|
""" |
|
General namespace and dataclass related classes |
|
""" |
|
class KwargsHandler: |
|
""" |
|
Internal mixin that implements a `to_kwargs()` method for a dataclass. |
|
""" |
|
|
|
def to_dict(self): |
|
return copy.deepcopy(self.__dict__) |
|
|
|
def to_kwargs(self): |
|
""" |
|
Returns a dictionary containing the attributes with values different from the default of this class. |
|
""" |
|
|
|
from .other import clear_environment |
|
with clear_environment(): |
|
default_dict = self.__class__().to_dict() |
|
this_dict = self.to_dict() |
|
return {k: v for k, v in this_dict.items() if default_dict[k] != v} |
|
@dataclass |
|
class AutocastKwargs(KwargsHandler): |
|
""" |
|
Use this object in your [`Accelerator`] to customize how `torch.autocast` behaves. Please refer to the |
|
documentation of this [context manager](https://pytorch.org/docs/stable/amp.html#torch.autocast) for more |
|
information on each argument. |
|
Example: |
|
```python |
|
from accelerate import Accelerator |
|
from accelerate.utils import AutocastKwargs |
|
kwargs = AutocastKwargs(cache_enabled=True) |
|
accelerator = Accelerator(kwargs_handlers=[kwargs]) |
|
``` |
|
""" |
|
enabled: bool = True |
|
cache_enabled: bool = None |
|
@dataclass |
|
class DistributedDataParallelKwargs(KwargsHandler): |
|
""" |
|
Use this object in your [`Accelerator`] to customize how your model is wrapped in a |
|
`torch.nn.parallel.DistributedDataParallel`. Please refer to the documentation of this |
|
[wrapper](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html) for more |
|
information on each argument. |
|
<Tip warning={true}> |
|
`gradient_as_bucket_view` is only available in PyTorch 1.7.0 and later versions. |
|
`static_graph` is only available in PyTorch 1.11.0 and later versions. |
|
</Tip> |
|
Example: |
|
```python |
|
from accelerate import Accelerator |
|
from accelerate.utils import DistributedDataParallelKwargs |
|
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) |
|
accelerator = Accelerator(kwargs_handlers=[kwargs]) |
|
``` |
|
""" |
|
dim: int = 0 |
|
broadcast_buffers: bool = True |
|
bucket_cap_mb: int = 25 |
|
find_unused_parameters: bool = False |
|
check_reduction: bool = False |
|
gradient_as_bucket_view: bool = False |
|
static_graph: bool = False |
|
@dataclass |
|
class GradScalerKwargs(KwargsHandler): |
|
""" |
|
Use this object in your [`Accelerator`] to customize the behavior of mixed precision, specifically how the |
|
`torch.cuda.amp.GradScaler` used is created. Please refer to the documentation of this |
|
[scaler](https://pytorch.org/docs/stable/amp.html?highlight=gradscaler) for more information on each argument. |
|
<Tip warning={true}> |
|
`GradScaler` is only available in PyTorch 1.5.0 and later versions. |
|
</Tip> |
|
Example: |
|
```python |
|
from accelerate import Accelerator |
|
from accelerate.utils import GradScalerKwargs |
|
kwargs = GradScalerKwargs(backoff_filter=0.25) |
|
accelerator = Accelerator(kwargs_handlers=[kwargs]) |
|
``` |
|
""" |
|
init_scale: float = 65536.0 |
|
growth_factor: float = 2.0 |
|
backoff_factor: float = 0.5 |
|
growth_interval: int = 2000 |
|
enabled: bool = True |
|
@dataclass |
|
class InitProcessGroupKwargs(KwargsHandler): |
|
""" |
|
Use this object in your [`Accelerator`] to customize the initialization of the distributed processes. Please refer |
|
to the documentation of this |
|
[method](https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group) for more |
|
information on each argument. |
|
```python |
|
from datetime import timedelta |
|
from accelerate import Accelerator |
|
from accelerate.utils import InitProcessGroupKwargs |
|
kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=800)) |
|
accelerator = Accelerator(kwargs_handlers=[kwargs]) |
|
``` |
|
""" |
|
backend: Optional[str] = "nccl" |
|
init_method: Optional[str] = None |
|
timeout: timedelta = timedelta(seconds=1800) |
|
|
|
Backend = Literal["msamp", "te"] |
|
OptLevel = Literal["O1", "O2"] |
|
FP8Format = Literal["E4M3", "HYBRID"] |
|
AmaxComputeAlgorithm = Literal["max", "most_recent"] |
|
@dataclass |
|
class FP8RecipeKwargs(KwargsHandler): |
|
""" |
|
Use this object in your [`Accelerator`] to customize the initialization of the recipe for FP8 mixed precision |
|
training with `transformer-engine` or `ms-amp`. |
|
<Tip> |
|
For more information on `transformer-engine` args, please refer to the API |
|
[documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html). |
|
For more information on the `ms-amp` args, please refer to the Optimization Level |
|
[documentation](https://azure.github.io/MS-AMP/docs/user-tutorial/optimization-level). |
|
</Tip> |
|
```python |
|
from accelerate import Accelerator |
|
from accelerate.utils import FP8RecipeKwargs |
|
kwargs = FP8RecipeKwargs(backend="te", fp8_format="HYBRID") |
|
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=[kwargs]) |
|
``` |
|
To use MS-AMP as an engine, pass `backend="msamp"` and the `optimization_level`: |
|
```python |
|
kwargs = FP8RecipeKwargs(backend="msamp", optimization_level="02") |
|
``` |
|
Args: |
|
backend (`str`, *optional*, defaults to "msamp"): |
|
Which FP8 engine to use. Must be one of `"msamp"` (MS-AMP) or `"te"` (TransformerEngine). |
|
margin (`int`, *optional*, default to 0): |
|
The margin to use for the gradient scaling. |
|
interval (`int`, *optional*, default to 1): |
|
The interval to use for how often the scaling factor is recomputed. |
|
fp8_format (`str`, *optional*, default to "E4M3"): |
|
The format to use for the FP8 recipe. Must be one of `E4M3` or `HYBRID`. |
|
amax_history_len (`int`, *optional*, default to 1024): |
|
The length of the history to use for the scaling factor computation |
|
amax_compute_algo (`str`, *optional*, default to "most_recent"): |
|
The algorithm to use for the scaling factor computation. Must be one of `max` or `most_recent`. |
|
override_linear_precision (`tuple` of three `bool`, *optional*, default to `(False, False, False)`): |
|
Whether or not to execute `fprop`, `dgrad`, and `wgrad` GEMMS in higher precision. |
|
optimization_level (`str`), one of `O1`, `O2`. (default is `O2`): |
|
What level of 8-bit collective communication should be used with MS-AMP. In general: |
|
* O1: Weight gradients and `all_reduce` communications are done in fp8, reducing GPU |
|
memory usage and communication bandwidth |
|
* O2: First-order optimizer states are in 8-bit, and second order states are in FP16. |
|
Only available when using Adam or AdamW. This maintains accuracy and can potentially save the |
|
highest memory. |
|
* 03: Specifically for DeepSpeed, implements capabilities so weights and master weights of models |
|
are stored in FP8. If `fp8` is selected and deepspeed is enabled, will be used by default. (Not |
|
available currently). |
|
""" |
|
backend: Backend = "msamp" |
|
opt_level: OptLevel = "O2" |
|
margin: int = 0 |
|
interval: int = 1 |
|
fp8_format: FP8Format = "E4M3" |
|
amax_history_len: int = 1 |
|
amax_compute_algo: AmaxComputeAlgorithm = "most_recent" |
|
override_linear_precision: Tuple[bool, bool, bool] = (False, False, False) |
|
|
|
def __post_init__(self): |
|
self.backend = self.backend.upper() |
|
if self.backend not in get_args(Backend): |
|
raise ValueError("`backend` must be 'MSAMP' or 'TE' (TransformerEngine).") |
|
|
|
if self.backend == "TE": |
|
self.fp8_format = self.fp8_format.upper() |
|
if self.fp8_format not in get_args(FP8Format): |
|
raise ValueError(f"`fp8_format` must be one of {' or '.join(get_args(FP8Format))}.") |
