#!/usr/bin/env python def get_cluster_input(): distributed_type = _ask_options( "Which type of machine are you using?", ["No distributed training", "multi-CPU", "multi-XPU", "multi-GPU", "multi-NPU", "TPU"], _convert_distributed_mode, ) machine_rank = 0 num_machines = 1 num_processes = 1 gpu_ids = None main_process_ip = None main_process_port = None rdzv_backend = "static" same_network = True debug = False if distributed_type in [ DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU, DistributedType.MULTI_CPU, ]: num_machines = _ask_field( "How many different machines will you use (use more than 1 for multi-node training)? [1]: ", int, default=1, ) if num_machines > 1: machine_rank = _ask_options( "What is the rank of this machine?", list(range(num_machines)), int, ) main_process_ip = _ask_field( "What is the IP address of the machine that will host the main process? ", ) main_process_port = _ask_field( "What is the port you will use to communicate with the main process? ", int, ) same_network = _ask_field( "Are all the machines on the same local network? Answer `no` if nodes are on the cloud and/or on different network hosts [YES/no]: ", _convert_yes_no_to_bool, default=True, error_message="Please enter yes or no.", ) if not same_network: rdzv_backend = _ask_field( "What rendezvous backend will you use? ('static', 'c10d', ...): ", default="static" ) debug = _ask_field( "Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if distributed_type == DistributedType.NO: use_cpu = _ask_field( "Do you want to run your training on CPU only (even if a GPU / Apple Silicon / Ascend NPU device is available)? [yes/NO]:", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) elif distributed_type == DistributedType.MULTI_CPU: use_cpu = True else: use_cpu = False ipex_config = {} if use_cpu: ipex_config["ipex"] = _ask_field( "Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if ( not use_cpu and is_xpu_available() and distributed_type not in [DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.TPU] ): ipex_config["use_xpu"] = _ask_field( "Do you want to use XPU plugin to speed up training on XPU? [yes/NO]:", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) dynamo_config = {} use_dynamo = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if use_dynamo: prefix = "dynamo_" dynamo_config[prefix + "backend"] = _ask_options( "Which dynamo backend would you like to use?", [x.lower() for x in DYNAMO_BACKENDS], _convert_dynamo_backend, default=2, ) use_custom_options = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if use_custom_options: dynamo_config[prefix + "mode"] = _ask_options( "Which mode do you want to use?", TORCH_DYNAMO_MODES, lambda x: TORCH_DYNAMO_MODES[int(x)], default=0, ) dynamo_config[prefix + "use_fullgraph"] = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) dynamo_config[prefix + "use_dynamic"] = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) use_mps = not use_cpu and is_mps_available() deepspeed_config = {} if distributed_type in [DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.NO] and not use_mps: use_deepspeed = _ask_field( "Do you want to use DeepSpeed? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if use_deepspeed: distributed_type = DistributedType.DEEPSPEED assert ( is_deepspeed_available() ), "DeepSpeed is not installed => run `pip3 install deepspeed` or build it from source" if distributed_type == DistributedType.DEEPSPEED: use_deepspeed_config = _ask_field( "Do you want to specify a json file to a DeepSpeed config? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if use_deepspeed_config: deepspeed_config["deepspeed_config_file"] = _ask_field( "Please enter the path to the json DeepSpeed config file: ", str, default="none", ) else: deepspeed_config["zero_stage"] = _ask_options( "What should be your DeepSpeed's ZeRO optimization stage?", [0, 1, 2, 3], int, default=2, ) deepspeed_devices = ["none", "cpu", "nvme"] if deepspeed_config["zero_stage"] >= 2: deepspeed_config["offload_optimizer_device"] = _ask_options( "Where to offload optimizer states?", deepspeed_devices, lambda x: deepspeed_devices[int(x)] ) deepspeed_config["offload_param_device"] = _ask_options( "Where to offload parameters?", deepspeed_devices, lambda x: deepspeed_devices[int(x)] ) if deepspeed_config["offload_param_device"] == "nvme": deepspeed_config["offload_param_nvme_path"] = _ask_field( "Nvme Path to offload parameters?", str, default="/nvme", ) if deepspeed_config["offload_optimizer_device"] == "nvme": deepspeed_config["offload_optimizer_nvme_path"] = _ask_field( "Nvme Path to offload optimizer states?", str, default="/nvme", ) deepspeed_config["gradient_accumulation_steps"] = _ask_field( "How many gradient accumulation steps you're passing in your script? [1]: ", int, default=1, ) use_gradient_clipping = _ask_field( "Do you want to use gradient clipping? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if use_gradient_clipping: deepspeed_config["gradient_clipping"] = _ask_field( "What is the gradient clipping value? [1.0]: ", float, default=1.0, ) if deepspeed_config["zero_stage"] == 3: deepspeed_config["zero3_save_16bit_model"] = _ask_field( "Do you want to save 16-bit model weights when using ZeRO Stage-3? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) deepspeed_config["zero3_init_flag"] = _ask_field( "Do you want to enable `deepspeed.zero.Init` when using ZeRO Stage-3 for constructing massive models? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if deepspeed_config["zero3_init_flag"]: if not is_transformers_available(): raise Exception( "When `zero3_init_flag` is set, it requires Transformers to be installed. " "Please run `pip3 install transformers`." ) if num_machines > 1: launcher_query = "Which Type of launcher do you want to use?" deepspeed_config["deepspeed_multinode_launcher"] = _ask_options( launcher_query, DEEPSPEED_MULTINODE_LAUNCHERS, lambda x: DEEPSPEED_MULTINODE_LAUNCHERS[int(x)], ) if deepspeed_config["deepspeed_multinode_launcher"] != DEEPSPEED_MULTINODE_LAUNCHERS[1]: deepspeed_config["deepspeed_hostfile"] = _ask_field( "DeepSpeed configures multi-node compute resources with hostfile. " "Each row is of the format `hostname slots=[num_gpus]`, e.g., `localhost slots=2`; " "for more information please refer official [documentation]" "(https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node). " "Please specify the location of hostfile: ", str, ) is_exclusion_filter = _ask_field( "Do you want to specify exclusion filter string? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if is_exclusion_filter: deepspeed_config["deepspeed_exclusion_filter"] = _ask_field( "DeepSpeed exclusion filter string: ", str, ) is_inclusion_filter = _ask_field( "Do you want to specify inclusion filter string? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if is_inclusion_filter: deepspeed_config["deepspeed_inclusion_filter"] = _ask_field( "DeepSpeed inclusion filter string: ", str, ) fsdp_config = {} if distributed_type in [DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU]: use_fsdp = _ask_field( "Do you want to use FullyShardedDataParallel? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if use_fsdp: distributed_type = DistributedType.FSDP if distributed_type == DistributedType.FSDP: sharding_strategy_query = "What should be your sharding strategy?" fsdp_config["fsdp_sharding_strategy"] = _ask_options( sharding_strategy_query, FSDP_SHARDING_STRATEGY, lambda x: FSDP_SHARDING_STRATEGY[int(x)], ) fsdp_config["fsdp_offload_params"] = _ask_field( "Do you want to offload parameters and gradients to CPU? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) fsdp_wrap_query = "What should be your auto wrap policy?" fsdp_config["fsdp_auto_wrap_policy"] = _ask_options( fsdp_wrap_query, FSDP_AUTO_WRAP_POLICY, lambda x: FSDP_AUTO_WRAP_POLICY[int(x)], ) if fsdp_config["fsdp_auto_wrap_policy"] == FSDP_AUTO_WRAP_POLICY[0]: use_no_split_modules = _ask_field( "Do you want to use the model's `_no_split_modules` to wrap. Only applicable for 🤗 Transformers [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if not use_no_split_modules: fsdp_config["fsdp_transformer_layer_cls_to_wrap"] = _ask_field( "Specify the comma-separated list of transformer layer class names (case-sensitive) to wrap ,e.g, :" "`BertLayer`, `GPTJBlock`, `T5Block`, `BertLayer,BertEmbeddings,BertSelfOutput` ...? : ", str, ) elif fsdp_config["fsdp_auto_wrap_policy"] == FSDP_AUTO_WRAP_POLICY[1]: fsdp_config["fsdp_min_num_params"] = _ask_field( "What