Datasets:
File size: 19,476 Bytes
bd77049 292fffb 1566a98 0a59645 1566a98 f600f35 d304276 f600f35 1566a98 0a59645 bd77049 292fffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
---
annotations_creators:
- crowdsourced
license: cc-by-nc-sa-4.0
size_categories:
- 10K<n<100K
task_categories:
- image-classification
- image-feature-extraction
pretty_name: Galaxy Zoo UKIDSS
arxiv: 2404.02973
tags:
- galaxy zoo
- physics
- astronomy
- galaxies
- citizen science
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
- split: train
path: data/train-*
- config_name: tiny
data_files:
- split: train
path: tiny/train-*
- split: test
path: tiny/test-*
dataset_info:
- config_name: default
features:
- name: image
dtype: image
- name: id_str
dtype: string
- name: dataset_name
dtype: string
- name: smooth-or-featured-ukidss_smooth
dtype: int32
- name: smooth-or-featured-ukidss_smooth_fraction
dtype: float32
- name: smooth-or-featured-ukidss_total-votes
dtype: int32
- name: smooth-or-featured-ukidss_featured-or-disk
dtype: int32
- name: smooth-or-featured-ukidss_featured-or-disk_fraction
dtype: float32
- name: smooth-or-featured-ukidss_artifact
dtype: int32
- name: smooth-or-featured-ukidss_artifact_fraction
dtype: float32
- name: disk-edge-on-ukidss_yes
dtype: int32
- name: disk-edge-on-ukidss_yes_fraction
dtype: float32
- name: disk-edge-on-ukidss_total-votes
dtype: int32
- name: disk-edge-on-ukidss_no
dtype: int32
- name: disk-edge-on-ukidss_no_fraction
dtype: float32
- name: has-spiral-arms-ukidss_yes
dtype: int32
- name: has-spiral-arms-ukidss_yes_fraction
dtype: float32
- name: has-spiral-arms-ukidss_total-votes
dtype: int32
- name: has-spiral-arms-ukidss_no
dtype: int32
- name: has-spiral-arms-ukidss_no_fraction
dtype: float32
- name: bar-ukidss_yes
dtype: int32
- name: bar-ukidss_yes_fraction
dtype: float32
- name: bar-ukidss_total-votes
dtype: int32
- name: bar-ukidss_no
dtype: int32
- name: bar-ukidss_no_fraction
dtype: float32
- name: bulge-size-ukidss_dominant
dtype: int32
- name: bulge-size-ukidss_dominant_fraction
dtype: float32
- name: bulge-size-ukidss_total-votes
dtype: int32
- name: bulge-size-ukidss_obvious
dtype: int32
- name: bulge-size-ukidss_obvious_fraction
dtype: float32
- name: bulge-size-ukidss_just-noticeable
dtype: int32
- name: bulge-size-ukidss_just-noticeable_fraction
dtype: float32
- name: bulge-size-ukidss_no
dtype: int32
- name: bulge-size-ukidss_no_fraction
dtype: float32
- name: something-odd-ukidss_yes
dtype: int32
- name: something-odd-ukidss_yes_fraction
dtype: float32
- name: something-odd-ukidss_total-votes
dtype: int32
- name: something-odd-ukidss_no
dtype: int32
- name: something-odd-ukidss_no_fraction
dtype: float32
- name: how-rounded-ukidss_round
dtype: int32
- name: how-rounded-ukidss_round_fraction
dtype: float32
- name: how-rounded-ukidss_total-votes
dtype: int32
- name: how-rounded-ukidss_in-between
dtype: int32
- name: how-rounded-ukidss_in-between_fraction
dtype: float32
- name: how-rounded-ukidss_cigar
dtype: int32
- name: how-rounded-ukidss_cigar_fraction
dtype: float32
- name: bulge-shape-ukidss_round
dtype: int32
- name: bulge-shape-ukidss_round_fraction
dtype: float32
- name: bulge-shape-ukidss_total-votes
dtype: int32
- name: bulge-shape-ukidss_boxy
dtype: int32
- name: bulge-shape-ukidss_boxy_fraction
dtype: float32
- name: bulge-shape-ukidss_no-bulge
dtype: int32
- name: bulge-shape-ukidss_no-bulge_fraction
dtype: float32
- name: spiral-winding-ukidss_tight
dtype: int32
- name: spiral-winding-ukidss_tight_fraction
dtype: float32
- name: spiral-winding-ukidss_total-votes
dtype: int32
- name: spiral-winding-ukidss_medium
dtype: int32
- name: spiral-winding-ukidss_medium_fraction
dtype: float32
- name: spiral-winding-ukidss_loose
