Datasets:
Upload 2 files
Browse files
README.md
CHANGED
@@ -11,10 +11,39 @@ size_categories:
|
|
11 |
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
12 |
- tabular-classification
|
13 |
configs:
|
|
|
14 |
- two-years-recidividity
|
15 |
- two-years-recidividity-no-race
|
16 |
- priors-prediction
|
17 |
- priors-prediction-no-race
|
|
|
18 |
---
|
19 |
# Compas
|
20 |
-
The [Compas dataset](https://github.com/propublica/compas-analysis)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
12 |
- tabular-classification
|
13 |
configs:
|
14 |
+
- encoding
|
15 |
- two-years-recidividity
|
16 |
- two-years-recidividity-no-race
|
17 |
- priors-prediction
|
18 |
- priors-prediction-no-race
|
19 |
+
- race
|
20 |
---
|
21 |
# Compas
|
22 |
+
The [Compas dataset](https://github.com/propublica/compas-analysis) for recidivism prediction.
|
23 |
+
|
24 |
+
# Configurations and tasks
|
25 |
+
- `encoding` Encoding of non-numerical variables.
|
26 |
+
- `two-years-recidividity` Binary classification of violent recidivism.
|
27 |
+
- `two-years-recidividity-no-race` As above, but the `race` feature is removed.
|
28 |
+
- `priors-prediction` Regression on the number of prior offenses of defendant.
|
29 |
+
- `priors-prediction-no-race` As above, but the `race` feature is removed.
|
30 |
+
- `race` Multiclass classification, predict `race` out of other features.
|
31 |
+
|
32 |
+
# Features
|
33 |
+
|
34 |
+
|**Feature** |**Type** |**Description** |
|
35 |
+
|---------------------------------------|-----------|---------------------------------------|
|
36 |
+
|`sex` |`int64` | |
|
37 |
+
|`age` |`int64` | |
|
38 |
+
|`race` |`int64` | |
|
39 |
+
|`number_of_juvenile_fellonies` |`int64` | |
|
40 |
+
|`decile_score` |`int64` |Criminality score |
|
41 |
+
|`number_of_juvenile_misdemeanors` |`int64` | |
|
42 |
+
|`number_of_other_juvenile_offenses` |`int64` | |
|
43 |
+
|`number_of_prior_offenses` |`int64` | |
|
44 |
+
|`days_before_screening_arrest` |`int64` | |
|
45 |
+
|`is_recidivous` |`int64` | |
|
46 |
+
|`days_in_custody` |`int64` |Days spent in custody |
|
47 |
+
|`is_violent_recidivous` |`int64` | |
|
48 |
+
|`violence_decile_score` |`int64` |Criminality score for violent crimes |
|
49 |
+
|`two_years_recidivous` |`int64` | |
|
compas.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
"""Compas Dataset"""
|
2 |
|
3 |
from typing import List
|
|
|
4 |
import datetime
|
5 |
|
6 |
import datasets
|
@@ -81,6 +82,20 @@ _BASE_FEATURE_NAMES = [
|
|
81 |
"violence_decile_score",
|
82 |
"two_year_recidivous",
|
83 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
DESCRIPTION = "COMPAS dataset for recidivism prediction."
|
86 |
_HOMEPAGE = "https://github.com/propublica/compas-analysis"
|
@@ -163,6 +178,24 @@ features_types_per_config = {
|
|
163 |
"two_year_recidivous": datasets.Value("int64"),
|
164 |
"number_of_prior_offenses": datasets.Value("int64"),
|
165 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
}
|
167 |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
168 |
|
@@ -207,8 +240,14 @@ class Compas(datasets.GeneratorBasedBuilder):
|
|
207 |
]
|
208 |
|
209 |
def _generate_examples(self, filepath: str):
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
for row_id, row in data.iterrows():
|
214 |
data_row = dict(row)
|
@@ -287,95 +326,20 @@ class Compas(datasets.GeneratorBasedBuilder):
|
|
287 |
|
288 |
data.columns = _BASE_FEATURE_NAMES
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
|
306 |
-
def encoding_dictionaries(self):
|
307 |
-
race_dic, sex_dic = self.race_encoding_dic(), self.sex_encoding_dic()
|
308 |
-
race_data = [("race", race, code) for race, code in race_dic.items()]
|
309 |
-
sex_data = [("sex", sex, code) for sex, code in sex_dic.items()]
|
310 |
-
data = pandas.DataFrame(race_data + sex_data,
|
311 |
-
columns=["feature", "original_value", "encoded_value"])
|
312 |
-
|
313 |
return data
|
314 |
-
|
315 |
-
def two_years_recidividity_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
316 |
-
# categorize features
|
317 |
-
data.loc[:, "race"] = data.race.apply(self.encode_race)
|
318 |
-
|
319 |
-
return data
|
320 |
-
|
321 |
-
def two_years_recidividity_no_race_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
322 |
-
# categorize features
|
323 |
-
data.drop("race", axis="columns", inplace=True)
|
324 |
-
|
325 |
-
return data
|
326 |
-
|
327 |
-
def priors_prediction_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
328 |
-
# categorize features
|
329 |
-
data.loc[:, "race"] = data.race.apply(self.encode_race)