|
if self.amax_compute_algo not in get_args(AmaxComputeAlgorithm): |
|
raise ValueError(f"`amax_compute_algo` must be one of {' or '.join(get_args(AmaxComputeAlgorithm))}") |
|
elif self.backend == "MSAMP": |
|
if self.opt_level not in get_args(OptLevel): |
|
raise ValueError(f"`optimization_level` must be one of {' or '.join(get_args(OptLevel))}") |
|
class EnumWithContains(enum.EnumMeta): |
|
"A metaclass that adds the ability to check if `self` contains an item with the `in` operator" |
|
|
|
def __contains__(cls, item): |
|
try: |
|
cls(item) |
|
except ValueError: |
|
return False |
|
return True |
|
class BaseEnum(enum.Enum, metaclass=EnumWithContains): |
|
"An enum class that can get the value of an item with `str(Enum.key)`" |
|
|
|
def __str__(self): |
|
return self.value |
|
@classmethod |
|
|
|
def list(cls): |
|
"Method to list all the possible items in `cls`" |
|
return list(map(str, cls)) |
|
class DistributedType(str, enum.Enum): |
|
""" |
|
Represents a type of distributed environment. |
|
Values: |
|
- **NO** -- Not a distributed environment, just a single process. |
|
- **MULTI_CPU** -- Distributed on multiple CPU nodes. |
|
- **MULTI_GPU** -- Distributed on multiple GPUs. |
|
- **MULTI_NPU** -- Distributed on multiple NPUs. |
|
- **MULTI_XPU** -- Distributed on multiple XPUs. |
|
- **DEEPSPEED** -- Using DeepSpeed. |
|
- **TPU** -- Distributed on TPUs. |
|
""" |
|
|
|
NO = "NO" |
|
MULTI_CPU = "MULTI_CPU" |
|
MULTI_GPU = "MULTI_GPU" |
|
MULTI_NPU = "MULTI_NPU" |
|
MULTI_XPU = "MULTI_XPU" |
|
DEEPSPEED = "DEEPSPEED" |
|
FSDP = "FSDP" |
|
TPU = "TPU" |
|
MEGATRON_LM = "MEGATRON_LM" |
|
class SageMakerDistributedType(str, enum.Enum): |
|
""" |
|
Represents a type of distributed environment. |
|
Values: |
|
- **NO** -- Not a distributed environment, just a single process. |
|
- **DATA_PARALLEL** -- using sagemaker distributed data parallelism. |
|
- **MODEL_PARALLEL** -- using sagemaker distributed model parallelism. |
|
""" |
|
|
|
NO = "NO" |
|
DATA_PARALLEL = "DATA_PARALLEL" |
|
MODEL_PARALLEL = "MODEL_PARALLEL" |
|
class ComputeEnvironment(str, enum.Enum): |
|
""" |
|
Represents a type of the compute environment. |
|
Values: |
|
- **LOCAL_MACHINE** -- private/custom cluster hardware. |
|
- **AMAZON_SAGEMAKER** -- Amazon SageMaker as compute environment. |
|
""" |
|
|
|
LOCAL_MACHINE = "LOCAL_MACHINE" |
|
AMAZON_SAGEMAKER = "AMAZON_SAGEMAKER" |
|
class DynamoBackend(str, BaseEnum): |
|
""" |
|
Represents a dynamo backend (see https://github.com/pytorch/torchdynamo). |
|
Values: |
|
- **NO** -- Do not use torch dynamo. |
|
- **EAGER** -- Uses PyTorch to run the extracted GraphModule. This is quite useful in debugging TorchDynamo |
|
issues. |
|
- **AOT_EAGER** -- Uses AotAutograd with no compiler, i.e, just using PyTorch eager for the AotAutograd's |
|
extracted forward and backward graphs. This is useful for debugging, and unlikely to give speedups. |
|
- **INDUCTOR** -- Uses TorchInductor backend with AotAutograd and cudagraphs by leveraging codegened Triton |
|
kernels. [Read |
|
more](https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747) |
|
- **AOT_TS_NVFUSER** -- nvFuser with AotAutograd/TorchScript. [Read |
|
more](https://dev-discuss.pytorch.org/t/tracing-with-primitives-update-1-nvfuser-and-its-primitives/593) |
|
- **NVPRIMS_NVFUSER** -- nvFuser with PrimTorch. [Read |
|
more](https://dev-discuss.pytorch.org/t/tracing-with-primitives-update-1-nvfuser-and-its-primitives/593) |
|
- **CUDAGRAPHS** -- cudagraphs with AotAutograd. [Read more](https://github.com/pytorch/torchdynamo/pull/757) |
|
- **OFI** -- Uses Torchscript optimize_for_inference. Inference only. [Read |
|
more](https://pytorch.org/docs/stable/generated/torch.jit.optimize_for_inference.html) |
|
- **FX2TRT** -- Uses Nvidia TensorRT for inference optimizations. Inference only. [Read |
|
more](https://github.com/pytorch/TensorRT/blob/master/docsrc/tutorials/getting_started_with_fx_path.rst) |
|
- **ONNXRT** -- Uses ONNXRT for inference on CPU/GPU. Inference only. [Read more](https://onnxruntime.ai/) |
|
- **TENSORRT** -- Uses ONNXRT to run TensorRT for inference optimizations. [Read |
|
more](https://github.com/onnx/onnx-tensorrt) |
|
- **IPEX** -- Uses IPEX for inference on CPU. Inference only. [Read |
|
more](https://github.com/intel/intel-extension-for-pytorch). |
|
- **TVM** -- Uses Apach TVM for inference optimizations. [Read more](https://tvm.apache.org/) |
|
""" |
|
|
|
NO = "NO" |
|
EAGER = "EAGER" |
|
AOT_EAGER = "AOT_EAGER" |
|
INDUCTOR = "INDUCTOR" |
|
AOT_TS_NVFUSER = "AOT_TS_NVFUSER" |
|
NVPRIMS_NVFUSER = "NVPRIMS_NVFUSER" |
|
CUDAGRAPHS = "CUDAGRAPHS" |
|
OFI = "OFI" |
|
FX2TRT = "FX2TRT" |
|
ONNXRT = "ONNXRT" |
|
TENSORRT = "TENSORRT" |
|
IPEX = "IPEX" |
|
TVM = "TVM" |
|
class LoggerType(BaseEnum): |
|
"""Represents a type of supported experiment tracker |
|
Values: |
|
- **ALL** -- all available trackers in the environment that are supported |
|
- **TENSORBOARD** -- TensorBoard as an experiment tracker |
|
- **WANDB** -- wandb as an experiment tracker |
|
- **COMETML** -- comet_ml as an experiment tracker |
|
- **DVCLIVE** -- dvclive as an experiment tracker |
|
""" |
|
ALL = "all" |
|
AIM = "aim" |
|
TENSORBOARD = "tensorboard" |
|
WANDB = "wandb" |
|
COMETML = "comet_ml" |
|
MLFLOW = "mlflow" |
|
CLEARML = "clearml" |
|
DVCLIVE = "dvclive" |
|
class PrecisionType(BaseEnum): |
|
"""Represents a type of precision used on floating point values |
|
Values: |
|
- **NO** -- using full precision (FP32) |
|
- **FP16** -- using half precision |
|
- **BF16** -- using brain floating point precision |
|
""" |
|
NO = "no" |
|
FP8 = "fp8" |
|
FP16 = "fp16" |
|
BF16 = "bf16" |
|
class RNGType(BaseEnum): |
|
TORCH = "torch" |
|
CUDA = "cuda" |
|
NPU = "npu" |
|
XLA = "xla" |
|
XPU = "xpu" |
|
GENERATOR = "generator" |
|
class CustomDtype(enum.Enum): |
|
r""" |
|
An enum that contains multiple custom dtypes that can be used for `infer_auto_device_map`. |
|
""" |
|
FP8 = "fp8" |
|
INT4 = "int4" |
|
|
|
@dataclass |
|
class TensorInformation: |
|
shape: torch.Size |
|
dtype: torch.dtype |
|
@dataclass |
|
class ProjectConfiguration: |
|
""" |
|
Configuration for the Accelerator object based on inner-project needs. |
|
""" |
|
project_dir: str = field(default=None, metadata={"help": "A path to a directory for storing data."}) |
|
logging_dir: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "A path to a directory for storing logs of locally-compatible loggers. If None, defaults to `project_dir`." |
|
}, |
|
) |
|
automatic_checkpoint_naming: bool = field( |
|
default=False, |
|
metadata={"help": "Whether saved states should be automatically iteratively named."}, |
|
) |
|
total_limit: int = field( |
|
default=None, |
|
metadata={"help": "The maximum number of total saved states to keep."}, |
|
) |
|
iteration: int = field( |
|
default=0, |
|
metadata={"help": "The current save iteration."}, |
|
) |
|
save_on_each_node: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"When doing multi-node distributed training, whether to save models and checkpoints on each node, or" |
|
" only on the main one" |
|
) |
|
}, |
|
) |
|
|
|
def set_directories(self, project_dir: str = None): |
|
"Sets `self.project_dir` and `self.logging_dir` to the appropriate values." |
|
self.project_dir = project_dir |
|
if self.logging_dir is None: |
|
self.logging_dir = project_dir |
|
|
|
def __post_init__(self): |
|
self.set_directories(self.project_dir) |
|
@dataclass |
|
