"""Spect""" from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") DESCRIPTION = "Spect dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Spect" _URLS = ("https://archive.ics.uci.edu/ml/datasets/Spect") _CITATION = """ @misc{misc_spect_heart_95, author = {Cios,Krzysztof, Kurgan,Lukasz & Goodenday,Lucy}, title = {{SPECT Heart}}, year = {2001}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5P304}} }""" # Dataset info urls_per_split = { "spect": { "train": "https://huggingface.co/datasets/mstz/spect/raw/main/SPECT.train", "test": "https://huggingface.co/datasets/mstz/spect/raw/main/SPECT.test" }, "spectf": { "train": "https://huggingface.co/datasets/mstz/spect/raw/main/SPECTF.train", "test": "https://huggingface.co/datasets/mstz/spect/raw/main/SPECTF.test" } } features_types_per_config = { "spect": { "feature_0": datasets.Value("bool"), "feature_1": datasets.Value("bool"), "feature_2": datasets.Value("bool"), "feature_3": datasets.Value("bool"), "feature_4": datasets.Value("bool"), "feature_5": datasets.Value("bool"), "feature_6": datasets.Value("bool"), "feature_7": datasets.Value("bool"), "feature_8": datasets.Value("bool"), "feature_9": datasets.Value("bool"), "feature_10": datasets.Value("bool"), "feature_11": datasets.Value("bool"), "feature_12": datasets.Value("bool"), "feature_13": datasets.Value("bool"), "feature_14": datasets.Value("bool"), "feature_15": datasets.Value("bool"), "feature_16": datasets.Value("bool"), "feature_17": datasets.Value("bool"), "feature_18": datasets.Value("bool"), "feature_19": datasets.Value("bool"), "feature_20": datasets.Value("bool"), "feature_21": datasets.Value("bool"), "is_emitted": datasets.ClassLabel(num_classes=2, names=("no", "yes")) }, "spectf": { "F1R": datasets.Value("int8"), "F1S": datasets.Value("int8"), "F2R": datasets.Value("int8"), "F2S": datasets.Value("int8"), "F3R": datasets.Value("int8"), "F3S": datasets.Value("int8"), "F4R": datasets.Value("int8"), "F4S": datasets.Value("int8"), "F5R": datasets.Value("int8"), "F5S": datasets.Value("int8"), "F6R": datasets.Value("int8"), "F6S": datasets.Value("int8"), "F7R": datasets.Value("int8"), "F7S": datasets.Value("int8"), "F8R": datasets.Value("int8"), "F8S": datasets.Value("int8"), "F9R": datasets.Value("int8"), "F9S": datasets.Value("int8"), "F10R": datasets.Value("int8"), "F10S": datasets.Value("int8"), "F11R": datasets.Value("int8"), "F11S": datasets.Value("int8"), "F12R": datasets.Value("int8"), "F12S": datasets.Value("int8"), "F13R": datasets.Value("int8"), "F13S": datasets.Value("int8"), "F14R": datasets.Value("int8"), "F14S": datasets.Value("int8"), "F15R": datasets.Value("int8"), "F15S": datasets.Value("int8"), "F16R": datasets.Value("int8"), "F16S": datasets.Value("int8"), "F17R": datasets.Value("int8"), "F17S": datasets.Value("int8"), "F18R": datasets.Value("int8"), "F18S": datasets.Value("int8"), "F19R": datasets.Value("int8"), "F19S": datasets.Value("int8"), "F20R": datasets.Value("int8"), "F20S": datasets.Value("int8"), "F21R": datasets.Value("int8"), "F21S": datasets.Value("int8"), "F22R": datasets.Value("int8"), "F22S": datasets.Value("int8"), "is_emitted": datasets.ClassLabel(num_classes=2, names=("no", "yes")) }, } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class SpectConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(SpectConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Spect(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "spect" BUILDER_CONFIGS = [ SpectConfig(name="spect", description="Spect for binary classification."), SpectConfig(name="spectf", description="Spectf for binary classification.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads[self.config.name]["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) features = list(features_types_per_config[self.config.name]) base_features = [features[-1]] + features[:-1] data.columns = base_features data = data[features] for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row