = (self.n_variants, self.n_samples, 3) self.dtype = np.dtype(dtype) self.precision = 64 if self.dtype.itemsize >= 8 else 32 self.ndim = 3 def __getitem__(self, idx: Any) -> NDArray: if not isinstance(idx, tuple): raise IndexError(f"Indexer must be tuple (received {type(idx)})") if len(idx) != self.ndim: raise IndexError( f"Indexer must have {self.ndim} items (received {len(idx)} slices)" ) if not all(isinstance(i, slice) or isinstance(i, int) for i in idx): raise IndexError( f"Indexer must contain only slices or ints (received types {[type(i) for i in idx]})" ) # Determine which dims should have unit size in result squeeze_dims = tuple(i for i in range(len(idx)) if isinstance(idx[i], int)) # Convert all indexers to slices idx = tuple(slice(i, i + 1) if isinstance(i, int) else i for i in idx) if idx[0].start == idx[0].stop: return np.empty((0,) * self.ndim, dtype=self.dtype) # Determine start and end partitions that correspond to the # given variant dimension indexer start_partition = idx[0].start // self.partition_size start_partition_offset = idx[0].start % self.partition_size end_partition = (idx[0].stop - 1) // self.partition_size end_partition_offset = (idx[0].stop - 1) % self.partition_size # Create a list of all offsets into the underlying file at which # data for each variant begins all_vaddr = [] with bgen_metafile(self.metafile_path) as mf: for i in range(start_partition, end_partition + 1): partition = mf.read_partition(i) start_offset = start_partition_offset if i == start_partition else 0 end_offset = ( end_partition_offset + 1 if i == end_partition else self.partition_size ) vaddr = partition.variants.offset all_vaddr.extend(vaddr[start_offset:end_offset].tolist()) # Read the probabilities for each variant, apply indexer for # samples dimension to give probabilities for all genotypes, # and then apply final genotype dimension indexer with bgen_file(self.path) as bgen: res = None for i, vaddr in enumerate(all_vaddr): probs = bgen.read_probability(vaddr, precision=self.precision)[idx[1]] assert len(probs.shape) == 2 and probs.shape[1] == 3 if res is None: res = np.zeros((len(all_vaddr), len(probs), 3), dtype=self.dtype) res[i] = probs res = res[..., idx[2]] # type: ignore[index] return np.squeeze(res, axis=squeeze_dims) def _split_alleles(allele_ids: bytes) -> List[bytes]: alleles = allele_ids.split(b",") if len(alleles) != 2: raise NotImplementedError( f"Bgen reads only supported for biallelic variants (found non-biallelic variant '{str(allele_ids)}')" ) return alleles def _read_metafile_partition(path: Path, partition: int) -> pd.DataFrame: with bgen_metafile(path) as mf: part = mf.read_partition(partition) v = part.variants allele_ids = np.array([_split_alleles(aid) for aid in v.allele_ids]) data = { "id": v.id, "rsid": v.rsid, "chrom": v.chromosome, "pos": v.position, "a1": allele_ids[:, 0], "a2": allele_ids[:, 1], "offset": v.offset, } return pd.DataFrame(data).astype(METAFILE_DTYPE) def read_metafile(path: PathType) -> dd.DataFrame: """Read cbgen metafile containing partitioned variant info""" with bgen_metafile(path) as mf: divisions = [mf.partition_size * i for i in range(mf.npartitions)] + [ mf.nvariants - 1 ] dfs = [ dask.delayed(_read_metafile_partition)(path, i) for i in range(mf.npartitions) ] meta = dd.utils.make_meta(METAFILE_DTYPE) return dd.from_delayed(dfs, meta=meta, divisions=divisions) def read_samples(path: PathType) -> pd.DataFrame: """Read BGEN .sample file""" df = pd.read_csv(path, sep=" ", skiprows=[1], usecols=[0]) df.columns = ["sample_id"] return df def read_bgen( path: PathType, metafile_path: Optional[PathType] = None, sample_path: Optional[PathType] = None, chunks: Union[str, int, Tuple[int, int, int]] = "auto", lock: bool = False, persist: bool = True, contig_dtype: DType = "str", gp_dtype: DType = "float32", ) -> Dataset: """Read BGEN dataset. Loads a single BGEN dataset as dask arrays within a Dataset from a ``.bgen`` file. Parameters ---------- path Path to BGEN file. metafile_path Path to companion index file used to determine BGEN byte offsets. Defaults to ``path`` + ".metafile" if not provided. This file is necessary for reading BGEN genotype probabilities and it will be generated the first time the file is read if it does not already exist. If it needs to be created, it can make the first call to this function much slower than subsequent calls. sample_path Path to ``.sample`` file, by default None. This is used to fetch sample identifiers and when provided it is preferred over sample identifiers embedded in the ``.bgen`` file. chunks Chunk size for genotype probability data (3 dimensions), by default "auto". lock Whether or not to synchronize concurrent reads of file blocks, by default False. This is passed through to [dask.array.from_array](https://docs.dask.org/en/latest/array-api.html#dask.array.from_array). persist Whether or not to persist variant information in memory, by default True. This is an important performance consideration as the metadata file for this data will be read multiple times when False. contig_dtype Data type for contig names, by default "str". This may also be an integer type (e.g. "int"), but will fail if any of the contig names cannot be converted to integers. gp_dtype Data type for genotype probabilities, by default "float32". Warnings -------- Only bi-allelic, diploid BGEN files are currently supported. Returns ------- A dataset containing the following variables: - :data:`sgkit.variables.variant_id_spec` (variants) - :data:`sgkit.variables.variant_contig_spec` (variants) - :data:`sgkit.variables.variant_position_spec` (variants) - :data:`sgkit.variables.variant_allele_spec` (variants) - :data:`sgkit.variables.sample_id_spec` (samples) - :data:`sgkit.variables.call_dosage_spec` (variants, samples) - :data:`sgkit.variables.call_dosage_mask_spec` (variants, samples) - :data:`sgkit.variables.call_genotype_probability_spec` (variants, samples, genotypes) - :data:`sgkit.variables.call_genotype_probability_mask_spec` (variants, samples, genotypes) """ if isinstance(chunks, tuple) and len(chunks) != 3: raise ValueError(f"`chunks` must be tuple with 3 items, not {chunks}") if not np.issubdtype(gp_dtype, np.floating): raise ValueError( f"`gp_dtype` must be a floating point data type, not {gp_dtype}" ) if not np.issubdtype(contig_dtype, np.integer) and np.dtype( contig_dtype ).kind not in {"U", "S"}: raise ValueError( f"`contig_dtype` must be of string or int type, not {contig_dtype}" ) path = Path(path) sample_path = Path(sample_path) if sample_path else path.with_suffix(".sample") if sample_path.exists(): sample_id = read_samples(sample_path).sample_id.values.astype("U") else: sample_id = _default_sample_ids(path) bgen_reader = BgenReader(path, metafile_path=metafile_path, dtype=gp_dtype) df = read_metafile(bgen_reader.metafile_path) if persist: df = df.persist() arrs = dataframe_to_dict(df, METAFILE_DTYPE) variant_id = arrs["id"] variant_contig: ArrayLike = arrs["chrom"].astype(contig_dtype) variant_contig, variant_contig_names = encode_contigs(variant_contig) variant_contig_names = list(variant_contig_names) variant_position = arrs["pos"] variant_allele = da.hstack((arrs["a1"][:, np.newaxis], arrs["a2"][:, np.newaxis])) call_genotype_probability = da.from_array( bgen_reader, chunks=chunks, lock=lock, fancy=False, asarray=False, name=f"{bgen_reader.name}:read_bgen:{path}", ) call_dosage = _to_dosage(call_genotype_probability) ds: Dataset = create_genotype_dosage_dataset( variant_contig_names=variant_contig_names, variant_contig=variant_contig, variant_position=variant_position, variant_allele=variant_allele, sample_id=sample_id, call_dosage=call_dosage, call_genotype_probability=call_genotype_probability, variant_id=variant_id, ) return ds def _default_sample_ids(path: PathType) -> ArrayLike: """Fetch or generate sample ids""" with bgen_file(path) as bgen: if bgen.contain_samples: return bgen.read_samples() else: return np.char.add(b"sample_", np.arange(bgen.nsamples).astype("S")) # type: ignore[no-untyped-call] def _to_dosage(probs: ArrayLike) -> ArrayLike: """Calculate the dosage from genotype likelihoods (probabilities)""" assert ( probs.shape[-1] == 3 ), f"Expecting genotype (trailing) dimension of size 3, got array of shape {probs.shape}" return probs[..., 1] + 2 * probs[..., 2] ######################## # Rechunking Functions # ######################## def encode_variables( ds: Dataset, chunk_length: int, chunk_width: int, compressor: Optional[Any] = zarr.Blosc(cname="zstd", clevel=7, shuffle=2), probability_dtype: Optional[Any] = "uint8", ) -> Dict[Hashable, Dict[str, Any]]: encoding = {} for v in ds: e = {} if compressor is not None: e.update({"compressor": compressor}) if v in GT_DATA_VARS: e.update({"chunks": (chunk_length, chunk_width) + ds[v].shape[2:]}) if probability_dtype is not None and v == "call_genotype_probability": dtype = np.dtype(probability_dtype) # Xarray will decode into float32 so any int greater than # 16 bits will cause overflow/underflow # See https://en.wikipedia.org/wiki/Floating-point_arithmetic#Internal_representation # *bits precision column for single precision floats if dtype not in [np.uint8, np.uint16]: # type: ignore[comparison-overlap] raise ValueError( "Probability integer dtype invalid, must " f"be uint8 or uint16 not {probability_dtype}" ) divisor = np.iinfo(dtype).max - 1 e.update( { "dtype": probability_dtype, "add_offset": -1.0 / divisor, "scale_factor": 1.0 / divisor, "_FillValue": 0, } ) if e: encoding[v] = e return encoding def pack_variables(ds: Dataset) -> Dataset: # Remove dosage as it is unnecessary and should be redefined # based on encoded probabilities later (w/ reduced precision) ds = ds.drop_vars(["call_dosage", "call_dosage_mask"], errors="ignore") # Remove homozygous reference GP and redefine mask gp = ds["call_genotype_probability"][..., 1:] gp_mask = ds["call_genotype_probability_mask"].any(dim="genotypes") ds = ds.drop_vars(["call_genotype_probability", "call_genotype_probability_mask"]) ds = ds.assign(call_genotype_probability=gp, call_genotype_probability_mask=gp_mask) return ds def unpack_variables(ds: Dataset, dtype: DType = "float32") -> Dataset: # Restore homozygous reference GP gp = ds["call_genotype_probability"].astype(dtype) if gp.sizes["genotypes"] != 2: raise ValueError( "Expecting variable 'call_genotype_probability' to have genotypes " f"dimension of size 2 (received sizes = {dict(gp.sizes)})" ) ds = ds.drop_vars("call_genotype_probability") ds["call_genotype_probability"] = xr.concat( [1 - gp.sum(dim="genotypes", skipna=False), gp], dim="genotypes" ) # Restore dosage ds["call_dosage"] = gp[..., 0] + 2 * gp[..., 1] ds["call_dosage_mask"] = ds["call_genotype_probability_mask"] ds["call_genotype_probability_mask"] = ds[ "call_genotype_probability_mask" ].broadcast_like(ds["call_genotype_probability"]) return ds def rechunk_bgen( ds: Dataset, output: Union[PathType, MutableMapping[str, bytes]], *, chunk_length: int = 10_000, chunk_width: int = 1_000, compressor: Optional[Any] = zarr.Blosc(cname="zstd", clevel=7, shuffle=2), probability_dtype: Optional[DType] = "uint8", max_mem: str = "4GB", pack: bool = True, tempdir: Optional[PathType] = None, ) -> Dataset: """Rechunk BGEN dataset as Zarr. This function will use the algorithm https://rechunker.readthedocs.io/en/latest/ to rechunk certain fields in a provided Dataset for better downstream performance. Depending on the system memory available (and the `max_mem` setting) this rechunking may occur without the need of any intermediate data store. Otherwise, approximately as much disk space is required as was needed to store the original BGEN data. Experiments show that this Zarr representation is ~20% larger even with all available optimizations and fairly aggressive compression (i.e. the default `clevel` 7). Note that this function is not evaluated lazily. The rechunking algorithm will run inline so calls to it may be slow. The resulting Dataset is generated based on the final, serialized Zarr data. Parameters ---------- ds Dataset to rechunk, typically the result from `read_bgen`. output Zarr store or path to directory in file system. chunk_length Length (number of variants) of chunks in which data are stored, by default 10_000. chunk_width Width (number of samples) to use when storing chunks in output, by default 1_000. compressor Zarr compressor, no compression is used when set as None. probability_dtype Data type used to encode genotype probabilities, must be either uint8 or uint16. Setting this parameter results in a loss of precision. If None, probabilities will not be altered when stored. max_mem The amount of memory (in bytes) that workers are allowed to use. A string (e.g. 100MB) can also be used. pack Whether or not to optimize variable representations by removing unnecessary dimensions and elements. This includes storing 2 genotypes instead of 3, omitting dosage and collapsing the genotype probability mask to 2 dimensions. All of the above are restored in the resulting Dataset at the expense of extra computations on read. tempdir Temporary directory where intermediate files are stored. The default None means use the system default temporary directory. Warnings -------- This functional is only applicable to diploid, bi-allelic BGEN datasets. Returns ------- Dataset The rechunked dataset. """ if isinstance(output, Path): output = str(output) chunk_length = min(chunk_length, ds.dims["variants"]) chunk_width = min(chunk_width, ds.dims["samples"]) if pack: ds = pack_variables(ds) encoding = encode_variables( ds, chunk_length=chunk_length, chunk_width=chunk_width, compressor=compressor, probability_dtype=probability_dtype, ) target_chunks = { var: encoding[var]["chunks"] for var in encoding if "chunks" in encoding[var] } target_options = { var: {k: v for k, v in encoding[var].items() if k != "chunks"} for var in encoding } with tempfile.TemporaryDirectory( prefix="bgen_to_zarr_", suffix=".zarr", dir=tempdir ) as tmpdir: rechunked = rechunker_api.rechunk( ds, max_mem=max_mem, target_chunks=target_chunks, target_store=output, target_options=target_options, temp_store=tmpdir, executor="dask", ) rechunked.execute() zarr.consolidate_metadata(output) ds: Dataset = xr.open_zarr(output, concat_characters=False) # type: ignore[no-untyped-call] if pack: ds = unpack_variables(ds) return ds def bgen_to_zarr( input: PathType, output: Union[PathType, MutableMapping[str, bytes]], region: Optional[Mapping[Hashable, Any]] = None, chunk_length: int = 10_000, chunk_width: int = 1_000, temp_chunk_length: int = 100, compressor: Optional[Any] = zarr.Blosc(cname="zstd", clevel=7, shuffle=2), probability_dtype: Optional[DType] = "uint8", max_mem: str = "4GB", pack: bool = True, tempdir: Optional[PathType] = None, ) -> Dataset: """Convert a BGEN file to a Zarr on-disk store. This function is a convenience for calling :func:`read_bgen` followed by :func:`rechunk_bgen`. Parameters ---------- input Path to local BGEN dataset. output Zarr store or path to directory in file system. region Indexers on dataset dimensions used to define a subset of data to convert. Must be None or a dict with keys matching dimension names and values equal to integers or slice objects. This is passed directly to `Dataset.isel` so it has the same semantics. chunk_length Length (number of variants) of chunks in which data are stored, by default 10_000. chunk_width Width (number of samples) to use when storing chunks in output, by default 1_000. temp_chunk_length Length of chunks used in raw BGEN read, by default 100. This defines the vertical chunking (i.e. in the variants dimension) used when reading the raw data and because there is no horizontal chunking at this phase (i.e. in the samples dimension), this value should be much smaller than the target `chunk_length`. compressor Zarr compressor, by default Blosc + zstd with compression level 7. No compression is used when set as None. probability_dtype Data type used to encode genotype probabilities, must be either uint8 or uint16. Setting this parameter results in a loss of precision. If None, probabilities will not be altered when stored. max_mem The amount of memory (in bytes) that workers are allowed to use. A string (e.g. 100MB) can also be used. pack Whether or not to optimize variable representations by removing unnecessary dimensions and elements. This includes storing 2 genotypes instead of 3, omitting dosage and collapsing the genotype probability mask to 2 dimensions. All of the above are restored in the resulting Dataset at the expense of extra computations on read. tempdir Temporary directory where intermediate files are stored. The default None means use the system default temporary directory. Warnings -------- This functional is only applicable to diploid, bi-allelic BGEN datasets. Returns ------- Dataset The rechunked dataset. """ ds = read_bgen(input, chunks=(temp_chunk_length, -1, -1)) if region is not None: ds = ds.isel(indexers=region) return rechunk_bgen( ds, output, chunk_length=chunk_length, chunk_width=chunk_width, compressor=compressor, probability_dtype=probability_dtype, max_mem=max_mem, pack=pack, tempdir=tempdir, )
36.959083
113
0.64299
[ "Apache-2.0" ]
pystatgen/sgk
sgkit/io/bgen/bgen_reader.py
22,582
Python
import inspect import os import pyperclip import requests import time from urllib.parse import quote # a list of the request error classes request_errors = [obj for name, obj in inspect.getmembers(requests.exceptions) if inspect.isclass(obj) and issubclass(obj, Exception)] # main daemon loop while True: # get clipboard value clipboard = pyperclip.paste() try: # percent encode the clipboard value safe_cb = quote(clipboard,safe='') # bitly API access token token = os.environ.get('BITLY_TOKEN') # URL that will make the API call bitly_url = 'https://api-ssl.bitly.com/v3/shorten?' + \ 'access_token=' + token + '&longUrl=' + safe_cb # get the json return from the API call short_url = requests.get(bitly_url).json() # if everything went as planned if(short_url['status_txt'] == 'OK'): pyperclip.copy(short_url['data']['url']) except Exception as e: # if something went wrong with the request, i.e. not a link if(any(issubclass(e.__class__, lv) for lv in request_errors)): pass else: raise(e) # wait until the clipboard changes while(pyperclip.paste() == clipboard): time.sleep(.1)
34.972973
78
0.629057
[ "MIT" ]
lawja/AutoSHRTNR
autoshort.py
1,294
Python
