add food vision script
Browse files- food_vision_199_classes.py +28 -17
food_vision_199_classes.py
CHANGED
@@ -14,6 +14,10 @@ import pandas as pd
|
|
14 |
|
15 |
from datasets.tasks import ImageClassification
|
16 |
|
|
|
|
|
|
|
|
|
17 |
_HOMEPAGE = "https://www.nutrify.app"
|
18 |
_LICENSE = "TODO"
|
19 |
_CITATION = "TODO"
|
@@ -250,34 +254,41 @@ class Food199(datasets.GeneratorBasedBuilder):
|
|
250 |
"""
|
251 |
This function returns the logic to split the dataset into different splits as well as labels.
|
252 |
"""
|
253 |
-
|
254 |
-
|
255 |
-
# print("Downloaded annotations.csv")
|
256 |
-
df_train_annotations = df[["image", "label"]][df["split"] == "train"].to_dict(orient="records")
|
257 |
-
# print(df_train_annotations[:5])
|
258 |
-
df_test_annotations = df[["image", "label"]][df["split"] == "test"].to_dict(orient="records")
|
259 |
|
260 |
return [
|
261 |
datasets.SplitGenerator(
|
262 |
name=datasets.Split.TRAIN,
|
263 |
gen_kwargs={
|
264 |
-
"annotations":
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
|
|
|
|
|
|
273 |
|
274 |
-
def _generate_examples(self, annotations):
|
275 |
"""
|
276 |
This function takes in the kwargs from the _split_generators method and can then yield information from them.
|
277 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
for id_, row in enumerate(annotations):
|
|
|
279 |
row["image"] = str(row.pop("image"))
|
280 |
row["label"] = row.pop("label")
|
281 |
-
print(id_, row)
|
282 |
yield id_, row
|
283 |
|
|
|
14 |
|
15 |
from datasets.tasks import ImageClassification
|
16 |
|
17 |
+
# Set verbosity to 10
|
18 |
+
datasets.logging.set_verbosity(10)
|
19 |
+
print(f"Verbosity level: {datasets.logging.get_verbosity()}")
|
20 |
+
|
21 |
_HOMEPAGE = "https://www.nutrify.app"
|
22 |
_LICENSE = "TODO"
|
23 |
_CITATION = "TODO"
|
|
|
254 |
"""
|
255 |
This function returns the logic to split the dataset into different splits as well as labels.
|
256 |
"""
|
257 |
+
annotations_csv = dl_manager.download("annotations_with_links.csv")
|
258 |
+
print(annotations_csv)
|
|
|
|
|
|
|
|
|
259 |
|
260 |
return [
|
261 |
datasets.SplitGenerator(
|
262 |
name=datasets.Split.TRAIN,
|
263 |
gen_kwargs={
|
264 |
+
"annotations": annotations_csv,
|
265 |
+
"split": "train"
|
266 |
+
}
|
267 |
+
),
|
268 |
+
# datasets.SplitGenerator(
|
269 |
+
# name=datasets.Split.TEST,
|
270 |
+
# gen_kwargs={
|
271 |
+
# "annotations": annotations_csv,
|
272 |
+
# "split": "test"
|
273 |
+
# }
|
274 |
+
# )
|
275 |
+
]
|
276 |
|
277 |
+
def _generate_examples(self, annotations, split):
|
278 |
"""
|
279 |
This function takes in the kwargs from the _split_generators method and can then yield information from them.
|
280 |
"""
|
281 |
+
annotations_df = pd.read_csv(annotations, low_memory=False)
|
282 |
+
|
283 |
+
if split == "train":
|
284 |
+
annotations = annotations_df[["image", "label"]][annotations_df["split"] == "train"].to_dict(orient="records")
|
285 |
+
elif split == "test":
|
286 |
+
annotations = annotations_df[["image", "label"]][annotations_df["split"] == "test"].to_dict(orient="records")
|
287 |
+
|
288 |
for id_, row in enumerate(annotations):
|
289 |
+
# print(row["image"])
|
290 |
row["image"] = str(row.pop("image"))
|
291 |
row["label"] = row.pop("label")
|
292 |
+
# print(id_, row)
|
293 |
yield id_, row
|
294 |
|