|
from typing import List |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
_BASE_FEATURE_NAMES = [ |
|
"color", |
|
"size", |
|
"act", |
|
"age", |
|
"is_inflated" |
|
] |
|
|
|
|
|
DESCRIPTION = "Balloons dataset from the UCI ML repository." |
|
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Balloons" |
|
_URLS = ("https://huggingface.co/datasets/mstz/balloons/raw/balloons.csv") |
|
_CITATION = """ |
|
@misc{misc_balloons_13, |
|
title = {{Balloons}}, |
|
howpublished = {UCI Machine Learning Repository}, |
|
note = {{DOI}: \\url{10.24432/C5BP4D}} |
|
}""" |
|
|
|
|
|
urls_per_split = { |
|
"adult_or_stretch": {"train": "https://huggingface.co/datasets/mstz/balloons/raw/main/adult+stretch.data"}, |
|
"adult_and_stretch": {"train": "https://huggingface.co/datasets/mstz/balloons/raw/main/adult-stretch.data"}, |
|
"yellow_and_small": {"train": "https://huggingface.co/datasets/mstz/balloons/raw/main/yellow-small.data"}, |
|
"yellow_and_small_or_adult_and_stretch": {"train": "https://huggingface.co/datasets/mstz/balloons/raw/main/yellow-small+adult-stretch.data"} |
|
} |
|
features_types_per_config = { |
|
"adult_or_stretch": { |
|
"color": datasets.Value("string"), |
|
"size": datasets.Value("string"), |
|
"act": datasets.Value("string"), |
|
"age": datasets.Value("string"), |
|
"is_inflated": datasets.ClassLabel(num_classes=2) |
|
}, |
|
"adult_and_stretch": { |
|
"color": datasets.Value("string"), |
|
"size": datasets.Value("string"), |
|
"act": datasets.Value("string"), |
|
"age": datasets.Value("string"), |
|
"is_inflated": datasets.ClassLabel(num_classes=2) |
|
}, |
|
"yellow_and_small": { |
|
"color": datasets.Value("string"), |
|
"size": datasets.Value("string"), |
|
"act": datasets.Value("string"), |
|
"age": datasets.Value("string"), |
|
"is_inflated": datasets.ClassLabel(num_classes=2) |
|
}, |
|
"yellow_and_small_or_adult_and_stretch": { |
|
"color": datasets.Value("string"), |
|
"size": datasets.Value("string"), |
|
"act": datasets.Value("string"), |
|
"age": datasets.Value("string"), |
|
"is_inflated": datasets.ClassLabel(num_classes=2) |
|
} |
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class BalloonsConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(BalloonsConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Balloons(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "adult_or_stretch" |
|
BUILDER_CONFIGS = [ |
|
BalloonsConfig(name="adult_or_stretch", |
|
description="Binary classification, balloons are inflated if age == adult or act == stretch."), |
|
BalloonsConfig(name="adult_and_stretch", |
|
description="Binary classification, balloons are inflated if age == adult and act == stretch."), |
|
BalloonsConfig(name="yellow_and_small", |
|
description="Binary classification, balloons are inflated if color == yellow and size == small."), |
|
BalloonsConfig(name="yellow_and_small_or_adult_and_stretch", |
|
description="Binary classification, balloons are inflated if color == yellow and size == small or age == adult and act == stretch.") |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads_per_config = {config: dl_manager.download_and_extract(urls_per_split) for config in urls_per_split} |
|
print(downloads_per_config) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads_per_config[self.config.name][self.config.name]["train"]}) |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath, header=None) |
|
data.columns = _BASE_FEATURE_NAMES |
|
data.loc[:, "is_inflated"] = data.is_inflated.apply(lambda x: 1 if x == "T" else 0) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|