|
def move_to_device(state, device): |
|
if isinstance(state, (list, tuple)): |
|
return honor_type(state, (move_to_device(t, device) for t in state)) |
|
elif isinstance(state, dict): |
|
return type(state)({k: move_to_device(v, device) for k, v in state.items()}) |
|
elif isinstance(state, torch.Tensor): |
|
return state.to(device) |
|
return state |
|
class AcceleratedOptimizer(torch.optim.Optimizer): |
|
""" |
|
Internal wrapper around a torch optimizer. |
|
Conditionally will perform `step` and `zero_grad` if gradients should be synchronized when performing gradient |
|
accumulation. |
|
Args: |
|
optimizer (`torch.optim.optimizer.Optimizer`): |
|
The optimizer to wrap. |
|
device_placement (`bool`, *optional*, defaults to `True`): |
|
Whether or not the optimizer should handle device placement. If so, it will place the state dictionary of |
|
`optimizer` on the right device. |
|
scaler (`torch.cuda.amp.grad_scaler.GradScaler`, *optional*): |
|
The scaler to use in the step function if training with mixed precision. |
|
""" |
|
|
|
def __init__(self, optimizer, device_placement=True, scaler=None): |
|
self.optimizer = optimizer |
|
self.scaler = scaler |
|
self.accelerator_state = AcceleratorState() |
|
self.gradient_state = GradientState() |
|
self.device_placement = device_placement |
|
self._is_overflow = False |
|
if self.scaler is not None: |
|
self._accelerate_step_called = False |
|
self._optimizer_original_step_method = self.optimizer.step |
|
self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step) |
|
|
|
if device_placement: |
|
state_dict = self.optimizer.state_dict() |
|
if self.accelerator_state.distributed_type == DistributedType.TPU: |
|
xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device) |
|
else: |
|
state_dict = move_to_device(state_dict, self.accelerator_state.device) |
|
self.optimizer.load_state_dict(state_dict) |
|
@property |
|
|
|
def state(self): |
|
return self.optimizer.state |
|
@state.setter |
|
|
|
def state(self, state): |
|
self.optimizer.state = state |
|
@property |
|
|
|
def param_groups(self): |
|
return self.optimizer.param_groups |
|
@param_groups.setter |
|
|
|
def param_groups(self, param_groups): |
|
self.optimizer.param_groups = param_groups |
|
@property |
|
|
|
def defaults(self): |
|
return self.optimizer.defaults |
|
@defaults.setter |
|
|
|
def defaults(self, defaults): |
|
self.optimizer.defaults = defaults |
|
|
|
def add_param_group(self, param_group): |
|
self.optimizer.add_param_group(param_group) |
|
|
|
def load_state_dict(self, state_dict): |
|
if self.accelerator_state.distributed_type == DistributedType.TPU and self.device_placement: |
|
xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device) |
|
self.optimizer.load_state_dict(state_dict) |
|
|
|
def state_dict(self): |
|
return self.optimizer.state_dict() |
|
|
|
def zero_grad(self, set_to_none=None): |
|
if self.gradient_state.sync_gradients: |
|
accept_arg = "set_to_none" in inspect.signature(self.optimizer.zero_grad).parameters |
|
if accept_arg: |
|
if set_to_none is None: |
|
set_to_none = False |
|
self.optimizer.zero_grad(set_to_none=set_to_none) |
|
else: |
|
if set_to_none is not None: |
|
raise ValueError("`set_to_none` for Optimizer.zero_grad` is not supported by this optimizer.") |
|
self.optimizer.zero_grad() |
|
|
|
def step(self, closure=None): |
|
if self.gradient_state.sync_gradients: |
|
if self.accelerator_state.distributed_type == DistributedType.TPU: |
|
optimizer_args = {"closure": closure} if closure is not None else {} |
|
xm.optimizer_step(self.optimizer, optimizer_args=optimizer_args) |
|
elif self.scaler is not None: |
|
self.optimizer.step = self._optimizer_patched_step_method |
|
self.scaler.step(self.optimizer, closure) |
|
self.scaler.update() |
|
if not self._accelerate_step_called: |
|
|
|
self._is_overflow = True |
|
else: |
|
self._is_overflow = False |
|
|
|
self.optimizer.step = self._optimizer_original_step_method |
|
|
|
self._accelerate_step_called = False |
|
else: |
|
self.optimizer.step(closure) |
|
|
|
def _switch_parameters(self, parameters_map): |
|
for param_group in self.optimizer.param_groups: |
|
param_group["params"] = [parameters_map.get(p, p) for p in param_group["params"]] |
|
@property |
|
|
|
def is_overflow(self): |
|
"""Whether or not the optimizer step was done, or skipped because of gradient overflow.""" |
|
warnings.warn( |
|
"The `is_overflow` property is deprecated and will be removed in version 1.0 of Accelerate use " |
|
"`optimizer.step_was_skipped` instead.", |
|
FutureWarning, |
|
) |
|
return self._is_overflow |
|
@property |
|
|
|
def step_was_skipped(self): |
|
"""Whether or not the optimizer step was skipped.""" |
|
return self._is_overflow |
|
|
|
def __getstate__(self): |
|
_ignored_keys = [ |
|
"_accelerate_step_called", |
|
"_optimizer_original_step_method", |
|
"_optimizer_patched_step_method", |
|
] |
|
return {k: v for k, v in self.__dict__.items() if k not in _ignored_keys} |
|
|
|
def __setstate__(self, state): |
|
self.__dict__.update(state) |
|
if self.scaler is not None: |
|
self._accelerate_step_called = False |
|
self._optimizer_original_step_method = self.optimizer.step |
|
self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step) |
|
def patch_optimizer_step(accelerated_optimizer: AcceleratedOptimizer, method): |
|
|
|
def patched_step(*args, **kwargs): |
|
accelerated_optimizer._accelerate_step_called = True |
|
return method(*args, **kwargs) |
|
return patched_step |
|
|