Datasets:
ArXiv:
License:
Define features explicitly in the dataset card (#11)
Browse files- Define features explicitly in the dataset card (c6cd9fc75daa23bace3d9bb4d70bd1e7ab43282b)
Co-authored-by: Albert Villanova <[email protected]>
README.md
CHANGED
@@ -1,5 +1,51 @@
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
## DCLM-baseline
|
5 |
DCLM-baseline is a 4T token / 3B document pretraining dataset that achieves strong performance on language model benchmarks.
|
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
3 |
+
dataset_info:
|
4 |
+
features:
|
5 |
+
- name: bff_contained_ngram_count_before_dedupe
|
6 |
+
dtype: int64
|
7 |
+
- name: language_id_whole_page_fasttext
|
8 |
+
struct:
|
9 |
+
- name: en
|
10 |
+
dtype: float64
|
11 |
+
- name: metadata
|
12 |
+
struct:
|
13 |
+
- name: Content-Length
|
14 |
+
dtype: string
|
15 |
+
- name: Content-Type
|
16 |
+
dtype: string
|
17 |
+
- name: WARC-Block-Digest
|
18 |
+
dtype: string
|
19 |
+
- name: WARC-Concurrent-To
|
20 |
+
dtype: string
|
21 |
+
- name: WARC-Date
|
22 |
+
dtype: timestamp[s]
|
23 |
+
- name: WARC-IP-Address
|
24 |
+
dtype: string
|
25 |
+
- name: WARC-Identified-Payload-Type
|
26 |
+
dtype: string
|
27 |
+
- name: WARC-Payload-Digest
|
28 |
+
dtype: string
|
29 |
+
- name: WARC-Record-ID
|
30 |
+
dtype: string
|
31 |
+
- name: WARC-Target-URI
|
32 |
+
dtype: string
|
33 |
+
- name: WARC-Type
|
34 |
+
dtype: string
|
35 |
+
- name: WARC-Warcinfo-ID
|
36 |
+
dtype: string
|
37 |
+
- name: WARC-Truncated
|
38 |
+
dtype: string
|
39 |
+
- name: previous_word_count
|
40 |
+
dtype: int64
|
41 |
+
- name: text
|
42 |
+
dtype: string
|
43 |
+
- name: url
|
44 |
+
dtype: string
|
45 |
+
- name: warcinfo
|
46 |
+
dtype: string
|
47 |
+
- name: fasttext_openhermes_reddit_eli5_vs_rw_v2_bigram_200k_train_prob
|
48 |
+
dtype: float64
|
49 |
---
|
50 |
## DCLM-baseline
|
51 |
DCLM-baseline is a 4T token / 3B document pretraining dataset that achieves strong performance on language model benchmarks.
|