|
def _filter_args(args, parser, default_args=[]): |
|
""" |
|
Filters out all `accelerate` specific args |
|
""" |
|
new_args, _ = parser.parse_known_args(default_args) |
|
for key, value in vars(args).items(): |
|
if key in vars(new_args).keys(): |
|
setattr(new_args, key, value) |
|
return new_args |
|
def prepare_simple_launcher_cmd_env(args: argparse.Namespace) -> Tuple[List[str], Dict[str, str]]: |
|
""" |
|
Prepares and returns the command list and an environment with the correct simple launcher environment variables. |
|
""" |
|
cmd = [] |
|
if args.no_python and args.module: |
|
raise ValueError("--module and --no_python cannot be used together") |
|
if not args.no_python: |
|
cmd.append(sys.executable) |
|
if args.module: |
|
cmd.append("-m") |
|
cmd.append(args.training_script) |
|
cmd.extend(args.training_script_args) |
|
current_env = os.environ.copy() |
|
current_env["ACCELERATE_USE_CPU"] = str(args.cpu or args.use_cpu) |
|
if args.debug: |
|
current_env["ACCELERATE_DEBUG_MODE"] = "true" |
|
if args.gpu_ids != "all" and args.gpu_ids is not None: |
|
if is_xpu_available(): |
|
current_env["ZE_AFFINITY_MASK"] = args.gpu_ids |
|
elif is_npu_available(): |
|
current_env["ASCEND_RT_VISIBLE_DEVICES"] = args.gpu_ids |
|
else: |
|
current_env["CUDA_VISIBLE_DEVICES"] = args.gpu_ids |
|
if args.num_machines > 1: |
|
current_env["MASTER_ADDR"] = args.main_process_ip |
|
current_env["MASTER_PORT"] = str(args.main_process_port) |
|
elif args.num_processes > 1: |
|
current_env["MASTER_ADDR"] = args.main_process_ip if args.main_process_ip is not None else "127.0.0.1" |
|
current_env["MASTER_PORT"] = str(args.main_process_port) if args.main_process_port is not None else "29500" |
|
try: |
|
mixed_precision = PrecisionType(args.mixed_precision.lower()) |
|
except ValueError: |
|
raise ValueError( |
|
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." |
|
) |
|
current_env["ACCELERATE_MIXED_PRECISION"] = str(mixed_precision) |
|
try: |
|
dynamo_backend = DynamoBackend(args.dynamo_backend.upper()) |
|
except ValueError: |
|
raise ValueError( |
|
f"Unknown dynamo backend: {args.dynamo_backend.upper()}. Choose between {DynamoBackend.list()}." |
|
) |
|
current_env["ACCELERATE_DYNAMO_BACKEND"] = dynamo_backend.value |
|
current_env["ACCELERATE_DYNAMO_MODE"] = args.dynamo_mode |
|
current_env["ACCELERATE_DYNAMO_USE_FULLGRAPH"] = str(args.dynamo_use_fullgraph) |
|
current_env["ACCELERATE_DYNAMO_USE_DYNAMIC"] = str(args.dynamo_use_dynamic) |
|
current_env["OMP_NUM_THREADS"] = str(args.num_cpu_threads_per_process) |
|
if is_ipex_available(): |
|
current_env["ACCELERATE_USE_IPEX"] = str(args.ipex).lower() |
|
current_env["ACCELERATE_USE_XPU"] = str(args.use_xpu).lower() |
|
return cmd, current_env |
|
def prepare_multi_gpu_env(args: argparse.Namespace) -> Dict[str, str]: |
|
""" |
|
Prepares and returns an environment with the correct multi-GPU environment variables. |
|
""" |
|
num_processes = getattr(args, "num_processes") |
|
num_machines = getattr(args, "num_machines") |
|
main_process_ip = getattr(args, "main_process_ip") |
|
main_process_port = getattr(args, "main_process_port") |
|
if num_machines > 1: |
|
setattr(args, "nproc_per_node", str(num_processes // num_machines)) |
|
setattr(args, "nnodes", str(num_machines)) |
|
setattr(args, "node_rank", int(args.machine_rank)) |
|
if getattr(args, "same_network", False): |
|
setattr(args, "master_addr", str(main_process_ip)) |
|
setattr(args, "master_port", str(main_process_port)) |
|
else: |
|
setattr(args, "rdzv_endpoint", f"{main_process_ip}:{main_process_port}") |