# source ./venv/bin/activate # =============================================================== # =============================COOL============================== # =============================================================== import sys from general import errors # import os # basedir = os.path.abspath(os.path.dirname(__file__)) # =============================================================== def main(): # TAKE THE INPUT programs = sys.argv[1:] # CHECK IF AT LEAST ONE FILE IS GIVEN if len(programs) == 0: errors.throw_error(errors.CompilerError(text="No file is given to coolc compiler.")) # CHECK IF FILEOUT IS GIVEN if programs[0] == '-o': if len(programs) == 1: errors.throw_error(errors.CompilerError(text="No fileout is given to coolc compiler.")) fileout = programs[1] if not str(fileout).endswith(".asm"): errors.throw_error(errors.CompilerError(text="Fileout must end with .asm extension.")) if len(programs) == 2: errors.throw_error(errors.CompilerError(text="No file is given to coolc compiler.")) programs = programs[2:] else: fileout = programs[0].split(".cl")[0] + ".asm" # Check all programs have the *.cl extension. for program in programs: if not str(program).endswith(".cl"): errors.throw_error(errors.CompilerError(text="Cool program files must end with a .cl extension.")) code = "" # Read all program source codes. for program in programs: try: with open(program, encoding="utf-8") as file: code += file.read() + '\n' except (IOError, FileNotFoundError): errors.throw_error(errors.CompilerError(text=f'File "{program}" was not found.')) except Exception: errors.throw_error(errors.CompilerError(text="An unexpected error occurred!")) print(f"Compiling file '{fileout}'...") # =============================================================== # ==================ANALISIS-LEXICOGRAFICO======================= # =============================================================== from lexicography.lexer_rules import CoolLex # BUILD THE LEXER lexer = CoolLex() lexer.build() # =============================================================== # =============================================================== # =====================ANALISIS-SINTACTICO======================= # =============================================================== from lexicography.grammar_rules import CoolParse # BUILD THE PARSER parser = CoolParse(lexer) parser.build() program_ast = parser.parse(code) # =============================================================== # =============================================================== # ======================ANALISIS-SEMANTICO======================= # =============================================================== from semantic.type_collector import TypeCollectorVisitor from semantic.type_builder import TypeBuilderVisitor from semantic.type_checker import TypeCheckerVisitor # from semantic.ast_types_painter import Painter typeCollector = TypeCollectorVisitor() typeCollector.visit(program_ast) typeBuilder = TypeBuilderVisitor(typeCollector.enviroment) typeBuilder.visit(program_ast) ## CHECK SEMANTIC ERRORS IN THE ENVIROMENT(check_main, cycles and inheritance rules) final_enviroment = typeBuilder.enviroment final_enviroment.build_types_graph() type_checker = TypeCheckerVisitor() type_checker.visit(program_ast, typeBuilder.enviroment) typed_ast = program_ast # ast_painter = Painter() # print(ast_painter.visit(typed_ast, 0)) # =============================================================== # =============================================================== # ========================CODE-GENERATION======================== # =============================================================== # COOL --> CIL from generation.cil.cil_generator import CilGeneratorVisitor # from general.cil_hierarchy import get_formatter cil_code_generator = CilGeneratorVisitor(typed_ast, typeBuilder.enviroment) ast_cil = cil_code_generator.generate_code() # cil_painter = get_formatter() # print(cil_painter(ast_cil)) # CIL --> MIPS from generation.mips.mips_writer import MIPSWriterVisitor from operator import itemgetter types_ids = typeBuilder.enviroment.types_dict hierarchy = [0]*len(types_ids) for _type in typeBuilder.enviroment.types_list[1:]: hierarchy[types_ids[_type.name]] = types_ids[_type.parent] # tag_names = sorted(types_ids.items(), key=itemgetter(1)) ast_cil.typesHierarchy = hierarchy # ast_cil.tag_names = tag_names mips_code_generator = MIPSWriterVisitor(ast_cil, fileout) mips_code_generator.generate_Mips() if __name__ == '__main__': main()
34.423841
111
0.50808
[ "MIT" ]
harry1911/CoolCompiler
src/coolc.py
5,198
Python
import os from griddly import GymWrapperFactory, gd, GymWrapper from griddly.RenderTools import VideoRecorder, RenderToFile if __name__ == "__main__": wrapper = GymWrapperFactory() name = "projectiles_env" current_path = os.path.dirname(os.path.realpath(__file__)) env = GymWrapper( "health_bars.yaml", shader_path="shaders", player_observer_type=gd.ObserverType.SPRITE_2D, global_observer_type=gd.ObserverType.SPRITE_2D, level=0, ) env.reset() reset_global_obs = env.render(observer="global", mode="rgb_array") reset_player_obs = env.render(mode="rgb_array") render_to_file = RenderToFile() render_to_file.render(reset_global_obs, "reset_global.png") render_to_file.render(reset_player_obs, "reset_partial.png") global_recorder = VideoRecorder() global_visualization = env.render(observer="global", mode="rgb_array") global_recorder.start("global_video_test.mp4", global_visualization.shape) for i in range(1000): obs, reward, done, info = env.step(env.action_space.sample()) env.render(observer="global") frame = env.render(observer="global", mode="rgb_array") global_recorder.add_frame(frame) if done: env.reset() global_recorder.close()
30.418605
78
0.700306
[ "MIT" ]
Thaigun/Griddly
python/examples/Custom Shaders/Health Bars/main.py
1,308
Python
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import ( Any, AsyncIterable, Awaitable, Callable, Iterable, Sequence, Tuple, Optional, ) from google.cloud.compute_v1.types import compute class AggregatedListPager: """A pager for iterating through ``aggregated_list`` requests. This class thinly wraps an initial :class:`google.cloud.compute_v1.types.TargetInstanceAggregatedList` object, and provides an ``__iter__`` method to iterate through its ``items`` field. If there are more pages, the ``__iter__`` method will make additional ``AggregatedList`` requests and continue to iterate through the ``items`` field on the corresponding responses. All the usual :class:`google.cloud.compute_v1.types.TargetInstanceAggregatedList` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., compute.TargetInstanceAggregatedList], request: compute.AggregatedListTargetInstancesRequest, response: compute.TargetInstanceAggregatedList, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.compute_v1.types.AggregatedListTargetInstancesRequest): The initial request object. response (google.cloud.compute_v1.types.TargetInstanceAggregatedList): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = compute.AggregatedListTargetInstancesRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterable[compute.TargetInstanceAggregatedList]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterable[Tuple[str, compute.TargetInstancesScopedList]]: for page in self.pages: yield from page.items.items() def get(self, key: str) -> Optional[compute.TargetInstancesScopedList]: return self._response.items.get(key) def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListPager: """A pager for iterating through ``list`` requests. This class thinly wraps an initial :class:`google.cloud.compute_v1.types.TargetInstanceList` object, and provides an ``__iter__`` method to iterate through its ``items`` field. If there are more pages, the ``__iter__`` method will make additional ``List`` requests and continue to iterate through the ``items`` field on the corresponding responses. All the usual :class:`google.cloud.compute_v1.types.TargetInstanceList` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., compute.TargetInstanceList], request: compute.ListTargetInstancesRequest, response: compute.TargetInstanceList, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.compute_v1.types.ListTargetInstancesRequest): The initial request object. response (google.cloud.compute_v1.types.TargetInstanceList): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = compute.ListTargetInstancesRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterable[compute.TargetInstanceList]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterable[compute.TargetInstance]: for page in self.pages: yield from page.items def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response)
37.032258
89
0.675958
[ "Apache-2.0" ]
Ctfbuster/python-compute
google/cloud/compute_v1/services/target_instances/pagers.py
5,740
Python
import argparse import sys, os import logging from utils.misc import ArgParseDefault, add_bool_arg USAGE_DESC = """ python main.py <command> [<args>] Available commands: init Initialize project sync Sync project data from S3 parse Preprocessing of data to generate `/data/1_parsed` sample Sample cleaned data to generate `data/2_sampled` batch Creates a new batch of tweets from a sampled file in `/data/2_sampled` clean_labels Clean labels generated from (`data/3_labelled`) and merge/clean to generate `/data/4_cleaned_labels` stats Output various stats about project split Splits data into training, dev and test data prepare_predict Prepares parsed data for prediction with txcl """ STATS_USAGE_DESC = """ python main.py stats <command> [<args>] Available commands: all Run all overview Show overview sample Show sampling stats annotation Show annotation summary annotation_cleaned Show cleaned annotation summary annotator_outliers Show annotator outliers """ class ArgParse(object): def __init__(self): logging.basicConfig(level=logging.INFO, format='%(asctime)s [%(levelname)-5.5s] [%(name)-12.12s]: %(message)s') parser = ArgParseDefault( description='', usage=USAGE_DESC) parser.add_argument('command', help='Subcommand to run') args = parser.parse_args(sys.argv[1:2]) if not hasattr(self, args.command): print('Unrecognized command') parser.print_help() sys.exit(1) getattr(self, args.command)() def init(self): from utils.task_helpers import init parser = ArgParseDefault(description='Initialize project') parser.add_argument('-p', '--project', type=str, required=False, default='', dest='project', help='Name of project to initialize') parser.add_argument('--template', dest='template', action='store_true', default=False, help='Initialize project manually.') args = parser.parse_args(sys.argv[2:]) init(args.project, args.template) def sync(self): from utils.task_helpers import sync parser = ArgParseDefault(description='Sync project data from S3') parser.add_argument('-s', '--source', choices=['all', 'streaming', 'annotation', 'media'], required=False, default='all', help='Type of data to be synced. By default sync all data belonging to this project.') parser.add_argument('-l', '--last', required=False, type=int, help='Sync streaming data of last n days') args = parser.parse_args(sys.argv[2:]) sync(data_type=args.source, last_n_days=args.last) def parse(self): import utils.processing.parse_tweets as parse_tweets parser = ArgParseDefault(description='Preprocess raw data to create parquet files in `data/1_parsed`') parser.add_argument('--no-parallel', dest='no_parallel', action='store_true', default=False, help='Do not run in parallel') parser.add_argument('--extend', dest='extend', action='store_true', default=False, help='Extend existing parsed data') parser.add_argument('--ray_num_cpus', type=int, default=None, help='Limit the number of worker processes for Ray during the memory intensive merge phase (by default using maximum worker processes)') add_bool_arg(parser, 'extract_retweets', default=True, help='Extract top-level retweets') add_bool_arg(parser, 'extract_quotes', default=True, help='Extract top-level quotes') add_bool_arg(parser, 'omit_last_day', default=True, help='Omit parsing data from the last day') args = parser.parse_args(sys.argv[2:]) parse_tweets.run(no_parallel=args.no_parallel, extract_retweets=args.extract_retweets, extract_quotes=args.extract_quotes, extend=args.extend, omit_last_day=args.omit_last_day, ray_num_cpus=args.ray_num_cpus) def sample(self): import utils.processing.sample_tweets as sample_tweets parser = ArgParseDefault(description='Sample cleaned data to generate `data/2_sampled`') parser.add_argument('-s', '--size', type=int, required=True, dest='size', help='Number of tweets to sample') parser.add_argument('-bs', '--bin_size', type=int, required=False, help='Number of tweets per bin') parser.add_argument('-m', '--mode', choices=['monthly', 'random'], required=False, default='random', help='Sampling mode. Random: Sample randomly. Monthly: Try to sample evenly within months.') parser.add_argument('-l', '--langs', default=[], nargs='+', required=False, help='Filter by language(s)') parser.add_argument('--contains_keywords', default=False, action='store_true', help='Only sample from tweets which include keywords') parser.add_argument('--min_token_count', default=3, type=int, required=False, help='Minimum number of tokens') parser.add_argument('--include_replies', default=False, action='store_true', help='Include replies') parser.add_argument('--seed', type=int, required=False, default=None, help='Random state split') parser.add_argument('--extend', action='store_true', help='Extending existing sample given by seed by removing already labelled tweets. If size is <= original sample size this has no effect except removing labelled tweets'); add_bool_arg(parser, 'anonymize', default=True, help='Replace usernames and URLs with filler (@user and <url>)') parser.add_argument('--max_date', required=False, default=None, help='Sample until date (YYYY-MM-DD), default: No max') parser.add_argument('--min_date', required=False, default=None, help='Sample from date (YYYY-MM-DD), default: No min') args = parser.parse_args(sys.argv[2:]) sample_tweets.run(size=args.size, contains_keywords=args.contains_keywords, anonymize=args.anonymize, min_token_count=args.min_token_count, langs=args.langs, include_replies=args.include_replies, mode=args.mode, seed=args.seed, extend=args.extend, bin_size=args.bin_size, min_date=args.min_date, max_date=args.max_date) def batch(self): from utils.processing.sample_tweets import SampleGenerator parser = ArgParseDefault(description='Generate new batch for labelling. As a result a new csv will be created in `data/2_sampled/batch_{batch_id}/`') parser.add_argument('-N', '--num_tweets', type=int, default=None, help='The number of tweets to be generated in new batch') parser.add_argument('-b', '--batch', type=int, default=None, help='The batch id to be generated, default: Automatically find next batch') parser.add_argument('--ignore-previous', dest='ignore_previous', action='store_true', default=False, help='Also sample tweets from old batches which were not annotated') parser.add_argument('--stats-only', dest='stats_only', action='store_true', default=False, help='Show stats only') args = parser.parse_args(sys.argv[2:]) s = SampleGenerator() if args.stats_only: s.stats(ignore_previous=args.ignore_previous) else: s.generate_batch(num_tweets=args.num_tweets, batch_id=args.batch, ignore_previous=args.ignore_previous) def clean_labels(self): import utils.processing.clean_labels as clean_labels parser = ArgParseDefault(description='Clean/merge labels from different batches to generate final training input') parser.add_argument('-s', '--selection-criterion', dest='selection_criterion', choices=['majority', 'unanimous'], required=False, default='majority', help='Can be "majority" (use majority vote) or "unanimous" (only select tweets with perfect agreement)') parser.add_argument('-l', '--min-labels-cutoff', dest='min_labels_cutoff', type=int, required=False, default=3, help='Discard all tweets having less than min_labels_cutoff annotations') parser.add_argument('-a', '--selection-agreement', dest='selection_agreement', type=float, required=False, default=None, help='Consider only tweets with a certain level of annotation agreement. If provided overwrites selection_criterion param.') parser.add_argument('-m', '--mode', choices=['mturk', 'local', 'public', 'other', 'all'], type=str, required=False, default='all', help='Annotation mode which was used. Can be `mturk`, `local`, `public`, `other` or `all`') parser.add_argument('--is-relevant', dest='is_relevant', action='store_true', help='Filter tweets which have been annotated as relevant/related') parser.add_argument('--exclude-incorrect', dest='exclude_incorrect', action='store_true', help='Remove annotations which have been manually flagged as incorrect') parser.add_argument('--cutoff-worker-outliers', dest='cutoff_worker_outliers', type=float, default=None, help='Remove all annotations by workers who have agreement scores below certain Z-score threshold (a reasonable value would be 2 or 3)') parser.add_argument('--allow-nan', dest='allow_nan', nargs='+', choices=['id', 'text', 'question_id', 'answer_id'], default=[], required=False, help='Allow certain fields to be NaN/empty (by default each annotation has to have the fields id, text, answer_id and question_id)') parser.add_argument('--contains-keywords', dest='contains_keywords', default=False, action='store_true', help='Remove annotations in which text does not contain keywords') parser.add_argument('--verbose', dest='verbose', action='store_true', help='Verbose output') args = parser.parse_args(sys.argv[2:]) clean_labels.run_clean_labels(args.selection_criterion, args.min_labels_cutoff, args.selection_agreement, args.mode, args.is_relevant, args.exclude_incorrect, args.cutoff_worker_outliers, args.allow_nan, args.contains_keywords, args.verbose) def stats(self): from utils.task_helpers import stats parser = ArgParseDefault(description='Output various stats about project', usage=STATS_USAGE_DESC) parser.add_argument('command', choices=['all', 'overview', 'sample', 'annotation', 'annotator_outliers', 'annotation_cleaned'], help='Subcommand to run') args = parser.parse_args(sys.argv[2:3]) if args.command == 'annotation': parser = ArgParseDefault(description='Print stats about annotations') parser.add_argument('-m', '--mode', choices=['all', 'mturk', 'local', 'public', 'other', '*'], type=str, required=False, default='all', help='Print stats for certain annotation modes only.') args = parser.parse_args(sys.argv[3:]) stats('annotation', **vars(args)) elif args.command == 'annotator_outliers': parser = ArgParseDefault(description='Find annotators which have under-performed compared to others') parser.add_argument('-m', '--mode', choices=['mturk', 'local', 'public', 'other'], type=str, required=False, default='mturk', help='Print stats for certain annotation modes only.') parser.add_argument('-b', '--batch-name', type=str, required=False, dest='batch_name', default='*', help='Only analyse for specific local/mturk batch name (this looks for a pattern in filename). Default: All data') parser.add_argument('--agreement-cutoff', dest='agreement_cutoff', type=float, required=False, default=3, help='Z-value cutoff for inter-worker agreement deviation') parser.add_argument('--time-cutoff', dest='time_cutoff', type=float, required=False, default=3, help='Z-value cutoff for average task duration per worker') parser.add_argument('--min-tasks', dest='min_tasks', type=int, required=False, default=3, help='Min tasks for worker to have completed before considered as outlier') parser.add_argument('--min-comparisons-count', dest='min_comparisons_count', type=int, required=False, default=20, help='Min number of questions to compare for a worker needed to compute agreement score') args = parser.parse_args(sys.argv[3:]) stats('annotator_outliers', **vars(args)) else: stats(args.command) def split(self): from utils.task_helpers import train_dev_test_split parser = ArgParseDefault(description='Split annotated data into training and test data set') parser.add_argument('--question', type=str, required=False, default='sentiment', help='Which data to load (has to be a valid question tag)') parser.add_argument('--name', type=str, required=False, default='', help='In case there are multiple cleaned labelled data output files give name of file (without csv ending), default: No name provided (works only if a single file is present).') parser.add_argument('--balanced-labels', dest='balanced_labels', action='store_true', default=False, help='Ensure equal label balance') parser.add_argument('--all-questions', dest='all_questions', action='store_true', default=False, help='Generate files for all available question tags. This overwrites the `question` argument. Default: False.') parser.add_argument('--label-tags', dest='label_tags', required=False, default=[], nargs='+', help='Only select examples with certain label tags') parser.add_argument('--has-label', dest='has_label', required=False, default='', help='Only select examples which have also been tagged with certain label') parser.add_argument('--dev-size', dest='dev_size', type=float, required=False, default=0.2, help='Fraction of dev size') parser.add_argument('--test-size', dest='test_size', type=float, required=False, default=0.2, help='Fraction of test size') parser.add_argument('--seed', type=int, required=False, default=42, help='Random state split') args = parser.parse_args(sys.argv[2:]) train_dev_test_split(question=args.question, dev_size=args.dev_size, test_size=args.test_size, seed=args.seed, name=args.name, balanced_labels=args.balanced_labels, all_questions=args.all_questions, label_tags=args.label_tags, has_label=args.has_label) def prepare_predict(self): from utils.task_helpers import prepare_predict parser = ArgParseDefault(description='Prepare data for prediction with the text-classification library. \ This function generates two files (1 for text 1 for IDs/created_at) under data/other. The text.csv file can then be predicted.') parser.add_argument('--start_date', required=False, default=None, help='Filter start date') parser.add_argument('--end_date', required=False, default=None, help='Filter end date') add_bool_arg(parser, 'anonymize', default=True, help='Replace usernames and URLs with filler (@user and <url>)') parser.add_argument('--url_filler', required=False, default='<url>', help='Filler for urls (if anonymize)') parser.add_argument('--user_filler', required=False, default='@user', help='Filler for user names (if anonymize)') args = parser.parse_args(sys.argv[2:]) prepare_predict(args) if __name__ == '__main__': ArgParse()
85.954545
327
0.708554
[ "MIT" ]
crowdbreaks/preprocess
main.py
15,128
Python