class GradientAccumulationPlugin(KwargsHandler): |
|
""" |
|
A plugin to configure gradient accumulation behavior. |
|
""" |
|
num_steps: int = field(default=None, metadata={"help": "The number of steps to accumulate gradients for."}) |
|
adjust_scheduler: bool = field( |
|
default=True, |
|
metadata={ |
|
"help": "Whether to adjust the scheduler steps to account for the number of steps being accumulated. Should be `True` if the used scheduler was not adjusted for gradient accumulation." |
|
}, |
|
) |
|
sync_with_dataloader: bool = field( |
|
default=True, |
|
metadata={ |
|
"help": "Whether to synchronize setting the gradients when at the end of the dataloader. Should only be set to `False` if you know what you're doing." |
|
}, |
|
) |
|
@dataclass |
|
class TorchDynamoPlugin(KwargsHandler): |
|
""" |
|
This plugin is used to compile a model with PyTorch 2.0 |
|
""" |
|
backend: DynamoBackend = field( |
|
default=None, |
|
metadata={"help": f"Possible options are {[b.value.lower() for b in DynamoBackend]}"}, |
|
) |
|
mode: str = field( |
|
default=None, metadata={"help": "Possible options are 'default', 'reduce-overhead' or 'max-autotune'"} |
|
) |
|
fullgraph: bool = field(default=None, metadata={"help": "Whether it is ok to break model into several subgraphs"}) |
|
dynamic: bool = field(default=None, metadata={"help": "Whether to use dynamic shape for tracing"}) |
|
options: Any = field(default=None, metadata={"help": "A dictionary of options to pass to the backend."}) |
|
disable: bool = field(default=False, metadata={"help": "Turn torch.compile() into a no-op for testing"}) |
|
|
|
def __post_init__(self): |
|
prefix = "ACCELERATE_DYNAMO_" |
|
if self.backend is None: |
|
self.backend = os.environ.get(prefix + "BACKEND", "no") |
|
self.backend = DynamoBackend(self.backend.upper()) |
|
if self.mode is None: |
|
self.mode = os.environ.get(prefix + "MODE", "default") |
|
if self.fullgraph is None: |
|
self.fullgraph = str_to_bool(os.environ.get(prefix + "USE_FULLGRAPH", "False")) == 1 |
|
if self.dynamic is None: |
|
self.dynamic = str_to_bool(os.environ.get(prefix + "USE_DYNAMIC", "False")) == 1 |
|
|
|
def to_dict(self): |
|
dynamo_config = copy.deepcopy(self.__dict__) |
|
dynamo_config["backend"] = dynamo_config["backend"].value.lower() |
|
return dynamo_config |
|
@dataclass |
|
class DeepSpeedPlugin: |
|
""" |
|
This plugin is used to integrate DeepSpeed. |
|
""" |
|
hf_ds_config: Any = field( |
|
default=None, |
|
metadata={ |
|
"help": "path to DeepSpeed config file or dict or an object of class `accelerate.utils.deepspeed.HfDeepSpeedConfig`." |
|
}, |
|
) |
|
gradient_accumulation_steps: int = field( |
|
default=None, |
|
metadata={ |
|
"help": "Number of steps to accumulate gradients before updating optimizer states. If not set, will use the value from the `Accelerator` directly." |
|
}, |
|
) |
|
gradient_clipping: float = field(default=None, metadata={"help": "Enable gradient clipping with value"}) |
|
zero_stage: int = field( |
|
default=None, |
|
metadata={"help": "Possible options are 0,1,2,3; Default will be taken from environment variable"}, |
|
) |
|
is_train_batch_min: str = field( |
|
default=True, |
|
metadata={"help": "If both train & eval dataloaders are specified, this will decide the train_batch_size"}, |
|
) |
|
offload_optimizer_device: bool = field( |
|
default=None, |
|
metadata={"help": "Possible options are none|cpu|nvme. Only applicable with ZeRO Stages 2 and 3."}, |
|
) |
|
offload_param_device: bool = field( |
|
default=None, |
|
metadata={"help": "Possible options are none|cpu|nvme. Only applicable with ZeRO Stage 3."}, |
|
) |
|
offload_optimizer_nvme_path: str = field( |
|
default=None, |
|
metadata={"help": "Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3."}, |
|
) |
|
offload_param_nvme_path: str = field( |
|
default=None, |
|
metadata={"help": "Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3."}, |
|
) |
|
zero3_init_flag: bool = field( |
|
default=None, |
|
metadata={ |
|
"help": "Flag to indicate whether to enable `deepspeed.zero.Init` for constructing massive models." |
|
"Only applicable with ZeRO Stage-3." |
|
}, |
|
) |
|
zero3_save_16bit_model: bool = field( |
|
default=None, |
|
metadata={"help": "Flag to indicate whether to save 16-bit model. Only applicable with ZeRO Stage-3."}, |
|
) |
|
|
|
def __post_init__(self): |
|
from .deepspeed import HfDeepSpeedConfig |
|
if self.gradient_accumulation_steps is None: |
|
gas = os.environ.get("ACCELERATE_GRADIENT_ACCUMULATION_STEPS", "auto") |
|
self.gradient_accumulation_steps = int(gas) if gas.isdigit() else gas |
|
if self.gradient_clipping is None: |
|
gradient_clipping = os.environ.get("ACCELERATE_GRADIENT_CLIPPING", "none") |
|
if gradient_clipping != "none": |
|
self.gradient_clipping = float(gradient_clipping) |
|
if self.zero_stage is None: |
|
self.zero_stage = int(os.environ.get("ACCELERATE_DEEPSPEED_ZERO_STAGE", 2)) |
|
if self.offload_optimizer_device is None: |
|
self.offload_optimizer_device = os.environ.get("ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_DEVICE", "none") |
|
if self.offload_param_device is None: |
|
self.offload_param_device = os.environ.get("ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_DEVICE", "none") |
|
if self.offload_optimizer_nvme_path is None: |
|
self.offload_optimizer_nvme_path = os.environ.get( |
|
"ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_NVME_PATH", "none" |
|
) |
|
if self.offload_param_nvme_path is None: |
|
self.offload_param_nvme_path = os.environ.get("ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_NVME_PATH", "none") |
|
if self.zero3_save_16bit_model is None: |
|
self.zero3_save_16bit_model = ( |
|
os.environ.get("ACCELERATE_DEEPSPEED_ZERO3_SAVE_16BIT_MODEL", "false") == "true" |
|
) |
|
if self.hf_ds_config is None: |
|
self.hf_ds_config = os.environ.get("ACCELERATE_DEEPSPEED_CONFIG_FILE", "none") |
|
if ( |
|
isinstance(self.hf_ds_config, dict) |
|
or (isinstance(self.hf_ds_config, str) and self.hf_ds_config != "none") |
|
or isinstance(self.hf_ds_config, HfDeepSpeedConfig) |
|
): |
|
if not isinstance(self.hf_ds_config, HfDeepSpeedConfig): |
|
self.hf_ds_config = HfDeepSpeedConfig(self.hf_ds_config) |
|
if "gradient_accumulation_steps" not in self.hf_ds_config.config: |
|
self.hf_ds_config.config["gradient_accumulation_steps"] = 1 |
|
if "zero_optimization" not in self.hf_ds_config.config: |
|
raise ValueError("Please specify the ZeRO optimization config in the DeepSpeed config.") |
|
self._deepspeed_config_checks() |
|
plugin_to_config_mapping = { |
|
"gradient_accumulation_steps": "gradient_accumulation_steps", |
|
"gradient_clipping": "gradient_clipping", |
|
"zero_stage": "zero_optimization.stage", |
|
"offload_optimizer_device": "zero_optimization.offload_optimizer.device", |
|
"offload_param_device": "zero_optimization.offload_param.device", |
|
"offload_param_nvme_path": "zero_optimization.offload_param.nvme_path", |
|
"offload_optimizer_nvme_path": "zero_optimization.offload_optimizer.nvme_path", |
|
"zero3_save_16bit_model": "zero_optimization.stage3_gather_16bit_weights_on_model_save", |
|
} |
|
kwargs = {v: getattr(self, k) for k, v in plugin_to_config_mapping.items() if getattr(self, k) is not None} |
|
for key in kwargs.keys(): |
|
self.fill_match(key, **kwargs, must_match=False) |
|
self.hf_ds_config.set_stage_and_offload() |
|
|
|
|
|
for key, value in plugin_to_config_mapping.items(): |
|
config_value = self.hf_ds_config.get_value(value) |
|
