muellerzr's picture
muellerzr HF staff
Try again?
7a76c8f
def _filter_args(args, parser, default_args=[]):
"""
Filters out all `accelerate` specific args
"""
new_args, _ = parser.parse_known_args(default_args)
for key, value in vars(args).items():
if key in vars(new_args).keys():
setattr(new_args, key, value)
return new_args
def prepare_simple_launcher_cmd_env(args: argparse.Namespace) -> Tuple[List[str], Dict[str, str]]:
"""
Prepares and returns the command list and an environment with the correct simple launcher environment variables.
"""
cmd = []
if args.no_python and args.module:
raise ValueError("--module and --no_python cannot be used together")
if not args.no_python:
cmd.append(sys.executable)
if args.module:
cmd.append("-m")
cmd.append(args.training_script)
cmd.extend(args.training_script_args)
current_env = os.environ.copy()
current_env["ACCELERATE_USE_CPU"] = str(args.cpu or args.use_cpu)
if args.debug:
current_env["ACCELERATE_DEBUG_MODE"] = "true"
if args.gpu_ids != "all" and args.gpu_ids is not None:
if is_xpu_available():
current_env["ZE_AFFINITY_MASK"] = args.gpu_ids
elif is_npu_available():
current_env["ASCEND_RT_VISIBLE_DEVICES"] = args.gpu_ids
else:
current_env["CUDA_VISIBLE_DEVICES"] = args.gpu_ids
if args.num_machines > 1:
current_env["MASTER_ADDR"] = args.main_process_ip
current_env["MASTER_PORT"] = str(args.main_process_port)
elif args.num_processes > 1:
current_env["MASTER_ADDR"] = args.main_process_ip if args.main_process_ip is not None else "127.0.0.1"
current_env["MASTER_PORT"] = str(args.main_process_port) if args.main_process_port is not None else "29500"
try:
mixed_precision = PrecisionType(args.mixed_precision.lower())
except ValueError:
raise ValueError(
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}."
)
current_env["ACCELERATE_MIXED_PRECISION"] = str(mixed_precision)
try:
dynamo_backend = DynamoBackend(args.dynamo_backend.upper())
except ValueError:
raise ValueError(
f"Unknown dynamo backend: {args.dynamo_backend.upper()}. Choose between {DynamoBackend.list()}."
)
current_env["ACCELERATE_DYNAMO_BACKEND"] = dynamo_backend.value
current_env["ACCELERATE_DYNAMO_MODE"] = args.dynamo_mode
current_env["ACCELERATE_DYNAMO_USE_FULLGRAPH"] = str(args.dynamo_use_fullgraph)
current_env["ACCELERATE_DYNAMO_USE_DYNAMIC"] = str(args.dynamo_use_dynamic)
current_env["OMP_NUM_THREADS"] = str(args.num_cpu_threads_per_process)
if is_ipex_available():
current_env["ACCELERATE_USE_IPEX"] = str(args.ipex).lower()
current_env["ACCELERATE_USE_XPU"] = str(args.use_xpu).lower()
return cmd, current_env
def prepare_multi_gpu_env(args: argparse.Namespace) -> Dict[str, str]:
"""
Prepares and returns an environment with the correct multi-GPU environment variables.
"""
num_processes = getattr(args, "num_processes")
num_machines = getattr(args, "num_machines")
main_process_ip = getattr(args, "main_process_ip")
main_process_port = getattr(args, "main_process_port")
if num_machines > 1:
setattr(args, "nproc_per_node", str(num_processes // num_machines))
setattr(args, "nnodes", str(num_machines))
setattr(args, "node_rank", int(args.machine_rank))
if getattr(args, "same_network", False):
setattr(args, "master_addr", str(main_process_ip))
setattr(args, "master_port", str(main_process_port))
else:
setattr(args, "rdzv_endpoint", f"{main_process_ip}:{main_process_port}")
else:
setattr(args, "nproc_per_node", str(num_processes))
if main_process_port is not None:
setattr(args, "master_port", str(main_process_port))
if main_process_port is None:
main_process_port = 29500
# only need to check port availability in main process, in case we have to start multiple launchers on the same machine
# for some reasons like splitting log files.
need_port_check = num_machines <= 1 or int(args.machine_rank) == 0
if need_port_check and is_port_in_use(main_process_port):
raise ConnectionError(
f"Tried to launch distributed communication on port `{main_process_port}`, but another process is utilizing it. "
"Please specify a different port (such as using the `----main_process_port` flag or specifying a different `main_process_port` in your config file)"
" and rerun your script. To automatically use the next open port (on a single node), you can set this to `0`."
)
if args.module and args.no_python:
raise ValueError("--module and --no_python cannot be used together")
elif args.module:
setattr(args, "module", True)
elif args.no_python:
setattr(args, "no_python", True)
current_env = os.environ.copy()
if args.debug:
current_env["ACCELERATE_DEBUG_MODE"] = "true"
gpu_ids = getattr(args, "gpu_ids", "all")
if gpu_ids != "all" and args.gpu_ids is not None:
if is_xpu_available():
current_env["ZE_AFFINITY_MASK"] = gpu_ids
elif is_npu_available():
current_env["ASCEND_RT_VISIBLE_DEVICES"] = gpu_ids
else:
current_env["CUDA_VISIBLE_DEVICES"] = gpu_ids
mixed_precision = args.mixed_precision.lower()
try:
mixed_precision = PrecisionType(mixed_precision)
except ValueError:
raise ValueError(f"Unknown mixed_precision mode: {mixed_precision}. Choose between {PrecisionType.list()}.")
current_env["ACCELERATE_MIXED_PRECISION"] = str(mixed_precision)
try:
dynamo_backend = DynamoBackend(args.dynamo_backend.upper())
except ValueError:
raise ValueError(
f"Unknown dynamo backend: {args.dynamo_backend.upper()}. Choose between {DynamoBackend.list()}."
)
current_env["ACCELERATE_DYNAMO_BACKEND"] = dynamo_backend.value
current_env["ACCELERATE_DYNAMO_MODE"] = args.dynamo_mode
current_env["ACCELERATE_DYNAMO_USE_FULLGRAPH"] = str(args.dynamo_use_fullgraph)
current_env["ACCELERATE_DYNAMO_USE_DYNAMIC"] = str(args.dynamo_use_dynamic)
if args.use_fsdp:
current_env["ACCELERATE_USE_FSDP"] = "true"
if args.fsdp_cpu_ram_efficient_loading and not args.fsdp_sync_module_states:
raise ValueError("When using `--fsdp_cpu_ram_efficient_loading` set `--fsdp_sync_module_states` to `True`")
current_env["FSDP_SHARDING_STRATEGY"] = str(args.fsdp_sharding_strategy)
current_env["FSDP_OFFLOAD_PARAMS"] = str(args.fsdp_offload_params).lower()
current_env["FSDP_MIN_NUM_PARAMS"] = str(args.fsdp_min_num_params)
if args.fsdp_auto_wrap_policy is not None:
current_env["FSDP_AUTO_WRAP_POLICY"] = str(args.fsdp_auto_wrap_policy)
if args.fsdp_transformer_layer_cls_to_wrap is not None:
current_env["FSDP_TRANSFORMER_CLS_TO_WRAP"] = str(args.fsdp_transformer_layer_cls_to_wrap)
if args.fsdp_backward_prefetch_policy is not None:
warnings.warn(
"`fsdp_backward_prefetch_policy` is deprecated and will be removed in version 0.27.0 of 🤗 Accelerate. Use"
" `fsdp_backward_prefetch` instead",
FutureWarning,
)
args.fsdp_backward_prefetch = args.fsdp_backward_prefetch_policy
if args.fsdp_backward_prefetch is not None:
current_env["FSDP_BACKWARD_PREFETCH"] = str(args.fsdp_backward_prefetch)
if args.fsdp_state_dict_type is not None:
current_env["FSDP_STATE_DICT_TYPE"] = str(args.fsdp_state_dict_type)
current_env["FSDP_FORWARD_PREFETCH"] = str(args.fsdp_forward_prefetch).lower()