import os import subprocess from tempfile import NamedTemporaryFile from torch.distributed import get_rank from torch.distributed import get_world_size from torch.utils.data.sampler import Sampler import librosa import numpy as np import scipy.signal import torch from scipy.io.wavfile import read import math from torch.utils.data import DataLoader from torch.utils.data import Dataset from .spec_augment import spec_augment from hangul_utils import split_syllable_char, split_syllables, join_jamos windows = {'hamming': scipy.signal.hamming, 'hann': scipy.signal.hann, 'blackman': scipy.signal.blackman, 'bartlett': scipy.signal.bartlett} def load_audio(path): # sample_rate, sound = read(path) sound, sr = librosa.load(path, sr=16000) # librosa.output.write_wav('org.wav', sound, sr) # print('save 1') # sound = sound.astype('float32') / 32767 # normalize audio sound = librosa.util.normalize(sound) # normalize audio sound = sound.astype('float32') # librosa.output.write_wav('norm.wav', sound, sr) # print('save 2') if len(sound.shape) > 1: if sound.shape[1] == 1: sound = sound.squeeze() else: sound = sound.mean(axis=1) # multiple channels, average return sound class AudioParser(object): def parse_transcript(self, transcript_path): """ :param transcript_path: Path where transcript is stored from the manifest file :return: Transcript in training/testing format """ raise NotImplementedError def parse_audio(self, audio_path): """ :param audio_path: Path where audio is stored from the manifest file :return: Audio in training/testing format """ raise NotImplementedError class NoiseInjection(object): def __init__(self, path=None, sample_rate=16000, noise_levels=(0, 0.5)): """ Adds noise to an input signal with specific SNR. Higher the noise level, the more noise added. Modified code from https://github.com/willfrey/audio/blob/master/torchaudio/transforms.py """ if path is not None and not os.path.exists(path): print("Directory doesn't exist: {}".format(path)) raise IOError self.paths = path is not None and librosa.util.find_files(path) self.sample_rate = sample_rate self.noise_levels = noise_levels def inject_noise(self, data): noise_path = np.random.choice(self.paths) noise_level = np.random.uniform(*self.noise_levels) return self.inject_noise_sample(data, noise_path, noise_level) def inject_noise_sample(self, data, noise_path, noise_level): noise_len = get_audio_length(noise_path) data_len = len(data) / self.sample_rate noise_start = np.random.rand() * (noise_len - data_len) noise_end = noise_start + data_len noise_dst = audio_with_sox(noise_path, self.sample_rate, noise_start, noise_end) assert len(data) == len(noise_dst) noise_energy = np.sqrt(noise_dst.dot(noise_dst) / noise_dst.size) data_energy = np.sqrt(data.dot(data) / data.size) data += noise_level * noise_dst * data_energy / noise_energy return data class SpectrogramParser(AudioParser): def __init__(self, audio_conf, normalize=False, speed_volume_perturb=False, spec_augment=False): """ Parses audio file into spectrogram with optional normalization and various augmentations :param audio_conf: Dictionary containing the sample rate, window and the window length/stride in seconds :param normalize(default False): Apply standard mean and deviation normalization to audio tensor :param speed_volume_perturb(default False): Apply random tempo and gain perturbations :param spec_augment(default False): Apply simple spectral augmentation to mel spectograms """ super(SpectrogramParser, self).__init__() self.window_stride = audio_conf['window_stride'] self.window_size = audio_conf['window_size'] self.sample_rate = audio_conf['sample_rate'] self.window = windows.get(audio_conf['window'], windows['hamming']) self.normalize = normalize self.speed_volume_perturb = speed_volume_perturb self.spec_augment = spec_augment self.noiseInjector = NoiseInjection(audio_conf['noise_dir'], self.sample_rate, audio_conf['noise_levels']) if audio_conf.get( 'noise_dir') is not None else None self.noise_prob = audio_conf.get('noise_prob') def parse_audio(self, audio_path,audio=None,change_speed=None): if audio is not None: y = audio elif self.speed_volume_perturb: y = load_randomly_augmented_audio(audio_path, self.sample_rate) # librosa.output.write_wav('test.wav', y, sr=16000, norm=False) # print('test') else: y = load_audio(audio_path) # librosa.output.write_wav('y1.wav', y, sr=16000) # print('save@@@@@@@@@@@@') # change audio speed if change_speed is not None: y = librosa.effects.time_stretch(y, change_speed) if self.noiseInjector: add_noise = np.random.binomial(1, self.noise_prob) if add_noise: y = self.noiseInjector.inject_noise(y) # librosa.output.write_wav('y2.wav', y, sr=16000) # print('save@@@@@@@@@@@@') # import sys # sys.exit() n_fft = int(self.sample_rate * self.window_size) win_length = n_fft hop_length = int(self.sample_rate * self.window_stride) # STFT D = librosa.stft(y, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=self.window) spect, phase = librosa.magphase(D) # S = log(S+1) spect = np.log1p(spect) spect = torch.FloatTensor(spect) if self.normalize: mean = spect.mean() std = spect.std() spect.add_(-mean) spect.div_(std) if self.spec_augment: spect = spec_augment(spect) return spect def parse_transcript(self, transcript_path): raise NotImplementedError class SpectrogramDataset(Dataset, SpectrogramParser): def __init__(self, audio_conf, manifest_filepath, labels, normalize=False, speed_volume_perturb=False, spec_augment=False): """ Dataset that loads tensors via a csv containing file paths to audio files and transcripts separated by a comma. Each new line is a different sample. Example below: /path/to/audio.wav,/path/to/audio.txt ... :param audio_conf: Dictionary containing the sample rate, window and the window length/stride in seconds :param manifest_filepath: Path to manifest csv as describe above :param labels: String containing all the possible characters to map to :param normalize: Apply standard mean and deviation normalization to audio tensor :param speed_volume_perturb(default False): Apply random tempo and gain perturbations :param spec_augment(default False): Apply simple spectral augmentation to mel spectograms """ with open(manifest_filepath) as f: ids = f.readlines() ids = [x.strip().split(',') for x in ids] self.ids = ids self.size = len(ids) self.labels_map = dict([(labels[i], i) for i in range(len(labels))]) try: self.use_jamo = audio_conf['use_jamo'] except: self.use_jamo = False super(SpectrogramDataset, self).__init__(audio_conf, normalize, speed_volume_perturb, spec_augment) def __getitem__(self, index): sample = self.ids[index] audio_path, transcript_path = sample[0], sample[1] spect = self.parse_audio(audio_path) transcript = self.parse_transcript(transcript_path) return spect, transcript def parse_transcript(self, transcript_path): with open(transcript_path, 'r', encoding='utf8') as transcript_file: # with open(transcript_path, 'r', encoding='utf-16') as transcript_file: transcript = transcript_file.read().replace('\n', '') if self.use_jamo: transcript = split_syllables(transcript) transcript = list(filter(None, [self.labels_map.get(x) for x in list(transcript)])) return transcript def __len__(self): return self.size def _collate_fn(batch): def func(p): return p[0].size(1) batch = sorted(batch, key=lambda sample: sample[0].size(1), reverse=True) longest_sample = max(batch, key=func)[0] freq_size = longest_sample.size(0) minibatch_size = len(batch) max_seqlength = longest_sample.size(1) inputs = torch.zeros(minibatch_size, 1, freq_size, max_seqlength) input_percentages = torch.FloatTensor(minibatch_size) target_sizes = torch.IntTensor(minibatch_size) targets = [] for x in range(minibatch_size): sample = batch[x] tensor = sample[0] target = sample[1] seq_length = tensor.size(1) inputs[x][0].narrow(1, 0, seq_length).copy_(tensor) input_percentages[x] = seq_length / float(max_seqlength) target_sizes[x] = len(target) targets.extend(target) targets = torch.IntTensor(targets) return inputs, targets, input_percentages, target_sizes class AudioDataLoader(DataLoader): def __init__(self, *args, **kwargs): """ Creates a data loader for AudioDatasets. """ super(AudioDataLoader, self).__init__(*args, **kwargs) self.collate_fn = _collate_fn class BucketingSampler(Sampler): def __init__(self, data_source, batch_size=1): """ Samples batches assuming they are in order of size to batch similarly sized samples together. """ super(BucketingSampler, self).__init__(data_source) self.data_source = data_source ids = list(range(0, len(data_source))) self.bins = [ids[i:i + batch_size] for i in range(0, len(ids), batch_size)] def __iter__(self): for ids in self.bins: np.random.shuffle(ids) yield ids def __len__(self): return len(self.bins) def shuffle(self, epoch): np.random.shuffle(self.bins) class DistributedBucketingSampler(Sampler): def __init__(self, data_source, batch_size=1, num_replicas=None, rank=None): """ Samples batches assuming they are in order of size to batch similarly sized samples together. """ super(DistributedBucketingSampler, self).__init__(data_source) if num_replicas is None: num_replicas = get_world_size() if rank is None: rank = get_rank() self.data_source = data_source self.ids = list(range(0, len(data_source))) self.batch_size = batch_size self.bins = [self.ids[i:i + batch_size] for i in range(0, len(self.ids), batch_size)] self.num_replicas = num_replicas self.rank = rank self.num_samples = int(math.ceil(len(self.bins) * 1.0 / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas def __iter__(self): offset = self.rank # add extra samples to make it evenly divisible bins = self.bins + self.bins[:(self.total_size - len(self.bins))] assert len(bins) == self.total_size samples = bins[offset::self.num_replicas] # Get every Nth bin, starting from rank return iter(samples) def __len__(self): return self.num_samples def shuffle(self, epoch): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(epoch) bin_ids = list(torch.randperm(len(self.bins), generator=g)) self.bins = [self.bins[i] for i in bin_ids] def get_audio_length(path): output = subprocess.check_output(['soxi -D \"%s\"' % path.strip()], shell=True) return float(output) def audio_with_sox(path, sample_rate, start_time, end_time): """ crop and resample the recording with sox and loads it. """ with NamedTemporaryFile(suffix=".wav") as tar_file: tar_filename = tar_file.name sox_params = "sox \"{}\" -r {} -c 1 -b 16 -e si {} trim {} ={} >/dev/null 2>&1".format(path, sample_rate, tar_filename, start_time, end_time) os.system(sox_params) y = load_audio(tar_filename) return y def augment_audio_with_sox(path, sample_rate, tempo, gain): """ Changes tempo and gain of the recording with sox and loads it. """ with NamedTemporaryFile(suffix=".wav") as augmented_file: augmented_filename = augmented_file.name sox_augment_params = ["tempo", "{:.3f}".format(tempo), "gain", "{:.3f}".format(gain)] sox_params = "sox \"{}\" -r {} -c 1 -b 16 -e si {} {} >/dev/null 2>&1".format(path, sample_rate, augmented_filename, " ".join(sox_augment_params)) os.system(sox_params) y = load_audio(augmented_filename) return y # original tempo_range=(0.85,1.15) # original gain_range=(-6,8) def load_randomly_augmented_audio(path, sample_rate=16000, tempo_range=(0.85,1.15), gain_range=(-6, 8)): """ Picks tempo and gain uniformly, applies it to the utterance by using sox utility. Returns the augmented utterance. """ low_tempo, high_tempo = tempo_range tempo_value = np.random.uniform(low=low_tempo, high=high_tempo) low_gain, high_gain = gain_range gain_value = np.random.uniform(low=low_gain, high=high_gain) audio = augment_audio_with_sox(path=path, sample_rate=sample_rate, tempo=tempo_value, gain=gain_value) return audio
39.149051
127
0.631524
[ "MIT" ]
ShuanDeMorian/deepspeech.pytorch
data/data_loader.py
14,446
Python
# -*- coding: utf8 -*- def filter_event(event, happening_before): """Check if the following keys are present. These keys only show up when using the API. If fetching from the iCal, JSON, or RSS feeds it will just compare the dates """ status = True visibility = True actions = True if 'status' in event: status = event['status'] == 'upcoming' if 'visibility' in event: visibility = event['visibility'] == 'public' if 'self' in event: actions = 'announce' not in event['self']['actions'] return (status and visibility and actions and event['time'] < happening_before)
28.304348
60
0.6298
[ "MIT" ]
OpenTwinCities/site_bot
app/Meetup/Filter.py
651
Python
import csv from pathlib import Path import torch import pandas import numpy as np from utils import peek, load_json, dump_json from .module import ContrastiveModule from mps import distributed as du from save import format_rows def get_penultimates(keys): penultimates = {} for key in keys: view = key[:key.find('_')] # get dataset+model name layer_name = key[key.find('_') + 1:] if view not in penultimates: penultimates[view] = view + '_' + layer_name elif layer_name > penultimates[view]: penultimates[view] = view + '_' + layer_name keys = sorted(list(penultimates.keys())) return [penultimates[k] for k in keys] def get_optimizer(params, lr=1e-3): optimizer = torch.optim.AdamW( params, lr=lr, betas=(0.9, 0.999), eps=1e-6, amsgrad=True, ) return optimizer def set_lr(optimizer, lr): for param in optimizer.param_groups: param['lr'] = lr return optimizer def lr_func_linear(current_step, num_training_steps, num_warmup_steps=3): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) return max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))) def update_lr(optimizer, epoch, num_epochs, base_lr=1e-3, num_warmup_steps=3): lr = lr_func_linear(epoch + 1, num_epochs + 1, num_warmup_steps) * base_lr optimizer = set_lr(optimizer, lr) return optimizer, lr class Contrastive: def __init__(self, num_epochs=1, device='cpu', base_lr=1e-4, num_warmup_steps=3, distributed=False): self.num_epochs = num_epochs self.device = device self.base_lr = base_lr self.num_warmup_steps = num_warmup_steps self.distributed = distributed self.epoch = 0 # sizes = self.get_sizes(train) sizes = self.default_sizes self.model = ContrastiveModule(*sizes, use_global_batch=distributed) self.model = self.model.to(self.device) def init(self, clustering_combinations, candidates): pass @property def default_sizes(self): # video (slowfast) : 2304, audio (VGGish) : 128 return [2304, 128] def get_sizes(self, train): class_data = peek(train) row = class_data[0] penultimates = get_penultimates(list(row['features'].keys())) return [row['features'][k].shape[-1] for k in penultimates] def get_feature_names(self, train): class_data = peek(train) row = peek(class_data) return sorted(list(row.keys())) def train_batch(self, batch, optimizer): moved = [] for feature in batch: moved.append(feature.to(self.device)) loss, acc = self.model(*moved) loss.backward() if self.distributed: self.model.average_gradient() optimizer.step() return loss.item(), acc.item() def _get_features(self, batch): unique_ids = pandas.Series(batch['idx']).drop_duplicates().index.tolist() filenames = [batch['filename'][idx] for idx in unique_ids] ids = [batch['idx'][idx] for idx in unique_ids] shard_names = [batch['shard_name'][idx] for idx in unique_ids] metas = [{'id': idx, 'filename': filename, 'shard_name': shard_name} for idx, filename, shard_name in zip(ids, filenames, shard_names)] video_features = batch['SLOWFAST_8x8_R50/kinetics-400']['layer_4'] audio_features = batch['VGGish/YouTube-8M']['layer_4'] unique_ids = torch.Tensor(unique_ids).long() video_features = video_features.index_select(dim=0, index=unique_ids) audio_features = audio_features.index_select(dim=0, index=unique_ids) return metas, [video_features, audio_features] def get_features(self, batch): metas, [video_features, audio_features] = self._get_features(batch) if self.distributed: i = du.get_rank() total = du.get_world_size() metas = metas[i::total] video_features = video_features[i::total] audio_features = audio_features[i::total] return metas, [video_features, audio_features] def train(self, args, path, dataloader, log_every=1, verbose=True): self.model.train() optimizer = get_optimizer(self.model.parameters(), self.base_lr) for epoch in range(self.epoch, self.num_epochs): optimizer, lr = update_lr(optimizer, epoch, self.num_epochs, self.base_lr, self.num_warmup_steps) epoch_loss = [] epoch_acc = [] pbar = dataloader for count, batch in enumerate(pbar): _, features = self.get_features(batch) loss, acc = self.train_batch(features, optimizer) epoch_loss.append(loss) epoch_acc.append(acc) if verbose and count % log_every == 0: print("(node {}) training epoch ({}/{}) iter ({}/{}) (lr: {:04f}, loss: {:04f}, acc: {:04f})".format( du.get_rank(), epoch, self.num_epochs, count, len(dataloader), lr, loss, acc)) epoch_loss = np.array(epoch_loss).mean() epoch_acc = np.array(epoch_acc).mean() if verbose: print("(node {}) epoch ({}/{}) done (lr: {:04f}, loss: {:04f}, acc: {:04f})".format( du.get_rank(), epoch, self.num_epochs, lr, epoch_loss, epoch_acc)) self.epoch = epoch self.save_cache(args, path, epoch, verbose) return def get_cache_path_run(self, args, epoch): cache_dir = args.data.output.path.parent / 'caches' cache_dir.mkdir(parents=True, exist_ok=True) pid = args.parent_pid rank = args.node_rank i = args.chunk_num name = "contrastive_model_cache_epoch_{}_{}_{}_{}.pkl".format(epoch, pid, rank, i) path = str(cache_dir / name) key_name = "contrastive_model_cache_epoch_{}_{}_{}_{}.json".format(epoch, pid, rank, i) key_path = str(cache_dir / key_name) return path, key_path def get_cache_path_load(self, args, path, epoch): cache_dir = args.data.output.path.parent / 'caches' cache_dir.mkdir(parents=True, exist_ok=True) keys = list(cache_dir.glob("contrastive_model_cache_epoch_{}_*.json".format(epoch))) if len(keys) == 0: return None keys = {p.stem: set(load_json(p)) for p in keys} path = set([Path(p).stem for p in path]) intersections = [(k, len(v & path)) for k, v in keys.items() if len(path - v) == 0] if len(intersections) == 0: return None key = max(intersections, key=lambda x: x[1])[0] path = cache_dir / key path = path.parent / (path.stem + '.pkl') return path def save_cache(self, args, chunks, epoch, verbose=True): path, key_path = self.get_cache_path_run(args, epoch) dt = { 'epoch': self.epoch, 'base_lr': self.base_lr, 'model': self.model.state_dict() } if verbose: print("saved cache file: {}".format(Path(path).stem)) torch.save(dt, path) keys = [Path(p).stem for p in chunks] dump_json(keys, key_path) def load_cache(self, args, path, epoch): path = self.get_cache_path_load(args, path, epoch) assert path is not None, 'no cache file' dt = torch.load(path) self.epoch = dt['epoch'] self.base_lr = dt['base_lr'] self.model.load_state_dict(dt['model']) def infer_batch(self, batch): moved = [] for feature in batch: moved.append(feature.to(self.device)) logits = self.model.infer(*moved) return logits.detach().cpu() def infer(self, args, dataloader, json_metas, subset_size, log_every=1, verbose=True): self.model.eval() with torch.no_grad(): logits, filename_ids = self._infer(args, dataloader, json_metas, log_every, verbose) if subset_size > logits.shape[0]: subset_size = logits.shape[0] scores, ids = logits.topk(subset_size, sorted=True) return scores, ids, filename_ids def _infer(self, args, dataloader, json_metas, log_every=1, verbose=True): logits = [] pbar = dataloader metas = [] for count, batch in enumerate(pbar): batch_metas, features = self.get_features(batch) logit = self.infer_batch(features) logits.append(logit) metas.extend(batch_metas) if verbose and count % log_every == 0: print("inference iter ({}/{}) saving caches".format(count, len(dataloader))) logits = torch.cat(logits, dim=0) self.save_inference(args, logits, metas, json_metas) logits = [] metas = [] if len(metas) > 0: logits = torch.cat(logits, dim=0) self.save_inference(args, logits, metas, json_metas) print("done: inference iter ({}/{}) saving caches".format(count, len(dataloader))) return logits, metas def save_inference(self, args, logits, metas, json_metas): cache_dir = args.data.output.path.parent / 'caches' cache_dir.mkdir(parents=True, exist_ok=True) pid = args.parent_pid local_rank = du.get_rank() output_name = Path(args.data.output.path).stem name = "{}_contrastive_inferred_cache_{}_{}.csv".format(output_name, pid, local_rank) scores = logits.numpy().tolist() rows = [{'score': score, **v} for score, v in zip(scores, metas)] lines = format_rows(rows, json_metas, sharded_meta=True, headers=['score', 'shard_name', 'filename', 'id', 'segment']) print("saving cache to {}".format(cache_dir / name)) with open(cache_dir / name, 'a+') as f: writer = csv.writer(f) for line in lines: writer.writerow(line)