if config_value is not None and config_value != "auto": |
|
setattr(self, key, config_value) |
|
else: |
|
config = { |
|
"train_batch_size": "auto", |
|
"train_micro_batch_size_per_gpu": "auto", |
|
"gradient_accumulation_steps": self.gradient_accumulation_steps, |
|
"zero_optimization": { |
|
"stage": self.zero_stage, |
|
"offload_optimizer": { |
|
"device": self.offload_optimizer_device, |
|
"nvme_path": self.offload_optimizer_nvme_path |
|
if self.offload_optimizer_device == "nvme" |
|
else None, |
|
}, |
|
"offload_param": { |
|
"device": self.offload_param_device, |
|
"nvme_path": self.offload_param_nvme_path if self.offload_param_device == "nvme" else None, |
|
}, |
|
"stage3_gather_16bit_weights_on_model_save": self.zero3_save_16bit_model, |
|
}, |
|
} |
|
if self.gradient_clipping: |
|
config["gradient_clipping"] = self.gradient_clipping |
|
self.hf_ds_config = HfDeepSpeedConfig(config) |
|
self.deepspeed_config = self.hf_ds_config.config |
|
self.deepspeed_config["steps_per_print"] = float("inf") |
|
if self.zero3_init_flag is None: |
|
self.zero3_init_flag = ( |
|
str_to_bool(os.environ.get("ACCELERATE_DEEPSPEED_ZERO3_INIT", str(self.hf_ds_config.is_zero3()))) == 1 |
|
) |
|
if self.zero3_init_flag and not self.hf_ds_config.is_zero3(): |
|
warnings.warn("DeepSpeed Zero3 Init flag is only applicable for ZeRO Stage 3. Setting it to False.") |
|
self.zero3_init_flag = False |
|
|
|
def fill_match(self, ds_key_long, mismatches=None, must_match=True, **kwargs): |
|
mismatches = [] if mismatches is None else mismatches |
|
config, ds_key = self.hf_ds_config.find_config_node(ds_key_long) |
|
if config is None: |
|
return |
|
if config.get(ds_key) == "auto": |
|
if ds_key_long in kwargs: |
|
config[ds_key] = kwargs[ds_key_long] |
|
return |
|
else: |
|
raise ValueError( |
|
f"`{ds_key_long}` not found in kwargs. " |
|
f"Please specify `{ds_key_long}` without `auto`(set to correct value) in the DeepSpeed config file or " |
|
"pass it in kwargs." |
|
) |
|
if not must_match: |
|
return |
|
ds_val = config.get(ds_key) |
|
if ds_val is not None and ds_key_long in kwargs: |
|
if ds_val != kwargs[ds_key_long]: |
|
mismatches.append(f"- ds {ds_key_long}={ds_val} vs arg {ds_key_long}={kwargs[ds_key_long]}") |
|
|
|
def deepspeed_config_process(self, prefix="", mismatches=None, config=None, must_match=True, **kwargs): |
|
"""Process the DeepSpeed config with the values from the kwargs.""" |
|
mismatches = [] if mismatches is None else mismatches |
|
if config is None: |
|
config = self.deepspeed_config |
|
for key, value in config.items(): |
|
if isinstance(value, dict): |
|
self.deepspeed_config_process( |
|
prefix=prefix + key + ".", mismatches=mismatches, config=value, must_match=must_match, **kwargs |
|
) |
|
else: |
|
self.fill_match(prefix + key, mismatches, must_match=must_match, **kwargs) |
|
if len(mismatches) > 0 and prefix == "": |
|
mismatches_msg = "\n".join(mismatches) |
|
raise ValueError( |
|
"Please correct the following DeepSpeed config values that mismatch kwargs " |
|
f" values:\n{mismatches_msg}\nThe easiest method is to set these DeepSpeed config values to 'auto'." |
|
) |
|
|
|
def set_mixed_precision(self, mixed_precision): |
|
ds_config = self.deepspeed_config |
|
kwargs = { |
|
"fp16.enabled": mixed_precision == "fp16", |
|
"bf16.enabled": mixed_precision == "bf16", |
|
} |
|
if mixed_precision == "fp16": |
|
if "fp16" not in ds_config: |
|
ds_config["fp16"] = {"enabled": True, "auto_cast": True} |
|
elif mixed_precision == "bf16": |
|
if "bf16" not in ds_config: |
|
ds_config["bf16"] = {"enabled": True} |
|
if mixed_precision != "no": |
|
diff_dtype = "bf16" if mixed_precision == "fp16" else "fp16" |
|
if str(ds_config.get(diff_dtype, {}).get("enabled", "False")).lower() == "true": |
|
raise ValueError( |
|
f"`--mixed_precision` arg cannot be set to `{mixed_precision}` when `{diff_dtype}` is set in the DeepSpeed config file." |
|
) |
|
for dtype in ["fp16", "bf16"]: |
|
if dtype not in ds_config: |
|
ds_config[dtype] = {"enabled": False} |
|
self.fill_match("fp16.enabled", must_match=False, **kwargs) |
|
self.fill_match("bf16.enabled", must_match=False, **kwargs) |
|
|
|
def set_deepspeed_weakref(self): |
|
from .imports import is_transformers_available |
|
if self.zero3_init_flag: |
|
if not is_transformers_available(): |
|
raise Exception( |
|
"When `zero3_init_flag` is set, it requires Transformers to be installed. " |
|
"Please run `pip install transformers`." |
|
) |
|
ds_config = copy.deepcopy(self.deepspeed_config) |
|
if "gradient_accumulation_steps" not in ds_config or ds_config["gradient_accumulation_steps"] == "auto": |
|
ds_config["gradient_accumulation_steps"] = 1 |
|
if ( |
|
"train_micro_batch_size_per_gpu" not in ds_config |
|
or ds_config["train_micro_batch_size_per_gpu"] == "auto" |
|
): |
|
ds_config["train_micro_batch_size_per_gpu"] = 1 |
|
if ds_config.get("train_batch_size", None) == "auto": |
|
del ds_config["train_batch_size"] |
|
if compare_versions("transformers", "<", "4.33"): |
|
from transformers.deepspeed import HfDeepSpeedConfig |
|
else: |
|
from transformers.integrations import HfDeepSpeedConfig |
|
self.dschf = HfDeepSpeedConfig(ds_config) |
|
|
|
def is_zero3_init_enabled(self): |
|
return self.zero3_init_flag |
|
@contextmanager |
|
|
|
def zero3_init_context_manager(self, enable=False): |
|
old = self.zero3_init_flag |
|
if old == enable: |
|
yield |
|
else: |
|
self.zero3_init_flag = enable |
|
self.dschf = None |
|
self.set_deepspeed_weakref() |
|
yield |
|
self.zero3_init_flag = old |
|
self.dschf = None |
|
self.set_deepspeed_weakref() |
|
|
|
def _deepspeed_config_checks(self): |
|
env_variable_names_to_ignore = [ |
|
"ACCELERATE_GRADIENT_ACCUMULATION_STEPS", |
|
"ACCELERATE_GRADIENT_CLIPPING", |
|
"ACCELERATE_DEEPSPEED_ZERO_STAGE", |
|
"ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_DEVICE", |
|
"ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_DEVICE", |
|
"ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_NVME_PATH", |
|
"ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_NVME_PATH", |
|
"ACCELERATE_DEEPSPEED_ZERO3_SAVE_16BIT_MODEL", |
|
"ACCELERATE_MIXED_PRECISION", |
|
] |
|
env_variable_names_to_ignore = [ |
|
name.replace("ACCELERATE_", "").replace("DEEPSPEED_", "").lower() for name in env_variable_names_to_ignore |
|
] |
|
deepspeed_fields_from_accelerate_config = os.environ.get("ACCELERATE_CONFIG_DS_FIELDS", "").split(",") |
|
if any(name in env_variable_names_to_ignore for name in deepspeed_fields_from_accelerate_config): |
|
raise ValueError( |
|
f"When using `deepspeed_config_file`, the following accelerate config variables will be ignored: {env_variable_names_to_ignore}.\n" |
|
"Please specify them appropriately in the DeepSpeed config file.\n" |
|
"If you are using an accelerate config file, remove others config variables mentioned in the above specified list.\n" |
|
"The easiest method is to create a new config following the questionnaire via `accelerate config`.\n" |
|
"It will only ask for the necessary config variables when using `deepspeed_config_file`." |
|
) |
|
@dataclass |
|
class FullyShardedDataParallelPlugin: |
|
""" |
|
This plugin is used to enable fully sharded data parallelism. |
|
""" |
|
sharding_strategy: "typing.Any" = field( |
|
default=None, |
|
metadata={ |
|
"help": "FSDP Sharding Strategy of type `torch.distributed.fsdp.fully_sharded_data_parallel.ShardingStrategy`" |
|
}, |
|
) |
|
backward_prefetch: "typing.Any" = field( |
|
default=None, |
|
metadata={ |
|
