orionweller
commited on
Commit
·
46c0fca
0
Parent(s):
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .github/workflows/main.yml +19 -0
- CONTRIBUTING +3 -0
- README.md +5 -0
- paths.json +0 -0
- remove_spaces_from_large_json_files.py +15 -0
- results.py +369 -0
- results/Baichuan-text-embedding/no_revision_available/AFQMC.json +20 -0
- results/Baichuan-text-embedding/no_revision_available/ATEC.json +20 -0
- results/Baichuan-text-embedding/no_revision_available/AmazonReviewsClassification.json +25 -0
- results/Baichuan-text-embedding/no_revision_available/BQ.json +20 -0
- results/Baichuan-text-embedding/no_revision_available/CLSClusteringP2P.json +10 -0
- results/Baichuan-text-embedding/no_revision_available/CLSClusteringS2S.json +10 -0
- results/Baichuan-text-embedding/no_revision_available/CMedQAv1.json +10 -0
- results/Baichuan-text-embedding/no_revision_available/CMedQAv2.json +10 -0
- results/Baichuan-text-embedding/no_revision_available/CmedqaRetrieval.json +38 -0
- results/Baichuan-text-embedding/no_revision_available/Cmnli.json +49 -0
- results/Baichuan-text-embedding/no_revision_available/CovidRetrieval.json +38 -0
- results/Baichuan-text-embedding/no_revision_available/DuRetrieval.json +38 -0
- results/Baichuan-text-embedding/no_revision_available/EcomRetrieval.json +38 -0
- results/Baichuan-text-embedding/no_revision_available/IFlyTek.json +13 -0
- results/Baichuan-text-embedding/no_revision_available/JDReview.json +15 -0
- results/Baichuan-text-embedding/no_revision_available/LCQMC.json +20 -0
- results/Baichuan-text-embedding/no_revision_available/MMarcoReranking.json +10 -0
- results/Baichuan-text-embedding/no_revision_available/MMarcoRetrieval.json +38 -0
- results/Baichuan-text-embedding/no_revision_available/MassiveIntentClassification.json +25 -0
- results/Baichuan-text-embedding/no_revision_available/MassiveScenarioClassification.json +25 -0
- results/Baichuan-text-embedding/no_revision_available/MedicalRetrieval.json +38 -0
- results/Baichuan-text-embedding/no_revision_available/MultilingualSentiment.json +13 -0
- results/Baichuan-text-embedding/no_revision_available/Ocnli.json +49 -0
- results/Baichuan-text-embedding/no_revision_available/OnlineShopping.json +15 -0
- results/Baichuan-text-embedding/no_revision_available/PAWSX.json +20 -0
- results/Baichuan-text-embedding/no_revision_available/QBQTC.json +20 -0
- results/Baichuan-text-embedding/no_revision_available/STS22.json +22 -0
- results/Baichuan-text-embedding/no_revision_available/STSB.json +20 -0
- results/Baichuan-text-embedding/no_revision_available/T2Reranking.json +10 -0
- results/Baichuan-text-embedding/no_revision_available/T2Retrieval.json +38 -0
- results/Baichuan-text-embedding/no_revision_available/TNews.json +13 -0
- results/Baichuan-text-embedding/no_revision_available/ThuNewsClusteringP2P.json +10 -0
- results/Baichuan-text-embedding/no_revision_available/ThuNewsClusteringS2S.json +10 -0
- results/Baichuan-text-embedding/no_revision_available/VideoRetrieval.json +38 -0
- results/Baichuan-text-embedding/no_revision_available/Waimai.json +15 -0
- results/Cohere-embed-english-v3.0/no_revision_available/AILACasedocs.json +1 -0
- results/Cohere-embed-english-v3.0/no_revision_available/AILAStatutes.json +1 -0
- results/Cohere-embed-english-v3.0/no_revision_available/Core17InstructionRetrieval.json +9 -0
- results/Cohere-embed-english-v3.0/no_revision_available/GerDaLIRSmall.json +1 -0
- results/Cohere-embed-english-v3.0/no_revision_available/LeCaRDv2.json +1 -0
- results/Cohere-embed-english-v3.0/no_revision_available/LegalBenchConsumerContractsQA.json +1 -0
- results/Cohere-embed-english-v3.0/no_revision_available/LegalBenchCorporateLobbying.json +1 -0
- results/Cohere-embed-english-v3.0/no_revision_available/LegalQuAD.json +1 -0
- results/Cohere-embed-english-v3.0/no_revision_available/LegalSummarization.json +1 -0
.github/workflows/main.yml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Sync to Hugging Face hub
|
2 |
+
on:
|
3 |
+
push:
|
4 |
+
branches: [main]
|
5 |
+
# to run this workflow manually from the Actions tab
|
6 |
+
workflow_dispatch:
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
sync-to-hub:
|
10 |
+
runs-on: ubuntu-latest
|
11 |
+
steps:
|
12 |
+
- uses: actions/checkout@v3
|
13 |
+
with:
|
14 |
+
fetch-depth: 0
|
15 |
+
lfs: true
|
16 |
+
- name: Push to hub
|
17 |
+
env:
|
18 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
19 |
+
run: git push https://mteb:[email protected]/datasets/mteb/results main
|
CONTRIBUTING
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
TODO
|
2 |
+
|
3 |
+
Users must be sure no files are over 10MB. If there are we should remove all spaces from them to keep them < 10MB. This should be a pre-commit hook checking.
|
README.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
benchmark: mteb
|
3 |
+
type: evaluation
|
4 |
+
submission_name: MTEB
|
5 |
+
---
|
paths.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
remove_spaces_from_large_json_files.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
|
6 |
+
for file in glob.glob("results/*/*/*.json"):
|
7 |
+
# if the file is greater than 9 MB, compress it with gzip
|
8 |
+
if os.path.getsize(file) >= 9.5 * 1024 * 1024:
|
9 |
+
print(f"Resizing {file} to have no indentations")
|
10 |
+
# read it in as json and write it out with no indent
|
11 |
+
with open(file, "r") as f:
|
12 |
+
data = json.load(f)
|
13 |
+
|
14 |
+
with open(file, "w") as f:
|
15 |
+
json.dump(data, f, indent=None)
|
results.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MTEB Results"""
|
2 |
+
|
3 |
+
import json
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
|
8 |
+
logger = datasets.logging.get_logger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
_CITATION = """@article{muennighoff2022mteb,
|
12 |
+
doi = {10.48550/ARXIV.2210.07316},
|
13 |
+
url = {https://arxiv.org/abs/2210.07316},
|
14 |
+
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
|
15 |
+
title = {MTEB: Massive Text Embedding Benchmark},
|
16 |
+
publisher = {arXiv},
|
17 |
+
journal={arXiv preprint arXiv:2210.07316},
|
18 |
+
year = {2022}
|
19 |
+
}
|
20 |
+
"""
|
21 |
+
|
22 |
+
_DESCRIPTION = """Results on MTEB"""
|
23 |
+
|
24 |
+
URL = "https://huggingface.co/datasets/mteb/results/resolve/main/paths.json"
|
25 |
+
VERSION = datasets.Version("1.0.1")
|
26 |
+
EVAL_LANGS = ['af', 'afr-eng', 'am', "amh", 'amh-eng', 'ang-eng', 'ar', 'ar-ar', 'ara-eng', 'arq-eng', 'arz-eng', 'ast-eng', 'awa-eng', 'az', 'aze-eng', 'bel-eng', 'ben-eng', 'ber-eng', 'bn', 'bos-eng', 'bre-eng', 'bul-eng', 'cat-eng', 'cbk-eng', 'ceb-eng', 'ces-eng', 'cha-eng', 'cmn-eng', 'cor-eng', 'csb-eng', 'cy', 'cym-eng', 'da', 'dan-eng', 'de', 'de-fr', 'de-pl', 'deu-eng', 'dsb-eng', 'dtp-eng', 'el', 'ell-eng', 'en', 'en-ar', 'en-de', 'en-en', 'en-tr', 'eng', 'epo-eng', 'es', 'es-en', 'es-es', 'es-it', 'est-eng', 'eus-eng', 'fa', 'fao-eng', 'fi', 'fin-eng', 'fr', 'fr-en', 'fr-pl', 'fra', 'fra-eng', 'fry-eng', 'gla-eng', 'gle-eng', 'glg-eng', 'gsw-eng', 'hau', 'he', 'heb-eng', 'hi', 'hin-eng', 'hrv-eng', 'hsb-eng', 'hu', 'hun-eng', 'hy', 'hye-eng', 'ibo', 'id', 'ido-eng', 'ile-eng', 'ina-eng', 'ind-eng', 'is', 'isl-eng', 'it', 'it-en', 'ita-eng', 'ja', 'jav-eng', 'jpn-eng', 'jv', 'ka', 'kab-eng', 'kat-eng', 'kaz-eng', 'khm-eng', 'km', 'kn', 'ko', 'ko-ko', 'kor-eng', 'kur-eng', 'kzj-eng', 'lat-eng', 'lfn-eng', 'lit-eng', 'lin', 'lug', 'lv', 'lvs-eng', 'mal-eng', 'mar-eng', 'max-eng', 'mhr-eng', 'mkd-eng', 'ml', 'mn', 'mon-eng', 'ms', 'my', 'nb', 'nds-eng', 'nl', 'nl-ende-en', 'nld-eng', 'nno-eng', 'nob-eng', 'nov-eng', 'oci-eng', 'orm', 'orv-eng', 'pam-eng', 'pcm', 'pes-eng', 'pl', 'pl-en', 'pms-eng', 'pol-eng', 'por-eng', 'pt', 'ro', 'ron-eng', 'ru', 'run', 'rus-eng', 'sl', 'slk-eng', 'slv-eng', 'spa-eng', 'sna', 'som', 'sq', 'sqi-eng', 'srp-eng', 'sv', 'sw', 'swa', 'swe-eng', 'swg-eng', 'swh-eng', 'ta', 'tam-eng', 'tat-eng', 'te', 'tel-eng', 'tgl-eng', 'th', 'tha-eng', 'tir', 'tl', 'tr', 'tuk-eng', 'tur-eng', 'tzl-eng', 'uig-eng', 'ukr-eng', 'ur', 'urd-eng', 'uzb-eng', 'vi', 'vie-eng', 'war-eng', 'wuu-eng', 'xho', 'xho-eng', 'yid-eng', 'yor', 'yue-eng', 'zh', 'zh-CN', 'zh-TW', 'zh-en', 'zsm-eng']
|
27 |
+
|
28 |
+
# v_measures key is somehow present in voyage-2-law results and is a list
|
29 |
+
SKIP_KEYS = ["std", "evaluation_time", "main_score", "threshold", "v_measures"]
|
30 |
+
|
31 |
+
# Use "train" split instead
|
32 |
+
TRAIN_SPLIT = ["DanishPoliticalCommentsClassification"]
|
33 |
+
# Use "validation" split instead
|
34 |
+
VALIDATION_SPLIT = ["AFQMC", "Cmnli", "IFlyTek", "LEMBSummScreenFDRetrieval", "MSMARCO", "MSMARCO-PL", "MultilingualSentiment", "Ocnli", "TNews"]
|
35 |
+
# Use "dev" split instead
|
36 |
+
DEV_SPLIT = ["CmedqaRetrieval", "CovidRetrieval", "DuRetrieval", "EcomRetrieval", "MedicalRetrieval", "MMarcoReranking", "MMarcoRetrieval", "MSMARCO", "MSMARCO-PL", "T2Reranking", "T2Retrieval", "VideoRetrieval"]
|
37 |
+
# Use "test.full" split
|
38 |
+
TESTFULL_SPLIT = ["OpusparcusPC"]
|
39 |
+
|
40 |
+
TEST_AVG_SPLIT = {
|
41 |
+
"LEMBNeedleRetrieval": ["test_256", "test_512", "test_1024", "test_2048", "test_4096", "test_8192", "test_16384", "test_32768"],
|
42 |
+
"LEMBPasskeyRetrieval": ["test_256", "test_512", "test_1024", "test_2048", "test_4096", "test_8192", "test_16384", "test_32768"],
|
43 |
+
}
|
44 |
+
|
45 |
+
MODELS = [
|
46 |
+
"Baichuan-text-embedding",
|
47 |
+
"Cohere-embed-english-v3.0",
|
48 |
+
"Cohere-embed-multilingual-light-v3.0",
|
49 |
+
"Cohere-embed-multilingual-v3.0",
|
50 |
+
"DanskBERT",
|
51 |
+
"FollowIR-7B",
|
52 |
+
"GritLM-7B",
|
53 |
+
"LASER2",
|
54 |
+
"LLM2Vec-Llama-2-supervised",
|
55 |
+
"LLM2Vec-Llama-2-unsupervised",
|
56 |
+
"LLM2Vec-Meta-Llama-3-supervised",
|
57 |
+
"LLM2Vec-Meta-Llama-3-unsupervised",
|
58 |
+
"LLM2Vec-Mistral-supervised",
|
59 |
+
"LLM2Vec-Mistral-unsupervised",
|
60 |
+
"LLM2Vec-Sheared-Llama-supervised",
|
61 |
+
"LLM2Vec-Sheared-Llama-unsupervised",
|
62 |
+
"LaBSE",
|
63 |
+
"OpenSearch-text-hybrid",
|
64 |
+
"all-MiniLM-L12-v2",
|
65 |
+
"all-MiniLM-L6-v2",
|
66 |
+
"all-mpnet-base-v2",
|
67 |
+
"allenai-specter",
|
68 |
+
"bert-base-10lang-cased",
|
69 |
+
"bert-base-15lang-cased",
|
70 |
+
"bert-base-25lang-cased",
|
71 |
+
"bert-base-multilingual-cased",
|
72 |
+
"bert-base-multilingual-uncased",
|
73 |
+
"bert-base-swedish-cased",
|
74 |
+
"bert-base-uncased",
|
75 |
+
"bge-base-en-v1.5",
|
76 |
+
"bge-base-en",
|
77 |
+
"bge-base-zh",
|
78 |
+
"bge-base-zh-v1.5",
|
79 |
+
"bge-large-en",
|
80 |
+
"bge-large-en-v1.5",
|
81 |
+
"bge-large-zh",
|
82 |
+
"bge-large-zh-noinstruct",
|
83 |
+
"bge-large-zh-v1.5",
|
84 |
+
"bge-m3",
|
85 |
+
"bge-small-zh",
|
86 |
+
"bge-small-zh-v1.5",
|
87 |
+
"bm25",
|
88 |
+
"camembert-base",
|
89 |
+
"camembert-large",
|
90 |
+
"contriever-base-msmarco",
|
91 |
+
"cross-en-de-roberta-sentence-transformer",
|
92 |
+
"dfm-encoder-large-v1",
|
93 |
+
"dfm-sentence-encoder-large-1",
|
94 |
+
"distilbert-base-25lang-cased",
|
95 |
+
"distilbert-base-en-fr-cased",
|
96 |
+
"distilbert-base-en-fr-es-pt-it-cased",
|
97 |
+
"distilbert-base-fr-cased",
|
98 |
+
"distilbert-base-uncased",
|
99 |
+
"distiluse-base-multilingual-cased-v2",
|
100 |
+
"e5-base",
|
101 |
+
"e5-base-4k",
|
102 |
+
"e5-base-v2",
|
103 |
+
"e5-large",
|
104 |
+
"e5-large-v2",
|
105 |
+
"e5-mistral-7b-instruct",
|
106 |
+
"e5-small",
|
107 |
+
"e5-small-v2",
|
108 |
+
"electra-small-nordic",
|
109 |
+
"electra-small-swedish-cased-discriminator",
|
110 |
+
"elser-v2",
|
111 |
+
"embedder-100p",
|
112 |
+
"facebook-dpr-ctx_encoder-multiset-base",
|
113 |
+
"flan-t5-base",
|
114 |
+
"flan-t5-large",
|
115 |
+
"flaubert_base_cased",
|
116 |
+
"flaubert_base_uncased",
|
117 |
+
"flaubert_large_cased",
|
118 |
+
"gbert-base",
|
119 |
+
"gbert-large",
|
120 |
+
"gelectra-base",
|
121 |
+
"gelectra-large",
|
122 |
+
"glove.6B.300d",
|
123 |
+
"google-gecko-256.text-embedding-preview-0409",
|
124 |
+
"google-gecko.text-embedding-preview-0409",
|
125 |
+
"gottbert-base",
|
126 |
+
"gte-Qwen1.5-7B-instruct",
|
127 |
+
"gtr-t5-base",
|
128 |
+
"gtr-t5-large",
|
129 |
+
"gtr-t5-xl",
|
130 |
+
"gtr-t5-xxl",
|
131 |
+
"herbert-base-retrieval-v2",
|
132 |
+
"instructor-base",
|
133 |
+
"instructor-xl",
|
134 |
+
"jina-embeddings-v2-base-en",
|
135 |
+
"komninos",
|
136 |
+
"llama-2-7b-chat",
|
137 |
+
"luotuo-bert-medium",
|
138 |
+
"m3e-base",
|
139 |
+
"m3e-large",
|
140 |
+
"mistral-7b-instruct-v0.2",
|
141 |
+
"mistral-embed",
|
142 |
+
"monobert-large-msmarco",
|
143 |
+
"monot5-3b-msmarco-10k",
|
144 |
+
"monot5-base-msmarco-10k",
|
145 |
+
"msmarco-bert-co-condensor",
|
146 |
+
"multi-qa-MiniLM-L6-cos-v1",
|
147 |
+
"multilingual-e5-base",
|
148 |
+
"multilingual-e5-large",
|
149 |
+
"multilingual-e5-large-instruct",
|
150 |
+
"multilingual-e5-small",
|
151 |
+
"mxbai-embed-large-v1",
|
152 |
+
"nb-bert-base",
|
153 |
+
"nb-bert-large",
|
154 |
+
"nomic-embed-text-v1",
|
155 |
+
"nomic-embed-text-v1.5-128",
|
156 |
+
"nomic-embed-text-v1.5-256",
|
157 |
+
"nomic-embed-text-v1.5-512",
|
158 |
+
"nomic-embed-text-v1.5-64",
|
159 |
+
"norbert3-base",
|
160 |
+
"norbert3-large",
|
161 |
+
"paraphrase-multilingual-MiniLM-L12-v2",
|
162 |
+
"paraphrase-multilingual-mpnet-base-v2",
|
163 |
+
"rubert-tiny",
|
164 |
+
"rubert-tiny2",
|
165 |
+
"sbert_large_mt_nlu_ru",
|
166 |
+
"sbert_large_nlu_ru",
|
167 |
+
"sentence-bert-swedish-cased",
|
168 |
+
"sentence-camembert-base",
|
169 |
+
"sentence-camembert-large",
|
170 |
+
"sentence-croissant-llm-base",
|
171 |
+
"sentence-t5-base",
|
172 |
+
"sentence-t5-large",
|
173 |
+
"sentence-t5-xl",
|
174 |
+
"sentence-t5-xxl",
|
175 |
+
"sgpt-bloom-1b7-nli",
|
176 |
+
"sgpt-bloom-7b1-msmarco",
|
177 |
+
"silver-retriever-base-v1",
|
178 |
+
"st-polish-paraphrase-from-distilroberta",
|
179 |
+
"st-polish-paraphrase-from-mpnet",
|
180 |
+
"sup-simcse-bert-base-uncased",
|
181 |
+
"tart-dual-contriever-msmarco",
|
182 |
+
"tart-full-flan-t5-xl",
|
183 |
+
"text-embedding-3-large",
|
184 |
+
"text-embedding-3-large-256",
|
185 |
+
"text-embedding-3-small",
|
186 |
+
"text-embedding-ada-002",
|
187 |
+
"text-search-ada-001",
|
188 |
+
"text-search-ada-doc-001",
|
189 |
+
"text-search-babbage-001",
|
190 |
+
"text-search-curie-001",
|
191 |
+
"text-search-davinci-001",
|
192 |
+
"text-similarity-ada-001",
|
193 |
+
"text-similarity-babbage-001",
|
194 |
+
"text-similarity-curie-001",
|
195 |
+
"text-similarity-davinci-001",
|
196 |
+
"text2vec-base-chinese",
|
197 |
+
"text2vec-base-multilingual",
|
198 |
+
"text2vec-large-chinese",
|
199 |
+
"titan-embed-text-v1",
|
200 |
+
"udever-bloom-1b1",
|
201 |
+
"udever-bloom-560m",
|
202 |
+
"universal-sentence-encoder-multilingual-3",
|
203 |
+
"universal-sentence-encoder-multilingual-large-3",
|
204 |
+
"unsup-simcse-bert-base-uncased",
|
205 |
+
"use-cmlm-multilingual",
|
206 |
+
"voyage-2",
|
207 |
+
"voyage-code-2",
|
208 |
+
"voyage-large-2-instruct",
|
209 |
+
"voyage-law-2",
|
210 |
+
"voyage-lite-01-instruct",
|
211 |
+
"voyage-lite-02-instruct",
|
212 |
+
"voyage-multilingual-2",
|
213 |
+
"xlm-roberta-base",
|
214 |
+
"xlm-roberta-large",
|
215 |
+
]
|
216 |
+
|
217 |
+
|
218 |
+
# Needs to be run whenever new files are added
|
219 |
+
def get_paths():
|
220 |
+
import collections, json, os
|
221 |
+
files = collections.defaultdict(list)
|
222 |
+
for model_dir in os.listdir("results"):
|
223 |
+
results_model_dir = os.path.join("results", model_dir)
|
224 |
+
if not os.path.isdir(results_model_dir):
|
225 |
+
print(f"Skipping {results_model_dir}")
|
226 |
+
continue
|
227 |
+
for revision_folder in os.listdir(results_model_dir):
|
228 |
+
if not os.path.isdir(os.path.join(results_model_dir, revision_folder)):
|
229 |
+
continue
|
230 |
+
for res_file in os.listdir(os.path.join(results_model_dir, revision_folder)):
|
231 |
+
if (res_file.endswith(".json")) and not(res_file.endswith("overall_results.json")):
|
232 |
+
results_model_file = os.path.join(results_model_dir, res_file)
|
233 |
+
files[model_dir].append(results_model_file)
|
234 |
+
with open("paths.json", "w") as f:
|
235 |
+
json.dump(files, f, indent=2)
|
236 |
+
return files
|
237 |
+
|
238 |
+
|
239 |
+
class MTEBResults(datasets.GeneratorBasedBuilder):
|
240 |
+
"""MTEBResults"""
|
241 |
+
|
242 |
+
BUILDER_CONFIGS = [
|
243 |
+
datasets.BuilderConfig(
|
244 |
+
name=model,
|
245 |
+
description=f"{model} MTEB results",
|
246 |
+
version=VERSION,
|
247 |
+
)
|
248 |
+
for model in MODELS
|
249 |
+
]
|
250 |
+
|
251 |
+
def _info(self):
|
252 |
+
return datasets.DatasetInfo(
|
253 |
+
description=_DESCRIPTION,
|
254 |
+
features=datasets.Features(
|
255 |
+
{
|
256 |
+
"mteb_dataset_name": datasets.Value("string"),
|
257 |
+
"eval_language": datasets.Value("string"),
|
258 |
+
"metric": datasets.Value("string"),
|
259 |
+
"score": datasets.Value("float"),
|
260 |
+
}
|
261 |
+
),
|
262 |
+
supervised_keys=None,
|
263 |
+
citation=_CITATION,
|
264 |
+
)
|
265 |
+
|
266 |
+
def _split_generators(self, dl_manager):
|
267 |
+
path_file = dl_manager.download_and_extract(URL)
|
268 |
+
with open(path_file) as f:
|
269 |
+
files = json.load(f)
|
270 |
+
|
271 |
+
downloaded_files = dl_manager.download_and_extract(files[self.config.name])
|
272 |
+
return [
|
273 |
+
datasets.SplitGenerator(
|
274 |
+
name=datasets.Split.TEST,
|
275 |
+
gen_kwargs={'filepath': downloaded_files}
|
276 |
+
)
|
277 |
+
]
|
278 |
+
|
279 |
+
def _generate_examples(self, filepath):
|
280 |
+
"""This function returns the examples in the raw (text) form."""
|
281 |
+
logger.info(f"Generating examples from {filepath}")
|
282 |
+
out = []
|
283 |
+
|
284 |
+
for path in filepath:
|
285 |
+
with open(path, encoding="utf-8") as f:
|
286 |
+
res_dict = json.load(f)
|
287 |
+
# Naming changed from mteb_dataset_name to task_name
|
288 |
+
ds_name = res_dict.get("mteb_dataset_name", res_dict.get("task_name"))
|
289 |
+
# New MTEB format uses scores
|
290 |
+
res_dict = res_dict.get("scores", res_dict)
|
291 |
+
|
292 |
+
split = "test"
|
293 |
+
if (ds_name in TRAIN_SPLIT) and ("train" in res_dict):
|
294 |
+
split = "train"
|
295 |
+
elif (ds_name in VALIDATION_SPLIT) and ("validation" in res_dict):
|
296 |
+
split = "validation"
|
297 |
+
elif (ds_name in DEV_SPLIT) and ("dev" in res_dict):
|
298 |
+
split = "dev"
|
299 |
+
elif (ds_name in TESTFULL_SPLIT) and ("test.full" in res_dict):
|
300 |
+
split = "test.full"
|
301 |
+
elif (ds_name in TEST_AVG_SPLIT):
|
302 |
+
# Average splits
|
303 |
+
res_dict["test_avg"] = {}
|
304 |
+
for split in TEST_AVG_SPLIT[ds_name]:
|
305 |
+
# Old MTEB format
|
306 |
+
if isinstance(res_dict.get(split), dict):
|
307 |
+
for k, v in res_dict.get(split, {}).items():
|
308 |
+
v /= len(TEST_AVG_SPLIT[ds_name])
|
309 |
+
if k not in res_dict["test_avg"]:
|
310 |
+
res_dict["test_avg"][k] = v
|
311 |
+
else:
|
312 |
+
res_dict["test_avg"][k] += v
|
313 |
+
# New MTEB format
|
314 |
+
elif isinstance(res_dict.get(split), list):
|
315 |
+
assert len(res_dict[split]) == 1, "Only single-lists supported for now"
|
316 |
+
for k, v in res_dict[split][0].items():
|
317 |
+
if not isinstance(v, float): continue
|
318 |
+
v /= len(TEST_AVG_SPLIT[ds_name])
|
319 |
+
if k not in res_dict["test_avg"]:
|
320 |
+
res_dict["test_avg"][k] = v
|
321 |
+
else:
|
322 |
+
res_dict["test_avg"][k] += v
|
323 |
+
split = "test_avg"
|
324 |
+
elif "test" not in res_dict:
|
325 |
+
print(f"Skipping {ds_name} as split {split} not present.")
|
326 |
+
continue
|
327 |
+
res_dict = res_dict.get(split)
|
328 |
+
|
329 |
+
### New MTEB format ###
|
330 |
+
if isinstance(res_dict, list):
|
331 |
+
for res in res_dict:
|
332 |
+
lang = res.get("languages", [""])
|
333 |
+
assert len(lang) == 1, "Only single-languages supported for now"
|
334 |
+
lang = lang[0].replace("eng-Latn", "")
|
335 |
+
for metric, score in res.items():
|
336 |
+
if metric in SKIP_KEYS: continue
|
337 |
+
out.append({
|
338 |
+
"mteb_dataset_name": ds_name,
|
339 |
+
"eval_language": lang,
|
340 |
+
"metric": metric,
|
341 |
+
"score": score * 100,
|
342 |
+
})
|
343 |
+
|
344 |
+
### Old MTEB format ###
|
345 |
+
else:
|
346 |
+
is_multilingual = any(x in res_dict for x in EVAL_LANGS)
|
347 |
+
langs = res_dict.keys() if is_multilingual else ["en"]
|
348 |
+
for lang in langs:
|
349 |
+
if lang in SKIP_KEYS: continue
|
350 |
+
test_result_lang = res_dict.get(lang) if is_multilingual else res_dict
|
351 |
+
for metric, score in test_result_lang.items():
|
352 |
+
if not isinstance(score, dict):
|
353 |
+
score = {metric: score}
|
354 |
+
for sub_metric, sub_score in score.items():
|
355 |
+
if any(x in sub_metric for x in SKIP_KEYS): continue
|
356 |
+
if isinstance(sub_score, dict): continue
|
357 |
+
out.append({
|
358 |
+
"mteb_dataset_name": ds_name,
|
359 |
+
"eval_language": lang if is_multilingual else "",
|
360 |
+
"metric": f"{metric}_{sub_metric}" if metric != sub_metric else metric,
|
361 |
+
"score": sub_score * 100,
|
362 |
+
})
|
363 |
+
for idx, row in enumerate(sorted(out, key=lambda x: x["mteb_dataset_name"])):
|
364 |
+
yield idx, row
|
365 |
+
|
366 |
+
|
367 |
+
# NOTE: for generating the new paths
|
368 |
+
if __name__ == "__main__":
|
369 |
+
get_paths()
|
results/Baichuan-text-embedding/no_revision_available/AFQMC.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "AFQMC",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"validation": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.4829609272631085,
|
8 |
+
"spearman": 0.5080031098340034
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.48915888167383914,
|
12 |
+
"spearman": 0.508003310876931
|
13 |
+
},
|
14 |
+
"evaluation_time": 5.52,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.4883913003371612,
|
17 |
+
"spearman": 0.507119124081868
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/ATEC.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "ATEC",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.5108024865980523,
|
8 |
+
"spearman": 0.5322524599077678
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.5495649374475876,
|
12 |
+
"spearman": 0.5322525387159475
|
13 |
+
},
|
14 |
+
"evaluation_time": 23.5,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.5490069145550858,
|
17 |
+
"spearman": 0.5318577305140235
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/AmazonReviewsClassification.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "AmazonReviewsClassification",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 37.19,
|
7 |
+
"zh": {
|
8 |
+
"accuracy": 0.48301999999999995,
|
9 |
+
"accuracy_stderr": 0.015009983344427814,
|
10 |
+
"f1": 0.4358151996593711,
|
11 |
+
"f1_stderr": 0.021935952504451846,
|
12 |
+
"main_score": 0.48301999999999995
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"validation": {
|
16 |
+
"evaluation_time": 44.97,
|
17 |
+
"zh": {
|
18 |
+
"accuracy": 0.47596,
|
19 |
+
"accuracy_stderr": 0.013457131938121147,
|
20 |
+
"f1": 0.4297519925445886,
|
21 |
+
"f1_stderr": 0.022271859166647427,
|
22 |
+
"main_score": 0.47596
|
23 |
+
}
|
24 |
+
}
|
25 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/BQ.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "BQ",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.6382205659368678,
|
8 |
+
"spearman": 0.664875868977765
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.6469068710733963,
|
12 |
+
"spearman": 0.6648758689697865
|
13 |
+
},
|
14 |
+
"evaluation_time": 11.53,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.6465254698872425,
|
17 |
+
"spearman": 0.664768204689053
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/CLSClusteringP2P.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "CLSClusteringP2P",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 842.9,
|
7 |
+
"v_measure": 0.6036843826092417,
|
8 |
+
"v_measure_std": 0.011663855200498223
|
9 |
+
}
|
10 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/CLSClusteringS2S.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "CLSClusteringS2S",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 99.78,
|
7 |
+
"v_measure": 0.5108781005084964,
|
8 |
+
"v_measure_std": 0.01733772998995446
|
9 |
+
}
|
10 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/CMedQAv1.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "CMedQAv1",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 245.66,
|
7 |
+
"map": 0.8806336186199681,
|
8 |
+
"mrr": 0.9029142857142856
|
9 |
+
}
|
10 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/CMedQAv2.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "CMedQAv2",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 255.0,
|
7 |
+
"map": 0.8845694611153427,
|
8 |
+
"mrr": 0.9049976190476191
|
9 |
+
}
|
10 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/CmedqaRetrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"dev": {
|
4 |
+
"evaluation_time": 293.85,
|
5 |
+
"map_at_1": 0.27486,
|
6 |
+
"map_at_10": 0.40762,
|
7 |
+
"map_at_100": 0.42651,
|
8 |
+
"map_at_1000": 0.42753,
|
9 |
+
"map_at_3": 0.36423,
|
10 |
+
"map_at_5": 0.38844,
|
11 |
+
"mrr_at_1": 0.41935,
|
12 |
+
"mrr_at_10": 0.50255,
|
13 |
+
"mrr_at_100": 0.51194,
|
14 |
+
"mrr_at_1000": 0.51233,
|
15 |
+
"mrr_at_3": 0.47633,
|
16 |
+
"mrr_at_5": 0.49123,
|
17 |
+
"ndcg_at_1": 0.41935,
|
18 |
+
"ndcg_at_10": 0.47637,
|
19 |
+
"ndcg_at_100": 0.54772,
|
20 |
+
"ndcg_at_1000": 0.56477,
|
21 |
+
"ndcg_at_3": 0.42216,
|
22 |
+
"ndcg_at_5": 0.44463,
|
23 |
+
"precision_at_1": 0.41935,
|
24 |
+
"precision_at_10": 0.10463,
|
25 |
+
"precision_at_100": 0.01626,
|
26 |
+
"precision_at_1000": 0.00184,
|
27 |
+
"precision_at_3": 0.23731,
|
28 |
+
"precision_at_5": 0.17129,
|
29 |
+
"recall_at_1": 0.27486,
|
30 |
+
"recall_at_10": 0.58517,
|
31 |
+
"recall_at_100": 0.87758,
|
32 |
+
"recall_at_1000": 0.99031,
|
33 |
+
"recall_at_3": 0.42086,
|
34 |
+
"recall_at_5": 0.49157
|
35 |
+
},
|
36 |
+
"mteb_dataset_name": "CmedqaRetrieval",
|
37 |
+
"mteb_version": "1.1.0"
|
38 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/Cmnli.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "Cmnli",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"validation": {
|
6 |
+
"cos_sim": {
|
7 |
+
"accuracy": 0.7672880336740829,
|
8 |
+
"accuracy_threshold": 0.5732834339141846,
|
9 |
+
"ap": 0.853143557144231,
|
10 |
+
"f1": 0.7844515441959531,
|
11 |
+
"f1_threshold": 0.5262686014175415,
|
12 |
+
"precision": 0.7203207510267945,
|
13 |
+
"recall": 0.8611176057984569
|
14 |
+
},
|
15 |
+
"dot": {
|
16 |
+
"accuracy": 0.7672880336740829,
|
17 |
+
"accuracy_threshold": 0.5732833743095398,
|
18 |
+
"ap": 0.8530751882614949,
|
19 |
+
"f1": 0.7844515441959531,
|
20 |
+
"f1_threshold": 0.5262686610221863,
|
21 |
+
"precision": 0.7203207510267945,
|
22 |
+
"recall": 0.8611176057984569
|
23 |
+
},
|
24 |
+
"euclidean": {
|
25 |
+
"accuracy": 0.7672880336740829,
|
26 |
+
"accuracy_threshold": 0.9238144755363464,
|
27 |
+
"ap": 0.8531435417467815,
|
28 |
+
"f1": 0.7844515441959531,
|
29 |
+
"f1_threshold": 0.9733769297599792,
|
30 |
+
"precision": 0.7203207510267945,
|
31 |
+
"recall": 0.8611176057984569
|
32 |
+
},
|
33 |
+
"evaluation_time": 20.61,
|
34 |
+
"manhattan": {
|
35 |
+
"accuracy": 0.7683704149128082,
|
36 |
+
"accuracy_threshold": 23.47174644470215,
|
37 |
+
"ap": 0.853344222480869,
|
38 |
+
"f1": 0.784551963549577,
|
39 |
+
"f1_threshold": 24.62630844116211,
|
40 |
+
"precision": 0.7318356607974095,
|
41 |
+
"recall": 0.845452419920505
|
42 |
+
},
|
43 |
+
"max": {
|
44 |
+
"accuracy": 0.7683704149128082,
|
45 |
+
"ap": 0.853344222480869,
|
46 |
+
"f1": 0.784551963549577
|
47 |
+
}
|
48 |
+
}
|
49 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/CovidRetrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"dev": {
|
4 |
+
"evaluation_time": 321.42,
|
5 |
+
"map_at_1": 0.75395,
|
6 |
+
"map_at_10": 0.83498,
|
7 |
+
"map_at_100": 0.83664,
|
8 |
+
"map_at_1000": 0.83666,
|
9 |
+
"map_at_3": 0.82183,
|
10 |
+
"map_at_5": 0.83043,
|
11 |
+
"mrr_at_1": 0.75553,
|
12 |
+
"mrr_at_10": 0.83455,
|
13 |
+
"mrr_at_100": 0.83613,
|
14 |
+
"mrr_at_1000": 0.83614,
|
15 |
+
"mrr_at_3": 0.82122,
|
16 |
+
"mrr_at_5": 0.8307,
|
17 |
+
"ndcg_at_1": 0.75553,
|
18 |
+
"ndcg_at_10": 0.86865,
|
19 |
+
"ndcg_at_100": 0.87511,
|
20 |
+
"ndcg_at_1000": 0.8754,
|
21 |
+
"ndcg_at_3": 0.84324,
|
22 |
+
"ndcg_at_5": 0.85864,
|
23 |
+
"precision_at_1": 0.75553,
|
24 |
+
"precision_at_10": 0.0981,
|
25 |
+
"precision_at_100": 0.01008,
|
26 |
+
"precision_at_1000": 0.00101,
|
27 |
+
"precision_at_3": 0.30313,
|
28 |
+
"precision_at_5": 0.18967,
|
29 |
+
"recall_at_1": 0.75395,
|
30 |
+
"recall_at_10": 0.97102,
|
31 |
+
"recall_at_100": 0.99789,
|
32 |
+
"recall_at_1000": 1.0,
|
33 |
+
"recall_at_3": 0.90516,
|
34 |
+
"recall_at_5": 0.94152
|
35 |
+
},
|
36 |
+
"mteb_dataset_name": "CovidRetrieval",
|
37 |
+
"mteb_version": "1.1.0"
|
38 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/DuRetrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"dev": {
|
4 |
+
"evaluation_time": 331.03,
|
5 |
+
"map_at_1": 0.26579,
|
6 |
+
"map_at_10": 0.81391,
|
7 |
+
"map_at_100": 0.84156,
|
8 |
+
"map_at_1000": 0.84195,
|
9 |
+
"map_at_3": 0.56806,
|
10 |
+
"map_at_5": 0.71469,
|
11 |
+
"mrr_at_1": 0.9155,
|
12 |
+
"mrr_at_10": 0.94169,
|
13 |
+
"mrr_at_100": 0.94218,
|
14 |
+
"mrr_at_1000": 0.94221,
|
15 |
+
"mrr_at_3": 0.93908,
|
16 |
+
"mrr_at_5": 0.94081,
|
17 |
+
"ndcg_at_1": 0.9155,
|
18 |
+
"ndcg_at_10": 0.88427,
|
19 |
+
"ndcg_at_100": 0.90951,
|
20 |
+
"ndcg_at_1000": 0.91299,
|
21 |
+
"ndcg_at_3": 0.87826,
|
22 |
+
"ndcg_at_5": 0.86583,
|
23 |
+
"precision_at_1": 0.9155,
|
24 |
+
"precision_at_10": 0.4218,
|
25 |
+
"precision_at_100": 0.04808,
|
26 |
+
"precision_at_1000": 0.00489,
|
27 |
+
"precision_at_3": 0.7865,
|
28 |
+
"precision_at_5": 0.6624,
|
29 |
+
"recall_at_1": 0.26579,
|
30 |
+
"recall_at_10": 0.89204,
|
31 |
+
"recall_at_100": 0.97596,
|
32 |
+
"recall_at_1000": 0.99417,
|
33 |
+
"recall_at_3": 0.58946,
|
34 |
+
"recall_at_5": 0.7584
|
35 |
+
},
|
36 |
+
"mteb_dataset_name": "DuRetrieval",
|
37 |
+
"mteb_version": "1.1.0"
|
38 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/EcomRetrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"dev": {
|
4 |
+
"evaluation_time": 52.09,
|
5 |
+
"map_at_1": 0.515,
|
6 |
+
"map_at_10": 0.6134,
|
7 |
+
"map_at_100": 0.61896,
|
8 |
+
"map_at_1000": 0.61911,
|
9 |
+
"map_at_3": 0.58683,
|
10 |
+
"map_at_5": 0.60308,
|
11 |
+
"mrr_at_1": 0.515,
|
12 |
+
"mrr_at_10": 0.6134,
|
13 |
+
"mrr_at_100": 0.61896,
|
14 |
+
"mrr_at_1000": 0.61911,
|
15 |
+
"mrr_at_3": 0.58683,
|
16 |
+
"mrr_at_5": 0.60308,
|
17 |
+
"ndcg_at_1": 0.515,
|
18 |
+
"ndcg_at_10": 0.66393,
|
19 |
+
"ndcg_at_100": 0.68905,
|
20 |
+
"ndcg_at_1000": 0.6928,
|
21 |
+
"ndcg_at_3": 0.61049,
|
22 |
+
"ndcg_at_5": 0.63975,
|
23 |
+
"precision_at_1": 0.515,
|
24 |
+
"precision_at_10": 0.0823,
|
25 |
+
"precision_at_100": 0.00936,
|
26 |
+
"precision_at_1000": 0.00097,
|
27 |
+
"precision_at_3": 0.22633,
|
28 |
+
"precision_at_5": 0.15,
|
29 |
+
"recall_at_1": 0.515,
|
30 |
+
"recall_at_10": 0.823,
|
31 |
+
"recall_at_100": 0.936,
|
32 |
+
"recall_at_1000": 0.965,
|
33 |
+
"recall_at_3": 0.679,
|
34 |
+
"recall_at_5": 0.75
|
35 |
+
},
|
36 |
+
"mteb_dataset_name": "EcomRetrieval",
|
37 |
+
"mteb_version": "1.1.0"
|
38 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/IFlyTek.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "IFlyTek",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"validation": {
|
6 |
+
"accuracy": 0.5075028857252789,
|
7 |
+
"accuracy_stderr": 0.003609400353846422,
|
8 |
+
"evaluation_time": 177.43,
|
9 |
+
"f1": 0.3640576261699708,
|
10 |
+
"f1_stderr": 0.007935818070069649,
|
11 |
+
"main_score": 0.5075028857252789
|
12 |
+
}
|
13 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/JDReview.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "JDReview",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"accuracy": 0.876923076923077,
|
7 |
+
"accuracy_stderr": 0.015543951352501298,
|
8 |
+
"ap": 0.5771137523616632,
|
9 |
+
"ap_stderr": 0.027052492390223098,
|
10 |
+
"evaluation_time": 13.72,
|
11 |
+
"f1": 0.8269262506868096,
|
12 |
+
"f1_stderr": 0.01643864510374752,
|
13 |
+
"main_score": 0.876923076923077
|
14 |
+
}
|
15 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/LCQMC.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "LCQMC",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.7329402204344446,
|
8 |
+
"spearman": 0.7659571213941639
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.7536085128119648,
|
12 |
+
"spearman": 0.7659571213847517
|
13 |
+
},
|
14 |
+
"evaluation_time": 10.5,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.7532685583893368,
|
17 |
+
"spearman": 0.7656404415349796
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/MMarcoReranking.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "MMarcoReranking",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"dev": {
|
6 |
+
"evaluation_time": 353.06,
|
7 |
+
"map": 0.34300784663135503,
|
8 |
+
"mrr": 0.3397539682539683
|
9 |
+
}
|
10 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/MMarcoRetrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"dev": {
|
4 |
+
"evaluation_time": 164.09,
|
5 |
+
"map_at_1": 0.67579,
|
6 |
+
"map_at_10": 0.76596,
|
7 |
+
"map_at_100": 0.76885,
|
8 |
+
"map_at_1000": 0.76895,
|
9 |
+
"map_at_3": 0.74784,
|
10 |
+
"map_at_5": 0.75943,
|
11 |
+
"mrr_at_1": 0.69814,
|
12 |
+
"mrr_at_10": 0.77122,
|
13 |
+
"mrr_at_100": 0.77379,
|
14 |
+
"mrr_at_1000": 0.77388,
|
15 |
+
"mrr_at_3": 0.75583,
|
16 |
+
"mrr_at_5": 0.76558,
|
17 |
+
"ndcg_at_1": 0.69814,
|
18 |
+
"ndcg_at_10": 0.80173,
|
19 |
+
"ndcg_at_100": 0.81457,
|
20 |
+
"ndcg_at_1000": 0.81738,
|
21 |
+
"ndcg_at_3": 0.76788,
|
22 |
+
"ndcg_at_5": 0.78716,
|
23 |
+
"precision_at_1": 0.69814,
|
24 |
+
"precision_at_10": 0.09642,
|
25 |
+
"precision_at_100": 0.01027,
|
26 |
+
"precision_at_1000": 0.00105,
|
27 |
+
"precision_at_3": 0.28806,
|
28 |
+
"precision_at_5": 0.18318,
|
29 |
+
"recall_at_1": 0.67579,
|
30 |
+
"recall_at_10": 0.90635,
|
31 |
+
"recall_at_100": 0.96408,
|
32 |
+
"recall_at_1000": 0.98619,
|
33 |
+
"recall_at_3": 0.81756,
|
34 |
+
"recall_at_5": 0.86314
|
35 |
+
},
|
36 |
+
"mteb_dataset_name": "MMarcoRetrieval",
|
37 |
+
"mteb_version": "1.1.0"
|
38 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/MassiveIntentClassification.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "MassiveIntentClassification",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 21.27,
|
7 |
+
"zh-CN": {
|
8 |
+
"accuracy": 0.749058507061197,
|
9 |
+
"accuracy_stderr": 0.011884386350506135,
|
10 |
+
"f1": 0.7161970536275908,
|
11 |
+
"f1_stderr": 0.016191767473599423,
|
12 |
+
"main_score": 0.749058507061197
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"validation": {
|
16 |
+
"evaluation_time": 19.95,
|
17 |
+
"zh-CN": {
|
18 |
+
"accuracy": 0.7576487948844074,
|
19 |
+
"accuracy_stderr": 0.01332642347320569,
|
20 |
+
"f1": 0.7118884143366013,
|
21 |
+
"f1_stderr": 0.015415315352111523,
|
22 |
+
"main_score": 0.7576487948844074
|
23 |
+
}
|
24 |
+
}
|
25 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/MassiveScenarioClassification.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "MassiveScenarioClassification",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 13.92,
|
7 |
+
"zh-CN": {
|
8 |
+
"accuracy": 0.8128110289172831,
|
9 |
+
"accuracy_stderr": 0.010581970443298772,
|
10 |
+
"f1": 0.7981971014179347,
|
11 |
+
"f1_stderr": 0.013781985332394563,
|
12 |
+
"main_score": 0.8128110289172831
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"validation": {
|
16 |
+
"evaluation_time": 16.58,
|
17 |
+
"zh-CN": {
|
18 |
+
"accuracy": 0.8044269552385638,
|
19 |
+
"accuracy_stderr": 0.01384668511219742,
|
20 |
+
"f1": 0.7893222744509287,
|
21 |
+
"f1_stderr": 0.01724155206070888,
|
22 |
+
"main_score": 0.8044269552385638
|
23 |
+
}
|
24 |
+
}
|
25 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/MedicalRetrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"dev": {
|
4 |
+
"evaluation_time": 142.23,
|
5 |
+
"map_at_1": 0.523,
|
6 |
+
"map_at_10": 0.583,
|
7 |
+
"map_at_100": 0.5883,
|
8 |
+
"map_at_1000": 0.58884,
|
9 |
+
"map_at_3": 0.572,
|
10 |
+
"map_at_5": 0.57715,
|
11 |
+
"mrr_at_1": 0.524,
|
12 |
+
"mrr_at_10": 0.58355,
|
13 |
+
"mrr_at_100": 0.58885,
|
14 |
+
"mrr_at_1000": 0.58939,
|
15 |
+
"mrr_at_3": 0.5725,
|
16 |
+
"mrr_at_5": 0.5777,
|
17 |
+
"ndcg_at_1": 0.523,
|
18 |
+
"ndcg_at_10": 0.61098,
|
19 |
+
"ndcg_at_100": 0.63829,
|
20 |
+
"ndcg_at_1000": 0.65398,
|
21 |
+
"ndcg_at_3": 0.58721,
|
22 |
+
"ndcg_at_5": 0.59659,
|
23 |
+
"precision_at_1": 0.523,
|
24 |
+
"precision_at_10": 0.0699,
|
25 |
+
"precision_at_100": 0.0083,
|
26 |
+
"precision_at_1000": 0.00096,
|
27 |
+
"precision_at_3": 0.21033,
|
28 |
+
"precision_at_5": 0.1308,
|
29 |
+
"recall_at_1": 0.523,
|
30 |
+
"recall_at_10": 0.699,
|
31 |
+
"recall_at_100": 0.83,
|
32 |
+
"recall_at_1000": 0.956,
|
33 |
+
"recall_at_3": 0.631,
|
34 |
+
"recall_at_5": 0.654
|
35 |
+
},
|
36 |
+
"mteb_dataset_name": "MedicalRetrieval",
|
37 |
+
"mteb_version": "1.1.0"
|
38 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/MultilingualSentiment.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "MultilingualSentiment",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"validation": {
|
6 |
+
"accuracy": 0.7683333333333333,
|
7 |
+
"accuracy_stderr": 0.002808716591058785,
|
8 |
+
"evaluation_time": 35.42,
|
9 |
+
"f1": 0.7634474528405593,
|
10 |
+
"f1_stderr": 0.004128334463667356,
|
11 |
+
"main_score": 0.7683333333333333
|
12 |
+
}
|
13 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/Ocnli.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "Ocnli",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"validation": {
|
6 |
+
"cos_sim": {
|
7 |
+
"accuracy": 0.7552788305360043,
|
8 |
+
"accuracy_threshold": 0.5918081402778625,
|
9 |
+
"ap": 0.7933459144431134,
|
10 |
+
"f1": 0.7710033605376861,
|
11 |
+
"f1_threshold": 0.5680263042449951,
|
12 |
+
"precision": 0.7068661971830986,
|
13 |
+
"recall": 0.8479408658922915
|
14 |
+
},
|
15 |
+
"dot": {
|
16 |
+
"accuracy": 0.7552788305360043,
|
17 |
+
"accuracy_threshold": 0.5918081402778625,
|
18 |
+
"ap": 0.7933459144431134,
|
19 |
+
"f1": 0.7710033605376861,
|
20 |
+
"f1_threshold": 0.5680263042449951,
|
21 |
+
"precision": 0.7068661971830986,
|
22 |
+
"recall": 0.8479408658922915
|
23 |
+
},
|
24 |
+
"euclidean": {
|
25 |
+
"accuracy": 0.7552788305360043,
|
26 |
+
"accuracy_threshold": 0.9035395383834839,
|
27 |
+
"ap": 0.7933459144431134,
|
28 |
+
"f1": 0.7710033605376861,
|
29 |
+
"f1_threshold": 0.9294876456260681,
|
30 |
+
"precision": 0.7068661971830986,
|
31 |
+
"recall": 0.8479408658922915
|
32 |
+
},
|
33 |
+
"evaluation_time": 2.86,
|
34 |
+
"manhattan": {
|
35 |
+
"accuracy": 0.7531131564699513,
|
36 |
+
"accuracy_threshold": 22.5145263671875,
|
37 |
+
"ap": 0.7936757512903327,
|
38 |
+
"f1": 0.7693023255813953,
|
39 |
+
"f1_threshold": 24.065532684326172,
|
40 |
+
"precision": 0.6874480465502909,
|
41 |
+
"recall": 0.8732840549102429
|
42 |
+
},
|
43 |
+
"max": {
|
44 |
+
"accuracy": 0.7552788305360043,
|
45 |
+
"ap": 0.7936757512903327,
|
46 |
+
"f1": 0.7710033605376861
|
47 |
+
}
|
48 |
+
}
|
49 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/OnlineShopping.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "OnlineShopping",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"accuracy": 0.9441999999999998,
|
7 |
+
"accuracy_stderr": 0.0028913664589601948,
|
8 |
+
"ap": 0.9253177971136661,
|
9 |
+
"ap_stderr": 0.004435733302762033,
|
10 |
+
"evaluation_time": 15.57,
|
11 |
+
"f1": 0.9440757676006394,
|
12 |
+
"f1_stderr": 0.0028698839591287813,
|
13 |
+
"main_score": 0.9441999999999998
|
14 |
+
}
|
15 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/PAWSX.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "PAWSX",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.4440187963946336,
|
8 |
+
"spearman": 0.47560337376825085
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.47582142557969154,
|
12 |
+
"spearman": 0.47560337376825085
|
13 |
+
},
|
14 |
+
"evaluation_time": 2.49,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.4752151199528625,
|
17 |
+
"spearman": 0.47509647784531567
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/QBQTC.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "QBQTC",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.3862883070440486,
|
8 |
+
"spearman": 0.39955352213272627
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.3786832501667679,
|
12 |
+
"spearman": 0.3995535221519048
|
13 |
+
},
|
14 |
+
"evaluation_time": 5.97,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.3783822070118956,
|
17 |
+
"spearman": 0.3990713604918495
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/STS22.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80",
|
3 |
+
"mteb_dataset_name": "STS22",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 7.61,
|
7 |
+
"zh": {
|
8 |
+
"cos_sim": {
|
9 |
+
"pearson": 0.6082900117033369,
|
10 |
+
"spearman": 0.657843998948187
|
11 |
+
},
|
12 |
+
"euclidean": {
|
13 |
+
"pearson": 0.6276823760827268,
|
14 |
+
"spearman": 0.657843998948187
|
15 |
+
},
|
16 |
+
"manhattan": {
|
17 |
+
"pearson": 0.6312607312720664,
|
18 |
+
"spearman": 0.6575028602582914
|
19 |
+
}
|
20 |
+
}
|
21 |
+
}
|
22 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/STSB.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "STSB",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"cos_sim": {
|
7 |
+
"pearson": 0.8067336246251158,
|
8 |
+
"spearman": 0.8014220624121933
|
9 |
+
},
|
10 |
+
"euclidean": {
|
11 |
+
"pearson": 0.7903263059130334,
|
12 |
+
"spearman": 0.8014220624121933
|
13 |
+
},
|
14 |
+
"evaluation_time": 2.16,
|
15 |
+
"manhattan": {
|
16 |
+
"pearson": 0.789560236524975,
|
17 |
+
"spearman": 0.7997430607737568
|
18 |
+
}
|
19 |
+
}
|
20 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/T2Reranking.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "T2Reranking",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"dev": {
|
6 |
+
"evaluation_time": 767.43,
|
7 |
+
"map": 0.6784944108203279,
|
8 |
+
"mrr": 0.7791862795671192
|
9 |
+
}
|
10 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/T2Retrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"dev": {
|
4 |
+
"evaluation_time": 626.32,
|
5 |
+
"map_at_1": 0.25021,
|
6 |
+
"map_at_10": 0.71544,
|
7 |
+
"map_at_100": 0.75456,
|
8 |
+
"map_at_1000": 0.75537,
|
9 |
+
"map_at_3": 0.49671,
|
10 |
+
"map_at_5": 0.61299,
|
11 |
+
"mrr_at_1": 0.85534,
|
12 |
+
"mrr_at_10": 0.89019,
|
13 |
+
"mrr_at_100": 0.89152,
|
14 |
+
"mrr_at_1000": 0.89158,
|
15 |
+
"mrr_at_3": 0.88413,
|
16 |
+
"mrr_at_5": 0.8879,
|
17 |
+
"ndcg_at_1": 0.85534,
|
18 |
+
"ndcg_at_10": 0.8011,
|
19 |
+
"ndcg_at_100": 0.84517,
|
20 |
+
"ndcg_at_1000": 0.85311,
|
21 |
+
"ndcg_at_3": 0.81212,
|
22 |
+
"ndcg_at_5": 0.79782,
|
23 |
+
"precision_at_1": 0.85534,
|
24 |
+
"precision_at_10": 0.40517,
|
25 |
+
"precision_at_100": 0.04961,
|
26 |
+
"precision_at_1000": 0.00514,
|
27 |
+
"precision_at_3": 0.71484,
|
28 |
+
"precision_at_5": 0.60081,
|
29 |
+
"recall_at_1": 0.25021,
|
30 |
+
"recall_at_10": 0.79721,
|
31 |
+
"recall_at_100": 0.93976,
|
32 |
+
"recall_at_1000": 0.98037,
|
33 |
+
"recall_at_3": 0.51869,
|
34 |
+
"recall_at_5": 0.65616
|
35 |
+
},
|
36 |
+
"mteb_dataset_name": "T2Retrieval",
|
37 |
+
"mteb_version": "1.1.0"
|
38 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/TNews.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "TNews",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"validation": {
|
6 |
+
"accuracy": 0.5261899999999999,
|
7 |
+
"accuracy_stderr": 0.005332813516334514,
|
8 |
+
"evaluation_time": 80.03,
|
9 |
+
"f1": 0.5088699308193914,
|
10 |
+
"f1_stderr": 0.005808330018430932,
|
11 |
+
"main_score": 0.5261899999999999
|
12 |
+
}
|
13 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/ThuNewsClusteringP2P.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "ThuNewsClusteringP2P",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 684.88,
|
7 |
+
"v_measure": 0.582283860392516,
|
8 |
+
"v_measure_std": 0.02478622759991042
|
9 |
+
}
|
10 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/ThuNewsClusteringS2S.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "ThuNewsClusteringS2S",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 71.89,
|
7 |
+
"v_measure": 0.5782974132365385,
|
8 |
+
"v_measure_std": 0.013022585576314076
|
9 |
+
}
|
10 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/VideoRetrieval.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"dev": {
|
4 |
+
"evaluation_time": 56.91,
|
5 |
+
"map_at_1": 0.606,
|
6 |
+
"map_at_10": 0.70041,
|
7 |
+
"map_at_100": 0.70481,
|
8 |
+
"map_at_1000": 0.70494,
|
9 |
+
"map_at_3": 0.682,
|
10 |
+
"map_at_5": 0.6925,
|
11 |
+
"mrr_at_1": 0.606,
|
12 |
+
"mrr_at_10": 0.70041,
|
13 |
+
"mrr_at_100": 0.70481,
|
14 |
+
"mrr_at_1000": 0.70494,
|
15 |
+
"mrr_at_3": 0.682,
|
16 |
+
"mrr_at_5": 0.6925,
|
17 |
+
"ndcg_at_1": 0.606,
|
18 |
+
"ndcg_at_10": 0.74282,
|
19 |
+
"ndcg_at_100": 0.7629,
|
20 |
+
"ndcg_at_1000": 0.76595,
|
21 |
+
"ndcg_at_3": 0.70476,
|
22 |
+
"ndcg_at_5": 0.72369,
|
23 |
+
"precision_at_1": 0.606,
|
24 |
+
"precision_at_10": 0.0875,
|
25 |
+
"precision_at_100": 0.00966,
|
26 |
+
"precision_at_1000": 0.00099,
|
27 |
+
"precision_at_3": 0.25667,
|
28 |
+
"precision_at_5": 0.1632,
|
29 |
+
"recall_at_1": 0.606,
|
30 |
+
"recall_at_10": 0.875,
|
31 |
+
"recall_at_100": 0.966,
|
32 |
+
"recall_at_1000": 0.989,
|
33 |
+
"recall_at_3": 0.77,
|
34 |
+
"recall_at_5": 0.816
|
35 |
+
},
|
36 |
+
"mteb_dataset_name": "VideoRetrieval",
|
37 |
+
"mteb_version": "1.1.0"
|
38 |
+
}
|
results/Baichuan-text-embedding/no_revision_available/Waimai.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": null,
|
3 |
+
"mteb_dataset_name": "Waimai",
|
4 |
+
"mteb_version": "1.1.0",
|
5 |
+
"test": {
|
6 |
+
"accuracy": 0.8877,
|
7 |
+
"accuracy_stderr": 0.005478138369920941,
|
8 |
+
"ap": 0.7410049925615304,
|
9 |
+
"ap_stderr": 0.01151741307800683,
|
10 |
+
"evaluation_time": 13.59,
|
11 |
+
"f1": 0.8718799117513892,
|
12 |
+
"f1_stderr": 0.005127107574743738,
|
13 |
+
"main_score": 0.8877
|
14 |
+
}
|
15 |
+
}
|
results/Cohere-embed-english-v3.0/no_revision_available/AILACasedocs.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"test": {"ndcg_at_10": 0.31543}, "mteb_dataset_name": "AILACasedocs"}
|
results/Cohere-embed-english-v3.0/no_revision_available/AILAStatutes.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"test": {"ndcg_at_10": 0.27152}, "mteb_dataset_name": "AILAStatutes"}
|
results/Cohere-embed-english-v3.0/no_revision_available/Core17InstructionRetrieval.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "e39ff896cf3efbbdeeb950e6bd7c79f266995b07",
|
3 |
+
"mteb_dataset_name": "Core17InstructionRetrieval",
|
4 |
+
"mteb_version": "1.7.32",
|
5 |
+
"test": {
|
6 |
+
"evaluation_time": 746.94,
|
7 |
+
"p-MRR": 0.028043926455402175
|
8 |
+
}
|
9 |
+
}
|
results/Cohere-embed-english-v3.0/no_revision_available/GerDaLIRSmall.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"test": {"ndcg_at_10": 0.06047}, "mteb_dataset_name": "GerDaLIRSmall"}
|
results/Cohere-embed-english-v3.0/no_revision_available/LeCaRDv2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"test": {"ndcg_at_10": 0.21017}, "mteb_dataset_name": "LeCaRDv2"}
|
results/Cohere-embed-english-v3.0/no_revision_available/LegalBenchConsumerContractsQA.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"test": {"ndcg_at_10": 0.7712}, "mteb_dataset_name": "LegalBenchConsumerContractsQA"}
|
results/Cohere-embed-english-v3.0/no_revision_available/LegalBenchCorporateLobbying.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"test": {"ndcg_at_10": 0.93681}, "mteb_dataset_name": "LegalBenchCorporateLobbying"}
|
results/Cohere-embed-english-v3.0/no_revision_available/LegalQuAD.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"test": {"ndcg_at_10": 0.26075}, "mteb_dataset_name": "LegalQuAD"}
|
results/Cohere-embed-english-v3.0/no_revision_available/LegalSummarization.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"test": {"ndcg_at_10": 0.61697}, "mteb_dataset_name": "LegalSummarization"}
|