39.692607
121
0.605921
[ "MIT" ]
JiwanChung/acav100m
subset_selection/code/measures/contrastive/contrastive.py
10,201
Python
#!/usr/bin/env python3 # Copyright (c) 2015-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test pricecoind with different proxy configuration. Test plan: - Start pricecoind's with different proxy configurations - Use addnode to initiate connections - Verify that proxies are connected to, and the right connection command is given - Proxy configurations to test on pricecoind side: - `-proxy` (proxy everything) - `-onion` (proxy just onions) - `-proxyrandomize` Circuit randomization - Proxy configurations to test on proxy side, - support no authentication (other proxy) - support no authentication + user/pass authentication (Tor) - proxy on IPv6 - Create various proxies (as threads) - Create pricecoinds that connect to them - Manipulate the pricecoinds using addnode (onetry) an observe effects addnode connect to IPv4 addnode connect to IPv6 addnode connect to onion addnode connect to generic DNS name """ import socket import os from test_framework.socks5 import Socks5Configuration, Socks5Command, Socks5Server, AddressType from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( PORT_MIN, PORT_RANGE, assert_equal, ) from test_framework.netutil import test_ipv6_local RANGE_BEGIN = PORT_MIN + 2 * PORT_RANGE # Start after p2p and rpc ports class ProxyTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 4 def setup_nodes(self): self.have_ipv6 = test_ipv6_local() # Create two proxies on different ports # ... one unauthenticated self.conf1 = Socks5Configuration() self.conf1.addr = ('127.0.0.1', RANGE_BEGIN + (os.getpid() % 1000)) self.conf1.unauth = True self.conf1.auth = False # ... one supporting authenticated and unauthenticated (Tor) self.conf2 = Socks5Configuration() self.conf2.addr = ('127.0.0.1', RANGE_BEGIN + 1000 + (os.getpid() % 1000)) self.conf2.unauth = True self.conf2.auth = True if self.have_ipv6: # ... one on IPv6 with similar configuration self.conf3 = Socks5Configuration() self.conf3.af = socket.AF_INET6 self.conf3.addr = ('::1', RANGE_BEGIN + 2000 + (os.getpid() % 1000)) self.conf3.unauth = True self.conf3.auth = True else: self.log.warning("Testing without local IPv6 support") self.serv1 = Socks5Server(self.conf1) self.serv1.start() self.serv2 = Socks5Server(self.conf2) self.serv2.start() if self.have_ipv6: self.serv3 = Socks5Server(self.conf3) self.serv3.start() # Note: proxies are not used to connect to local nodes # this is because the proxy to use is based on CService.GetNetwork(), which return NET_UNROUTABLE for localhost args = [ ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-proxyrandomize=1'], ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-onion=%s:%i' % (self.conf2.addr),'-proxyrandomize=0'], ['-listen', '-proxy=%s:%i' % (self.conf2.addr),'-proxyrandomize=1'], [] ] if self.have_ipv6: args[3] = ['-listen', '-proxy=[%s]:%i' % (self.conf3.addr),'-proxyrandomize=0', '-noonion'] self.add_nodes(self.num_nodes, extra_args=args) self.start_nodes() def node_test(self, node, proxies, auth, test_onion=True): rv = [] # Test: outgoing IPv4 connection through node node.addnode("15.61.23.23:1234", "onetry") cmd = proxies[0].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: bitcoind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"15.61.23.23") assert_equal(cmd.port, 1234) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if self.have_ipv6: # Test: outgoing IPv6 connection through node node.addnode("[1233:3432:2434:2343:3234:2345:6546:4534]:5443", "onetry") cmd = proxies[1].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: bitcoind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"1233:3432:2434:2343:3234:2345:6546:4534") assert_equal(cmd.port, 5443) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if test_onion: # Test: outgoing onion connection through node node.addnode("bitcoinostk4e4re.onion:9333", "onetry") cmd = proxies[2].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"bitcoinostk4e4re.onion") assert_equal(cmd.port, 9333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) # Test: outgoing DNS name connection through node node.addnode("node.noumenon:9333", "onetry") cmd = proxies[3].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"node.noumenon") assert_equal(cmd.port, 9333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) return rv def run_test(self): # basic -proxy self.node_test(self.nodes[0], [self.serv1, self.serv1, self.serv1, self.serv1], False) # -proxy plus -onion self.node_test(self.nodes[1], [self.serv1, self.serv1, self.serv2, self.serv1], False) # -proxy plus -onion, -proxyrandomize rv = self.node_test(self.nodes[2], [self.serv2, self.serv2, self.serv2, self.serv2], True) # Check that credentials as used for -proxyrandomize connections are unique credentials = set((x.username,x.password) for x in rv) assert_equal(len(credentials), len(rv)) if self.have_ipv6: # proxy on IPv6 localhost self.node_test(self.nodes[3], [self.serv3, self.serv3, self.serv3, self.serv3], False, False) def networks_dict(d): r = {} for x in d['networks']: r[x['name']] = x return r # test RPC getnetworkinfo n0 = networks_dict(self.nodes[0].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n0[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n0[net]['proxy_randomize_credentials'], True) assert_equal(n0['onion']['reachable'], True) n1 = networks_dict(self.nodes[1].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n1[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n1[net]['proxy_randomize_credentials'], False) assert_equal(n1['onion']['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n1['onion']['proxy_randomize_credentials'], False) assert_equal(n1['onion']['reachable'], True) n2 = networks_dict(self.nodes[2].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n2[net]['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n2[net]['proxy_randomize_credentials'], True) assert_equal(n2['onion']['reachable'], True) if self.have_ipv6: n3 = networks_dict(self.nodes[3].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n3[net]['proxy'], '[%s]:%i' % (self.conf3.addr)) assert_equal(n3[net]['proxy_randomize_credentials'], False) assert_equal(n3['onion']['reachable'], False) if __name__ == '__main__': ProxyTest().main()
41.366337
121
0.625299
[ "MIT" ]
barrystyle/Pricecoin
test/functional/feature_proxy.py
8,356
Python
# -*- coding: utf-8 -*- """ Copyright (c) 2021 Showa Denko Materials co., Ltd. All rights reserved. This software is for non-profit use only. THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THIS SOFTWARE OR THE USE OR OTHER DEALINGS IN THIS SOFTWARE. """ import time import numpy as np from GPyOpt.core.task.objective import Objective class MultiObjective(Objective): """ Class to handle problems with multiple objective functions. param func: objective function. param n_obj: number of objective functions param num_cores: number of cores to use in the process of evaluating the objective (default, 1). param objective_name: name of the objective function. param batch_type: Type of batch used. Only 'synchronous' evaluations are possible at the moment. param space: Not in use. """ def __init__(self, func, n_obj, num_cores = 1, objective_name = 'no_name', batch_type = 'synchronous', space = None): self.func = func self.n_procs = num_cores self.num_evaluations = 0 self.space = space self.objective_name = objective_name self.n_obj = n_obj def evaluate(self, x): """ Performs the evaluation of the objective at x. """ f_evals, cost_evals = self._eval_func(x) return f_evals, cost_evals def _eval_func(self, x): """ Performs sequential evaluations of the function at x (single location or batch). The computing time of each evaluation is also provided. """ cost_evals = [] f_evals = np.empty(shape=[0, self.n_obj]) for i in range(x.shape[0]): st_time = time.time() rlt = self.func(np.atleast_2d(x[i])) f_evals = np.vstack([f_evals,rlt]) cost_evals += [time.time()-st_time] return f_evals, cost_evals
34.875
121
0.673835
[ "MIT", "Unlicense" ]
wilsongis/3DP_Experiments
Samples/codes/matopt_review/add_objective.py
2,232
Python
""" Given a rod of length n inches and an array of prices that includes prices of all pieces of size smaller than n. Determine the maximum value obtainable by cutting up the rod and selling the pieces. For example, if the length of the rod is 8 and the values of different pieces are given as the following, then the maximum obtainable value is 22 (by cutting in two pieces of lengths 2 and 6) length | 1 2 3 4 5 6 7 8 -------------------------------------------- price | 1 5 8 9 10 17 17 20 In unbounded knapsack their is only one change compared to 0/1 knapsack i.e ****dp[i][j-wt[n-1]]**** wt arr => len arr val arr => price arr W => L """ def RodCutting(larr, parr, L): n = len(larr) dp = [[0 for j in range(L+1)]for i in range(n+1)] for i in range(1, n+1): for j in range(1, L+1): if larr[i-1] <= j: dp[i][j] = max(parr[i-1]+dp[i][j-larr[i-1]], dp[i-1][j]) else: dp[i][j] = dp[i-1][j] print(dp) return dp[n][L] print(RodCutting([1, 2, 3, 4, 5, 6, 7, 8], [9, 5, 8, 9, 10, 17, 17, 20], 8))
27.463415
86
0.55595
[ "MIT" ]
Saicharan67/Interview-Coding-Questions
DynamicProgramming/UnBoundedKnapSack/RodCutting.py
1,126
Python
"""Classes for validating data passed to the annotations API.""" import copy import colander from dateutil.parser import parse from pyramid import i18n from h.schemas.base import JSONSchema, ValidationError from h.search.query import LIMIT_DEFAULT, LIMIT_MAX, OFFSET_MAX from h.search.util import wildcard_uri_is_valid from h.util import document_claims _ = i18n.TranslationStringFactory(__package__) def _validate_wildcard_uri(node, value): """Raise if wildcards are within the domain of the uri.""" for val in value: if not wildcard_uri_is_valid(val): raise colander.Invalid( node, """Wildcards (_ and *) are not permitted within the domain of wildcard_uri""", ) class AnnotationSchema(JSONSchema): """Validate an annotation object.""" schema = { "type": "object", "properties": { "document": { "type": "object", "properties": { "dc": { "type": "object", "properties": { "identifier": {"type": "array", "items": {"type": "string"}} }, }, "highwire": { "type": "object", "properties": { "doi": {"type": "array", "items": {"type": "string"}}, "pdf_url": {"type": "array", "items": {"type": "string"}}, }, }, "link": { "type": "array", "items": { "type": "object", "properties": { "href": {"type": "string"}, "type": {"type": "string"}, }, "required": ["href"], }, }, }, }, "group": {"type": "string"}, "permissions": { "title": "Permissions", "description": "Annotation action access control list", "type": "object", "patternProperties": { "^(admin|delete|read|update)$": { "type": "array", "items": {"type": "string", "pattern": "^(acct:|group:).+$"}, } }, "required": ["read"], }, "references": {"type": "array", "items": {"type": "string"}}, "tags": {"type": "array", "items": {"type": "string"}}, "target": { "type": "array", "items": { "type": "object", "properties": { "selector": { "type": "array", "items": { "type": "object", "properties": {"type": {"type": "string"}}, "required": ["type"], }, } }, }, }, "text": {"type": "string"}, "uri": {"type": "string"}, }, } class CreateAnnotationSchema: """Validate the POSTed data of a create annotation request.""" def __init__(self, request): self.structure = AnnotationSchema() self.request = request def validate(self, data): appstruct = self.structure.validate(data) new_appstruct = {} _remove_protected_fields(appstruct) new_appstruct["userid"] = self.request.authenticated_userid uri = appstruct.pop("uri", "").strip() if not uri: raise ValidationError("uri: " + _("'uri' is a required property")) new_appstruct["target_uri"] = uri new_appstruct["text"] = appstruct.pop("text", "") new_appstruct["tags"] = appstruct.pop("tags", []) new_appstruct["groupid"] = appstruct.pop("group", "__world__") new_appstruct["references"] = appstruct.pop("references", []) if "permissions" in appstruct: new_appstruct["shared"] = _shared( appstruct.pop("permissions"), new_appstruct["groupid"] ) else: new_appstruct["shared"] = False if "target" in appstruct: new_appstruct["target_selectors"] = _target_selectors( appstruct.pop("target") ) # Replies always get the same groupid as their parent. The parent's # groupid is added to the reply annotation later by the storage code. # Here we just delete any group sent by the client from replies. if new_appstruct["references"] and "groupid" in new_appstruct: del new_appstruct["groupid"] new_appstruct["document"] = _document( appstruct.pop("document", {}), new_appstruct["target_uri"] ) new_appstruct["extra"] = appstruct return new_appstruct class UpdateAnnotationSchema: """Validate the POSTed data of an update annotation request.""" def __init__(self, request, existing_target_uri, groupid): self.request = request self.existing_target_uri = existing_target_uri self.groupid = groupid self.structure = AnnotationSchema() def validate(self, data): appstruct = self.structure.validate(data) new_appstruct = {} _remove_protected_fields(appstruct) # Some fields are not allowed to be changed in annotation updates. for key in ["group", "groupid", "userid", "references"]: appstruct.pop(key, "") # Fields that are allowed to be updated and that have a different name # internally than in the public API. if "uri" in appstruct: new_uri = appstruct.pop("uri").strip() if not new_uri: raise ValidationError("uri: " + _("'uri' is a required property")) new_appstruct["target_uri"] = new_uri if "permissions" in appstruct: new_appstruct["shared"] = _shared( appstruct.pop("permissions"), self.groupid ) if "target" in appstruct: new_appstruct["target_selectors"] = _target_selectors( appstruct.pop("target") ) # Fields that are allowed to be updated and that have the same internal # and external name. for key in ["text", "tags"]: if key in appstruct: new_appstruct[key] = appstruct.pop(key) if "document" in appstruct: new_appstruct["document"] = _document( appstruct.pop("document"), new_appstruct.get("target_uri", self.existing_target_uri), ) new_appstruct["extra"] = appstruct return new_appstruct def _document(document, claimant): """ Return document meta and document URI data from the given document dict. Transforms the "document" dict that the client posts into a convenient format for creating DocumentURI and DocumentMeta objects later. """ document = document or {} document_uri_dicts = document_claims.document_uris_from_data( copy.deepcopy(document), claimant=claimant ) document_meta_dicts = document_claims.document_metas_from_data( copy.deepcopy(document), claimant=claimant ) return { "document_uri_dicts": document_uri_dicts, "document_meta_dicts": document_meta_dicts, } def _format_jsonschema_error(error): """Format a :py:class:`jsonschema.ValidationError` as a string.""" if error.path: dotted_path = ".".join([str(c) for c in error.path]) return "{path}: {message}".format(path=dotted_path, message=error.message) return error.message def _remove_protected_fields(appstruct): # Some fields are not to be set by the user, ignore them. for field in [ "created", "updated", "user", "id", "links", "flagged", "hidden", "moderation", "user_info", ]: appstruct.pop(field, None) def _shared(permissions, groupid): """ Return True if the given permissions object represents shared permissions. Return False otherwise. Reduces the client's complex permissions dict to a simple shared boolean. :param permissions: the permissions dict sent by the client in an annotation create or update request :type permissions: dict :param groupid: the groupid of the annotation that the permissions dict applies to :type groupid: unicode """ return permissions["read"] == ["group:{id}".format(id=groupid)] def _target_selectors(targets): """ Return the target selectors from the given target list. Transforms the target lists that the client sends in annotation create and update requests into our internal target_selectors format. """ # Any targets other than the first in the list are discarded. # Any fields of the target other than 'selector' are discarded. if targets and "selector" in targets[0]: return targets[0]["selector"] return [] class SearchParamsSchema(colander.Schema): _separate_replies = colander.SchemaNode( colander.Boolean(), missing=False, description="Return a separate set of annotations and their replies.", ) sort = colander.SchemaNode( colander.String(), validator=colander.OneOf(["created", "updated", "group", "id", "user"]), missing="updated", description="The field by which annotations should be sorted.", ) search_after = colander.SchemaNode( colander.String(), missing=colander.drop, description="""Returns results after the annotation who's sort field has this value. If specifying a date use the format yyyy-MM-dd'T'HH:mm:ss.SSX or time in miliseconds since the epoch. This is used for iteration through large collections of results.""", ) limit = colander.SchemaNode( colander.Integer(), validator=colander.Range(min=0, max=LIMIT_MAX), missing=LIMIT_DEFAULT, description="The maximum number of annotations to return.", ) order = colander.SchemaNode( colander.String(), validator=colander.OneOf(["asc", "desc"]), missing="desc", description="The direction of sort.", ) offset = colander.SchemaNode( colander.Integer(), validator=colander.Range(min=0, max=OFFSET_MAX), missing=0, description="""The number of initial annotations to skip. This is used for pagination. Not suitable for paging through thousands of annotations-search_after should be used instead.""", ) group = colander.SchemaNode( colander.String(), missing=colander.drop, description="Limit the results to this group of annotations.", ) quote = colander.SchemaNode( colander.Sequence(), colander.SchemaNode(colander.String()), missing=colander.drop, description="""Limit the results to annotations that contain this text inside the text that was annotated.""", ) references = colander.SchemaNode( colander.Sequence(), colander.SchemaNode(colander.String()), missing=colander.drop, description="""Returns annotations that are replies to this parent annotation id.""", ) tag = colander.SchemaNode( colander.Sequence(), colander.SchemaNode(colander.String()), missing=colander.drop, description="Limit the results to annotations tagged with the specified value.", ) tags = colander.SchemaNode( colander.Sequence(), colander.SchemaNode(colander.String()), missing=colander.drop, description="Alias of tag.", ) text = colander.SchemaNode( colander.Sequence(), colander.SchemaNode(colander.String()), missing=colander.drop, description="Limit the results to annotations that contain this text in their textual body.", ) uri = colander.SchemaNode( colander.Sequence(), colander.SchemaNode(colander.String()), missing=colander.drop, description="""Limit the results to annotations matching the specific URI or equivalent URIs. URI can be a URL (a web page address) or a URN representing another kind of resource such as DOI (Digital Object Identifier) or a PDF fingerprint.""", ) uri_parts = colander.SchemaNode( colander.Sequence(), colander.SchemaNode(colander.String()), name="uri.parts", missing=colander.drop, description="""Limit the results to annotations with the given keyword appearing in the URL.""", ) url = colander.SchemaNode( colander.Sequence(), colander.SchemaNode(colander.String()), missing=colander.drop, description="Alias of uri.", ) wildcard_uri = colander.SchemaNode( colander.Sequence(), colander.SchemaNode(colander.String()), validator=_validate_wildcard_uri, missing=colander.drop, description=""" Limit the results to annotations matching the wildcard URI. URI can be a URL (a web page address) or a URN representing another kind of resource such as DOI (Digital Object Identifier) or a PDF fingerprint. `*` will match any character sequence (including an empty one), and a `_` will match any single character. Wildcards are only permitted within the path and query parts of the URI. Escaping wildcards is not supported. Examples of valid uris":" `http://foo.com/*` `urn:x-pdf:*` `file://localhost/_bc.pdf` Examples of invalid uris":" `*foo.com` `u_n:*` `file://*` `http://foo.com*` """, ) any = colander.SchemaNode( colander.Sequence(), colander.SchemaNode(colander.String()), missing=colander.drop, description="""Limit the results to annotations whose quote, tags, text or url fields contain this keyword.""", ) user = colander.SchemaNode( colander.String(), missing=colander.drop, description="Limit the results to annotations made by the specified user.", ) def validator(self, node, cstruct): sort = cstruct["sort"] search_after = cstruct.get("search_after", None) if search_after: if sort in ["updated", "created"] and not self._date_is_parsable( search_after ): raise colander.Invalid( node, """search_after must be a parsable date in the form yyyy-MM-dd'T'HH:mm:ss.SSX or time in miliseconds since the epoch.""", ) # offset must be set to 0 if search_after is specified. cstruct["offset"] = 0 def _date_is_parsable(self, value): """Return True if date is parsable and False otherwise.""" # Dates like "2017" can also be cast as floats so if a number is less # than 9999 it is assumed to be a year and not ms since the epoch. try: if float(value) < 9999: raise ValueError("This is not in the form ms since the epoch.") except ValueError: try: parse(value) except ValueError: return False return True