"help": "FSDP Backward Prefetch of type `torch.distributed.fsdp.fully_sharded_data_parallel.BackwardPrefetch`" |
|
}, |
|
) |
|
mixed_precision_policy: "typing.Any" = field( |
|
default=None, |
|
metadata={ |
|
"help": "A config to enable mixed precision training with FullyShardedDataParallel. " |
|
"The 3 flags that are set are `param_dtype`, `reduce_dtype`, `buffer_dtype`. " |
|
"Each flag expects `torch.dtype` as the value. " |
|
"It is of type `torch.distributed.fsdp.fully_sharded_data_parallel.MixedPrecision`." |
|
}, |
|
) |
|
auto_wrap_policy: Optional[Callable] = field( |
|
default=None, |
|
metadata={"help": "A callable specifying a policy to recursively wrap layers with FSDP"}, |
|
) |
|
cpu_offload: "typing.Any" = field( |
|
default=None, |
|
metadata={ |
|
"help": "Decides Whether to offload parameters and gradients to CPU. " |
|
"It is of type `torch.distributed.fsdp.fully_sharded_data_parallel.CPUOffload`." |
|
}, |
|
) |
|
ignored_modules: Optional[Iterable[torch.nn.Module]] = field( |
|
default=None, |
|
metadata={"help": "A list of modules to ignore for FSDP."}, |
|
) |
|
state_dict_type: "typing.Any" = field( |
|
default=None, |
|
metadata={ |
|
"help": "FSDP State Dict Type of type `torch.distributed.fsdp.fully_sharded_data_parallel.StateDictType`" |
|
}, |
|
) |
|
state_dict_config: "typing.Any" = field( |
|
default=None, |
|
metadata={ |
|
"help": "FSDP State Dict Config of type `torch.distributed.fsdp.fully_sharded_data_parallel.StateDictConfig`" |
|
}, |
|
) |
|
optim_state_dict_config: "typing.Any" = field( |
|
default=None, |
|
metadata={ |
|
"help": "FSDP Optimizer State Dict Config of type `torch.distributed.fsdp.fully_sharded_data_parallel.OptimStateDictConfig`" |
|
}, |
|
) |
|
limit_all_gathers: bool = field( |
|
default=True, |
|
metadata={ |
|
"help": "If False, then FSDP allows the CPU thread to schedule all-gathers " |
|
"without any extra synchronization. If True, then FSDP explicitly synchronizes the CPU thread to prevent " |
|
"too many in-flight all-gathers. This bool only affects the sharded strategies that schedule all-gathers. " |
|
"Enabling this can help lower the number of CUDA malloc retries." |
|
}, |
|
) |
|
use_orig_params: bool = field( |
|
default=True, |
|
metadata={ |
|
"help": "If `True`, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable parameters. " |
|
"Useful in cases such as parameter-efficient fine-tuning. " |
|
"Please refer this [blog](https://dev-discuss.pytorch.org/t/rethinking-pytorch-fully-sharded-data-parallel-fsdp-from-first-principles/1019). " |
|
"This also enables multiple optimizer param groups. This should be `True` when creating an optimizer object before preparing/wrapping the model with FSDP." |
|
}, |
|
) |
|
param_init_fn: Optional[Callable[[torch.nn.Module], None]] = field( |
|
default=None, |
|
metadata={ |
|
"help": "A Callable[torch.nn.Module] -> None that specifies how modules " |
|
"that are currently on the meta device should be initialized onto an actual device." |
|
}, |
|
) |
|
sync_module_states: bool = field( |
|
default=True, |
|
metadata={ |
|
"help": "If True, each individually wrapped FSDP unit will broadcast module parameters from rank 0 " |
|
"to ensure they are the same across all ranks after initialization" |
|
}, |
|
) |
|
forward_prefetch: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "If True, then FSDP explicitly prefetches the next upcoming " |
|
"all-gather while executing in the forward pass. only use with Static graphs." |
|
}, |
|
) |
|
activation_checkpointing: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "If True, activation checkpointing is a technique to reduce memory usage by clearing activations of " |
|
"certain layers and recomputing them during a backward pass. Effectively, this trades extra computation time " |
|
"for reduced memory usage." |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch, CPUOffload, ShardingStrategy |
|
prefix = "FSDP_" |
|
if self.sharding_strategy is None: |
|
sharding_strategy = os.environ.get(prefix + "SHARDING_STRATEGY", "FULL_SHARD") |
|
sharding_strategy = ( |
|
FSDP_SHARDING_STRATEGY.index(sharding_strategy) + 1 |
|
if not sharding_strategy.isdigit() |
|
else int(sharding_strategy) |
|
) |
|
self.sharding_strategy = ShardingStrategy(sharding_strategy) |
|
if self.cpu_offload is None: |
|
if str_to_bool(os.environ.get(prefix + "OFFLOAD_PARAMS", "False")) == 1: |
|
self.cpu_offload = CPUOffload(offload_params=True) |
|
else: |
|
self.cpu_offload = CPUOffload(offload_params=False) |
|
if self.backward_prefetch is None: |
|
prefetch_policy = os.environ.get(prefix + "BACKWARD_PREFETCH", "NO_PREFETCH") |
|
if prefetch_policy != FSDP_BACKWARD_PREFETCH[-1]: |
|
self.backward_prefetch = BackwardPrefetch(FSDP_BACKWARD_PREFETCH.index(prefetch_policy) + 1) |
|
if self.state_dict_type is None: |
|
state_dict_type_policy = os.environ.get(prefix + "STATE_DICT_TYPE", "FULL_STATE_DICT") |
|
self.set_state_dict_type(state_dict_type_policy) |
|
self.use_orig_params = str_to_bool(os.environ.get(prefix + "USE_ORIG_PARAMS", "False")) == 1 |
|
self.sync_module_states = str_to_bool(os.environ.get(prefix + "SYNC_MODULE_STATES", "True")) == 1 |
|
self.forward_prefetch = str_to_bool(os.environ.get(prefix + "FORWARD_PREFETCH", "False")) == 1 |
|
self.activation_checkpointing = str_to_bool(os.environ.get(prefix + "ACTIVATION_CHECKPOINTING", "False")) == 1 |
|
if self.sync_module_states: |
|
if is_npu_available(): |
|
device = torch.npu.current_device() |
|
elif is_cuda_available(): |
|
device = torch.cuda.current_device() |
|
elif is_xpu_available(): |
|
device = torch.xpu.current_device() |
|
else: |
|
raise RuntimeError( |
|
"There are currently no available devices found, must be one of 'XPU', 'CUDA', or 'NPU'." |
|
) |
|
self.param_init_fn = lambda x: x.to_empty(device=device, recurse=False) |
|
@staticmethod |
|
|
|
def get_module_class_from_name(module, name): |
|
""" |
|
Gets a class from a module by its name. |
|
Args: |
|
module (`torch.nn.Module`): The module to get the class from. |
|
name (`str`): The name of the class. |
|
""" |
|
modules_children = list(module.children()) |
|
if module.__class__.__name__ == name: |
|
return module.__class__ |
|
elif len(modules_children) == 0: |
|
return |
|
else: |
|
for child_module in modules_children: |
|
module_class = FullyShardedDataParallelPlugin.get_module_class_from_name(child_module, name) |
|
if module_class is not None: |
|
return module_class |
|
|
|
def set_auto_wrap_policy(self, model): |
|
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy, transformer_auto_wrap_policy |
|
default_transformer_cls_names_to_wrap = ( |
|
",".join(model._no_split_modules) if getattr(model, "_no_split_modules", None) is not None else "" |
|
) |
|
if self.auto_wrap_policy is None: |
|
auto_wrap_policy = os.environ.get("FSDP_AUTO_WRAP_POLICY", "NO_WRAP") |
|
if auto_wrap_policy == FSDP_AUTO_WRAP_POLICY[0]: |
|
transformer_cls_names_to_wrap = os.environ.get( |
|
"FSDP_TRANSFORMER_CLS_TO_WRAP", default_transformer_cls_names_to_wrap |
|
).split(",") |
|
transformer_cls_to_wrap = set() |
|
for layer_class in transformer_cls_names_to_wrap: |
|
transformer_cls = FullyShardedDataParallelPlugin.get_module_class_from_name(model, layer_class) |
|
if transformer_cls is None: |
|
raise Exception("Could not find the transformer layer class to wrap in the model.") |
|
else: |
|
transformer_cls_to_wrap.add(transformer_cls) |
|
self.auto_wrap_policy = functools.partial( |
|
transformer_auto_wrap_policy, |
|
|
|