current_env["FSDP_USE_ORIG_PARAMS"] = str(args.fsdp_use_orig_params).lower()
current_env["FSDP_CPU_RAM_EFFICIENT_LOADING"] = str(args.fsdp_cpu_ram_efficient_loading).lower()
current_env["FSDP_SYNC_MODULE_STATES"] = str(args.fsdp_sync_module_states).lower()
if args.use_megatron_lm:
prefix = "MEGATRON_LM_"
current_env["ACCELERATE_USE_MEGATRON_LM"] = "true"
current_env[prefix + "TP_DEGREE"] = str(args.megatron_lm_tp_degree)
current_env[prefix + "PP_DEGREE"] = str(args.megatron_lm_pp_degree)
current_env[prefix + "GRADIENT_CLIPPING"] = str(args.megatron_lm_gradient_clipping)
if args.megatron_lm_num_micro_batches is not None:
current_env[prefix + "NUM_MICRO_BATCHES"] = str(args.megatron_lm_num_micro_batches)
if args.megatron_lm_sequence_parallelism is not None:
current_env[prefix + "SEQUENCE_PARALLELISM"] = str(args.megatron_lm_sequence_parallelism)
if args.megatron_lm_recompute_activations is not None:
current_env[prefix + "RECOMPUTE_ACTIVATIONS"] = str(args.megatron_lm_recompute_activations)
if args.megatron_lm_use_distributed_optimizer is not None:
current_env[prefix + "USE_DISTRIBUTED_OPTIMIZER"] = str(args.megatron_lm_use_distributed_optimizer)
current_env["OMP_NUM_THREADS"] = str(args.num_cpu_threads_per_process)
return current_env
def prepare_deepspeed_cmd_env(args: argparse.Namespace) -> Tuple[List[str], Dict[str, str]]:
"""
Prepares and returns the command list and an environment with the correct DeepSpeed environment variables.
"""
num_processes = getattr(args, "num_processes")
num_machines = getattr(args, "num_machines")
main_process_ip = getattr(args, "main_process_ip")
main_process_port = getattr(args, "main_process_port")
cmd = None
# make sure launcher is not None
if args.deepspeed_multinode_launcher is None:
# set to default pdsh
setattr(args, "deepspeed_multinode_launcher", DEEPSPEED_MULTINODE_LAUNCHERS[0])
if num_machines > 1 and args.deepspeed_multinode_launcher != DEEPSPEED_MULTINODE_LAUNCHERS[1]:
cmd = ["deepspeed", "--no_local_rank"]
cmd.extend(["--hostfile", str(args.deepspeed_hostfile), "--launcher", str(args.deepspeed_multinode_launcher)])
if args.deepspeed_exclusion_filter is not None:
cmd.extend(
[
"--exclude",
str(args.deepspeed_exclusion_filter),
]
)
elif args.deepspeed_inclusion_filter is not None:
cmd.extend(
[
"--include",
str(args.deepspeed_inclusion_filter),
]
)
else:
cmd.extend(["--num_gpus", str(args.num_processes // args.num_machines)])
cmd.extend(["--master_port", str(main_process_port)])
if args.module and args.no_python:
raise ValueError("--module and --no_python cannot be used together")
elif args.module:
cmd.append("--module")
elif args.no_python:
cmd.append("--no_python")
cmd.append(args.training_script)
cmd.extend(args.training_script_args)
elif num_machines > 1 and args.deepspeed_multinode_launcher == DEEPSPEED_MULTINODE_LAUNCHERS[1]:
setattr(args, "nproc_per_node", str(num_processes // num_machines))
setattr(args, "nnodes", str(num_machines))
setattr(args, "node_rank", int(args.machine_rank))
if getattr(args, "same_network", False):
setattr(args, "master_addr", str(main_process_ip))
setattr(args, "master_port", str(main_process_port))
else:
setattr(args, "rdzv_endpoint", f"{main_process_ip}:{main_process_port}")
else:
setattr(args, "nproc_per_node", str(num_processes))
if main_process_port is not None:
setattr(args, "master_port", str(main_process_port))
if main_process_port is None:
main_process_port = 29500
# only need to check port availability in main process, in case we have to start multiple launchers on the same machine
# for some reasons like splitting log files.
need_port_check = num_machines <= 1 or int(args.machine_rank) == 0
if need_port_check and is_port_in_use(main_process_port):
raise ConnectionError(
f"Tried to launch distributed communication on port `{main_process_port}`, but another process is utilizing it. "
"Please specify a different port (such as using the `----main_process_port` flag or specifying a different `main_process_port` in your config file)"
" and rerun your script. To automatically use the next open port (on a single node), you can set this to `0`."
)
if args.module and args.no_python:
raise ValueError("--module and --no_python cannot be used together")
elif args.module:
setattr(args, "module", True)
elif args.no_python:
setattr(args, "no_python", True)
current_env = os.environ.copy()
if args.debug:
current_env["ACCELERATE_DEBUG_MODE"] = "true"
gpu_ids = getattr(args, "gpu_ids", "all")
if gpu_ids != "all" and args.gpu_ids is not None:
if is_xpu_available():
current_env["ZE_AFFINITY_MASK"] = gpu_ids
elif is_npu_available():
current_env["ASCEND_RT_VISIBLE_DEVICES"] = gpu_ids
else:
current_env["CUDA_VISIBLE_DEVICES"] = gpu_ids
try:
mixed_precision = PrecisionType(args.mixed_precision.lower())
except ValueError:
raise ValueError(
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}."
)
current_env["PYTHONPATH"] = env_var_path_add("PYTHONPATH", os.path.abspath("."))
current_env["ACCELERATE_MIXED_PRECISION"] = str(mixed_precision)
current_env["ACCELERATE_CONFIG_DS_FIELDS"] = str(args.deepspeed_fields_from_accelerate_config).lower()
current_env["ACCELERATE_USE_DEEPSPEED"] = "true"
if args.zero_stage is not None:
current_env["ACCELERATE_DEEPSPEED_ZERO_STAGE"] = str(args.zero_stage)
if args.gradient_accumulation_steps is not None:
current_env["ACCELERATE_GRADIENT_ACCUMULATION_STEPS"] = str(args.gradient_accumulation_steps)
if args.gradient_clipping is not None:
current_env["ACCELERATE_GRADIENT_CLIPPING"] = str(args.gradient_clipping).lower()
if args.offload_optimizer_device is not None:
current_env["ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_DEVICE"] = str(args.offload_optimizer_device).lower()
if args.offload_param_device is not None:
current_env["ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_DEVICE"] = str(args.offload_param_device).lower()
if args.zero3_init_flag is not None:
current_env["ACCELERATE_DEEPSPEED_ZERO3_INIT"] = str(args.zero3_init_flag).lower()
if args.zero3_save_16bit_model is not None:
current_env["ACCELERATE_DEEPSPEED_ZERO3_SAVE_16BIT_MODEL"] = str(args.zero3_save_16bit_model).lower()
if args.deepspeed_config_file is not None:
current_env["ACCELERATE_DEEPSPEED_CONFIG_FILE"] = str(args.deepspeed_config_file)
return cmd, current_env
def prepare_tpu(
args: argparse.Namespace, current_env: Dict[str, str], pod: bool = False
) -> Tuple[argparse.Namespace, Dict[str, str]]:
"""
Prepares and returns an environment with the correct TPU environment variables.
