#!/usr/bin/env python description = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def get_user_input(): compute_environment = _ask_options( "In which compute environment are you running?", ["This machine", "AWS (Amazon SageMaker)"], _convert_compute_environment, ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: config = get_sagemaker_input() else: config = get_cluster_input() return config def config_command_parser(subparsers=None): if subparsers is not None: parser = subparsers.add_parser("config", description=description) else: parser = argparse.ArgumentParser("Accelerate config command", description=description) parser.add_argument( "--config_file", default=None, help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ), ) if subparsers is not None: parser.set_defaults(func=config_command) return parser def config_command(args): config = get_user_input() if args.config_file is not None: config_file = args.config_file else: if not os.path.isdir(cache_dir): os.makedirs(cache_dir) config_file = default_yaml_config_file if config_file.endswith(".json"): config.to_json_file(config_file) else: config.to_yaml_file(config_file) print(f"accelerate configuration saved at {config_file}") def main(): parser = config_command_parser() args = parser.parse_args() config_command(args) if __name__ == "__main__": main()