should be your FSDP's minimum number of parameters for Default Auto Wrapping Policy? [1e8]: ", int, default=100000000, ) fsdp_backward_prefetch_query = "What should be your FSDP's backward prefetch policy?" fsdp_config["fsdp_backward_prefetch"] = _ask_options( fsdp_backward_prefetch_query, FSDP_BACKWARD_PREFETCH, lambda x: FSDP_BACKWARD_PREFETCH[int(x)], ) fsdp_state_dict_type_query = "What should be your FSDP's state dict type?" fsdp_config["fsdp_state_dict_type"] = _ask_options( fsdp_state_dict_type_query, FSDP_STATE_DICT_TYPE, lambda x: FSDP_STATE_DICT_TYPE[int(x)], default=2, ) fsdp_config["fsdp_forward_prefetch"] = _ask_field( "Do you want to enable FSDP's forward prefetch policy? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) fsdp_config["fsdp_use_orig_params"] = _ask_field( "Do you want to enable FSDP's `use_orig_params` feature? [YES/no]: ", _convert_yes_no_to_bool, default=True, error_message="Please enter yes or no.", ) fsdp_config["fsdp_cpu_ram_efficient_loading"] = _ask_field( "Do you want to enable CPU RAM efficient model loading? Only applicable for 🤗 Transformers models. [YES/no]: ", _convert_yes_no_to_bool, default=True, error_message="Please enter yes or no.", ) if fsdp_config["fsdp_cpu_ram_efficient_loading"]: fsdp_config["fsdp_sync_module_states"] = True else: fsdp_config["fsdp_sync_module_states"] = _ask_field( "Do you want each individually wrapped FSDP unit to broadcast module parameters from rank 0 at the start? [YES/no]: ", _convert_yes_no_to_bool, default=True, error_message="Please enter yes or no.", ) megatron_lm_config = {} if distributed_type in [DistributedType.MULTI_GPU]: use_megatron_lm = _ask_field( "Do you want to use Megatron-LM ? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if use_megatron_lm: distributed_type = DistributedType.MEGATRON_LM if distributed_type == DistributedType.MEGATRON_LM: prefix = "megatron_lm_" megatron_lm_config[prefix + "tp_degree"] = _ask_field( "What is the Tensor Parallelism degree/size? [1]:", int, default=1, error_message="Please enter an integer.", ) if megatron_lm_config[prefix + "tp_degree"] > 1: megatron_lm_config[prefix + "sequence_parallelism"] = _ask_field( "Do you want to enable Sequence Parallelism? [YES/no]: ", _convert_yes_no_to_bool, default=True, error_message="Please enter yes or no.", ) megatron_lm_config[prefix + "pp_degree"] = _ask_field( "What is the Pipeline Parallelism degree/size? [1]:", int, default=1, error_message="Please enter an integer.", ) if megatron_lm_config[prefix + "pp_degree"] > 1: megatron_lm_config[prefix + "num_micro_batches"] = _ask_field( "What is the number of micro-batches? [1]:", int, default=1, error_message="Please enter an integer.", ) megatron_lm_config[prefix + "recompute_activations"] = _ask_field( "Do you want to enable selective activation recomputation? [YES/no]: ", _convert_yes_no_to_bool, default=True, error_message="Please enter yes or no.", ) megatron_lm_config[prefix + "use_distributed_optimizer"] = _ask_field( "Do you want to use distributed optimizer " "which shards optimizer state and gradients across data parallel ranks? [YES/no]: ", _convert_yes_no_to_bool, default=True, error_message="Please enter yes or no.", ) megatron_lm_config[prefix + "gradient_clipping"] = _ask_field( "What is the gradient clipping value based on global L2 Norm (0 to disable)? [1.0]: ", float, default=1.0, ) # TPU specific defaults tpu_commands = None tpu_command_file = None tpu_downcast_bf16 = "no" tpu_env = [] tpu_name = None tpu_vm = None tpu_zone = None tpu_use_sudo = False tpu_use_cluster = False if distributed_type in [ DistributedType.MULTI_CPU, DistributedType.MULTI_XPU, DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.TPU, ]: machine_type = str(distributed_type).split(".")