""" A collection of utilities for ensuring that training can always occur. Heavily influenced by the [toma](https://github.com/BlackHC/toma) library. """ def release_memory(*objects): """ Releases memory from `objects` by setting them to `None` and calls `gc.collect()` and `torch.cuda.empty_cache()`. Returned objects should be reassigned to the same variables. Args: objects (`Iterable`): An iterable of objects Returns: A list of `None` objects to replace `objects` Example: ```python >>> import torch >>> from accelerate.utils import release_memory >>> a = torch.ones(1000, 1000).cuda() >>> b = torch.ones(1000, 1000).cuda() >>> a, b = release_memory(a, b) ``` """ if not isinstance(objects, list): objects = list(objects) for i in range(len(objects)): objects[i] = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def should_reduce_batch_size(exception: Exception) -> bool: """ Checks if `exception` relates to CUDA out-of-memory, CUDNN not supported, or CPU out-of-memory Args: exception (`Exception`): An exception """ _statements = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(exception, RuntimeError) and len(exception.args) == 1: return any(err in exception.args[0] for err in _statements) return False def find_executable_batch_size(function: callable = None, starting_batch_size: int = 128): """ A basic decorator that will try to execute `function`. If it fails from exceptions related to out-of-memory or CUDNN, the batch size is cut in half and passed to `function` `function` must take in a `batch_size` parameter as its first argument. Args: function (`callable`, *optional*): A function to wrap starting_batch_size (`int`, *optional*): The batch size to try and fit into memory Example: ```python >>> from accelerate.utils import find_executable_batch_size >>> @find_executable_batch_size(starting_batch_size=128) ... def train(batch_size, model, optimizer): ... ... >>> train(model, optimizer) ``` """ if function is None: return functools.partial(find_executable_batch_size, starting_batch_size=starting_batch_size) batch_size = starting_batch_size def decorator(*args, **kwargs): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() params = list(inspect.signature(function).parameters.keys()) # Guard against user error if len(params) < (len(args) + 1): arg_str = ", ".join([f"{arg}={value}" for arg, value in zip(params[1:], args[1:])]) raise TypeError( f"Batch size was passed into `{function.__name__}` as the first argument when called." f"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero.") try: return function(batch_size, *args, **kwargs) except Exception as e: if should_reduce_batch_size(e): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator