Datasets:
mteb
/

Samoed commited on
Commit
7e0fe6f
·
unverified ·
1 Parent(s): 1582138

add split in results export (#32)

Browse files

* add split in results

* remove local path

Files changed (2) hide show
  1. paths.json +0 -0
  2. results.py +23 -12
paths.json CHANGED
The diff for this file is too large to render. See raw diff
 
results.py CHANGED
@@ -15,7 +15,7 @@ _CITATION = """@article{muennighoff2022mteb,
15
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
16
  title = {MTEB: Massive Text Embedding Benchmark},
17
  publisher = {arXiv},
18
- journal={arXiv preprint arXiv:2210.07316},
19
  year = {2022}
20
  }
21
  """
@@ -55,8 +55,8 @@ MODELS = [
55
  "Cohere-embed-multilingual-v3.0",
56
  "DanskBERT",
57
  "FollowIR-7B",
58
- "GritLM__GritLM-7B",
59
- "GritLM__GritLM-7B-noinstruct",
60
  "LASER2",
61
  "LLM2Vec-Llama-2-supervised",
62
  "LLM2Vec-Llama-2-unsupervised",
@@ -313,6 +313,7 @@ class MTEBResults(datasets.GeneratorBasedBuilder):
313
  "metric": datasets.Value("string"),
314
  "score": datasets.Value("float"),
315
  "split": datasets.Value("string"),
 
316
  }
317
  ),
318
  supervised_keys=None,
@@ -365,27 +366,33 @@ class MTEBResults(datasets.GeneratorBasedBuilder):
365
  split = "devtest"
366
  elif (ds_name in TEST_AVG_SPLIT):
367
  # Average splits
368
- res_dict["test_avg"] = {}
369
  for split in TEST_AVG_SPLIT[ds_name]:
370
  # Old MTEB format
371
  if isinstance(res_dict.get(split), dict):
372
  for k, v in res_dict.get(split, {}).items():
 
 
 
373
  v /= len(TEST_AVG_SPLIT[ds_name])
374
- if k not in res_dict["test_avg"]:
375
- res_dict["test_avg"][k] = v
376
  else:
377
- res_dict["test_avg"][k] += v
378
  # New MTEB format
379
  elif isinstance(res_dict.get(split), list):
380
  assert len(res_dict[split]) == 1, "Only single-lists supported for now"
381
  for k, v in res_dict[split][0].items():
 
 
382
  if not isinstance(v, float): continue
383
  v /= len(TEST_AVG_SPLIT[ds_name])
384
- if k not in res_dict["test_avg"]:
385
- res_dict["test_avg"][k] = v
386
  else:
387
- res_dict["test_avg"][k] += v
388
  split = "test_avg"
 
389
  elif "test" not in res_dict:
390
  print(f"Skipping {ds_name} as split {split} not present.")
391
  continue
@@ -412,7 +419,7 @@ class MTEBResults(datasets.GeneratorBasedBuilder):
412
  # Legacy format with e.g. {cosine: {spearman: ...}}
413
  # Now it is {cosine_spearman: ...}
414
  for k, v in score.items():
415
- if not isinstance(v, float):
416
  print(f'WARNING: Expected float, got {v} for {ds_name} {lang} {metric} {k}')
417
  continue
418
  if metric in SKIP_KEYS: continue
@@ -421,9 +428,10 @@ class MTEBResults(datasets.GeneratorBasedBuilder):
421
  "eval_language": lang,
422
  "metric": metric + "_" + k,
423
  "score": v * 100,
 
424
  })
425
  else:
426
- if not isinstance(score, float):
427
  print(f'WARNING: Expected float, got {score} for {ds_name} {lang} {metric}')
428
  continue
429
  out.append({
@@ -432,6 +440,7 @@ class MTEBResults(datasets.GeneratorBasedBuilder):
432
  "metric": metric,
433
  "score": score * 100,
434
  "split": split,
 
435
  })
436
 
437
  ### Old MTEB format ###
@@ -441,6 +450,7 @@ class MTEBResults(datasets.GeneratorBasedBuilder):
441
  for lang in langs:
442
  if lang in SKIP_KEYS: continue
443
  test_result_lang = res_dict.get(lang) if is_multilingual else res_dict
 
444
  for metric, score in test_result_lang.items():
445
  if not isinstance(score, dict):
446
  score = {metric: score}
@@ -453,6 +463,7 @@ class MTEBResults(datasets.GeneratorBasedBuilder):
453
  "metric": f"{metric}_{sub_metric}" if metric != sub_metric else metric,
454
  "score": sub_score * 100,
455
  "split": split,
 
456
  })
457
  for idx, row in enumerate(sorted(out, key=lambda x: x["mteb_dataset_name"])):
458
  yield idx, row
 
15
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
16
  title = {MTEB: Massive Text Embedding Benchmark},
17
  publisher = {arXiv},
18
+ journal={arXiv preprint arXiv:2210.07316},
19
  year = {2022}
20
  }
21
  """
 
55
  "Cohere-embed-multilingual-v3.0",
56
  "DanskBERT",
57
  "FollowIR-7B",
58
+ "GritLM-7B",
59
+ "GritLM-7B-noinstruct",
60
  "LASER2",
61
  "LLM2Vec-Llama-2-supervised",
62
  "LLM2Vec-Llama-2-unsupervised",
 
313
  "metric": datasets.Value("string"),
314
  "score": datasets.Value("float"),
315
  "split": datasets.Value("string"),
316
+ "hf_subset": datasets.Value("string"),
317
  }
318
  ),
319
  supervised_keys=None,
 
366
  split = "devtest"
367
  elif (ds_name in TEST_AVG_SPLIT):
368
  # Average splits
369
+ res_dict = {}
370
  for split in TEST_AVG_SPLIT[ds_name]:
371
  # Old MTEB format
372
  if isinstance(res_dict.get(split), dict):
373
  for k, v in res_dict.get(split, {}).items():
374
+ if key in ["hf_subset", "languages"]:
375
+ res_dict[k] = v
376
+
377
  v /= len(TEST_AVG_SPLIT[ds_name])
378
+ if k not in res_dict:
379
+ res_dict[k] = v
380
  else:
381
+ res_dict[k] += v
382
  # New MTEB format
383
  elif isinstance(res_dict.get(split), list):
384
  assert len(res_dict[split]) == 1, "Only single-lists supported for now"
385
  for k, v in res_dict[split][0].items():
386
+ if key in ["hf_subset", "languages"]:
387
+ res_dict[k] = v
388
  if not isinstance(v, float): continue
389
  v /= len(TEST_AVG_SPLIT[ds_name])
390
+ if k not in res_dict:
391
+ res_dict[k] = v
392
  else:
393
+ res_dict[k] += v
394
  split = "test_avg"
395
+ res_dict = {split: [res_dict]}
396
  elif "test" not in res_dict:
397
  print(f"Skipping {ds_name} as split {split} not present.")
398
  continue
 
419
  # Legacy format with e.g. {cosine: {spearman: ...}}
420
  # Now it is {cosine_spearman: ...}
421
  for k, v in score.items():
422
+ if not isinstance(v, float):
423
  print(f'WARNING: Expected float, got {v} for {ds_name} {lang} {metric} {k}')
424
  continue
425
  if metric in SKIP_KEYS: continue
 
428
  "eval_language": lang,
429
  "metric": metric + "_" + k,
430
  "score": v * 100,
431
+ "hf_subset": subset,
432
  })
433
  else:
434
+ if not isinstance(score, float):
435
  print(f'WARNING: Expected float, got {score} for {ds_name} {lang} {metric}')
436
  continue
437
  out.append({
 
440
  "metric": metric,
441
  "score": score * 100,
442
  "split": split,
443
+ "hf_subset": subset,
444
  })
445
 
446
  ### Old MTEB format ###
 
450
  for lang in langs:
451
  if lang in SKIP_KEYS: continue
452
  test_result_lang = res_dict.get(lang) if is_multilingual else res_dict
453
+ subset = test_result_lang.pop("hf_subset", "")
454
  for metric, score in test_result_lang.items():
455
  if not isinstance(score, dict):
456
  score = {metric: score}
 
463
  "metric": f"{metric}_{sub_metric}" if metric != sub_metric else metric,
464
  "score": sub_score * 100,
465
  "split": split,
466
+ "hf_subset": subset,
467
  })
468
  for idx, row in enumerate(sorted(out, key=lambda x: x["mteb_dataset_name"])):
469
  yield idx, row