Datasets:
Update balloons.py
Browse files- balloons.py +6 -8
balloons.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
"""Balloons."""
|
2 |
-
|
3 |
from typing import List
|
4 |
|
5 |
import datasets
|
@@ -13,7 +11,7 @@ _BASE_FEATURE_NAMES = [
|
|
13 |
"size",
|
14 |
"act",
|
15 |
"age",
|
16 |
-
"
|
17 |
]
|
18 |
|
19 |
|
@@ -40,28 +38,28 @@ features_types_per_config = {
|
|
40 |
"size": datasets.Value("string"),
|
41 |
"act": datasets.Value("string"),
|
42 |
"age": datasets.Value("string"),
|
43 |
-
"
|
44 |
},
|
45 |
"adult_and_stretch": {
|
46 |
"color": datasets.Value("string"),
|
47 |
"size": datasets.Value("string"),
|
48 |
"act": datasets.Value("string"),
|
49 |
"age": datasets.Value("string"),
|
50 |
-
"
|
51 |
},
|
52 |
"yellow_and_small": {
|
53 |
"color": datasets.Value("string"),
|
54 |
"size": datasets.Value("string"),
|
55 |
"act": datasets.Value("string"),
|
56 |
"age": datasets.Value("string"),
|
57 |
-
"
|
58 |
},
|
59 |
"yellow_and_small_or_adult_and_stretch": {
|
60 |
"color": datasets.Value("string"),
|
61 |
"size": datasets.Value("string"),
|
62 |
"act": datasets.Value("string"),
|
63 |
"age": datasets.Value("string"),
|
64 |
-
"
|
65 |
}
|
66 |
}
|
67 |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
@@ -104,7 +102,7 @@ class Balloons(datasets.GeneratorBasedBuilder):
|
|
104 |
def _generate_examples(self, filepath: str):
|
105 |
data = pandas.read_csv(filepath, header=None)
|
106 |
data.columns = _BASE_FEATURE_NAMES
|
107 |
-
data.loc[:, "
|
108 |
|
109 |
for row_id, row in data.iterrows():
|
110 |
data_row = dict(row)
|
|
|
|
|
|
|
1 |
from typing import List
|
2 |
|
3 |
import datasets
|
|
|
11 |
"size",
|
12 |
"act",
|
13 |
"age",
|
14 |
+
"is_inflated"
|
15 |
]
|
16 |
|
17 |
|
|
|
38 |
"size": datasets.Value("string"),
|
39 |
"act": datasets.Value("string"),
|
40 |
"age": datasets.Value("string"),
|
41 |
+
"is_inflated": datasets.ClassLabel(num_classes=2)
|
42 |
},
|
43 |
"adult_and_stretch": {
|
44 |
"color": datasets.Value("string"),
|
45 |
"size": datasets.Value("string"),
|
46 |
"act": datasets.Value("string"),
|
47 |
"age": datasets.Value("string"),
|
48 |
+
"is_inflated": datasets.ClassLabel(num_classes=2)
|
49 |
},
|
50 |
"yellow_and_small": {
|
51 |
"color": datasets.Value("string"),
|
52 |
"size": datasets.Value("string"),
|
53 |
"act": datasets.Value("string"),
|
54 |
"age": datasets.Value("string"),
|
55 |
+
"is_inflated": datasets.ClassLabel(num_classes=2)
|
56 |
},
|
57 |
"yellow_and_small_or_adult_and_stretch": {
|
58 |
"color": datasets.Value("string"),
|
59 |
"size": datasets.Value("string"),
|
60 |
"act": datasets.Value("string"),
|
61 |
"age": datasets.Value("string"),
|
62 |
+
"is_inflated": datasets.ClassLabel(num_classes=2)
|
63 |
}
|
64 |
}
|
65 |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
|
|
102 |
def _generate_examples(self, filepath: str):
|
103 |
data = pandas.read_csv(filepath, header=None)
|
104 |
data.columns = _BASE_FEATURE_NAMES
|
105 |
+
data.loc[:, "is_inflated"] = data.inflated.apply(lambda x: 1 if x == "T" else 0)
|
106 |
|
107 |
for row_id, row in data.iterrows():
|
108 |
data_row = dict(row)
|