35.168122
101
0.562488
[ "BSD-2-Clause" ]
bibliotechie/h
h/schemas/annotation.py
16,107
Python
import tensorflow as tf import tensorflow_zero_out import numpy as np import os # Create a model using low-level tf.* APIs class ZeroOut(tf.Module): @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.int32)]) def __call__(self, x): return tensorflow_zero_out.zero_out(x) model = ZeroOut() # (ro run your model) result = Squared(5.0) # This prints "25.0" # (to generate a SavedModel) tf.saved_model.save(model, "saved_model_tf_dir") concrete_func = model.__call__.get_concrete_function() # Convert the model. # Notes that for the versions earlier than TensorFlow 2.7, the # from_concrete_functions API is able to work when there is only the first # argument given: # > converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func]) converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func], ) tflite_model = converter.convert() # Save the model. with open('model.tflite', 'wb') as f: f.write(tflite_model)
38
80
0.722222
[ "Apache-2.0" ]
yuko29/TF_custom_op
tensorflow_zero_out/python/ops/convert_to_tflite.py
1,026
Python
# -*- coding: utf-8 -*- # # Author: oldj # Email: [email protected] # Blog: http://oldj.net # import os import re import StringIO from PIL import Image from PIL import ImageDraw import pygame g_script_folder = os.path.dirname(os.path.abspath(__file__)) g_fonts_folder = os.path.join(g_script_folder, "fonts") g_re_first_word = re.compile((u"" + u"(%(prefix)s+\S%(postfix)s+)" # 标点 + u"|(%(prefix)s*\w+%(postfix)s*)" # 单词 + u"|(%(prefix)s+\S)|(\S%(postfix)s+)" # 标点 + u"|(\d+%%)" # 百分数 ) % { "prefix": u"['\"\(<\[\{‘“(《「『]", "postfix": u"[:'\"\)>\]\}:’”)》」』,;\.\?!,、;。?!]", }) pygame.init() def getFontForPyGame(font_name="wqy-zenhei.ttc", font_size=14): return pygame.font.Font(os.path.join(g_fonts_folder, font_name), font_size) def makeConfig(cfg=None): if not cfg or type(cfg) != dict: cfg = {} default_cfg = { "width": 440, # px "padding": (15, 18, 20, 18), "line-height": 20, #px "title-line-height": 32, #px "font-size": 14, # px "title-font-size": 24, # px "font-family": "wqy-zenhei.ttc", # "font-family": "msyh.ttf", "font-color": (0, 0, 0), "font-antialiasing": True, # 字体是否反锯齿 "background-color": (255, 255, 255), "border-size": 1, "border-color": (192, 192, 192), "copyright": u"本图文由 txt2.im 自动生成,但不代表 txt2.im 赞同其内容或立场。", "copyright-center": False, # 版权信息居中显示,如为 False 则居左显示 "first-line-as-title": True, "break-word": False, } default_cfg.update(cfg) return default_cfg def makeLineToWordsList(line, break_word=False): u"""将一行文本转为单词列表""" if break_word: return [c for c in line] lst = [] while line: ro = g_re_first_word.match(line) end = 1 if not ro else ro.end() lst.append(line[:end]) line = line[end:] return lst def makeLongLineToLines(long_line, start_x, start_y, width, line_height, font, cn_char_width=0): u"""将一个长行分成多个可显示的短行""" txt = long_line # txt = u"测试汉字abc123" # txt = txt.decode("utf-8") if not txt: return [None] words = makeLineToWordsList(txt) lines = [] if not cn_char_width: cn_char_width, h = font.size(u"汉") avg_char_per_line = width / cn_char_width if avg_char_per_line <= 1: avg_char_per_line = 1 line_x = start_x line_y = start_y while words: tmp_words = words[:avg_char_per_line] tmp_ln = "".join(tmp_words) w, h = font.size(tmp_ln) wc = len(tmp_words) while w < width and wc < len(words): wc += 1 tmp_words = words[:wc] tmp_ln = "".join(tmp_words) w, h = font.size(tmp_ln) while w > width and len(tmp_words) > 1: tmp_words = tmp_words[:-1] tmp_ln = "".join(tmp_words) w, h = font.size(tmp_ln) if w > width and len(tmp_words) == 1: # 处理一个长单词或长数字 line_y = makeLongWordToLines( tmp_words[0], line_x, line_y, width, line_height, font, lines ) words = words[len(tmp_words):] continue line = { "x": line_x, "y": line_y, "text": tmp_ln, "font": font, } line_y += line_height words = words[len(tmp_words):] lines.append(line) if len(lines) >= 1: # 去掉长行的第二行开始的行首的空白字符 while len(words) > 0 and not words[0].strip(): words = words[1:] return lines def makeLongWordToLines(long_word, line_x, line_y, width, line_height, font, lines): if not long_word: return line_y c = long_word[0] char_width, char_height = font.size(c) default_char_num_per_line = width / char_width while long_word: tmp_ln = long_word[:default_char_num_per_line] w, h = font.size(tmp_ln) l = len(tmp_ln) while w < width and l < len(long_word): l += 1 tmp_ln = long_word[:l] w, h = font.size(tmp_ln) while w > width and len(tmp_ln) > 1: tmp_ln = tmp_ln[:-1] w, h = font.size(tmp_ln) l = len(tmp_ln) long_word = long_word[l:] line = { "x": line_x, "y": line_y, "text": tmp_ln, "font": font, } line_y += line_height lines.append(line) return line_y def makeMatrix(txt, font, title_font, cfg): width = cfg["width"] data = { "width": width, "height": 0, "lines": [], } a = txt.split("\n") cur_x = cfg["padding"][3] cur_y = cfg["padding"][0] cn_char_width, h = font.size(u"汉") for ln_idx, ln in enumerate(a): ln = ln.rstrip() if ln_idx == 0 and cfg["first-line-as-title"]: f = title_font line_height = cfg["title-line-height"] else: f = font line_height = cfg["line-height"] current_width = width - cur_x - cfg["padding"][1] lines = makeLongLineToLines(ln, cur_x, cur_y, current_width, line_height, f, cn_char_width=cn_char_width) cur_y += line_height * len(lines) data["lines"].extend(lines) data["height"] = cur_y + cfg["padding"][2] return data def makeImage(data, cfg): u""" """ width, height = data["width"], data["height"] if cfg["copyright"]: height += 48 im = Image.new("RGB", (width, height), cfg["background-color"]) dr = ImageDraw.Draw(im) for ln_idx, line in enumerate(data["lines"]): __makeLine(im, line, cfg) # dr.text((line["x"], line["y"]), line["text"], font=font, fill=cfg["font-color"]) # 缩放 # im = im.resize((width / 2, height / 2), Image.ANTIALIAS) drawBorder(im, dr, cfg) drawCopyright(im, dr, cfg) return im def drawCopyright(im, dr, cfg): u"""绘制版权信息""" if not cfg["copyright"]: return font = getFontForPyGame(font_name=cfg["font-family"], font_size=12) rtext = font.render(cfg["copyright"], cfg["font-antialiasing"], (128, 128, 128), cfg["background-color"] ) sio = StringIO.StringIO() pygame.image.save(rtext, sio) sio.seek(0) copyright_im = Image.open(sio) iw, ih = im.size cw, ch = rtext.get_size() padding = cfg["padding"] offset_y = ih - 32 - padding[2] if cfg["copyright-center"]: cx = (iw - cw) / 2 else: cx = cfg["padding"][3] cy = offset_y + 12 dr.line([(padding[3], offset_y), (iw - padding[1], offset_y)], width=1, fill=(192, 192, 192)) im.paste(copyright_im, (cx, cy)) def drawBorder(im, dr, cfg): u"""绘制边框""" if not cfg["border-size"]: return w, h = im.size x, y = w - 1, h - 1 dr.line( [(0, 0), (x, 0), (x, y), (0, y), (0, 0)], width=cfg["border-size"], fill=cfg["border-color"], ) def __makeLine(im, line, cfg): if not line: return sio = StringIO.StringIO() x, y = line["x"], line["y"] text = line["text"] font = line["font"] rtext = font.render(text, cfg["font-antialiasing"], cfg["font-color"], cfg["background-color"]) pygame.image.save(rtext, sio) sio.seek(0) ln_im = Image.open(sio) im.paste(ln_im, (x, y)) def txt2im(txt, outfn, cfg=None, show=False): # print(cfg) cfg = makeConfig(cfg) # print(cfg) font = getFontForPyGame(cfg["font-family"], cfg["font-size"]) title_font = getFontForPyGame(cfg["font-family"], cfg["title-font-size"]) data = makeMatrix(txt, font, title_font, cfg) im = makeImage(data, cfg) im.save(outfn) if os.name == "nt" and show: im.show() def test(): c = open("test.txt", "rb").read().decode("utf-8") txt2im(c, "test.png", show=True) if __name__ == "__main__": test()
24.259146
113
0.544803
[ "Apache-2.0" ]
bopopescu/dockerizeme
hard-gists/9c4d012d6fff059ccea7/snippet.py
8,249
Python
### # (C) Copyright [2019-2020] Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## from simplivity.ovc_client import OVC from simplivity.exceptions import HPESimpliVityException import pprint pp = pprint.PrettyPrinter(indent=4) config = { "ip": "<ovc_ip>", "credentials": { "username": "<username>", "password": "<password>" } } ovc = OVC(config) policies = ovc.policies hosts = ovc.hosts clusters = ovc.omnistack_clusters cluster_groups = ovc.cluster_groups print("\n\nget_all with default params") all_policies = policies.get_all() count = len(all_policies) for policy in all_policies: print(f"{policy}") print(f"{pp.pformat(policy.data)} \n") print(f"Total number of policies : {count}") policy_object = all_policies[0] print("\n\nget_all with filters") all_policies = policies.get_all(filters={'name': policy_object.data["name"]}) count = len(all_policies) for policy in all_policies: print(f"{policy}") print(f"{pp.pformat(policy.data)} \n") print(f"Total number of policies : {count}") print("\n\nget_all with pagination") pagination = policies.get_all(limit=105, pagination=True, page_size=50) end = False while not end: data = pagination.data print("Page size:", len(data["resources"])) print(f"{pp.pformat(data)}") try: pagination.next_page() except HPESimpliVityException: end = True print("\n\nget_by_id") policy = policies.get_by_id(policy_object.data["id"]) print(f"{policy}") print(f"{pp.pformat(policy.data)} \n") print("\n\nget_by_name") policy = policies.get_by_name(policy_object.data["name"]) print(f"{policy}") print(f"{pp.pformat(policy.data)} \n") print("\n\nget_all VMs using this policy") vms = policy.get_vms() print(policy.data) print(f"{policy}") print(f"{pp.pformat(policy.data)} \n") print(f"{pp.pformat(vms)} \n") print("\n\ncreate policy") policy_name = "fixed_frequency_retention_policy" policy = policies.create(policy_name) print(f"{policy}") print(f"{pp.pformat(policy.data)} \n") multiple_rules = [ { "start_time": "14:30", "end_time": "15:30", "application_consistent": False, "frequency": 3, "retention": 5 }, { "frequency": 5, "retention": 6 } ] print("\n\nadd rules to policy") policy.create_rules(multiple_rules) print(f"{policy}") print(f"{pp.pformat(policy.data)} \n") single_rule = { "frequency": 10, "retention": 12 } policy.create_rules(single_rule) print(f"{policy}") print(f"{pp.pformat(policy.data)} \n") print("\n\nget rule") all_rules = policy.data["rules"] for rule in all_rules: rule_obj = policy.get_rule(rule.get('id')) print(f"{pp.pformat(rule_obj)} \n") print("\n\ndelete rule") rule_id = policy.data["rules"][0]['id'] policy.delete_rule(rule_id) print(f"{policy}") print(f"{pp.pformat(policy.data)} \n") print("\n\nsuspend policy on host") host = hosts.get_all()[0] policies.suspend(host) print("\n\nsuspend policy on omnistack_cluster") cluster = clusters.get_all()[0] policies.suspend(cluster) """ cluster_group options works only with setup having MVA, please use below code for setup with MVA cluster_group = cluster_groups.get_all()[0] print(f"{cluster_group}") print(f"{pp.pformat(cluster_group.data)} \n") policies.suspend(cluster_group) """ """ federation options works only with setup NOT having MVA, please use below code for setup without MVA print("\n\nsuspend policy on federation") policies.suspend() """ print("\n\nrename policy") policy.rename(f"renamed_{policy.data['name']}") print(f"{policy}") print(f"{pp.pformat(policy.data)} \n") print("\n\ndelete policy") policy.delete()
26.974194
104
0.702464
[ "Apache-2.0" ]
simplivity/simplivity-python
examples/policies.py
4,181
Python
# Copyright 2014-2016 MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tornado compatibility layer for Motor, an asynchronous MongoDB driver. See "Frameworks" in the Developer Guide. """ import functools import os import tornado.process import warnings from concurrent.futures import ThreadPoolExecutor from tornado import concurrent, gen, ioloop, version as tornado_version from tornado.gen import chain_future, coroutine # For framework interface. from .. import DummySession as Session try: import contextvars except ImportError: contextvars = None CLASS_PREFIX = '' def get_event_loop(): return ioloop.IOLoop.current() def is_event_loop(loop): return isinstance(loop, ioloop.IOLoop) def check_event_loop(loop): if not is_event_loop(loop): raise TypeError( "io_loop must be instance of IOLoop, not %r" % loop) def get_future(loop): return concurrent.Future() if 'MOTOR_MAX_WORKERS' in os.environ: max_workers = int(os.environ['MOTOR_MAX_WORKERS']) else: max_workers = tornado.process.cpu_count() * 5 _EXECUTOR = ThreadPoolExecutor(max_workers=max_workers) def run_on_executor(loop, fn, *args, **kwargs): if contextvars: context = contextvars.copy_context() fn = functools.partial(context.run, fn) return loop.run_in_executor( _EXECUTOR, functools.partial(fn, *args, **kwargs)) def chain_return_value(future, loop, return_value): """Compatible way to return a value in all Pythons. PEP 479, raise StopIteration(value) from a coroutine won't work forever, but "return value" doesn't work in Python 2. Instead, Motor methods that return values resolve a Future with it, and are implemented with callbacks rather than a coroutine internally. """ chained = concurrent.Future() def copy(_future): # Return early if the task was cancelled. if chained.done(): return if _future.exception() is not None: chained.set_exception(_future.exception()) else: chained.set_result(return_value) future.add_done_callback(functools.partial(loop.add_callback, copy)) return chained def is_future(f): return isinstance(f, concurrent.Future) def call_soon(loop, callback, *args, **kwargs): if args or kwargs: loop.add_callback(functools.partial(callback, *args, **kwargs)) else: loop.add_callback(callback) def add_future(loop, future, callback, *args): loop.add_future(future, functools.partial(callback, *args)) def pymongo_class_wrapper(f, pymongo_class): """Executes the coroutine f and wraps its result in a Motor class. See WrapAsync. """ @functools.wraps(f) async def _wrapper(self, *args, **kwargs): result = await f(self, *args, **kwargs) # Don't call isinstance(), not checking subclasses. if result.__class__ == pymongo_class: # Delegate to the current object to wrap the result. return self.wrap(result) else: return result return _wrapper def yieldable(future): warnings.warn( "The yieldable function is deprecated and will be removed in " "Motor 3.0", DeprecationWarning, stacklevel=2) return future def platform_info(): return 'Tornado %s' % (tornado_version,)
27.140845
78
0.704203
[ "Apache-2.0" ]
smurfix/motor
motor/frameworks/tornado/__init__.py
3,854
Python
# -*- coding: utf-8 -*- """Collection of useful http error for the Api""" class JsonApiException(Exception): """Base exception class for unknown errors""" title = "Unknown error" status = "500" source = None def __init__( self, detail, source=None, title=None, status=None, code=None, id_=None, links=None, meta=None, ): """Initialize a jsonapi exception :param dict source: the source of the error :param str detail: the detail of the error """ self.detail = detail self.source = source self.code = code self.id = id_ self.links = links or {} self.meta = meta or {} if title is not None: self.title = title if status is not None: self.status = status def to_dict(self): """Return values of each fields of an jsonapi error""" error_dict = {} for field in ( "status", "source", "title", "detail", "id", "code", "links", "meta", ): if getattr(self, field, None): error_dict.update({field: getattr(self, field)}) return error_dict class BadRequest(JsonApiException): """BadRequest error""" title = "Bad request" status = "400" class InvalidField(BadRequest): """Error to warn that a field specified in fields querystring is not in the requested resource schema""" title = "Invalid fields querystring parameter." source = {"parameter": "fields"} class InvalidInclude(BadRequest): """Error to warn that a field specified in include querystring parameter is not a relationship of the requested resource schema """ title = "Invalid include querystring parameter." source = {"parameter": "include"} class InvalidFilters(BadRequest): """Error to warn that a specified filters in querystring parameter contains errors""" title = "Invalid filters querystring parameter." source = {"parameter": "filters"} class InvalidSort(BadRequest): """Error to warn that a field specified in sort querystring parameter is not in the requested resource schema""" title = "Invalid sort querystring parameter." source = {"parameter": "sort"} class ObjectNotFound(JsonApiException): """Error to warn that an object is not found in a database""" title = "Object not found" status = "404" class RelatedObjectNotFound(ObjectNotFound): """Error to warn that a related object is not found""" title = "Related object not found" class RelationNotFound(JsonApiException): """Error to warn that a relationship is not found on a model""" title = "Relation not found" class InvalidType(JsonApiException): """Error to warn that there is a conflit between resource types""" title = "Invalid type" status = "409" class AccessDenied(JsonApiException): """Throw this error when requested resource owner doesn't match the user of the ticket""" title = "Access denied" status = "403" class InvalidContentType(JsonApiException): """When the request uses a content type the API doesn't understand""" title = "Bad request" status = "415" class InvalidAcceptType(JsonApiException): """When the request expects a content type that the API doesn't support""" title = "Bad request" status = "406"
24.93617
116
0.625711
[ "MIT" ]
Leechael/flapison
flapison/exceptions.py
3,516
Python
