Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,32 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
task_categories:
|
4 |
+
- text-classification
|
5 |
+
language:
|
6 |
+
- gn
|
7 |
+
- es
|
8 |
+
pretty_name: JOTAD
|
9 |
+
size_categories:
|
10 |
+
- 1K<n<10K
|
11 |
+
---
|
12 |
+
# Text-based afective computing
|
13 |
+
We collected a dataset of tweets primarily written in Guarani (and Jopara, a code-switching language that combines Guarani and Spanish) and annotated them for three widely-used dimensions in sentiment analysis:
|
14 |
+
1. emotion recognition (https://huggingface.co/datasets/mmaguero/gn-emotion-recognition),
|
15 |
+
2. humor detection (**this repo**, https://huggingface.co/datasets/mmaguero/gn-humor-detection), and
|
16 |
+
3. ofensive language identifcation (https://huggingface.co/datasets/mmaguero/gn-offensive-language-identifcation).
|
17 |
+
|
18 |
+
The statistics for the Jopara afective analysis datasets and their splits for each proposed task:
|
19 |
+

|
20 |
+
|
21 |
+
## How cite?
|
22 |
+
|
23 |
+
```
|
24 |
+
@article{aguero-et-al2023multi-affect-low-langs-grn,
|
25 |
+
title={Multidimensional Affective Analysis for Low-resource Languages: A Use Case with Guarani-Spanish Code-switching Language},
|
26 |
+
author={Agüero-Torales, Marvin Matías, López-Herrera, Antonio Gabriel, and Vilares, David},
|
27 |
+
journal={Cognitive Computation},
|
28 |
+
year={2023},
|
29 |
+
publisher={Springer},
|
30 |
+
notes={https://link.springer.com/article/10.1007/s12559-023-10165-0#citeas}
|
31 |
+
}
|
32 |
+
```
|