|
else: |
|
setattr(args, "nproc_per_node", str(num_processes)) |
|
if main_process_port is not None: |
|
setattr(args, "master_port", str(main_process_port)) |
|
if main_process_port is None: |
|
main_process_port = 29500 |
|
|
|
|
|
need_port_check = num_machines <= 1 or int(args.machine_rank) == 0 |
|
if need_port_check and is_port_in_use(main_process_port): |
|
raise ConnectionError( |
|
f"Tried to launch distributed communication on port `{main_process_port}`, but another process is utilizing it. " |
|
"Please specify a different port (such as using the `----main_process_port` flag or specifying a different `main_process_port` in your config file)" |
|
" and rerun your script. To automatically use the next open port (on a single node), you can set this to `0`." |
|
) |
|
if args.module and args.no_python: |
|
raise ValueError("--module and --no_python cannot be used together") |
|
elif args.module: |
|
setattr(args, "module", True) |
|
elif args.no_python: |
|
setattr(args, "no_python", True) |
|
current_env = os.environ.copy() |
|
if args.debug: |
|
current_env["ACCELERATE_DEBUG_MODE"] = "true" |
|
gpu_ids = getattr(args, "gpu_ids", "all") |
|
if gpu_ids != "all" and args.gpu_ids is not None: |
|
if is_xpu_available(): |
|
current_env["ZE_AFFINITY_MASK"] = gpu_ids |
|
elif is_npu_available(): |
|
current_env["ASCEND_RT_VISIBLE_DEVICES"] = gpu_ids |
|
else: |
|
current_env["CUDA_VISIBLE_DEVICES"] = gpu_ids |
|
mixed_precision = args.mixed_precision.lower() |
|
try: |
|
mixed_precision = PrecisionType(mixed_precision) |
|
except ValueError: |
|
raise ValueError(f"Unknown mixed_precision mode: {mixed_precision}. Choose between {PrecisionType.list()}.") |
|
current_env["ACCELERATE_MIXED_PRECISION"] = str(mixed_precision) |
|
try: |
|
dynamo_backend = DynamoBackend(args.dynamo_backend.upper()) |
|
except ValueError: |
|
raise ValueError( |
|
f"Unknown dynamo backend: {args.dynamo_backend.upper()}. Choose between {DynamoBackend.list()}." |
|
) |
|
current_env["ACCELERATE_DYNAMO_BACKEND"] = dynamo_backend.value |
|
current_env["ACCELERATE_DYNAMO_MODE"] = args.dynamo_mode |
|
current_env["ACCELERATE_DYNAMO_USE_FULLGRAPH"] = str(args.dynamo_use_fullgraph) |
|
current_env["ACCELERATE_DYNAMO_USE_DYNAMIC"] = str(args.dynamo_use_dynamic) |
|
if args.use_fsdp: |
|
current_env["ACCELERATE_USE_FSDP"] = "true" |
|
if args.fsdp_cpu_ram_efficient_loading and not args.fsdp_sync_module_states: |
|
raise ValueError("When using `--fsdp_cpu_ram_efficient_loading` set `--fsdp_sync_module_states` to `True`") |
|
current_env["FSDP_SHARDING_STRATEGY"] = str(args.fsdp_sharding_strategy) |
|
current_env["FSDP_OFFLOAD_PARAMS"] = str(args.fsdp_offload_params).lower() |
|
current_env["FSDP_MIN_NUM_PARAMS"] = str(args.fsdp_min_num_params) |
|
if args.fsdp_auto_wrap_policy is not None: |
|
current_env["FSDP_AUTO_WRAP_POLICY"] = str(args.fsdp_auto_wrap_policy) |
|
if args.fsdp_transformer_layer_cls_to_wrap is not None: |
|
current_env["FSDP_TRANSFORMER_CLS_TO_WRAP"] = str(args.fsdp_transformer_layer_cls_to_wrap) |
|
if args.fsdp_backward_prefetch_policy is not None: |
|
warnings.warn( |
|
"`fsdp_backward_prefetch_policy` is deprecated and will be removed in version 0.27.0 of 🤗 Accelerate. Use" |
|
" `fsdp_backward_prefetch` instead", |
|
FutureWarning, |
|
) |
|
args.fsdp_backward_prefetch = args.fsdp_backward_prefetch_policy |
|
if args.fsdp_backward_prefetch is not None: |
|
current_env["FSDP_BACKWARD_PREFETCH"] = str(args.fsdp_backward_prefetch) |
|
if args.fsdp_state_dict_type is not None: |