transformer_layer_cls=transformer_cls_to_wrap, |
|
) |
|
elif auto_wrap_policy == FSDP_AUTO_WRAP_POLICY[1]: |
|
min_num_params = int(os.environ.get("FSDP_MIN_NUM_PARAMS", 0)) |
|
if min_num_params > 0: |
|
self.auto_wrap_policy = functools.partial( |
|
size_based_auto_wrap_policy, min_num_params=min_num_params |
|
) |
|
|
|
def set_mixed_precision(self, mixed_precision): |
|
if mixed_precision == "fp16": |
|
dtype = torch.float16 |
|
elif mixed_precision == "bf16": |
|
dtype = torch.bfloat16 |
|
else: |
|
raise ValueError(f"Unknown mixed precision value: {mixed_precision}") |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision |
|
if self.mixed_precision_policy is None: |
|
self.mixed_precision_policy = MixedPrecision(param_dtype=dtype, reduce_dtype=dtype, buffer_dtype=dtype) |
|
|
|
def set_state_dict_type(self, state_dict_type_policy): |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import ( |
|
FullOptimStateDictConfig, |
|
FullStateDictConfig, |
|
StateDictType, |
|
) |
|
self.state_dict_type = StateDictType(FSDP_STATE_DICT_TYPE.index(state_dict_type_policy) + 1) |
|
if self.state_dict_type == StateDictType.FULL_STATE_DICT: |
|
if self.state_dict_config is None: |
|
self.state_dict_config = FullStateDictConfig(offload_to_cpu=True, rank0_only=True) |
|
if self.optim_state_dict_config is None: |
|
self.optim_state_dict_config = FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=True) |
|
@dataclass |
|
class MegatronLMPlugin: |
|
""" |
|
Plugin for Megatron-LM to enable tensor, pipeline, sequence and data parallelism. Also to enable selective |
|
activation recomputation and optimized fused kernels. |
|
""" |
|
tp_degree: int = field(default=None, metadata={"help": "tensor parallelism degree."}) |
|
pp_degree: int = field(default=None, metadata={"help": "pipeline parallelism degree."}) |
|
num_micro_batches: int = field(default=None, metadata={"help": "number of micro-batches."}) |
|
gradient_clipping: float = field( |
|
default=None, metadata={"help": "gradient clipping value based on global L2 Norm (0 to disable)"} |
|
) |
|
sequence_parallelism: bool = field( |
|
default=None, |
|
metadata={"help": "enable sequence parallelism"}, |
|
) |
|
recompute_activations: bool = field( |
|
default=None, |
|
metadata={"help": "enable selective activation recomputation"}, |
|
) |
|
use_distributed_optimizer: bool = field( |
|
default=None, |
|
metadata={"help": "enable distributed optimizer"}, |
|
) |
|
pipeline_model_parallel_split_rank: int = field( |
|
default=None, metadata={"help": "Rank where encoder and decoder should be split."} |
|
) |
|
num_layers_per_virtual_pipeline_stage: int = field( |
|
default=None, metadata={"help": "Number of layers per virtual pipeline stage."} |
|
) |
|
is_train_batch_min: str = field( |
|
default=True, |
|
metadata={"help": "If both train & eval dataloaders are specified, this will decide the micro_batch_size"}, |
|
) |
|
train_iters: int = field( |
|
default=None, |
|
metadata={ |
|
"help": "Total number of iterations to train over all training runs. " |
|
"Note that either train-iters or train-samples should be provided when using `MegatronLMDummyScheduler`" |
|
}, |
|
) |
|
train_samples: int = field( |
|
default=None, |
|
metadata={ |
|
"help": "Total number of samples to train over all training runs. " |
|
"Note that either train-iters or train-samples should be provided when using `MegatronLMDummyScheduler`" |
|
}, |
|
) |
|
weight_decay_incr_style: str = field( |
|
default="constant", |
|
metadata={"help": 'Weight decay increment function. choices=["constant", "linear", "cosine"]. '}, |
|
) |
|
start_weight_decay: float = field( |
|
default=None, |
|
metadata={"help": "Initial weight decay coefficient for L2 regularization."}, |
|
) |
|
end_weight_decay: float = field( |
|
default=None, |
|
metadata={"help": "End of run weight decay coefficient for L2 regularization."}, |
|
) |
|
lr_decay_style: str = field( |
|
default="linear", |
|
metadata={"help": "Learning rate decay function. choices=['constant', 'linear', 'cosine']."}, |
|
) |
|
lr_decay_iters: int = field( |
|
default=None, |
|
metadata={"help": "Number of iterations for learning rate decay. If None defaults to `train_iters`."}, |
|
) |
|
lr_decay_samples: int = field( |
|
default=None, |
|
metadata={"help": "Number of samples for learning rate decay. If None defaults to `train_samples`."}, |
|
) |
|
lr_warmup_iters: int = field( |
|
default=None, |
|
metadata={"help": "number of iterations to linearly warmup learning rate over."}, |
|
) |
|
lr_warmup_samples: int = field( |
|
default=None, |
|
metadata={"help": "number of samples to linearly warmup learning rate over."}, |
|
) |
|
lr_warmup_fraction: float = field( |
|
default=None, |
|
metadata={"help": "fraction of lr-warmup-(iters/samples) to linearly warmup learning rate over."}, |
|
) |
|
min_lr: float = field( |
|
default=0, |
|
metadata={"help": "Minumum value for learning rate. The scheduler clip values below this threshold."}, |
|
) |
|
consumed_samples: List[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Number of samples consumed in the same order as the dataloaders to `accelerator.prepare` call." |
|
}, |
|
) |
|
no_wd_decay_cond: Optional[Callable] = field(default=None, metadata={"help": "Condition to disable weight decay."}) |
|
scale_lr_cond: Optional[Callable] = field(default=None, metadata={"help": "Condition to scale learning rate."}) |
|
lr_mult: float = field(default=1.0, metadata={"help": "Learning rate multiplier."}) |
|
megatron_dataset_flag: bool = field( |
|
default=False, |
|
metadata={"help": "Whether the format of dataset follows Megatron-LM Indexed/Cached/MemoryMapped format."}, |
|
) |
|
seq_length: int = field( |
|
default=None, |
|
metadata={"help": "Maximum sequence length to process."}, |
|
) |
|
encoder_seq_length: int = field( |
|
default=None, |
|
metadata={"help": "Maximum sequence length to process for the encoder."}, |
|
) |
|
decoder_seq_length: int = field( |
|
default=None, |
|
metadata={"help": "Maximum sequence length to process for the decoder."}, |
|
) |
|
tensorboard_dir: str = field( |
|
default=None, |
|
metadata={"help": "Path to save tensorboard logs."}, |
|
) |
|
set_all_logging_options: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to set all logging options."}, |
|
) |
|
eval_iters: int = field( |
|
default=100, metadata={"help": "Number of iterations to run for evaluation validation/test for."} |
|
) |
|
eval_interval: int = field( |
|
default=1000, metadata={"help": "Interval between running evaluation on validation set."} |
|
) |
|
return_logits: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to return logits from the model."}, |
|
) |
|
|
|
custom_train_step_class: Optional[Any] = field( |
|
default=None, |
|
metadata={"help": "Custom train step class."}, |
|
) |
|
custom_train_step_kwargs: Optional[Dict[str, Any]] = field( |
|
default=None, |
|
metadata={"help": "Custom train step kwargs."}, |
|
) |
|
|
|
custom_model_provider_function: Optional[Callable] = field( |
|
default=None, |
|
metadata={"help": "Custom model provider function."}, |
|
) |
|
custom_prepare_model_function: Optional[Callable] = field( |
|
default=None, |
|
metadata={"help": "Custom prepare model function."}, |
|
) |
|
|
|
|
|
other_megatron_args: Optional[Dict[str, Any]] = field( |
|
default=None, |
|
metadata={"help": "Other Megatron-LM arguments. Please refer Megatron-LM"}, |
|
) |
|
|
|
def __post_init__(self): |
|
prefix = "MEGATRON_LM_" |
|
if self.tp_degree is None: |
|