import argparse import logging import json import os import tempfile import sys import re import flywheel from .supporting_files import bidsify_flywheel, utils, templates from .supporting_files.project_tree import get_project_tree logging.basicConfig(level=logging.INFO) logger = logging.getLogger('curate-bids') def clear_meta_info(context, template): if 'info' in context and template.namespace in context['info']: del context['info'][template.namespace] def format_validation_error(err): path = '/'.join(err.path) if path: return path + ' ' + err.message return err.message def validate_meta_info(container, template): """ Validate meta information Adds 'BIDS.NA' if no BIDS info present Adds 'BIDS.valid' and 'BIDS.error_message' to communicate to user if values are valid Currently, validation is only checking if mandatory properties are non-empty strings Could add the following checks: Are the values alpha numeric? """ # Get namespace namespace = template.namespace # If 'info' is NOT in container, then must not # have matched to a template, create 'info' # field with object {'BIDS': 'NA'} if 'info' not in container: container['info'] = {namespace: 'NA'} # if the namespace ('BIDS') is NOT in 'info', # then must not have matched to a template, # add {'BIDS': 'NA'} to the meta info elif namespace not in container['info']: container['info'][namespace] = 'NA' # If already assigned BIDS 'NA', then break elif container['info'][namespace] == 'NA': pass # Otherwise, iterate over keys within container else: valid = True error_message = '' # Find template templateName = container['info'][namespace].get('template') if templateName: templateDef = template.definitions.get(templateName) if templateDef: errors = template.validate(templateDef, container['info'][namespace]) if errors: valid = False error_message = '\n'.join([format_validation_error(err) for err in errors]) else: valid = False error_message += 'Unknown template: %s. ' % templateName # Assign 'valid' and 'error_message' values container['info'][namespace]['valid'] = valid container['info'][namespace]['error_message'] = error_message def update_meta_info(fw, context): """ Update file information """ # Modify file if context['container_type'] == 'file': # Modify acquisition file if context['parent_container_type'] == 'acquisition': fw.set_acquisition_file_info( context['acquisition']['id'], context['file']['name'], context['file']['info'] ) # Modify project file elif context['parent_container_type'] == 'project': fw.set_project_file_info( context['project']['id'], context['file']['name'], context['file']['info'] ) # Modify session file elif context['parent_container_type'] == 'session': fw.set_session_file_info( context['session']['id'], context['file']['name'], context['file']['info'] ) else: logger.info('Cannot determine file parent container type: ' + context['parent_container_type']) # Modify project elif context['container_type'] == 'project': fw.replace_project_info(context['project']['id'], context['project']['info']) # Modify session elif context['container_type'] == 'session': fw.replace_session_info(context['session']['id'], context['session']['info']) # Modify acquisition elif context['container_type'] == 'acquisition': fw.replace_acquisition_info(context['acquisition']['id'], context['acquisition']['info']) # Cannot determine container type else: logger.info('Cannot determine container type: ' + context['container_type']) def curate_bids_dir(fw, project_id, session_id=None, reset=False, template_file=None, session_only=False): """ fw: Flywheel client project_id: project id of project to curate session_id: The optional session id to curate reset: Whether or not to reset bids info before curation template_file: The template file to use session_only: If true, then only curate the provided session """ project = get_project_tree(fw, project_id, session_id=session_id, session_only=session_only) curate_bids_tree(fw, project, reset, template_file, True) def curate_bids_tree(fw, project, reset=False, template_file=None, update=True): # Get project project_files = project.get('files', []) # Get template (for now, just use default) template = templates.DEFAULT_TEMPLATE # Check for project file if not template_file: template_filename = utils.find_custom_template(project_files) if template_filename: fd, path = tempfile.mkstemp('.json') os.close(fd) logger.info('Using project template: {0}'.format(template_filename)) fw.download_file_from_project(project['id'], template_filename, path) template_file = path if template_file: template = templates.loadTemplate(template_file) ## # Curation is now a 3-pass process # 1. Do initial template matching and updating # 2. Perform any path resolutions # 3. Send updates to server ## # 1. Do initial template matching and updating for context in project.context_iter(): ctype = context['container_type'] parent_ctype = context['parent_container_type'] if reset: clear_meta_info(context[ctype], template) elif context[ctype].get('info',{}).get('BIDS') == 'NA': continue if ctype == 'project': bidsify_flywheel.process_matching_templates(context, template) # Validate meta information # TODO: Improve the validator to understand what is valid for dataset_description file... # validate_meta_info(context['project']) elif ctype == 'session': bidsify_flywheel.process_matching_templates(context, template) # Add run_counter context['run_counters'] = utils.RunCounterMap() elif ctype == 'acquisition': bidsify_flywheel.process_matching_templates(context, template) elif ctype == 'file': if parent_ctype == 'project' and PROJECT_TEMPLATE_FILE_NAME_REGEX.search(context['file']['name']): # Don't BIDSIFY project template continue # Process matching context['file'] = bidsify_flywheel.process_matching_templates(context, template) # Validate meta information validate_meta_info(context['file'], template) # 2. Perform any path resolutions session = None for context in project.context_iter(): # Resolution bidsify_flywheel.process_resolvers(context, template) # 3. Send updates to server if update: for context in project.context_iter(): ctype = context['container_type'] node = context[ctype] if node.is_dirty(): update_meta_info(fw, context) def main_with_args(api_key, session_id, reset, session_only): ### Prep # Check API key - raises Error if key is invalid fw = flywheel.Flywheel(api_key) if session_id: project_id = utils.get_project_id_from_session_id(fw, session_id) else: print('Session id is required!') sys.exit(1) ### Curate BIDS project curate_bids_dir(fw, project_id, session_id, reset=reset, session_only=session_only) def main(): ### Read in arguments parser = argparse.ArgumentParser(description='BIDS Curation') parser.add_argument('--api-key', dest='api_key', action='store', required=True, help='API key') parser.add_argument('-p', dest='project_label', action='store', required=False, default=None, help='Project Label on Flywheel instance') parser.add_argument('--session', dest='session_id', action='store', required=False, default=None, help='Session ID, used to look up project if project label is not readily available') parser.add_argument('--reset', dest='reset', action='store_true', default=False, help='Reset BIDS data before running') parser.add_argument('--session-only', dest='session_only', action='store_true', default=False, help='Only curate the session identified by --session') parser.add_argument('--template-file', dest='template_file', action='store', default=None, help='Template file to use') args = parser.parse_args() ### Prep # Check API key - raises Error if key is invalid fw = flywheel.Flywheel(args.api_key) # Get project id from label if args.project_label: project_id = utils.validate_project_label(fw, args.project_label) elif args.session_id: project_id = utils.get_project_id_from_session_id(fw, args.session_id) else: print('Either project label or session id is required!') sys.exit(1) ### Curate BIDS project curate_bids_dir(fw, project_id, args.session_id, reset=args.reset, template_file=args.template_file, session_only=args.session_only) if __name__ == '__main__': main()
36.82197
136
0.640778
[ "MIT" ]
AndysWorth/bids-client
flywheel_bids/curate_bids.py
9,721
Python
class PlayerResourceHand: def __init__(self): self.brick = 0 self.grain = 0 self.lumber = 0 self.ore = 0 self.wool = 0 self.totalResources = 0 def update(self): self.totalResources = self.brick + self.grain + self.lumber + self.ore + self.wool class PlayerDevelopmentHand: def __init__(self): self.knights = 0 self.roadBuildings = 0 self.yearOfPlenty = 0 self.monopolies = 0 self.victoryPoints = 0 self.totalDevelopments = 0 def update(self): self.totalDevelopments = self.knights + self.roadBuildings + self.yearOfPlenty + self.monopolies \ + self.victoryPoints class EnemyPlayer: def __init__(self, turnOrder, name, color, nR, nS, nC, lR, lA, hS, dS, vVP): self.turnOrder = turnOrder self.name = name self.color = color self.handSize = hS self.developmentSize = dS self.visibleVictoryPoints = vVP self.numRoads = nR self.numSettlements = nS self.numCities = nC self.longestRoad = lR self.largestArmy = lA class Player: def __init__(self, name, color, turnOrder): self.color = color self.name = name self.turnOrder = turnOrder self.numRoads = 15 self.numSettlements = 5 self.numCities = 4 self.longestRoad = 0 self.largestArmy = 0 self.victoryPoints = 0 self.resourceHand = PlayerResourceHand() self.developmentHand = PlayerDevelopmentHand() self.ownedRoads = list() self.ownedNodes = list() def getNumResources(self): return self.resourceHand.totalResources def getNumDevelopment(self): return self.developmentHand.totalDevelopments def getSendToEnemies(self): # toSend = EnemyPlayer(self.turnOrder, self.name, self.color, # self.numRoads, self.numSettlements, self.numCities, # self.longestRoad, self.largestArmy) toSend = ','.join([self.turnOrder, self.name, self.color, self.numRoads, self.numSettlements, self.numCities, self.longestRoad, self.largestArmy]) return toSend def acquireRoad(self, road): self.ownedRoads.append(road) def acquireNode(self, node): self.ownedNodes.append(node) def addResources(self, array): self.resourceHand.brick += array[0] self.resourceHand.grain += array[1] self.resourceHand.lumber += array[2] self.resourceHand.ore += array[3] self.resourceHand.wool += array[4] self.resourceHand.totalResources += array[0] + array[1] + array[2] + array[3] + array[4]
32.337209
117
0.607695
[ "MIT" ]
ForgedSnow/Frontiersman
src/Player.py
2,781
Python
import httpx from anilist.types import Anime from pyrogram import filters from pyrogram.types import CallbackQuery from pyromod.helpers import ikb from pyromod.nav import Pagination from amime.amime import Amime @Amime.on_callback_query(filters.regex(r"^tvshort_trending7 anime (?P<page>\d+)")) async def anime_suggestions(bot: Amime, callback: CallbackQuery): page = int(callback.matches[0]["page"]) message = callback.message lang = callback._lang keyboard = [] async with httpx.AsyncClient(http2=True) as client: response = await client.post( url="https://graphql.anilist.co", json=dict( query=""" query($per_page: Int) { Page(page: 8, perPage: $per_page) { media(type: ANIME, format: TV_SHORT, sort: TRENDING_DESC, status: FINISHED) { id title { romaji english native } siteUrl } } } """, variables=dict( perPage=100, ), ), headers={ "Content-Type": "application/json", "Accept": "application/json", }, ) data = response.json() await client.aclose() if data["data"]: items = data["data"]["Page"]["media"] suggestions = [ Anime(id=item["id"], title=item["title"], url=item["siteUrl"]) for item in items ] layout = Pagination( suggestions, item_data=lambda i, pg: f"menu {i.id}", item_title=lambda i, pg: i.title.romaji, page_data=lambda pg: f"tvshort_trending7 anime {pg}", ) lines = layout.create(page, lines=8) if len(lines) > 0: keyboard += lines keyboard.append([(lang.Prev, "tvshort_trending6 anime 1"), (lang.Next, "tvshort_trending8 anime 1")]) keyboard.append([(lang.back_button, "tvshort_menu")]) await message.edit_text( lang.suggestions_text, reply_markup=ikb(keyboard), )
32.27027
105
0.490787
[ "MIT" ]
Myudi422/ccgnime_req
amime/modules/anime/TV-SHORT/tvshort_trend/TVSHORT_TREND/tvshort_trend7.py
2,388
Python
from typing import Optional import pandas as pd import pytest from evidently.analyzers.regression_performance_analyzer import RegressionPerformanceAnalyzer from evidently.model.widget import BaseWidgetInfo from evidently.options import OptionsProvider from evidently.pipeline.column_mapping import ColumnMapping from evidently.dashboard.widgets.reg_error_normality_widget import RegErrorNormalityWidget @pytest.fixture def widget() -> RegErrorNormalityWidget: options_provider = OptionsProvider() widget = RegErrorNormalityWidget("test_widget") widget.options_provider = options_provider return widget def test_reg_error_normality_widget_analyzer_list(widget: RegErrorNormalityWidget) -> None: assert widget.analyzers() == [RegressionPerformanceAnalyzer] @pytest.mark.parametrize( "reference_data, current_data, data_mapping, dataset, expected_result", ( ( pd.DataFrame({"target": [1, 2, 3, 4], "prediction": [1, 2, 3, 4]}), None, ColumnMapping(), None, BaseWidgetInfo(type="big_graph", title="test_widget", size=1), ), ( pd.DataFrame({"target": [1, 2, 3, 4], "prediction": [1, 2, 3, 4]}), pd.DataFrame({"target": [1, 2, 3, 4], "prediction": [1, 2, 3, 4]}), ColumnMapping(), "reference", BaseWidgetInfo(type="big_graph", title="test_widget", size=1), ), ), ) def test_reg_error_normality_widget_simple_case( widget: RegErrorNormalityWidget, reference_data: pd.DataFrame, current_data: pd.DataFrame, data_mapping: ColumnMapping, dataset: Optional[str], expected_result: BaseWidgetInfo, ) -> None: if dataset is not None: widget.dataset = dataset analyzer = RegressionPerformanceAnalyzer() analyzer.options_provider = widget.options_provider analyzer_results = analyzer.calculate(reference_data, current_data, data_mapping) result = widget.calculate( reference_data, current_data, data_mapping, {RegressionPerformanceAnalyzer: analyzer_results} ) if expected_result is not None: # we have some widget for visualization assert result.type == expected_result.type assert result.title == expected_result.title assert result.size == expected_result.size assert result.params is not None else: # no widget data, show nothing assert result is None
33.310811
101
0.696552
[ "Apache-2.0" ]
Tapot/evidently
tests/dashboard/widgets/test_reg_error_normality_widget.py
2,465
Python
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/deed/faction_perk/hq/shared_hq_s05.iff" result.attribute_template_id = 2 result.stfName("deed","hq_s05") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
25.941176
75
0.721088
[ "MIT" ]
SWGANHServices/GameServer_Legacy
data/scripts/templates/object/tangible/deed/faction_perk/hq/shared_hq_s05.py
441
Python
# -*- coding: utf-8 -*- import unittest.mock import pytest import pycamunda.incident from tests.mock import raise_requests_exception_mock, not_ok_response_mock def test_get_params(engine_url): get_incident = pycamunda.incident.Get(url=engine_url, id_='anId') assert get_incident.url == engine_url + '/incident/anId' assert get_incident.query_parameters() == {} assert get_incident.body_parameters() == {} @unittest.mock.patch('pycamunda.incident.Incident.load', unittest.mock.MagicMock()) @unittest.mock.patch('requests.Session.request') def test_get_calls_requests(mock, engine_url): get_incident = pycamunda.incident.Get(url=engine_url, id_='anId') get_incident() assert mock.called assert mock.call_args[1]['method'].upper() == 'GET' @unittest.mock.patch('requests.Session.request', raise_requests_exception_mock) def test_get_raises_pycamunda_exception(engine_url): get_incident = pycamunda.incident.Get(url=engine_url, id_='anId') with pytest.raises(pycamunda.PyCamundaException): get_incident() @unittest.mock.patch('requests.Session.request', not_ok_response_mock) @unittest.mock.patch('pycamunda.incident.Incident', unittest.mock.MagicMock()) @unittest.mock.patch('pycamunda.base._raise_for_status') def test_get_raises_for_status(mock, engine_url): get_incident = pycamunda.incident.Get(url=engine_url, id_='anId') get_incident() assert mock.called @unittest.mock.patch('requests.Session.request', unittest.mock.MagicMock()) @unittest.mock.patch('pycamunda.base.from_isoformat', unittest.mock.MagicMock()) @unittest.mock.patch('pycamunda.incident.IncidentType', unittest.mock.MagicMock()) def test_get_returns_incident(engine_url): get_incident = pycamunda.incident.Get(url=engine_url, id_='anId') incident = get_incident() assert isinstance(incident, pycamunda.incident.Incident)
34.796296
83
0.77009
[ "MIT" ]
asyncee/pycamunda
tests/incident/test_get.py
1,879
Python
import uuid from datetime import datetime, timedelta import pytest import simplejson as json from django.db.models import Q from mock import Mock, patch from treeherder.config.settings import IS_WINDOWS from treeherder.perf.auto_perf_sheriffing.secretary_tool import SecretaryTool from treeherder.model.models import Push, Job from treeherder.perf.models import BackfillRecord, BackfillReport, PerformanceSettings from treeherder.perf.auto_perf_sheriffing.outcome_checker import OutcomeChecker, OutcomeStatus # we're testing against this (automatically provided by fixtures) JOB_TYPE_ID = 1 def get_middle_index(successful_jobs): # get middle index to make sure the push is in range index_in_range = int((len(successful_jobs) + 1) / 2) return index_in_range @pytest.fixture def record_backfilled(test_perf_alert, record_context_sample): report = BackfillReport.objects.create(summary=test_perf_alert.summary) record = BackfillRecord.objects.create( alert=test_perf_alert, report=report, status=BackfillRecord.BACKFILLED, ) record.set_context(record_context_sample) record.save() return record @pytest.fixture def range_dates(record_context_sample): from_date = datetime.fromisoformat(record_context_sample[0]['push_timestamp']) to_date = datetime.fromisoformat(record_context_sample[-1]['push_timestamp']) return { 'before_date': from_date - timedelta(days=5), 'from_date': from_date, 'in_range_date': from_date + timedelta(hours=13), 'to_date': to_date, 'after_date': to_date + timedelta(days=3), } @pytest.fixture def outcome_checking_pushes( create_push, range_dates, record_context_sample, test_repository, test_repository_2 ): from_push_id = record_context_sample[0]['push_id'] to_push_id = record_context_sample[-1]['push_id'] pushes = [ create_push(test_repository, revision=uuid.uuid4(), time=range_dates['before_date']), create_push( test_repository, revision=uuid.uuid4(), time=range_dates['from_date'], explicit_id=from_push_id, ), create_push(test_repository, revision=uuid.uuid4(), time=range_dates['in_range_date']), create_push(test_repository, revision=uuid.uuid4(), time=range_dates['in_range_date']), create_push(test_repository, revision=uuid.uuid4(), time=range_dates['in_range_date']), create_push(test_repository, revision=uuid.uuid4(), time=range_dates['in_range_date']), create_push( test_repository, revision=uuid.uuid4(), time=range_dates['to_date'], explicit_id=to_push_id, ), create_push(test_repository, revision=uuid.uuid4(), time=range_dates['after_date']), ] return pushes @pytest.fixture def successful_jobs(outcome_checking_pushes, eleven_jobs_stored): jobs = Job.objects.all() _successful_jobs = [] pairs = zip(outcome_checking_pushes, jobs) for push, job in pairs: job.push = push job.result = 'success' job.job_type_id = JOB_TYPE_ID job.save() _successful_jobs.append(job) return _successful_jobs @pytest.fixture def jobs_with_one_failed(successful_jobs): index_in_range = get_middle_index(successful_jobs) job_to_fail = successful_jobs[index_in_range] job_to_fail.result = 'testfailed' job_to_fail.save() @pytest.fixture def jobs_with_one_pending(successful_jobs): index_in_range = get_middle_index(successful_jobs) job_pending = successful_jobs[index_in_range] job_pending.result = 'unknown' job_pending.save() @pytest.fixture def get_outcome_checker_mock(): def get_outcome_checker_mock(outcome: OutcomeStatus): return type('', (), {'check': lambda *params: outcome}) return get_outcome_checker_mock @pytest.mark.skipif(IS_WINDOWS, reason="datetime logic does not work when OS not on GMT") def test_secretary_tool_updates_only_matured_reports( test_perf_alert, test_perf_alert_2, create_record ): # create new report with records create_record(test_perf_alert) # create mature report with records date_past = datetime.utcnow() - timedelta(hours=5) with patch('django.utils.timezone.now', Mock(return_value=date_past)): create_record(test_perf_alert_2) assert BackfillRecord.objects.count() == 2 assert BackfillRecord.objects.filter(status=BackfillRecord.PRELIMINARY).count() == 2 SecretaryTool.mark_reports_for_backfill() assert BackfillRecord.objects.filter(status=BackfillRecord.PRELIMINARY).count() == 1 def test_secretary_tool_uses_existing_settings(performance_settings): assert PerformanceSettings.objects.count() == 1 last_reset_date_before = json.loads(performance_settings.settings)["last_reset_date"] SecretaryTool.validate_settings() assert PerformanceSettings.objects.count() == 1 settings_after = PerformanceSettings.objects.filter(name="perf_sheriff_bot").first() assert json.loads(settings_after.settings)["last_reset_date"] == last_reset_date_before def test_secretary_tool_resets_settings_if_expired(expired_performance_settings): assert PerformanceSettings.objects.count() == 1 expired_last_reset_date = json.loads(expired_performance_settings.settings)["last_reset_date"] SecretaryTool.validate_settings() assert PerformanceSettings.objects.count() == 1 settings_after = PerformanceSettings.objects.filter(name="perf_sheriff_bot").first() assert json.loads(settings_after.settings)["last_reset_date"] != expired_last_reset_date def test_secretary_tool_creates_new_settings_if_none_exist(db): assert PerformanceSettings.objects.count() == 0 SecretaryTool.validate_settings() assert PerformanceSettings.objects.count() == 1 def test_check_outcome_after_success(get_outcome_checker_mock, record_backfilled): outcome_checker_mock = get_outcome_checker_mock(OutcomeStatus.SUCCESSFUL) secretary = SecretaryTool(outcome_checker_mock) assert BackfillRecord.objects.filter(status=BackfillRecord.BACKFILLED).count() == 1 assert BackfillRecord.objects.filter(status=BackfillRecord.SUCCESSFUL).count() == 0 secretary.check_outcome() assert BackfillRecord.objects.filter(status=BackfillRecord.BACKFILLED).count() == 0 assert BackfillRecord.objects.filter(status=BackfillRecord.SUCCESSFUL).count() == 1 def test_check_outcome_after_fail(get_outcome_checker_mock, record_backfilled): outcome_checker_mock = get_outcome_checker_mock(OutcomeStatus.FAILED) secretary = SecretaryTool(outcome_checker_mock) assert BackfillRecord.objects.filter(status=BackfillRecord.BACKFILLED).count() == 1 assert BackfillRecord.objects.filter(status=BackfillRecord.FAILED).count() == 0 secretary.check_outcome() assert BackfillRecord.objects.filter(status=BackfillRecord.BACKFILLED).count() == 0 assert BackfillRecord.objects.filter(status=BackfillRecord.FAILED).count() == 1 def test_no_action_when_in_progress(get_outcome_checker_mock, record_backfilled): outcome_checker_mock = get_outcome_checker_mock(OutcomeStatus.IN_PROGRESS) secretary = SecretaryTool(outcome_checker_mock) assert BackfillRecord.objects.filter(status=BackfillRecord.BACKFILLED).count() == 1 secretary.check_outcome() assert BackfillRecord.objects.filter(status=BackfillRecord.BACKFILLED).count() == 1 def test_outcome_checker_identifies_pushes_in_range( record_backfilled, test_repository, test_repository_2, range_dates, outcome_checking_pushes ): # TODO: retarget this test to BackfillRecord.get_pushes_in_range() outcome_checker = OutcomeChecker() total_pushes = Push.objects.count() from_time = range_dates['from_date'] to_time = range_dates['to_date'] total_outside_pushes = Push.objects.filter( Q(repository=test_repository) & (Q(time__lt=from_time) | Q(time__gt=to_time)) ).count() pushes_in_range = outcome_checker._get_pushes_in_range(from_time, to_time, test_repository.id) assert len(pushes_in_range) == total_pushes - total_outside_pushes # change repository for the first 2 pushes in range assert test_repository.id != test_repository_2.id total_changed_pushes = 2 for push in pushes_in_range[:total_changed_pushes]: push.repository = test_repository_2 push.save() total_other_repo_pushes = Push.objects.filter(repository=test_repository_2).count() assert total_other_repo_pushes == total_changed_pushes updated_pushes_in_range = outcome_checker._get_pushes_in_range( from_time, to_time, test_repository.id ) assert len(updated_pushes_in_range) == len(pushes_in_range) - total_other_repo_pushes class TestOutcomeChecker: @patch('treeherder.perf.auto_perf_sheriffing.outcome_checker.get_job_type') def test_successful_jobs_mean_successful_outcome( self, mock_get_job_type, record_backfilled, outcome_checking_pushes, successful_jobs ): # TODO: remove job type mock after soft launch lands mock_get_job_type.return_value = JOB_TYPE_ID outcome_checker = OutcomeChecker() response = outcome_checker.check(record_backfilled) assert response == OutcomeStatus.SUCCESSFUL @patch('treeherder.perf.auto_perf_sheriffing.outcome_checker.get_job_type') def test_failed_job_means_failed_outcome( self, mock_get_job_type, record_backfilled, outcome_checking_pushes, jobs_with_one_failed ): mock_get_job_type.return_value = JOB_TYPE_ID outcome_checker = OutcomeChecker() response = outcome_checker.check(record_backfilled) assert response == OutcomeStatus.FAILED @patch('treeherder.perf.auto_perf_sheriffing.outcome_checker.get_job_type') def test_pending_job_means_in_progress_outcome( self, mock_get_job_type, record_backfilled, outcome_checking_pushes, jobs_with_one_pending ): mock_get_job_type.return_value = JOB_TYPE_ID outcome_checker = OutcomeChecker() response = outcome_checker.check(record_backfilled) assert response == OutcomeStatus.IN_PROGRESS