|
current_env["FSDP_STATE_DICT_TYPE"] = str(args.fsdp_state_dict_type) |
|
current_env["FSDP_FORWARD_PREFETCH"] = str(args.fsdp_forward_prefetch).lower() |
|
current_env["FSDP_USE_ORIG_PARAMS"] = str(args.fsdp_use_orig_params).lower() |
|
current_env["FSDP_CPU_RAM_EFFICIENT_LOADING"] = str(args.fsdp_cpu_ram_efficient_loading).lower() |
|
current_env["FSDP_SYNC_MODULE_STATES"] = str(args.fsdp_sync_module_states).lower() |
|
if args.use_megatron_lm: |
|
prefix = "MEGATRON_LM_" |
|
current_env["ACCELERATE_USE_MEGATRON_LM"] = "true" |
|
current_env[prefix + "TP_DEGREE"] = str(args.megatron_lm_tp_degree) |
|
current_env[prefix + "PP_DEGREE"] = str(args.megatron_lm_pp_degree) |
|
current_env[prefix + "GRADIENT_CLIPPING"] = str(args.megatron_lm_gradient_clipping) |
|
if args.megatron_lm_num_micro_batches is not None: |
|
current_env[prefix + "NUM_MICRO_BATCHES"] = str(args.megatron_lm_num_micro_batches) |
|
if args.megatron_lm_sequence_parallelism is not None: |
|
current_env[prefix + "SEQUENCE_PARALLELISM"] = str(args.megatron_lm_sequence_parallelism) |
|
if args.megatron_lm_recompute_activations is not None: |
|
current_env[prefix + "RECOMPUTE_ACTIVATIONS"] = str(args.megatron_lm_recompute_activations) |
|
if args.megatron_lm_use_distributed_optimizer is not None: |
|
current_env[prefix + "USE_DISTRIBUTED_OPTIMIZER"] = str(args.megatron_lm_use_distributed_optimizer) |
|
current_env["OMP_NUM_THREADS"] = str(args.num_cpu_threads_per_process) |
|
return current_env |
|
def prepare_deepspeed_cmd_env(args: argparse.Namespace) -> Tuple[List[str], Dict[str, str]]: |
|
""" |
|
Prepares and returns the command list and an environment with the correct DeepSpeed environment variables. |
|
""" |
|
num_processes = getattr(args, "num_processes") |
|
num_machines = getattr(args, "num_machines") |
|
main_process_ip = getattr(args, "main_process_ip") |
|
main_process_port = getattr(args, "main_process_port") |
|
cmd = None |
|
|
|
if args.deepspeed_multinode_launcher is None: |
|
|
|
setattr(args, "deepspeed_multinode_launcher", DEEPSPEED_MULTINODE_LAUNCHERS[0]) |
|
if num_machines > 1 and args.deepspeed_multinode_launcher != DEEPSPEED_MULTINODE_LAUNCHERS[1]: |
|
cmd = ["deepspeed", "--no_local_rank"] |
|
cmd.extend(["--hostfile", str(args.deepspeed_hostfile), "--launcher", str(args.deepspeed_multinode_launcher)]) |
|
if args.deepspeed_exclusion_filter is not None: |
|
cmd.extend( |
|
[ |
|
"--exclude", |
|
str(args.deepspeed_exclusion_filter), |
|
] |
|
) |
|
elif args.deepspeed_inclusion_filter is not None: |
|
cmd.extend( |
|
[ |
|
"--include", |
|
str(args.deepspeed_inclusion_filter), |
|
] |
|
) |
|
else: |
|
cmd.extend(["--num_gpus", str(args.num_processes // args.num_machines)]) |
|
cmd.extend(["--master_port", str(main_process_port)]) |
|
if args.module and args.no_python: |
|
raise ValueError("--module and --no_python cannot be used together") |
|
elif args.module: |
|
cmd.append("--module") |
|
elif args.no_python: |
|
cmd.append("--no_python") |
|
cmd.append(args.training_script) |
|
cmd.extend(args.training_script_args) |
|
elif num_machines > 1 and args.deepspeed_multinode_launcher == DEEPSPEED_MULTINODE_LAUNCHERS[1]: |
|
setattr(args, "nproc_per_node", str(num_processes // num_machines)) |
|
setattr(args, "nnodes", str(num_machines)) |
|
setattr(args, "node_rank", int(args.machine_rank)) |
|
if getattr(args, "same_network", False): |
|
setattr(args, "master_addr", str(main_process_ip)) |
|
setattr(args, "master_port", str(main_process_port)) |
|
else: |
|