self.tp_degree = int(os.environ.get(prefix + "TP_DEGREE", 1)) |
|
if self.pp_degree is None: |
|
self.pp_degree = int(os.environ.get(prefix + "PP_DEGREE", 1)) |
|
if self.num_micro_batches is None: |
|
self.num_micro_batches = int(os.environ.get(prefix + "NUM_MICRO_BATCHES", 1)) |
|
if self.gradient_clipping is None: |
|
self.gradient_clipping = float(os.environ.get(prefix + "GRADIENT_CLIPPING", 1.0)) |
|
if self.recompute_activations is None: |
|
self.recompute_activations = str_to_bool(os.environ.get(prefix + "RECOMPUTE_ACTIVATIONS", "False")) == 1 |
|
if self.use_distributed_optimizer is None: |
|
self.use_distributed_optimizer = ( |
|
str_to_bool(os.environ.get(prefix + "USE_DISTRIBUTED_OPTIMIZER", "False")) == 1 |
|
) |
|
if self.sequence_parallelism is None: |
|
self.sequence_parallelism = str_to_bool(os.environ.get(prefix + "SEQUENCE_PARALLELISM", "False")) == 1 |
|
if self.pp_degree > 1 or self.use_distributed_optimizer: |
|
self.DDP_impl = "local" |
|
else: |
|
self.DDP_impl = "torch" |
|
if self.consumed_samples is not None: |
|
if len(self.consumed_samples) == 1: |
|
self.consumed_samples.extend([0, 0]) |
|
elif len(self.consumed_samples) == 2: |
|
self.consumed_samples.append(0) |
|
self.megatron_lm_default_args = { |
|
"tensor_model_parallel_size": self.tp_degree, |
|
"pipeline_model_parallel_size": self.pp_degree, |
|
"pipeline_model_parallel_split_rank": self.pipeline_model_parallel_split_rank, |
|
"num_layers_per_virtual_pipeline_stage": self.num_layers_per_virtual_pipeline_stage, |
|
"DDP_impl": self.DDP_impl, |
|
"use_distributed_optimizer": self.use_distributed_optimizer, |
|
"sequence_parallel": self.sequence_parallelism, |
|
"clip_grad": self.gradient_clipping, |
|
"num_micro_batches": self.num_micro_batches, |
|
"consumed_samples": self.consumed_samples, |
|
"no_wd_decay_cond": self.no_wd_decay_cond, |
|
"scale_lr_cond": self.scale_lr_cond, |
|
"lr_mult": self.lr_mult, |
|
"megatron_dataset_flag": self.megatron_dataset_flag, |
|
"eval_iters": self.eval_iters, |
|
"eval_interval": self.eval_interval, |
|
} |
|
if self.recompute_activations: |
|
self.megatron_lm_default_args["recompute_granularity"] = "selective" |
|
if self.tensorboard_dir is not None: |
|
self.megatron_lm_default_args["tensorboard_dir"] = self.tensorboard_dir |
|
if self.set_all_logging_options: |
|
self.set_tensorboard_logging_options() |
|
if self.other_megatron_args is not None: |
|
self.megatron_lm_default_args.update(self.other_megatron_args) |
|
|
|
def set_network_size_args(self, model, batch_data=None): |
|
|
|
|
|
if "megatron-bert" in model.config.model_type.lower(): |
|
model_type_name = "bert" |
|
num_layers = model.config.num_hidden_layers |
|
hidden_size = model.config.hidden_size |
|
num_attention_heads = model.config.num_attention_heads |
|
max_position_embeddings = model.config.max_position_embeddings |
|
num_labels = model.config.num_labels |
|
orig_vocab_size = model.config.vocab_size |
|
if "maskedlm" in model.__class__.__name__.lower(): |
|
pretraining_flag = True |
|
if self.seq_length is not None: |
|
if self.encoder_seq_length is not None: |
|
warnings.warn("Both `seq_length` and `encoder_seq_length` are set. Using `encoder_seq_length`.") |
|
self.seq_length = self.encoder_seq_length |
|
elif self.encoder_seq_length is not None: |
|
self.seq_length = self.encoder_seq_length |
|
elif batch_data is not None: |
|
self.seq_length = batch_data["input_ids"].shape[1] |
|
else: |
|
self.seq_length = max_position_embeddings |
|
self.megatron_lm_default_args["seq_length"] = self.seq_length |
|
elif "gpt2" in model.config.model_type.lower(): |
|
model_type_name = "gpt" |
|
num_layers = model.config.n_layer |
|
hidden_size = model.config.n_embd |
|
num_attention_heads = model.config.n_head |
|
max_position_embeddings = model.config.n_positions |
|
orig_vocab_size = model.config.vocab_size |
|
pretraining_flag = True |
|
if self.seq_length is not None: |
|
if self.decoder_seq_length is not None: |
|
warnings.warn("Both `seq_length` and `decoder_seq_length` are set. Using `decoder_seq_length`.") |
|
self.seq_length = self.decoder_seq_length |
|
elif self.decoder_seq_length is not None: |
|
self.seq_length = self.decoder_seq_length |
|
elif batch_data is not None: |
|
self.seq_length = batch_data["input_ids"].shape[1] |
|
else: |
|
self.seq_length = max_position_embeddings |
|
self.megatron_lm_default_args["seq_length"] = self.seq_length |
|
self.megatron_lm_default_args["return_logits"] = self.return_logits |
|
self.megatron_lm_default_args["tokenizer_type"] = "GPT2BPETokenizer" |
|
elif "t5" in model.config.model_type.lower(): |
|
model_type_name = "t5" |
|
num_layers = model.config.num_layers |
|
hidden_size = model.config.d_model |
|
num_attention_heads = model.config.num_heads |
|
max_position_embeddings = model.config.n_positions if hasattr(model.config, "n_positions") else 1024 |
|
orig_vocab_size = model.config.vocab_size |
|
pretraining_flag = True |
|
if self.encoder_seq_length is None: |
|
if batch_data is not None: |
|
self.encoder_seq_length = batch_data["input_ids"].shape[1] |
|
else: |
|
self.encoder_seq_length = max_position_embeddings |
|
if self.decoder_seq_length is None: |
|
if batch_data is not None: |
|
self.decoder_seq_length = batch_data["labels"].shape[1] |
|
else: |
|
self.decoder_seq_length = max_position_embeddings |
|
self.megatron_lm_default_args["encoder_seq_length"] = self.encoder_seq_length |
|
self.megatron_lm_default_args["decoder_seq_length"] = self.decoder_seq_length |
|
else: |
|
raise ValueError( |
|
"🤗 Accelerate Megatron-LM integration supports only BERT, GPT and T5 model. " |
|
"Please check the model you are using is one of those." |
|
) |
|
self.megatron_lm_default_args["model_type_name"] = model_type_name |
|
self.megatron_lm_default_args["num_layers"] = num_layers |
|
self.megatron_lm_default_args["hidden_size"] = hidden_size |
|
self.megatron_lm_default_args["num_attention_heads"] = num_attention_heads |
|
self.megatron_lm_default_args["max_position_embeddings"] = max_position_embeddings |
|
self.megatron_lm_default_args["pretraining_flag"] = pretraining_flag |
|
self.megatron_lm_default_args["orig_vocab_size"] = orig_vocab_size |
|
self.megatron_lm_default_args["model_return_dict"] = model.config.return_dict |
|
if model_type_name == "bert": |
|
self.megatron_lm_default_args["num_labels"] = num_labels |
|
|
|
def set_mixed_precision(self, mixed_precision): |
|
if mixed_precision == "fp16": |
|
self.megatron_lm_default_args["fp16"] = True |
|
elif mixed_precision == "bf16": |
|
self.megatron_lm_default_args["bf16"] = True |
|
self.DDP_impl = "local" |
|
self.megatron_lm_default_args["DDP_impl"] = self.DDP_impl |
|
|
|
def set_training_args(self, micro_batch_size, dp_degree): |
|
self.data_parallel_size = dp_degree |
|
self.micro_batch_size = micro_batch_size |
|
self.global_batch_size = dp_degree * micro_batch_size * self.num_micro_batches |
|
self.megatron_lm_default_args["data_parallel_size"] = self.data_parallel_size |
|
self.megatron_lm_default_args["micro_batch_size"] = self.micro_batch_size |
|
self.megatron_lm_default_args["global_batch_size"] = self.global_batch_size |
|
|
|
def set_optimizer_type(self, optimizer): |
|
optimizer_name = optimizer.__class__.__name__.lower() |
|
if "adam" in optimizer_name: |
|
self.megatron_lm_default_args["optimizer"] = "adam" |
|
self.megatron_lm_default_args["adam_beta1"] = optimizer.defaults["betas"][0] |
|
self.megatron_lm_default_args["adam_beta2"] = optimizer.defaults["betas"][1] |
|