38.198502
98
0.761055
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
aerickson/treeherder
tests/perfalert/test_auto_perf_sheriffing/test_secretary_tool.py
10,199
Python
#!/usr/bin/env python3 # This scripts attempts to generate massive design of experiment runscripts. # and save it into a "runMassive.sh" and "doe.log". #------------------------------------------------------------------------------- import os, sys import os.path import re import itertools import glob PUBLIC = ['nangate45', 'sky130hd', 'sky130hs', 'asap7'] # The number of generated config files into designs/{platform}/{design}/chunks/chuck{number} directory. NumFilesPerChunk = 50000 ## Orignal SDC file name OriginalSDC = 'constraint_doe.sdc' ################################## # define input parameters ################################## # for generated .sh file name ShellName = 'runMassive' ################## # Design ################## ## Define platform-design. User should remove ',' for the last item in the list. (string) PLATFORM_DESIGN = [ \ #'sky130hd-gcd' \ 'sky130hd-ibex', \ #'sky130hd-aes', \ #'sky130hd-jpeg', \ #'sky130hs-gcd', \ #'sky130hs-ibex', \ #'sky130hs-aes', \ #'sky130hs-jpeg', \ #'nangate45-gcd', \ #'nangate45-ibex', \ #'nangate45-aes', \ #'nangate45-jpeg', \ #'asap7-gcd', \ #'asap7-ibex', \ #'asap7-aes', \ #'asap7-jpeg', \ ] ## Target Clock Period (float) CLK_PERIOD = [] ## SDC uncertainty and IO delay. ## TODO: Currently, it only support when 'set uncertainty' and 'set io_delay' ## are defined in the constraint.sdc file. UNCERTAINTY = [] IO_DELAY = [] ################## # Synthesis ################## ## Clock period for Yosys (for synthesis) ## The unit should follow each design (ns, ps) (float) ABC_CLOCK_PERIOD = [] ## Hierarchical Synthsis. 0 = hierarchical, 1 = flatten, empty = flatten (default) (int) FLATTEN = [] ################## # Floorplan ################## ## Utilization. e.g, 45 -> 45% of core util. (int) #CORE_UTIL = [20, 40, 55] CORE_UTIL = [20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50] ## Aspect ratio. It REQUIRES 'CORE_UTIL' values (float) ASPECT_RATIO = [0.5, 0.75, 1.0, 1.25, 1.5] ## Core-to-die gap distance (um). It REQUIRES 'CORE_UTIL' values (int) CORE_DIE_MARGIN = [10] ## Pin Distance #PINS_DISTANCE = [2] PINS_DISTANCE = [] ################## # Placement ################## ## Global Placement Padding for std cells (int) GP_PAD = [4] ## Detailed Placement Padding for std cells (int) DP_PAD = [2] ## Global Placement target bin density (select only one option) (.2 float) ## option 1) PLACE_DENSITY uses the values in the list as it is. ## option 2) PLACE_DENSITY_LB_ADDON adds the values in the list to the lower boundary of the PLACE_DENSITY ## For eaxmple, PLACE_DENSITY_LB_ADDON = [0, 0.02, 0.04] means PLACE_DENSITY = [LB, LB+0.02, LB+0.04] ## LB of the place density == (total instance area + padding) / total die area PLACE_DENSITY = [] PLACE_DENSITY_LB_ADDON = [0, 0.04, 0.08] ################## # CTS ################## ## CTS clustering size and diameter (um) (int) CTS_CLUSTER_SIZE = [] CTS_CLUSTER_DIAMETER = [] ################## # Global Routing ################## ## Set global routing layer capacity adjustment ## e.g.) 0.2 -> 20% usage for global routing ## Set for all layers. ## Each layer's layer adjustment will be overwritten with below per-layer values. (float) LAYER_ADJUST = [0.5] LAYER_ADJUST_M1 = [0, 0.2, 0.4, 0.6] LAYER_ADJUST_M2 = [0, 0.2, 0.4, 0.6] LAYER_ADJUST_M3 = [0, 0.2, 0.4, 0.6] LAYER_ADJUST_M4 = [0, 0.2, 0.4, 0.6] LAYER_ADJUST_M5 = [] LAYER_ADJUST_M6 = [] LAYER_ADJUST_M7 = [] LAYER_ADJUST_M8 = [] LAYER_ADJUST_M9 = [] ## Set global routing random seed. (int) GR_SEED = [] ## Set allow global routing overflow. 0 = no, 1 = yes, empty = no (default) (int) # TODO: currently it does not work. Let this as 0 as it is. GR_OVERFLOW = [0] ################## # Detailed Routing ################## ## Set global routing random seed. (int) DR_SEED = [] SweepingAttributes = { "PLATFORM_DESIGN": PLATFORM_DESIGN, "CP": CLK_PERIOD, "ABC_CP": ABC_CLOCK_PERIOD, "FLATTEN": FLATTEN, "UNCERTAINTY": UNCERTAINTY, "IO_DELAY": IO_DELAY, "UTIL": CORE_UTIL, "AR": ASPECT_RATIO, "GAP": CORE_DIE_MARGIN, "PINS_DISTANCE": PINS_DISTANCE, "GP_PAD": GP_PAD, "DP_PAD": DP_PAD, "PD": PLACE_DENSITY, "PD_LB_ADD": PLACE_DENSITY_LB_ADDON, "CTS_CLUSTER_SIZE": CTS_CLUSTER_SIZE, "CTS_CLUSTER_DIAMETER": CTS_CLUSTER_DIAMETER, "LAYER_ADJUST": LAYER_ADJUST, "M1": LAYER_ADJUST_M1, "M2": LAYER_ADJUST_M2, "M3": LAYER_ADJUST_M3, "M4": LAYER_ADJUST_M4, "M5": LAYER_ADJUST_M5, "M6": LAYER_ADJUST_M6, "M7": LAYER_ADJUST_M7, "M8": LAYER_ADJUST_M8, "M9": LAYER_ADJUST_M9, "GR_SEED": GR_SEED, "GR_OVERFLOW": GR_OVERFLOW, "DR_SEED": DR_SEED } def assignEmptyAttrs(dicts): knobs = {} for k, v in dicts.items(): if len(v) == 0: knobs.setdefault(k, ['empty']) else: knobs.setdefault(k,v) return knobs def writeDoeLog(dicts, ProductDicts): fo = open('./doe.log', 'w') numRuns = 1 for k, v in dicts.items(): if len(v)>0: print('%s has %s number of values'%(k,len(v))) fo.write('%s has %s number of values\n'%(k,len(v))) numRuns = numRuns * len(v) fo.write('\nTotal Number of Runs = %s\n\n'%numRuns) print('\nTotal Number of Runs = %s\n\n'%numRuns) knobValuesList = [] knobNamesList = [] for CurAttrs in ProductAttrs: knobValues = [] knobNames = [] for k, v in CurAttrs.items(): if v=='empty': continue else: knobNames.append(str(k)) knobValues.append(str(v)) knobValuesList.append(knobValues) knobNamesList.append(knobNames) fo.write(str(knobNamesList[0])+'\n') for knobSet in knobValuesList: fo.write(str(knobSet)+'\n') fo.close() def productDict(dicts): return (dict(zip(dicts, x)) for x in itertools.product(*dicts.values())) def adjustFastRoute(filedata, adjSet, GrOverflow): if adjSet[0]!='empty': filedata = re.sub("(set_global_routing_layer_adjustment .* )[0-9\.]+", "\g<1>{:.2f}".format(float(adjSet[0])), filedata) sep_la_cmds = "" for i, sep_la in enumerate(adjSet): if i==0 or sep_la=='empty': continue ## TODO: Currently, only supports for SKY130HD and SKY130HS. ## TODO: user should manually change the layer name to match techLEF. layer_name = 'met%s'%i sep_la_cmds += "set_global_routing_layer_adjustment " + layer_name + " {:.2f}\n".format(float(sep_la)) filedata = re.sub("set_global_routing_layer_adjustment.*\n", "\g<0>"+sep_la_cmds, filedata) if int(GrOverflow) == 1: filedata = re.sub("(global_route.*(\n\s+.*)*)", "\g<1> \\\n -allow_overflow", filedata) return(filedata) #def setPlaceDensity(DESIGN, Util, GpPad): # if DESIGN == "ibex": # LB = (Util/100) + (GpPad * (0.4*(Util/100)-0.01))+0.01 # elif DESIGN == "aes": # LB = (Util/100) + (GpPad * (0.5*(Util/100)-0.005))+0.02 # else: # LB = (Util/100) + (GpPad * (0.4*(Util/100)-0.01))+0.01 # return LB def writeConfigs(CurAttrs, CurChunkNum): CurPlatform, CurDesign = CurAttrs.get('PLATFORM_DESIGN').split('-') CurClkPeriod = CurAttrs.get('CP') CurAbcClkPeriod = CurAttrs.get('ABC_CP') CurFlatten = CurAttrs.get('FLATTEN') CurUncertainty = CurAttrs.get('UNCERTAINTY') CurIoDelay = CurAttrs.get('IO_DELAY') CurCoreUtil = CurAttrs.get('UTIL') CurAspectRatio = CurAttrs.get('AR') CurCoreDieMargin = CurAttrs.get('GAP') CurPinsDistance = CurAttrs.get('PINS_DISTANCE') CurGpPad = CurAttrs.get('GP_PAD') CurDpPad = CurAttrs.get('DP_PAD') CurPlaceDensity = CurAttrs.get('PD') CurPlaceDensityLbAddon = CurAttrs.get('PD_LB_ADD') CurCtsClusterSize = CurAttrs.get('CTS_CLUSTER_SIZE') CurCtsClusterDiameter = CurAttrs.get('CTS_CLUSTER_DIAMETER') CurLayerAdjust = CurAttrs.get('LAYER_ADJUST') CurLayerAdjustM1 = CurAttrs.get('M1') CurLayerAdjustM2 = CurAttrs.get('M2') CurLayerAdjustM3 = CurAttrs.get('M3') CurLayerAdjustM4 = CurAttrs.get('M4') CurLayerAdjustM5 = CurAttrs.get('M5') CurLayerAdjustM6 = CurAttrs.get('M6') CurLayerAdjustM7 = CurAttrs.get('M7') CurLayerAdjustM8 = CurAttrs.get('M8') CurLayerAdjustM9 = CurAttrs.get('M9') CurGrSeed = CurAttrs.get('GR_SEED') CurGrOverflow = CurAttrs.get('GR_OVERFLOW') CurDrSeed = CurAttrs.get('DR_SEED') if not os.path.isdir('./designs/%s/%s/chunks'%(CurPlatform,CurDesign)): os.mkdir('./designs/%s/%s/chunks'%(CurPlatform,CurDesign)) CurDesignDir = './designs/%s/%s'%(CurPlatform,CurDesign) CurChunkDir = './designs/%s/%s/chunks/chunk%s'%(CurPlatform,CurDesign,CurChunkNum) if not os.path.isdir(CurChunkDir): os.mkdir(CurChunkDir) #print(CurChunkNum) if MakeArg=='clean': fileList = glob.glob('%s/*-DoE-*'%(CurChunkDir)) if fileList is not None: for file in fileList: os.remove(file) return #print(CurPlatform, CurDesign) #print(CurClkPeriod, CurAbcClkPeriod, CurFlatten, CurCoreUtil) #print(CurAspectRatio, CurCoreDieMargin, CurGpPad, CurDpPad) #print(CurCtsClusterSize, CurCtsClusterDiameter, CurLayerAdjust) #print(CurLayerAdjustM1, CurLayerAdjustM2, CurLayerAdjustM3) #print(CurLayerAdjustM4, CurLayerAdjustM5, CurLayerAdjustM6) #print(CurLayerAdjustM7, CurLayerAdjustM8, CurLayerAdjustM9) #print(CurGrOverflow) #print(CurAttrs.items()) variantName = '' for k, v in CurAttrs.items(): if v!='empty' and k!='PLATFORM_DESIGN': variantName = variantName + '-' + str(k) + '_' + str(v) variantName = variantName[1:] #fileName = 'config-%s-%s-'%(CurPlatform, CurDesign)+variantName + '.mk' fileName = 'config-DoE-'+variantName + '.mk' fo = open('%s/%s'%(CurChunkDir,fileName), 'w') fo.write('include $(realpath $(dir $(DESIGN_CONFIG))../../)/config.mk\n') fo.write('\n') fo.write('FLOW_VARIANT = %s\n'%(variantName)) fo.write('\n') if CurClkPeriod != 'empty' or CurUncertainty != 'empty' or CurIoDelay != 'empty': fOrigSdc = open('%s/%s'%(CurDesignDir,OriginalSDC),'r') filedata = fOrigSdc.read() fOrigSdc.close() if CurClkPeriod != 'empty': filedata = re.sub("-period [0-9\.]+", "-period " + str(CurClkPeriod), filedata) #filedata = re.sub("-waveform [{}\s0-9\.]+$}", "\n", filedata) filedata = re.sub("-waveform [{}\s0-9\.]+[\s|\n]", "", filedata) if CurUncertainty != 'empty': filedata = re.sub("set uncertainty [0-9\.]+", "set uncertainty " + str(CurUncertainty), filedata) if CurIoDelay != 'empty': filedata = re.sub("set io_delay [0-9\.]+", "set io_delay " + str(CurIoDelay), filedata) #fOutSdc = open('./designs/%s/%s/constraint-%s-%s-'%(CurPlatform,CurDesign,CurPlatform,CurDesign)+variantName+'.sdc','w') fOutSdc = open('%s/constraint-DoE-'%(CurChunkDir)+variantName+'.sdc','w') fOutSdc.write(filedata) fOutSdc.close() fo.write('export SDC_FILE = $(dir $(DESIGN_CONFIG))/constraint-DoE-%s.sdc\n'%variantName) if CurAbcClkPeriod != 'empty': fo.write('export ABC_CLOCK_PERIOD_IN_PS = %s\n'%CurAbcClkPeriod) if CurFlatten != 'empty': if CurFlatten == 0: fo.write('export SYNTH_ARGS = \n') if CurCoreUtil != 'empty': fo.write('export CORE_UTILIZATION = %s\n'%CurCoreUtil) if CurPlaceDensity != 'empty': fo.write('export PLACE_DENSITY = %.2f\n'%CurPlaceDensity) if CurPlaceDensityLbAddon != 'empty': fo.write('export PLACE_DENSITY_LB_ADDON = %.2f\n'%CurPlaceDensityLbAddon) if CurAspectRatio != 'empty': fo.write('export CORE_ASPECT_RATIO = %s\n'%CurAspectRatio) if CurCoreDieMargin != 'empty': fo.write('export CORE_MARGIN = %s\n'%CurCoreDieMargin) if CurPinsDistance != 'empty': fo.write('export PLACE_PINS_ARGS = -min_distance %s\n'%CurPinsDistance) if CurGpPad != 'empty': fo.write('export CELL_PAD_IN_SITES_GLOBAL_PLACEMENT = %s\n'%CurGpPad) if CurDpPad != 'empty': fo.write('export CELL_PAD_IN_SITES_DETAIL_PLACEMENT = %s\n'%CurDpPad) if CurCtsClusterSize != 'empty': fo.write('export CTS_CLUSTER_SIZE = %s\n'%CurCtsClusterSize) if CurCtsClusterDiameter != 'empty': fo.write('export CTS_CLUSTER_DIAMETER = %s\n'%CurCtsClusterDiameter) if CurDrSeed != 'empty': fo.write('export OR_K = 1.0\n') fo.write('export OR_SEED = %s\n'%CurDrSeed) if CurLayerAdjust != 'empty' or \ CurLayerAdjustM1 != 'empty' or \ CurLayerAdjustM2 != 'empty' or \ CurLayerAdjustM3 != 'empty' or \ CurLayerAdjustM4 != 'empty' or \ CurLayerAdjustM5 != 'empty' or \ CurLayerAdjustM6 != 'empty' or \ CurLayerAdjustM7 != 'empty' or \ CurLayerAdjustM8 != 'empty' or \ CurLayerAdjustM9 != 'empty' or \ CurGrSeed != 'empty': fo.write('export FASTROUTE_TCL = $(dir $(DESIGN_CONFIG))/fastroute-DoE-%s.tcl'%variantName) if CurPlatform in PUBLIC: PLATFORM_DIR = './platforms/%s'%CurPlatform else: PLATFORM_DIR = '../../%s'%CurPlatform fFrIn = open('%s/fastroute.tcl'%PLATFORM_DIR,'r') filedata = fFrIn.read() fFrIn.close() CurLayerAdjustSet = [CurLayerAdjust, \ CurLayerAdjustM1, \ CurLayerAdjustM2, \ CurLayerAdjustM3, \ CurLayerAdjustM4, \ CurLayerAdjustM5, \ CurLayerAdjustM6, \ CurLayerAdjustM7, \ CurLayerAdjustM8, \ CurLayerAdjustM9 ] filedata = adjustFastRoute(filedata, CurLayerAdjustSet, CurGrOverflow) FrName = 'fastroute-DoE-'+variantName+'.tcl' fOutFr = open('%s/%s'%(CurChunkDir,FrName),'w') fOutFr.write(filedata) if CurGrSeed != 'empty': fOutFr.write('set_global_routing_random -seed %s'%CurGrSeed) fOutFr.close() fo.close() frun = open('./%s.sh'%ShellName, 'a') RunName = 'DESIGN_CONFIG=%s/%s make\n'%(CurChunkDir,fileName) frun.write(RunName) frun.close() fcollect = open('./%s_metrics_collect.sh'%ShellName, 'a') CollectName = 'python util/genMetrics.py -x -p %s -d %s -v %s -o metrics_%s/%s.json\n'%(CurPlatform, CurDesign, variantName, ShellName, variantName) fcollect.write(CollectName) fcollect.close() MakeArg = sys.argv[1] if not os.path.isdir('./metrics_%s'%ShellName): os.mkdir('./metrics_%s'%ShellName) knobs = assignEmptyAttrs(SweepingAttributes) ProductAttrs = list(productDict(knobs)) writeDoeLog(SweepingAttributes, ProductAttrs) if os.path.isfile('./%s.sh'%ShellName): os.remove('./%s.sh'%ShellName) if os.path.isfile('./%s_metrics_collect.sh'%ShellName): os.remove('./%s_metrics_collect.sh'%ShellName) CurChunkNum = 0 for i, CurAttrs in enumerate(ProductAttrs, 1): if i % NumFilesPerChunk == 0: writeConfigs(CurAttrs, CurChunkNum) CurChunkNum = CurChunkNum+1 else: writeConfigs(CurAttrs, CurChunkNum) # with open('file.txt') as data: # line = data.readlines() # #for line in lines: # with open('file.txt') as data: # for line in file_data:
31.703863
150
0.648707
[ "BSD-3-Clause" ]
ABKGroup/GenMassive
genMassive.py
14,774
Python
from integration.helpers.base_test import BaseTest class TestBasicLayerVersion(BaseTest): """ Basic AWS::Serverless::StateMachine tests """ def test_basic_state_machine_inline_definition(self): """ Creates a State Machine from inline definition """ self.create_and_verify_stack("basic_state_machine_inline_definition") def test_basic_state_machine_with_tags(self): """ Creates a State Machine with tags """ self.create_and_verify_stack("basic_state_machine_with_tags") tags = self.get_stack_tags("MyStateMachineArn") self.assertIsNotNone(tags) self._verify_tag_presence(tags, "stateMachine:createdBy", "SAM") self._verify_tag_presence(tags, "TagOne", "ValueOne") self._verify_tag_presence(tags, "TagTwo", "ValueTwo") def _verify_tag_presence(self, tags, key, value): """ Verifies the presence of a tag and its value Parameters ---------- tags : List of dict List of tag objects key : string Tag key value : string Tag value """ tag = next(tag for tag in tags if tag["key"] == key) self.assertIsNotNone(tag) self.assertEqual(tag["value"], value)
29.659091
77
0.629885
[ "Apache-2.0" ]
faraz891/serverless-application-model
integration/single/test_basic_state_machine.py
1,305
Python
from __future__ import absolute_import from .context import * from .base_verbs import * from .model import OpenShiftPythonException from .model import Model, Missing from .selector import * from .apiobject import * from . import naming from . import status from . import config from .ansible import ansible # Single source for module version __VERSION__ = '1.0.12' null = None # Allow scripts to specify null in object definitions # Allows modules to trigger errors def error(msg, **kwargs): raise OpenShiftPythonException(msg, **kwargs) # Convenience method for accessing the module version def get_module_version(): return __VERSION__
23.321429
66
0.777948
[ "Apache-2.0" ]
dmaizel/openshift-client-python
packages/openshift/__init__.py
653