setattr(args, "rdzv_endpoint", f"{main_process_ip}:{main_process_port}") |
|
else: |
|
setattr(args, "nproc_per_node", str(num_processes)) |
|
if main_process_port is not None: |
|
setattr(args, "master_port", str(main_process_port)) |
|
if main_process_port is None: |
|
main_process_port = 29500 |
|
|
|
|
|
need_port_check = num_machines <= 1 or int(args.machine_rank) == 0 |
|
if need_port_check and is_port_in_use(main_process_port): |
|
raise ConnectionError( |
|
f"Tried to launch distributed communication on port `{main_process_port}`, but another process is utilizing it. " |
|
"Please specify a different port (such as using the `----main_process_port` flag or specifying a different `main_process_port` in your config file)" |
|
" and rerun your script. To automatically use the next open port (on a single node), you can set this to `0`." |
|
) |
|
if args.module and args.no_python: |
|
raise ValueError("--module and --no_python cannot be used together") |
|
elif args.module: |
|
setattr(args, "module", True) |
|
elif args.no_python: |
|
setattr(args, "no_python", True) |
|
current_env = os.environ.copy() |
|
if args.debug: |
|
current_env["ACCELERATE_DEBUG_MODE"] = "true" |
|
gpu_ids = getattr(args, "gpu_ids", "all") |
|
if gpu_ids != "all" and args.gpu_ids is not None: |
|
if is_xpu_available(): |
|
current_env["ZE_AFFINITY_MASK"] = gpu_ids |
|
elif is_npu_available(): |
|
current_env["ASCEND_RT_VISIBLE_DEVICES"] = gpu_ids |
|
else: |
|
current_env["CUDA_VISIBLE_DEVICES"] = gpu_ids |
|
try: |
|
mixed_precision = PrecisionType(args.mixed_precision.lower()) |
|
except ValueError: |
|
raise ValueError( |
|
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." |
|
) |
|
current_env["PYTHONPATH"] = env_var_path_add("PYTHONPATH", os.path.abspath(".")) |
|
current_env["ACCELERATE_MIXED_PRECISION"] = str(mixed_precision) |
|
current_env["ACCELERATE_CONFIG_DS_FIELDS"] = str(args.deepspeed_fields_from_accelerate_config).lower() |
|
current_env["ACCELERATE_USE_DEEPSPEED"] = "true" |
|
if args.zero_stage is not None: |
|
current_env["ACCELERATE_DEEPSPEED_ZERO_STAGE"] = str(args.zero_stage) |
|
if args.gradient_accumulation_steps is not None: |
|
current_env["ACCELERATE_GRADIENT_ACCUMULATION_STEPS"] = str(args.gradient_accumulation_steps) |
|
if args.gradient_clipping is not None: |
|
current_env["ACCELERATE_GRADIENT_CLIPPING"] = str(args.gradient_clipping).lower() |
|
if args.offload_optimizer_device is not None: |
|
current_env["ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_DEVICE"] = str(args.offload_optimizer_device).lower() |
|
if args.offload_param_device is not None: |
|
current_env["ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_DEVICE"] = str(args.offload_param_device).lower() |
|
if args.zero3_init_flag is not None: |
|
current_env["ACCELERATE_DEEPSPEED_ZERO3_INIT"] = str(args.zero3_init_flag).lower() |
|
if args.zero3_save_16bit_model is not None: |
|
current_env["ACCELERATE_DEEPSPEED_ZERO3_SAVE_16BIT_MODEL"] = str(args.zero3_save_16bit_model).lower() |
|
if args.deepspeed_config_file is not None: |
|
current_env["ACCELERATE_DEEPSPEED_CONFIG_FILE"] = str(args.deepspeed_config_file) |
|
return cmd, current_env |
|
def prepare_tpu( |
|
args: argparse.Namespace, current_env: Dict[str, str], pod: bool = False |
|
) -> Tuple[argparse.Namespace, Dict[str, str]]: |
|
""" |
|
Prepares and returns an environment with the correct TPU environment variables. |
|
""" |
|
if args.mixed_precision == "bf16": |
|
if args.downcast_bf16: |
|
current_env["XLA_DOWNCAST_BF16"] = "1" |
|
else: |
|