[1].replace("MULTI_", "") if machine_type == "TPU": machine_type += " cores" else: machine_type += "(s)" num_processes = _ask_field( f"How many {machine_type} should be used for distributed training? [1]:", int, default=1, error_message="Please enter an integer.", ) elif distributed_type in [DistributedType.FSDP, DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM]: num_processes = _ask_field( "How many GPU(s) should be used for distributed training? [1]:", int, default=1, error_message="Please enter an integer.", ) else: num_processes = 1 if (distributed_type == DistributedType.MULTI_GPU) and (num_machines == 1) and (num_processes == 1): raise ValueError( f"Specified distributed type {distributed_type} but only using 1 GPU on a single machine. Please select `No distributed training` for the type of machine you are using." ) if ( distributed_type in [ DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU, DistributedType.NO, ] and not use_cpu and not use_mps ): if is_npu_available(): machine_type = "NPU(s)" else: machine_type = "GPU(s)" gpu_ids = _ask_field( f"What {machine_type} (by id) should be used for training on this machine as a comma-seperated list? [all]:", default="all", ) if distributed_type == DistributedType.TPU: mixed_precision = "no" main_training_function = _ask_field( "What is the name of the function in your script that should be launched in all parallel scripts? [main]: ", default="main", ) tpu_use_cluster = _ask_field( "Are you using a TPU cluster? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if tpu_use_cluster: tpu_name = _ask_field( "What is the name of your TPU cluster? ", default=None, error_message="Please enter the name of your TPU cluster.", ) tpu_zone = _ask_field( "What is the zone of your TPU cluster? ", default=None, error_message="Please enter the zone of your TPU cluster.", ) tpu_use_sudo = _ask_field( "To run a python script in a TPU pod, should `sudo` be used? [yes/NO]: ", default=False, error_message="Please enter yes or no.", ) run_commands = _ask_field( "Do you have code you wish to run on startup in each pod? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if run_commands: use_command_file = _ask_field( "Is this code located in a bash script? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if use_command_file: tpu_command_file = _ask_field( "What is the path to your bash script? ", default=None, error_message="Please enter the path to your bash script.", ) tpu_command_file = os.path.abspath(tpu_command_file) else: print("Please enter each command seperately you wish to run on startup in each pod.") tpu_commands = [] another_command = True while another_command: tpu_commands.append( _ask_field( "Please enter a single command to be ran ", default=None, error_message="Please enter the commands you wish to run on startup in each pod as a single string.", ) ) another_command = _ask_field( "Do you wish to add another command? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) tpu_vm = _ask_field( "If not using an instance group, what are the names of the Compute VM instances to be used, seperated by a comma: ", default="", ).split(",") tpu_env = _ask_field( "What environment variables do you wish to set in each pod, seperated by a comma: ", default="", ).split(",") else: main_training_function = "main" if distributed_type == DistributedType.DEEPSPEED and use_deepspeed_config: mixed_precision = None else: mixed_precision = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?", ["no", "fp16", "bf16", "fp8"], _convert_mixed_precision, ) if use_dynamo and mixed_precision == "no" and not use_cpu: print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) if distributed_type == DistributedType.TPU and mixed_precision == "bf16": tpu_downcast_bf16 = _ask_field( "Should `torch.float` be cast as `bfloat16` and `torch.double` remain `float32` on TPUs?", default="no" ) return ClusterConfig( compute_environment=ComputeEnvironment.LOCAL_MACHINE, distributed_type=distributed_type, num_processes=num_processes, gpu_ids=gpu_ids, mixed_precision=mixed_precision, downcast_bf16=tpu_downcast_bf16, machine_rank=machine_rank, num_machines=num_machines, main_process_ip=main_process_ip, main_process_port=main_process_port, main_training_function=main_training_function, deepspeed_config=deepspeed_config, fsdp_config=fsdp_config, megatron_lm_config=megatron_lm_config, ipex_config=ipex_config, use_cpu=use_cpu, rdzv_backend=rdzv_backend, same_network=same_network, commands=tpu_commands, command_file=tpu_command_file, tpu_env=tpu_env, tpu_name=tpu_name, tpu_vm=tpu_vm, tpu_zone=tpu_zone, tpu_use_sudo=tpu_use_sudo, tpu_use_cluster=tpu_use_cluster, dynamo_config=dynamo_config, debug=debug, )