"""
if args.mixed_precision == "bf16":
if args.downcast_bf16:
current_env["XLA_DOWNCAST_BF16"] = "1"
else:
current_env["XLA_USE_BF16"] = "1"
if args.debug:
current_env["ACCELERATE_DEBUG_MODE"] = "true"
if pod:
# Take explicit args and set them up for XLA
args.vm = args.tpu_vm
args.tpu = args.tpu_name
return args, current_env
def _convert_nargs_to_dict(nargs: List[str]) -> Dict[str, str]:
if len(nargs) < 0:
return {}
# helper function to infer type for argsparser
def _infer_type(s):
try:
s = float(s)
if s // 1 == s:
return int(s)
return s
except ValueError:
return s
parser = argparse.ArgumentParser()
_, unknown = parser.parse_known_args(nargs)
for index, argument in enumerate(unknown):
if argument.startswith(("-", "--")):
action = None
if index + 1 < len(unknown): # checks if next index would be in list
if unknown[index + 1].startswith(("-", "--")): # checks if next element is an key
# raise an error if element is store_true or store_false
raise ValueError(
"SageMaker doesn’t support argparse actions for `store_true` or `store_false`. Please define explicit types"
)
else: # raise an error if last element is store_true or store_false
raise ValueError(
"SageMaker doesn’t support argparse actions for `store_true` or `store_false`. Please define explicit types"
)
# adds argument to parser based on action_store true
if action is None:
parser.add_argument(argument, type=_infer_type)
else:
parser.add_argument(argument, action=action)
return {
key: (literal_eval(value) if value in ("True", "False") else value)
for key, value in parser.parse_args(nargs).__dict__.items()
}
def prepare_sagemager_args_inputs(
sagemaker_config: SageMakerConfig, args: argparse.Namespace
) -> Tuple[argparse.Namespace, Dict[str, Any]]:
# configure environment
print("Configuring Amazon SageMaker environment")
os.environ["AWS_DEFAULT_REGION"] = sagemaker_config.region
# configure credentials
if sagemaker_config.profile is not None:
os.environ["AWS_PROFILE"] = sagemaker_config.profile
elif args.aws_access_key_id is not None and args.aws_secret_access_key is not None:
os.environ["AWS_ACCESS_KEY_ID"] = args.aws_access_key_id
os.environ["AWS_SECRET_ACCESS_KEY"] = args.aws_secret_access_key
else:
raise EnvironmentError(
"You need to provide an aws_access_key_id and aws_secret_access_key when not using aws_profile"
)
# extract needed arguments
source_dir = os.path.dirname(args.training_script)
if not source_dir: # checks if string is empty
source_dir = "."
entry_point = os.path.basename(args.training_script)
if not entry_point.endswith(".py"):
raise ValueError(f'Your training script should be a python script and not "{entry_point}"')
print("Converting Arguments to Hyperparameters")
hyperparameters = _convert_nargs_to_dict(args.training_script_args)
try:
mixed_precision = PrecisionType(args.mixed_precision.lower())
except ValueError:
raise ValueError(
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}."
)
try:
dynamo_backend = DynamoBackend(args.dynamo_backend.upper())
except ValueError:
raise ValueError(
f"Unknown dynamo backend: {args.dynamo_backend.upper()}. Choose between {DynamoBackend.list()}."