current_env["XLA_USE_BF16"] = "1" |
|
if args.debug: |
|
current_env["ACCELERATE_DEBUG_MODE"] = "true" |
|
if pod: |
|
|
|
args.vm = args.tpu_vm |
|
args.tpu = args.tpu_name |
|
return args, current_env |
|
def _convert_nargs_to_dict(nargs: List[str]) -> Dict[str, str]: |
|
if len(nargs) < 0: |
|
return {} |
|
|
|
|
|
def _infer_type(s): |
|
try: |
|
s = float(s) |
|
if s // 1 == s: |
|
return int(s) |
|
return s |
|
except ValueError: |
|
return s |
|
parser = argparse.ArgumentParser() |
|
_, unknown = parser.parse_known_args(nargs) |
|
for index, argument in enumerate(unknown): |
|
if argument.startswith(("-", "--")): |
|
action = None |
|
if index + 1 < len(unknown): |
|
if unknown[index + 1].startswith(("-", "--")): |
|
|
|
raise ValueError( |
|
"SageMaker doesn’t support argparse actions for `store_true` or `store_false`. Please define explicit types" |
|
) |
|
else: |
|
raise ValueError( |
|
"SageMaker doesn’t support argparse actions for `store_true` or `store_false`. Please define explicit types" |
|
) |
|
|
|
if action is None: |
|
parser.add_argument(argument, type=_infer_type) |
|
else: |
|
parser.add_argument(argument, action=action) |
|
return { |
|
key: (literal_eval(value) if value in ("True", "False") else value) |
|
for key, value in parser.parse_args(nargs).__dict__.items() |
|
} |
|
def prepare_sagemager_args_inputs( |
|
sagemaker_config: SageMakerConfig, args: argparse.Namespace |
|
) -> Tuple[argparse.Namespace, Dict[str, Any]]: |
|
|
|
print("Configuring Amazon SageMaker environment") |
|
os.environ["AWS_DEFAULT_REGION"] = sagemaker_config.region |
|
|
|
if sagemaker_config.profile is not None: |
|
os.environ["AWS_PROFILE"] = sagemaker_config.profile |
|
elif args.aws_access_key_id is not None and args.aws_secret_access_key is not None: |
|
os.environ["AWS_ACCESS_KEY_ID"] = args.aws_access_key_id |
|
os.environ["AWS_SECRET_ACCESS_KEY"] = args.aws_secret_access_key |
|
else: |
|
raise EnvironmentError( |
|
"You need to provide an aws_access_key_id and aws_secret_access_key when not using aws_profile" |
|
) |
|
|
|
source_dir = os.path.dirname(args.training_script) |
|
if not source_dir: |
|
source_dir = "." |
|
entry_point = os.path.basename(args.training_script) |
|
if not entry_point.endswith(".py"): |
|
raise ValueError(f'Your training script should be a python script and not "{entry_point}"') |
|
print("Converting Arguments to Hyperparameters") |
|
hyperparameters = _convert_nargs_to_dict(args.training_script_args) |
|
try: |
|
mixed_precision = PrecisionType(args.mixed_precision.lower()) |
|
except ValueError: |
|
raise ValueError( |
|
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." |
|
) |
|
try: |
|
dynamo_backend = DynamoBackend(args.dynamo_backend.upper()) |
|
except ValueError: |
|
raise ValueError( |
|
f"Unknown dynamo backend: {args.dynamo_backend.upper()}. Choose between {DynamoBackend.list()}." |
|
) |
|
|
|
environment = { |
|
"ACCELERATE_USE_SAGEMAKER": "true", |
|
"ACCELERATE_MIXED_PRECISION": str(mixed_precision), |
|
"ACCELERATE_DYNAMO_BACKEND": dynamo_backend.value, |
|
"ACCELERATE_DYNAMO_MODE": args.dynamo_mode, |
|
"ACCELERATE_DYNAMO_USE_FULLGRAPH": str(args.dynamo_use_fullgraph), |
|
"ACCELERATE_DYNAMO_USE_DYNAMIC": str(args.dynamo_use_dynamic), |
|
"ACCELERATE_SAGEMAKER_DISTRIBUTED_TYPE": sagemaker_config.distributed_type.value, |
|
} |
|
|
|
distribution = None |
|
if sagemaker_config.distributed_type == SageMakerDistributedType.DATA_PARALLEL: |
|
distribution = {"smdistributed": {"dataparallel": {"enabled": True}}} |
|
|
|