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Test attention """ import unittest import torch from torch import tensor from torch import nn from function_GAT_attention import SpGraphAttentionLayer, ODEFuncAtt from torch_geometric.utils import softmax, to_dense_adj from data import get_dataset class AttentionTests(unittest.TestCase): def setUp(self): self.edge = tensor([[0, 2, 2, 1], [1, 0, 1, 2]]) self.x = tensor([[1., 2.], [3., 2.], [4., 5.]], dtype=torch.float) self.W = tensor([[2, 1], [3, 2]], dtype=torch.float) self.alpha = tensor([[1, 2, 3, 4]], dtype=torch.float) self.edge1 = tensor([[0, 0, 1, 1, 2, 2], [1, 2, 0, 2, 0, 1]]) self.x1 = torch.ones((3, 2), dtype=torch.float) self.leakyrelu = nn.LeakyReLU(0.2) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.opt = {'dataset': 'Cora', 'self_loop_weight': 1, 'leaky_relu_slope': 0.2, 'beta_dim': 'vc', 'heads': 2, 'K': 10, 'attention_norm_idx': 0, 'add_source': False, 'max_nfe': 1000, 'mix_features': False, 'attention_dim': 32, 'mixed_block': False, 'rewiring': None, 'no_alpha_sigmoid': False, 'reweight_attention': False, 'kinetic_energy': None, 'jacobian_norm2': None, 'total_deriv': None, 'directional_penalty': None} def tearDown(self) -> None: pass def test(self): h = torch.mm(self.x, self.W) edge_h = torch.cat((h[self.edge[0, :], :], h[self.edge[1, :], :]), dim=1) self.assertTrue(edge_h.shape == torch.Size([self.edge.shape[1], 2 * 2])) ah = self.alpha.mm(edge_h.t()).t() self.assertTrue(ah.shape == torch.Size([self.edge.shape[1], 1])) edge_e = self.leakyrelu(ah) attention = softmax(edge_e, self.edge[1]) print(attention) def test_function(self): in_features = self.x.shape[1] out_features = self.x.shape[1] def get_round_sum(tens, n_digits=3): val = torch.sum(tens, dim=int(not self.opt['attention_norm_idx'])) return (val * 10 ** n_digits).round() / (10 ** n_digits) att_layer = SpGraphAttentionLayer(in_features, out_features, self.opt, self.device, concat=True) attention, _ = att_layer(self.x, self.edge) # should be n_edges x n_heads self.assertTrue(attention.shape == (self.edge.shape[1], self.opt['heads'])) dense_attention1 = to_dense_adj(self.edge, edge_attr=attention[:, 0]).squeeze() dense_attention2 = to_dense_adj(self.edge, edge_attr=attention[:, 1]).squeeze() self.assertTrue(torch.all(torch.eq(get_round_sum(dense_attention1), 1.))) self.assertTrue(torch.all(torch.eq(get_round_sum(dense_attention2), 1.))) self.assertTrue(torch.all(attention > 0.)) self.assertTrue(torch.all(attention <= 1.)) dataset = get_dataset(self.opt, '../data', False) data = dataset.data in_features = data.x.shape[1] out_features = data.x.shape[1] att_layer = SpGraphAttentionLayer(in_features, out_features, self.opt, self.device, concat=True) attention, _ = att_layer(data.x, data.edge_index) # should be n_edges x n_heads self.assertTrue(attention.shape == (data.edge_index.shape[1], self.opt['heads'])) dense_attention1 = to_dense_adj(data.edge_index, edge_attr=attention[:, 0]).squeeze() dense_attention2 = to_dense_adj(data.edge_index, edge_attr=attention[:, 1]).squeeze() self.assertTrue(torch.all(torch.eq(get_round_sum(dense_attention1), 1.))) self.assertTrue(torch.all(torch.eq(get_round_sum(dense_attention2), 1.))) self.assertTrue(torch.all(attention > 0.)) self.assertTrue(torch.all(attention <= 1.)) def test_symetric_attention(self): in_features = self.x1.shape[1] out_features = self.x1.shape[1] att_layer = SpGraphAttentionLayer(in_features, out_features, self.opt, self.device, concat=True) attention, _ = att_layer(self.x1, self.edge1) # should be n_edges x n_heads self.assertTrue(torch.all(torch.eq(attention, 0.5 * torch.ones((self.edge1.shape[1], self.x1.shape[1]))))) def test_module(self): dataset = get_dataset(self.opt, '../data', False) t = 1 out_dim = 6 func = ODEFuncAtt(dataset.data.num_features, out_dim, self.opt, dataset.data, self.device) out = func(t, dataset.data.x) print(out.shape) self.assertTrue(out.shape == (dataset.data.num_nodes, dataset.num_features))
44.326531
113
0.67058
[ "Apache-2.0" ]
dungxibo123/graph-neural-pde
test/test_attention.py
4,344
Python
"""Platform for Husqvarna Automower device tracker integration.""" from homeassistant.components.device_tracker import SOURCE_TYPE_GPS from homeassistant.components.device_tracker.config_entry import TrackerEntity from homeassistant.helpers.entity import DeviceInfo from .const import DOMAIN async def async_setup_entry(hass, entry, async_add_devices) -> None: """Setup sensor platform.""" session = hass.data[DOMAIN][entry.entry_id] async_add_devices( AutomowerTracker(session, idx) for idx, ent in enumerate(session.data["data"]) ) class AutomowerTracker(TrackerEntity): """Defining the Device Tracker Entity.""" def __init__(self, session, idx) -> None: self.session = session self.idx = idx self.mower = self.session.data["data"][self.idx] mower_attributes = self.__get_mower_attributes() self.mower_id = self.mower["id"] self.mower_name = mower_attributes["system"]["name"] self.model = mower_attributes["system"]["model"] self.session.register_cb( lambda _: self.async_write_ha_state(), schedule_immediately=True ) def __get_mower_attributes(self) -> dict: return self.session.data["data"][self.idx]["attributes"] @property def device_info(self) -> DeviceInfo: return DeviceInfo(identifiers={(DOMAIN, self.mower_id)}) @property def name(self) -> str: """Return the name of the entity.""" return self.mower_name @property def unique_id(self) -> str: """Return a unique identifier for this entity.""" return f"{self.mower_id}_dt" @property def source_type(self) -> str: """Return the source type, eg gps or router, of the device.""" return SOURCE_TYPE_GPS @property def latitude(self) -> float: """Return latitude value of the device.""" lat = self.__get_mower_attributes()["positions"][0]["latitude"] return lat @property def longitude(self) -> float: """Return longitude value of the device.""" lon = self.__get_mower_attributes()["positions"][0]["longitude"] return lon
33.402985
87
0.645666
[ "MIT" ]
kalhimeo/husqvarna_automower
custom_components/husqvarna_automower/device_tracker.py
2,238
Python
import django import os os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'portfolio.settings') django.setup() import base64 import tempfile from django.test import TestCase, override_settings from portfolio.portfolio_projects.forms import CommentForm, ProjectForm from django.core.files.uploadedfile import InMemoryUploadedFile from io import BytesIO class TestForms(TestCase): def test_comment_form_valid_data(self): form = CommentForm({ 'text': 'Text', }) self.assertTrue(form.is_valid()) def test_comment_form_has_no_data(self): form = CommentForm({ 'text': '', }) self.assertFalse(form.is_valid()) def test_project_form_has_no_data(self): form = ProjectForm({}) self.assertFalse(form.is_valid()) self.assertEquals(len(form.errors), 4) @override_settings(MEDIA_ROOT=tempfile.gettempdir()) def test_project_form_valid_data(self): image = InMemoryUploadedFile( BytesIO(base64.b64decode(TEST_IMAGE)), field_name='tempfile', name='tempfile.png', content_type='image/png', size=len(TEST_IMAGE), charset='utf-8', ) form = ProjectForm({ 'title': 'Title1', 'description': 'Description1', 'link': 'https://www.google.com/', }, { 'image': image, }) self.assertTrue(form.is_valid()) TEST_IMAGE = ''' iVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8/9hAAAABmJLR0QA/wD/AP+gvaeTAAAACXBI WXMAAABIAAAASABGyWs+AAAACXZwQWcAAAAQAAAAEABcxq3DAAABfElEQVQ4y52TvUuCURTGf5Zg 9goR9AVlUZJ9KURuUkhIUEPQUIubRFtIJTk0NTkUFfgntAUt0eBSQwRKRFSYBYFl1GAt901eUYuw QTLM1yLPds/zPD/uPYereYjHcwD+tQ3+Uys+LwCah3g851la/lf4qwKb61Sn3z5WFUWpCHB+GUGb SCRIpVKqBkmSAMrqsViMqnIiwLx7HO/U+6+30GYyaVXBP1uHrfUAWvWMWiF4+qoOUJLJkubYcDs2 S03hvODSE7564ek5W+Kt+tloa9ax6v4OZ++jZO+jbM+pD7oE4HM1lX1vYNGoDhCyQMiCGacRm0Vf EM+uiudjke6YcRoLfiELNB2dXTkAa08LPlcT2fpJAMxWZ1H4NnKITuwD4Nl6RMgCAE1DY3PuyyQZ JLrNvZhMJgCmJwYB2A1eAHASDiFkQUr5Xn0RoJLSDg7ZCB0fVRQ29/TmP1Nf/0BFgL2dQH4LN9dR 7CMOaiXDn6FayYB9xMHeTgCz1cknd+WC3VgTorUAAAAldEVYdGNyZWF0ZS1kYXRlADIwMTAtMTIt MjZUMTQ6NDk6MjErMDk6MDAHHBB1AAAAJXRFWHRtb2RpZnktZGF0ZQAyMDEwLTEyLTI2VDE0OjQ5 OjIxKzA5OjAwWK1mQQAAAABJRU5ErkJggolQTkcNChoKAAAADUlIRFIAAAAQAAAAEAgGAAAAH/P/ YQAAAAZiS0dEAP8A/wD/oL2nkwAAAAlwSFlzAAAASAAAAEgARslrPgAAAAl2cEFnAAAAEAAAABAA XMatwwAAAhdJREFUOMuVk81LVFEYxn/3zocfqVebUbCyTLyYRYwD0cemCIRyUVToLloERUFBbYpo E7WIFv0TLaP6C2Y17oYWWQxRMwo5OUplkR/XOefMuW8LNYyZLB94eOE5L79zzns4johIPp/n+YtX fPn6jaq1bKaI65LY3sHohXOk02mcNxMT8vjJU5TWbEUN8Ti3bl4n0tLW/qBcniW0ltBaxFrsWl3P 7IZ8PdNa82m6RPTDxyLGmLq7JDuaqVQCllbqn6I4OUU0CJYJw7BmMR6LcPvyURbLGR49q/71KlGj dV3AlbEhBnog3mo5e8Tycrz+cKPamBrAiUOdnD/ZhlFziKpw7RS8LVry01IDcI3WbHRXu8OdS524 pgx6BlkJEKW4PxrSFP2z12iNq1UFrTVaaxDNw6vttDXMg/2O2AXC5UUkWKI7vsDdM+Z3X9Ws2tXG YLTCaMWNMY8DfREAFpcUkzPC1JzL8kKAGM3xvoDD+1uJVX+ilEIptTpECUP8PXEGB/rIzw/iNPXj de1jML0Xay3l6QKfZyewP95x8dhr7r0HpSoAODt7dktoQ0SEpsZGent78f1+fN/H9/sxxlAoFCkU CxQKRUqlEkppXNddBXTv2CXrtH/JofYVoqnUQbLZ8f/+A85aFWAolYJcLiee50ksFtuSm7e1SCaT EUREcrmcnB4ZkWQyKZ7nbepEIiHDw8OSzWZFROQX6PpZFxAtS8IAAAAldEVYdGNyZWF0ZS1kYXRl ADIwMTAtMTItMjZUMTQ6NDk6MjErMDk6MDAHHBB1AAAAJXRFWHRtb2RpZnktZGF0ZQAyMDEwLTEy LTI2VDE0OjQ5OjIxKzA5OjAwWK1mQQAAAABJRU5ErkJggolQTkcNChoKAAAADUlIRFIAAAAQAAAA EAgGAAAAH/P/YQAAAAZiS0dEAP8A/wD/oL2nkwAAAAlwSFlzAAAASAAAAEgARslrPgAAAAl2cEFn AAAAEAAAABAAXMatwwAAAo9JREFUOMuNks1rVGcUxn/ve+9kUuOdfIzamNHEMK3RVILQQAuCWURo rSAtbsV20T/EP6O7FtxkkYWQKK7F4Kb1C6yoSVrNdDIm1YTMjDP3vfc9p4ubZEYopQceDhwOD89z zmO89/rw0SNu3b5D5a8q3gv7ZXa7dkY2sIwMf8w3X3/F9PTnhL/+9oCff7nBeq2GMYb/U5sbm1TX a8TOEQwMHbq+vLKKqqIiiAh+r3tBvKBds72der1OtVolfP78BWmadmnNVKgqI0cOkiRtNrc9Zt9H x9fK6iphs/keVflAoqpSHOzjh+8maL59yk83WzRa8G8OwzRxiHQIFOjJBXw7O8b0qV50K2H1tWf+ riCiHRbNFIUucYgoZu/Yqlz44iiXzh3EpJuE0uLKl57lNc/93wVjOyYyApeguwpElTOf9HH1YkSU e0O72cC/b1DMK9/PGP5c97zaUGwXg01cjHMxcRwz0Cf8ePkAJ47U0eRvSLehtYM06pw+1OTauZje wBG7mCTJEDqX3eCjvOXqxQGmTwXUmwlxmmdrpw+z0ybiHXnbYqasvDgbcGPJEvvsHKFzDp96Tgz3 cvjwMM/efsaBwZP0D39KabKEpgnbG3/wrvaU5psnHD/6mMF8jcqWwRgwpWOjKiLkQkOhv5+xsTLl cpnR0WOUSiVEhLVKhbXXa7xcXqHyaoV6o0Hqd1MxUjqu7XYLMFkaNXtXYC09+R5UwbkYEcVaizFm P/LWGsLJydMs3VvCWkP3gzxK7OKu7Bl81/tEhKmpKVhYWNCJiQkNglDDMKdhLpf1/0AQhDo+Pq5z c3NKmqa6uLios7MXtFgsahRFGhUKHUS7KBQ0iiIdGhrS8+dndH5+XpMk0X8AMTVx/inpU4cAAAAl dEVYdGNyZWF0ZS1kYXRlADIwMTAtMTItMjZUMTQ6NDk6MjErMDk6MDAHHBB1AAAAJXRFWHRtb2Rp ZnktZGF0ZQAyMDEwLTEyLTI2VDE0OjQ5OjIxKzA5OjAwWK1mQQAAAABJRU5ErkJggg== '''.strip()
45.12
76
0.843085
[ "MIT" ]
Dafov/portfolio
tests/portfolio_projects/forms_test.py
4,512
Python
import pytest import numpy as np import pandas as pd from skippa import columns from skippa.transformers.sklearn import( SkippaSimpleImputer, SkippaStandardScaler, SkippaMinMaxScaler, SkippaOneHotEncoder, SkippaLabelEncoder, SkippaOrdinalEncoder, SkippaPCA ) from skippa.utils import get_dummy_data def test_simpleimputer_float(test_data): X, _ = test_data col_spec = columns(dtype_include='float') si = SkippaSimpleImputer(cols=col_spec, strategy='median') res = si.fit_transform(X) assert isinstance(res, pd.DataFrame) subset = res[col_spec(res)] assert subset.isna().sum().sum() == 0 def test_simpleimputer_int(test_data): X, _ = test_data col_spec = columns(dtype_include='int') si = SkippaSimpleImputer(cols=col_spec, strategy='median') res = si.fit_transform(X) assert isinstance(res, pd.DataFrame) subset = res[col_spec(res)] assert subset.isna().sum().sum() == 0 def test_simpleimputer_char(test_data): X, _ = test_data col_spec = columns(dtype_include='object') si = SkippaSimpleImputer(cols=col_spec, strategy='most_frequent') res = si.fit_transform(X) assert isinstance(res, pd.DataFrame) subset = res[col_spec(X)] assert subset.isna().sum().sum() == 0 def test_standardscaler(): X, _ = get_dummy_data(nchar=0, ndate=0, nrows=10) ss = SkippaStandardScaler(cols=columns()) res = ss.fit_transform(X) threshold = 0.01 assert (np.abs(0 - res.mean()) < threshold).all() def test_minmaxscaler(): X, _ = get_dummy_data(nchar=0, ndate=0, nrows=10) mms = SkippaMinMaxScaler(cols=columns()) res = mms.fit_transform(X) threshold = 0.01 assert (np.abs(res.min() - 0.) < threshold).all() assert (np.abs(res.max() - 1.) < threshold).all() def test_onehotencoder(): X, _ = get_dummy_data(nrows=10, nfloat=0, nint=0, nchar=1, ndate=0) ohe = SkippaOneHotEncoder(cols=columns()) res = ohe.fit_transform(X) n_distinct_values = X.iloc[:, 0].nunique(dropna=False) assert res.shape[1] == n_distinct_values def test_pca(): n_components = 3 X, _ = get_dummy_data(nrows=100, nfloat=10, nint=0, nchar=1, ndate=0, missing=False) pca = SkippaPCA(cols=columns(dtype_include='float'), n_components=n_components) res = pca.fit_transform(X) assert pca.n_components_ == n_components assert res.shape[1] == n_components + 1 expected_columns = [f'c{i}' for i in range(n_components)] assert all([c in res.columns for c in expected_columns])
30.60241
88
0.692913
[ "BSD-3-Clause" ]
data-science-lab-amsterdam/skippa
tests/test_sklearn.py
2,540
Python
#!/usr/bin/env python __author__ = 'Sergei F. Kliver' import argparse from RouToolPa.Parsers.VCF import CollectionVCF from MACE.Routines import StatsVCF, Visualization parser = argparse.ArgumentParser() parser.add_argument("-i", "--input_file", action="store", dest="input", required=True, help="Input vcf file with mutations.") parser.add_argument("-o", "--output_prefix", action="store", dest="output_prefix", required=True, help="Prefix of output files") parser.add_argument("-d", "--dpi", action="store", dest="dpi", type=int, default=200, help="Dpi of figure") parser.add_argument("-f", "--figsize", action="store", dest="figsize", type=lambda s: map(int, s.split(",")), default=(5, 5), help="Size of figure in inches. X and Y values should be separated " "by comma. Default: 5,5") parser.add_argument("-e", "--output_formats", action="store", dest="output_formats", type=lambda s: s.split(","), default=["png"], help="Comma-separated list of formats (supported by matlotlib) " "of output figure.Default: png") parser.add_argument("-l", "--title", action="store", dest="title", default=None, help="Title of figure. Default: not set") parser.add_argument("-m", "--parsing_mode", action="store", dest="parsing_mode", default="genotypes", help="Parsing mode. Allowed: genotypes(default), 'coordinates_and_genotypes', 'complete'") """ parser.add_argument("-a", "--scaffold_white_list", action="store", dest="scaffold_white_list", default=[], type=lambda s: s.split(","), help="Comma-separated list of the only scaffolds to draw. Default: all") parser.add_argument("-b", "--scaffold_black_list", action="store", dest="scaffold_black_list", default=[], type=lambda s: s.split(","), help="Comma-separated list of scaffolds to skip at drawing. Default: not set") """ args = parser.parse_args() mutations = CollectionVCF(args.input, parsing_mode="genotypes") StatsVCF.count_singletons(collection_vcf=mutations, output_prefix=args.output_prefix) """ Visualization.zygoty_bar_plot(StatsVCF.count_zygoty(mutations, outfile="%s.counts" % args.output_prefix), args.output_prefix, extension_list=args.output_formats, figsize=args.figsize, dpi=args.dpi, title=args.title) """
51.903846
110
0.593183
[ "Apache-2.0" ]
mahajrod/MACE
scripts/count_singletons.py
2,699
Python
# _*_ coding: utf-8 _*_ __author__ = 'Di Meng' __date__ = '1/3/2018 10:16 PM' # _*_ coding: utf-8 _*_ __author__ = 'Di Meng' __date__ = '1/3/2018 9:26 PM' from tutorial.feature_functions import * import pandas as pd import plotly as py import json from plotly import tools import plotly.graph_objs as go #loading our data df = pd.read_csv('EURUSD_hours.csv') df.columns = ['date','open','high','low','close','volume'] df.date = pd.to_datetime(df.date,format='%d.%m.%Y %H:%M:%S.%f') df = df.set_index(df.date) df = df[['open','high','low','close','volume']] df.drop_duplicates(keep=False) df = df.iloc[:500] #moving average ma = df.close.rolling(center=False, window=30).mean() # detrended = detrend(df, method='difference') # f = fourier(df, [10, 15],method='difference') #HA # HAresults = candles(df, [1]) # HA = HAresults.candles[1] #wad results = wadl(df, [15]) line = results.wadl[15] print(line['close']) # draw grarphs trace = go.Ohlc(x=df.index, open=df.open, high=df.high, low=df.low, close=df.close, name='Currency Quote') trace1 = go.Scatter(x=df.index, y=ma) trace2 = go.Scatter(x=df.index, y=(line.close.to_json())) # linear detrand plot # trace2 = go.Scatter(x=df.index, y=detrended) # difference detrand plot # trace2 = go.Scatter(x=df.index, y=detrended) data = [trace, trace1, trace2] fig = tools.make_subplots(rows=2,cols=1,shared_xaxes=True) fig.append_trace(trace,1,1) fig.append_trace(trace1,1,1) fig.append_trace(trace2,2,1) py.offline.plot(fig, filename="test.html")
23.546875
106
0.696085
[ "MIT" ]
leonsariel/python
finance/tutorial/tester.py
1,507
Python
#!/usr/bin/env python3 """Run AFL repeatedly with externally supplied generated packet from STDIN.""" import logging import sys from ryu.controller import dpset from faucet import faucet from faucet import faucet_experimental_api import afl import fake_packet ROUNDS = 1 logging.disable(logging.CRITICAL) def main(): """Run AFL repeatedly with externally supplied generated packet from STDIN.""" application = faucet.Faucet( dpset=dpset.DPSet(), faucet_experimental_api=faucet_experimental_api.FaucetExperimentalAPI()) application.start() # make sure dps are running if application.valves_manager is not None: for valve in list(application.valves_manager.valves.values()): state = valve.dp.dyn_finalized valve.dp.dyn_finalized = False valve.dp.running = True valve.dp.dyn_finalized = state while afl.loop(ROUNDS): # receive input from afl rcv = sys.stdin.read() data = None try: data = bytearray.fromhex(rcv) # pytype: disable=missing-parameter except (ValueError, TypeError): continue # create fake packet _dp = fake_packet.Datapath(1) msg = fake_packet.Message(datapath=_dp, cookie=15243729, port=1, data=data, in_port=1) pkt = fake_packet.RyuEvent(msg) # send fake packet to faucet application.packet_in_handler(pkt) if __name__ == "__main__": main()
28.403846
94
0.67434
[ "Apache-2.0" ]
1ndochine/faucet
tests/fuzzer/fuzz_packet.py
1,477
Python
import os from connexion import App from flask_marshmallow import Marshmallow from flask_sqlalchemy import SQLAlchemy basedir = os.path.abspath(os.path.dirname(__file__)) conn = App(__name__, specification_dir='./') app = conn.app postgres_url = 'postgres://postgres:[email protected]:54320/web_service_db' app.config["SQLALCHEMY_ECHO"] = True app.config["SQLALCHEMY_DATABASE_URI"] = postgres_url app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False app.config["UPLOAD_FOLDER"] = basedir + os.sep + "web_service_files" app.config["DATABASE"] = "web_service_db" app.config["PORT"] = 5433 app.config["USERNAME"] = "postgres" app.config["HOSTNAME"] = "10.5.95.65" db = SQLAlchemy(app) ma = Marshmallow(app)
25.464286
75
0.760168
[ "MIT" ]
celinekeisja/capstone
web_service/config.py
713
Python
import logging import warnings lcb_min_version_baseline = (2, 9, 0) def get_lcb_min_version(): result = lcb_min_version_baseline try: # check the version listed in README.rst isn't greater than lcb_min_version # bump it up to the specified version if it is import docutils.parsers.rst import docutils.utils import docutils.frontend parser = docutils.parsers.rst.Parser() with open("README.rst") as README: settings = docutils.frontend.OptionParser().get_default_values() settings.update( dict(tab_width=4, report_level=1, pep_references=False, rfc_references=False, syntax_highlight=False), docutils.frontend.OptionParser()) document = docutils.utils.new_document(README.name, settings=settings) parser.parse(README.read(), document) readme_min_version = tuple( map(int, document.substitution_defs.get("libcouchbase_version").astext().split('.'))) result = max(result, readme_min_version) logging.info("min version is {}".format(result)) except Exception as e: warnings.warn("problem: {}".format(e)) return result
38.46875
118
0.656377
[ "Apache-2.0" ]
griels/couchbase-python-client-ng
lcb_version.py
1,231
Python
# Generated by Django 2.2.5 on 2019-11-10 02:46 from django.db import migrations import django.db.models.deletion import smart_selects.db_fields class Migration(migrations.Migration): dependencies = [ ('main_site', '0014_auto_20191109_2038'), ] operations = [ migrations.AlterField( model_name='mushroomspecimen', name='genus', field=smart_selects.db_fields.ChainedForeignKey(chained_field='family', chained_model_field='family', default=0, on_delete=django.db.models.deletion.CASCADE, to='main_site.Genus', verbose_name='Género'), ), migrations.AlterField( model_name='plantspecimen', name='genus', field=smart_selects.db_fields.ChainedForeignKey(chained_field='family', chained_model_field='family', default=0, on_delete=django.db.models.deletion.CASCADE, to='main_site.Genus', verbose_name='Género'), ), ]
36.230769
215
0.687898
[ "MIT" ]
Javen17/plants_api
plants_api/main_site/migrations/0015_auto_20191109_2046.py
944
Python
from graphene import ObjectType, String, Schema class ExampleQuery(ObjectType): hello = String() def resolve_hello(self): return "Hello" class RootQuery(ExampleQuery, ObjectType): pass schema = Schema(query=RootQuery)
16.266667
47
0.717213
[ "MIT" ]
jehalladay/React-Playground
demo/graphQLDemos/spacy/schema.py
244
Python
import requests import json from datetime import datetime, timezone from . utils import _extract_videos_necessary_details, _save_video_detils_in_db from .models import ApiKeys from . import config def _get_api_key(): #getting different key w.r.t last used every time cron job starts.(load balanced) new_key = ApiKeys.objects.all().order_by('last_used').first() _reponse = ApiKeys.objects.filter( api_key=new_key.api_key).update(last_used=datetime.now(timezone.utc)) return new_key.api_key def get_recent_youtube_videos_details(): params = {**config.params} params.update({'key': _get_api_key()}) print('Prameters: ', params) youtube_api_response = requests.get( config.YOUTUBE_SEARCH_URL, params=params) print('Youtube API Response: ', youtube_api_response.text) youtube_api_response = json.loads(youtube_api_response.text) videos_details = _extract_videos_necessary_details( youtube_api_response.get('items', [])) if videos_details: _response = _save_video_detils_in_db(videos_details) return videos_details
37.689655
101
0.755718
[ "MIT" ]
aryamaan98/Youtube-Data-API-Integration
youtubeDataApi/searchApi/cron.py
1,093
Python