|
330 |
-
|
331 |
-
return data
|
332 |
-
|
333 |
-
def priors_prediction_no_race_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
334 |
-
# categorize features
|
335 |
-
data.drop("race", axis="columns", inplace=True)
|
336 |
-
|
337 |
-
return data
|
338 |
-
|
339 |
-
def encode_race(self, race):
|
340 |
-
return self.race_encoding_dic()[race]
|
341 |
-
|
342 |
-
def decode_race(self, code):
|
343 |
-
return self.race_decoding_dic()[code]
|
344 |
-
|
345 |
-
def race_decoding_dic(self):
|
346 |
-
return {
|
347 |
-
0: "Caucasian",
|
348 |
-
1: "African-American",
|
349 |
-
2: "Hispanic",
|
350 |
-
3: "Asian",
|
351 |
-
4: "Other",
|
352 |
-
5: "Native American",
|
353 |
-
}
|
354 |
-
|
355 |
-
def race_encoding_dic(self):
|
356 |
-
return {
|
357 |
-
"Caucasian": 0,
|
358 |
-
"African-American": 1,
|
359 |
-
"Hispanic": 2,
|
360 |
-
"Asian": 3,
|
361 |
-
"Other": 4,
|
362 |
-
"Native American": 5,
|
363 |
-
}
|
364 |
-
|
365 |
-
def encode_sex(self, sex):
|
366 |
-
return self.sex_encoding_dic()[sex]
|
367 |
-
|
368 |
-
def decode_sex(self, code):
|
369 |
-
return self.sex_decoding_dic()[code]
|
370 |
-
|
371 |
-
def sex_encoding_dic(self):
|
372 |
-
return {
|
373 |
-
"Male": 0,
|
374 |
-
"Female": 1
|
375 |
-
}
|
376 |
-
|
377 |
-
def sex_decoding_dic(self):
|
378 |
-
return {
|
379 |
-
0: "Male",
|
380 |
-
1: "Female"
|
381 |
-
}
|
|
|
1 |
"""Compas Dataset"""
|
2 |
|
3 |
from typing import List
|
4 |
+
from functools import partial
|
5 |
import datetime
|
6 |
|
7 |
import datasets
|
|
|
82 |
"violence_decile_score",
|
83 |
"two_year_recidivous",
|
84 |
]
|
85 |
+
_ENCODING_DICS = {
|
86 |
+
"sex": {
|
87 |
+
"Male": 0,
|
88 |
+
"Female": 1
|
89 |
+
},
|
90 |
+
"race": {
|
91 |
+
"Caucasian": 0,
|
92 |
+
"African-American": 1,
|
93 |
+
"Hispanic": 2,
|
94 |
+
"Asian": 3,
|
95 |
+
"Other": 4,
|
96 |
+
"Native American": 5,
|
97 |
+
}
|
98 |
+
}
|
99 |
|
100 |
DESCRIPTION = "COMPAS dataset for recidivism prediction."
|
101 |
_HOMEPAGE = "https://github.com/propublica/compas-analysis"
|
|
|
178 |
"two_year_recidivous": datasets.Value("int64"),
|
179 |
"number_of_prior_offenses": datasets.Value("int64"),
|
180 |
},
|
181 |
+
|
182 |
+
"race": {
|
183 |
+
"sex": datasets.Value("int64"),
|
184 |
+
"age": datasets.Value("int64"),
|
185 |
+
"number_of_juvenile_fellonies": datasets.Value("int64"),
|
186 |
+
"decile_score": datasets.Value("int64"),
|
187 |
+
"number_of_juvenile_misdemeanors": datasets.Value("int64"),
|
188 |
+
"number_of_other_juvenile_offenses": datasets.Value("int64"),
|
189 |
+
"days_before_screening_arrest": datasets.Value("int64"),
|
190 |
+
"is_recidivous": datasets.Value("int64"),
|
191 |
+
"days_in_custody": datasets.Value("int64"),
|
192 |
+
"is_violent_recidivous": datasets.Value("int64"),
|
193 |
+
"violence_decile_score": datasets.Value("int64"),
|
194 |
+
"two_year_recidivous": datasets.Value("int64"),
|
195 |
+
"number_of_prior_offenses": datasets.Value("int64"),
|
196 |
+
"race": datasets.ClassLabel(num_classes=6, names=("Caucasian", "African-American",
|
197 |
+
"Hispanic", "Asian", "Other", "Native American")),
|
198 |
+
}
|
199 |
}
|
200 |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
201 |
|
|
|
240 |
]
|
241 |
|
242 |
def _generate_examples(self, filepath: str):
|
243 |
+
if self.config.name not in features_types_per_config:
|
244 |
+
raise ValueError(f"Unknown config: {self.config.name}")
|
245 |
+
|
246 |
+
if self.config.name == "encoding":
|
247 |
+
data = self.encoding_dicts()
|
248 |
+
else:
|
249 |
+
data = pandas.read_csv(filepath)
|
250 |
+
data = self.preprocess(data, config=self.config.name)
|
251 |
|
252 |
for row_id, row in data.iterrows():
|
253 |
data_row = dict(row)
|
|
|
326 |
|
327 |
data.columns = _BASE_FEATURE_NAMES
|
328 |
|
329 |
+
for feature in _ENCODING_DICS:
|
330 |
+
if feature == "race":
|
331 |
+
if config != "race":
|
332 |
+
continue
|
333 |
+
encoding_function = partial(self.encode, feature)
|
334 |
+
data.loc[:, feature] = data[feature].apply(encoding_function)
|
335 |
+
|
336 |
+
return data[list(features_types_per_config[config].keys())]
|
337 |
+
|
338 |
+
def encoding_dics(self):
|
339 |
+
data = [pandas.DataFrame([(feature, original, encoded) for original, encoded in d.items()])
|
340 |
+
for feature, d in _ENCODING_DICS.items()]
|
341 |
+
data = pandas.concat(data, axis="rows").reset_index()
|
342 |
+
data.drop("index", axis="columns", inplace=True)
|
343 |
+
data.columns = ["feature", "original_value", "encoded_value"]
|
344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|