sagemaker_inputs = None |
|
if sagemaker_config.sagemaker_inputs_file is not None: |
|
print(f"Loading SageMaker Inputs from {sagemaker_config.sagemaker_inputs_file} file") |
|
sagemaker_inputs = {} |
|
with open(sagemaker_config.sagemaker_inputs_file) as file: |
|
for i, line in enumerate(file): |
|
if i == 0: |
|
continue |
|
l = line.split("\t") |
|
sagemaker_inputs[l[0]] = l[1].strip() |
|
print(f"Loaded SageMaker Inputs: {sagemaker_inputs}") |
|
|
|
sagemaker_metrics = None |
|
if sagemaker_config.sagemaker_metrics_file is not None: |
|
print(f"Loading SageMaker Metrics from {sagemaker_config.sagemaker_metrics_file} file") |
|
sagemaker_metrics = [] |
|
with open(sagemaker_config.sagemaker_metrics_file) as file: |
|
for i, line in enumerate(file): |
|
if i == 0: |
|
continue |
|
l = line.split("\t") |
|
metric_dict = { |
|
"Name": l[0], |
|
"Regex": l[1].strip(), |
|
} |
|
sagemaker_metrics.append(metric_dict) |
|
print(f"Loaded SageMaker Metrics: {sagemaker_metrics}") |
|
|
|
print("Creating Estimator") |
|
args = { |
|
"image_uri": sagemaker_config.image_uri, |
|
"entry_point": entry_point, |
|
"source_dir": source_dir, |
|
"role": sagemaker_config.iam_role_name, |
|
"transformers_version": sagemaker_config.transformers_version, |
|
"pytorch_version": sagemaker_config.pytorch_version, |
|
"py_version": sagemaker_config.py_version, |
|
"base_job_name": sagemaker_config.base_job_name, |
|
"instance_count": sagemaker_config.num_machines, |
|
"instance_type": sagemaker_config.ec2_instance_type, |
|
"debugger_hook_config": False, |
|
"distribution": distribution, |
|
"hyperparameters": hyperparameters, |
|
"environment": environment, |
|
"metric_definitions": sagemaker_metrics, |
|
} |
|
if sagemaker_config.additional_args is not None: |
|
args = merge_dicts(sagemaker_config.additional_args, args) |
|
return args, sagemaker_inputs |
|
def env_var_path_add(env_var_name, path_to_add): |
|
""" |
|
Extends a path-based environment variable's value with a new path and returns the updated value. It's up to the |
|
caller to set it in os.environ. |
|
""" |
|
paths = [p for p in os.environ.get(env_var_name, "").split(":") if len(p) > 0] |
|
paths.append(str(path_to_add)) |
|
return ":".join(paths) |
|
class PrepareForLaunch: |
|
""" |
|
Prepare a function that will launched in a distributed setup. |
|
Args: |
|
launcher (`Callable`): |
|
The function to launch. |
|
distributed_type ([`~state.DistributedType`]): |
|
The distributed type to prepare for. |
|
debug (`bool`, *optional*, defaults to `False`): |
|
Whether or not this is a debug launch. |
|
""" |
|
|
|
def __init__(self, launcher, distributed_type="NO", debug=False): |
|
self.launcher = launcher |
|
self.distributed_type = DistributedType(distributed_type) |
|
self.debug = debug |
|
|
|
def __call__(self, index, *args): |
|
if self.debug: |
|
world_size = int(os.environ.get("WORLD_SIZE")) |
|
rdv_file = os.environ.get("ACCELERATE_DEBUG_RDV_FILE") |
|
torch.distributed.init_process_group( |
|
"gloo", |
|
rank=index, |
|
store=torch.distributed.FileStore(rdv_file, world_size), |
|
world_size=world_size, |
|
) |
|
elif self.distributed_type in ( |
|
DistributedType.MULTI_GPU, |
|
DistributedType.MULTI_NPU, |
|
DistributedType.MULTI_XPU, |
|
DistributedType.MULTI_CPU, |
|
): |
|
|
|
os.environ["LOCAL_RANK"] = str(index) |
|
nproc = int(os.environ.get("NPROC", 1)) |
|
node_rank = int(os.environ.get("NODE_RANK", 0)) |
|
os.environ["RANK"] = str(nproc * node_rank + index) |
|
os.environ["FORK_LAUNCHED"] = str(1) |
|
self.launcher(*args) |
|
|