self.megatron_lm_default_args["adam_eps"] = optimizer.defaults["eps"] |
|
elif "sgd" in optimizer_name: |
|
self.megatron_lm_default_args["optimizer"] = "sgd" |
|
self.megatron_lm_default_args["sgd_momentum"] = optimizer.defaults["momentum"] |
|
else: |
|
raise ValueError(f"Optimizer {optimizer_name} is not supported by Megatron-LM") |
|
self.megatron_lm_default_args["lr"] = optimizer.defaults["lr"] |
|
self.megatron_lm_default_args["weight_decay"] = optimizer.defaults["weight_decay"] |
|
|
|
def set_scheduler_args(self, scheduler): |
|
if self.train_iters is None: |
|
self.train_iters = scheduler.total_num_steps // self.megatron_lm_default_args["data_parallel_size"] |
|
if self.train_samples is not None: |
|
self.train_samples = None |
|
warnings.warn( |
|
"Ignoring `train_samples` as `train_iters` based on scheduler is being used for training." |
|
) |
|
if self.lr_warmup_iters is None: |
|
self.lr_warmup_iters = scheduler.warmup_num_steps // self.megatron_lm_default_args["data_parallel_size"] |
|
if self.lr_warmup_samples is not None: |
|
warnings.warn( |
|
"Ignoring `lr_warmup_samples` as `lr_warmup_iters` based on scheduler is being used for training." |
|
) |
|
self.lr_warmup_samples = 0 |
|
self.megatron_lm_default_args["train_iters"] = self.train_iters |
|
self.megatron_lm_default_args["lr_warmup_iters"] = self.lr_warmup_iters |
|
self.megatron_lm_default_args["train_samples"] = self.train_samples |
|
self.megatron_lm_default_args["lr_warmup_samples"] = self.lr_warmup_samples |
|
self.megatron_lm_default_args["lr_decay_iters"] = self.lr_decay_iters |
|
self.megatron_lm_default_args["lr_decay_samples"] = self.lr_decay_samples |
|
self.megatron_lm_default_args["lr_warmup_fraction"] = self.lr_warmup_fraction |
|
self.megatron_lm_default_args["lr_decay_style"] = self.lr_decay_style |
|
self.megatron_lm_default_args["weight_decay_incr_style"] = self.weight_decay_incr_style |
|
self.megatron_lm_default_args["start_weight_decay"] = self.start_weight_decay |
|
self.megatron_lm_default_args["end_weight_decay"] = self.end_weight_decay |
|
self.megatron_lm_default_args["min_lr"] = self.min_lr |
|
|
|
def set_tensorboard_logging_options(self): |
|
from megatron.arguments import _add_logging_args |
|
parser = argparse.ArgumentParser() |
|
parser = _add_logging_args(parser) |
|
logging_args = parser.parse_known_args() |
|
self.dataset_args = vars(logging_args[0]) |
|
for key, value in self.dataset_args.items(): |
|
if key.startswith("log_"): |
|
self.megatron_lm_default_args[key] = True |
|
elif key.startswith("no_log_"): |
|
self.megatron_lm_default_args[key.replace("no_", "")] = True |
|
@dataclass |
|
class BnbQuantizationConfig: |
|
""" |
|
A plugin to enable BitsAndBytes 4bit and 8bit quantization |
|
""" |
|
load_in_8bit: bool = field(default=False, metadata={"help": "enable 8bit quantization."}) |
|
llm_int8_threshold: float = field( |
|
default=6.0, metadata={"help": "value of the outliner threshold. only relevant when load_in_8bit=True"} |
|
) |
|
load_in_4bit: bool = field(default=False, metadata={"help": "enable 4bit quantization."}) |
|
bnb_4bit_quant_type: str = field( |
|
default="fp4", |
|
metadata={ |
|
"help": "set the quantization data type in the `bnb.nn.Linear4Bit` layers. Options are {'fp4','np4'}." |
|
}, |
|
) |
|
bnb_4bit_use_double_quant: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "enable nested quantization where the quantization constants from the first quantization are quantized again." |
|
}, |
|
) |
|
bnb_4bit_compute_dtype: bool = field( |
|
default="fp16", |
|
metadata={ |
|
"help": "This sets the computational type which might be different than the input time. For example, inputs might be " |
|
"fp32, but computation can be set to bf16 for speedups. Options are {'fp32','fp16','bf16'}." |
|
}, |
|
) |
|
torch_dtype: torch.dtype = field( |
|
default=None, |
|
metadata={ |
|
"help": "this sets the dtype of the remaining non quantized layers. `bitsandbytes` library suggests to set the value" |
|
"to `torch.float16` for 8 bit model and use the same dtype as the compute dtype for 4 bit model " |
|
}, |
|
) |
|
skip_modules: List[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "an explicit list of the modules that we don't quantize. The dtype of these modules will be `torch_dtype`." |
|
}, |
|
) |
|
keep_in_fp32_modules: List[str] = field( |
|
default=None, |
|
metadata={"help": "an explicit list of the modules that we don't quantize. We keep them in `torch.float32`."}, |
|
) |
|
|
|
def __post_init__(self): |
|
""" |
|
Safety checker that arguments are correct - also replaces some NoneType arguments with their default values. |
|
""" |
|
if not isinstance(self.load_in_8bit, bool): |
|
raise ValueError("load_in_8bit must be a boolean") |
|
if not isinstance(self.load_in_4bit, bool): |
|
raise ValueError("load_in_4bit must be a boolean") |
|
if self.load_in_4bit and self.load_in_8bit: |
|
raise ValueError("load_in_4bit and load_in_8 can't be both True") |
|
if not self.load_in_4bit and not self.load_in_8bit: |
|
raise ValueError("load_in_4bit and load_in_8 can't be both False") |
|
if not isinstance(self.llm_int8_threshold, (int, float)): |
|
raise ValueError("llm_int8_threshold must be a float or an int") |
|
if not isinstance(self.bnb_4bit_quant_type, str): |
|
raise ValueError("bnb_4bit_quant_type must be a string") |
|
elif self.bnb_4bit_quant_type not in ["fp4", "nf4"]: |
|
raise ValueError(f"bnb_4bit_quant_type must be in ['fp4','nf4'] but found {self.bnb_4bit_quant_type}") |
|
if not isinstance(self.bnb_4bit_use_double_quant, bool): |
|
raise ValueError("bnb_4bit_use_double_quant must be a boolean") |
|
if isinstance(self.bnb_4bit_compute_dtype, str): |
|
if self.bnb_4bit_compute_dtype == "fp32": |
|
self.bnb_4bit_compute_dtype = torch.float32 |
|
elif self.bnb_4bit_compute_dtype == "fp16": |
|
self.bnb_4bit_compute_dtype = torch.float16 |
|
elif self.bnb_4bit_compute_dtype == "bf16": |
|
self.bnb_4bit_compute_dtype = torch.bfloat16 |
|
else: |
|
raise ValueError( |
|
f"bnb_4bit_compute_dtype must be in ['fp32','fp16','bf16'] but found {self.bnb_4bit_compute_dtype}" |
|
) |
|
elif not isinstance(self.bnb_4bit_compute_dtype, torch.dtype): |
|
raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype") |
|
if self.skip_modules is not None and not isinstance(self.skip_modules, list): |
|
raise ValueError("skip_modules must be a list of strings") |
|
if self.keep_in_fp32_modules is not None and not isinstance(self.keep_in_fp32_modules, list): |
|
raise ValueError("keep_in_fp_32_modules must be a list of strings") |
|
if self.load_in_4bit: |
|
self.target_dtype = CustomDtype.INT4 |
|
if self.load_in_8bit: |
|
self.target_dtype = torch.int8 |
|
if self.load_in_4bit and self.llm_int8_threshold != 6.0: |
|
warnings.warn("llm_int8_threshold can only be used for model loaded in 8bit") |
|
if isinstance(self.torch_dtype, str): |
|
if self.torch_dtype == "fp32": |
|
self.torch_dtype = torch.float32 |
|
elif self.torch_dtype == "fp16": |
|
self.torch_dtype = torch.float16 |
|
elif self.torch_dtype == "bf16": |
|
self.torch_dtype = torch.bfloat16 |
|
else: |
|
raise ValueError(f"torch_dtype must be in ['fp32','fp16','bf16'] but found {self.torch_dtype}") |
|
if self.load_in_8bit and self.torch_dtype is None: |
|
self.torch_dtype = torch.float16 |
|
if self.load_in_4bit and self.torch_dtype is None: |
|
self.torch_dtype = self.bnb_4bit_compute_dtype |
|
if not isinstance(self.torch_dtype, torch.dtype): |
|
raise ValueError("torch_dtype must be a torch.dtype") |
|
|