)
# Environment variables to be set for use during training job
environment = {
"ACCELERATE_USE_SAGEMAKER": "true",
"ACCELERATE_MIXED_PRECISION": str(mixed_precision),
"ACCELERATE_DYNAMO_BACKEND": dynamo_backend.value,
"ACCELERATE_DYNAMO_MODE": args.dynamo_mode,
"ACCELERATE_DYNAMO_USE_FULLGRAPH": str(args.dynamo_use_fullgraph),
"ACCELERATE_DYNAMO_USE_DYNAMIC": str(args.dynamo_use_dynamic),
"ACCELERATE_SAGEMAKER_DISTRIBUTED_TYPE": sagemaker_config.distributed_type.value,
}
# configure distribution set up
distribution = None
if sagemaker_config.distributed_type == SageMakerDistributedType.DATA_PARALLEL:
distribution = {"smdistributed": {"dataparallel": {"enabled": True}}}
# configure sagemaker inputs
sagemaker_inputs = None
if sagemaker_config.sagemaker_inputs_file is not None:
print(f"Loading SageMaker Inputs from {sagemaker_config.sagemaker_inputs_file} file")
sagemaker_inputs = {}
with open(sagemaker_config.sagemaker_inputs_file) as file:
for i, line in enumerate(file):
if i == 0:
continue
l = line.split("\t")
sagemaker_inputs[l[0]] = l[1].strip()
print(f"Loaded SageMaker Inputs: {sagemaker_inputs}")
# configure sagemaker metrics
sagemaker_metrics = None
if sagemaker_config.sagemaker_metrics_file is not None:
print(f"Loading SageMaker Metrics from {sagemaker_config.sagemaker_metrics_file} file")
sagemaker_metrics = []
with open(sagemaker_config.sagemaker_metrics_file) as file:
for i, line in enumerate(file):
if i == 0:
continue
l = line.split("\t")
metric_dict = {
"Name": l[0],
"Regex": l[1].strip(),
}
sagemaker_metrics.append(metric_dict)
print(f"Loaded SageMaker Metrics: {sagemaker_metrics}")
# configure session
print("Creating Estimator")
args = {
"image_uri": sagemaker_config.image_uri,
"entry_point": entry_point,
"source_dir": source_dir,
"role": sagemaker_config.iam_role_name,
"transformers_version": sagemaker_config.transformers_version,
"pytorch_version": sagemaker_config.pytorch_version,
"py_version": sagemaker_config.py_version,
"base_job_name": sagemaker_config.base_job_name,
"instance_count": sagemaker_config.num_machines,
"instance_type": sagemaker_config.ec2_instance_type,
"debugger_hook_config": False,
"distribution": distribution,
"hyperparameters": hyperparameters,
"environment": environment,
"metric_definitions": sagemaker_metrics,
}
if sagemaker_config.additional_args is not None:
args = merge_dicts(sagemaker_config.additional_args, args)
return args, sagemaker_inputs
def env_var_path_add(env_var_name, path_to_add):
"""
Extends a path-based environment variable's value with a new path and returns the updated value. It's up to the
caller to set it in os.environ.
"""
paths = [p for p in os.environ.get(env_var_name, "").split(":") if len(p) > 0]
paths.append(str(path_to_add))
return ":".join(paths)
class PrepareForLaunch:
"""
Prepare a function that will launched in a distributed setup.
Args:
launcher (`Callable`):
The function to launch.
distributed_type ([`~state.DistributedType`]):
The distributed type to prepare for.
debug (`bool`, *optional*, defaults to `False`):
Whether or not this is a debug launch.
"""
def __init__(self, launcher, distributed_type="NO", debug=False):
self.launcher = launcher
self.distributed_type = DistributedType(distributed_type)
self.debug = debug
def __call__(self, index, *args):
if self.debug:
world_size = int(os.environ.get("WORLD_SIZE"))
rdv_file = os.environ.get("ACCELERATE_DEBUG_RDV_FILE")
torch.distributed.init_process_group(
"gloo",
rank=index,
store=torch.distributed.FileStore(rdv_file, world_size),
world_size=world_size,
)
elif self.distributed_type in (
DistributedType.MULTI_GPU,
DistributedType.MULTI_NPU,
DistributedType.MULTI_XPU,
DistributedType.MULTI_CPU,
):
# Prepare the environment for torch.distributed
os.environ["LOCAL_RANK"] = str(index)
nproc = int(os.environ.get("NPROC", 1))
node_rank = int(os.environ.get("NODE_RANK", 0))
os.environ["RANK"] = str(nproc * node_rank + index)
os.environ["FORK_LAUNCHED"] = str(1)
self.launcher(*args)