dtype: int32
- name: spiral-winding-ukidss_loose_fraction
dtype: float32
- name: spiral-arm-count-ukidss_1
dtype: int32
- name: spiral-arm-count-ukidss_1_fraction
dtype: float32
- name: spiral-arm-count-ukidss_total-votes
dtype: int32
- name: spiral-arm-count-ukidss_2
dtype: int32
- name: spiral-arm-count-ukidss_2_fraction
dtype: float32
- name: spiral-arm-count-ukidss_3
dtype: int32
- name: spiral-arm-count-ukidss_3_fraction
dtype: float32
- name: spiral-arm-count-ukidss_4
dtype: int32
- name: spiral-arm-count-ukidss_4_fraction
dtype: float32
- name: spiral-arm-count-ukidss_more-than-4
dtype: int32
- name: spiral-arm-count-ukidss_more-than-4_fraction
dtype: float32
- name: spiral-arm-count-ukidss_cant-tell
dtype: int32
- name: spiral-arm-count-ukidss_cant-tell_fraction
dtype: float32
- name: summary
dtype: string
splits:
- name: train
num_bytes: 6330699039.188
num_examples: 56676
- name: test
num_bytes: 1582434939.008
num_examples: 14169
download_size: 7915072258
dataset_size: 7913133978.195999
- config_name: tiny
features:
- name: image
dtype: image
- name: id_str
dtype: string
- name: dataset_name
dtype: string
- name: smooth-or-featured-ukidss_smooth
dtype: int32
- name: smooth-or-featured-ukidss_smooth_fraction
dtype: float32
- name: smooth-or-featured-ukidss_total-votes
dtype: int32
- name: smooth-or-featured-ukidss_featured-or-disk
dtype: int32
- name: smooth-or-featured-ukidss_featured-or-disk_fraction
dtype: float32
- name: smooth-or-featured-ukidss_artifact
dtype: int32
- name: smooth-or-featured-ukidss_artifact_fraction
dtype: float32
- name: disk-edge-on-ukidss_yes
dtype: int32
- name: disk-edge-on-ukidss_yes_fraction
dtype: float32
- name: disk-edge-on-ukidss_total-votes
dtype: int32
- name: disk-edge-on-ukidss_no
dtype: int32
- name: disk-edge-on-ukidss_no_fraction
dtype: float32
- name: has-spiral-arms-ukidss_yes
dtype: int32
- name: has-spiral-arms-ukidss_yes_fraction
dtype: float32
- name: has-spiral-arms-ukidss_total-votes
dtype: int32
- name: has-spiral-arms-ukidss_no
dtype: int32
- name: has-spiral-arms-ukidss_no_fraction
dtype: float32
- name: bar-ukidss_yes
dtype: int32
- name: bar-ukidss_yes_fraction
dtype: float32
- name: bar-ukidss_total-votes
dtype: int32
- name: bar-ukidss_no
dtype: int32
- name: bar-ukidss_no_fraction
dtype: float32
- name: bulge-size-ukidss_dominant
dtype: int32
- name: bulge-size-ukidss_dominant_fraction
dtype: float32
- name: bulge-size-ukidss_total-votes
dtype: int32
- name: bulge-size-ukidss_obvious
dtype: int32
- name: bulge-size-ukidss_obvious_fraction
dtype: float32
- name: bulge-size-ukidss_just-noticeable
dtype: int32
- name: bulge-size-ukidss_just-noticeable_fraction
dtype: float32
- name: bulge-size-ukidss_no
dtype: int32
- name: bulge-size-ukidss_no_fraction
dtype: float32
- name: something-odd-ukidss_yes
dtype: int32
- name: something-odd-ukidss_yes_fraction
dtype: float32
- name: something-odd-ukidss_total-votes
dtype: int32
- name: something-odd-ukidss_no
dtype: int32
- name: something-odd-ukidss_no_fraction
dtype: float32
- name: how-rounded-ukidss_round
dtype: int32
- name: how-rounded-ukidss_round_fraction
dtype: float32
- name: how-rounded-ukidss_total-votes
dtype: int32
- name: how-rounded-ukidss_in-between
dtype: int32
- name: how-rounded-ukidss_in-between_fraction
dtype: float32
- name: how-rounded-ukidss_cigar
dtype: int32
- name: how-rounded-ukidss_cigar_fraction
dtype: float32
- name: bulge-shape-ukidss_round
dtype: int32
- name: bulge-shape-ukidss_round_fraction
dtype: float32
- name: bulge-shape-ukidss_total-votes
dtype: int32
- name: bulge-shape-ukidss_boxy
dtype: int32
- name: bulge-shape-ukidss_boxy_fraction
dtype: float32
- name: bulge-shape-ukidss_no-bulge
dtype: int32
- name: bulge-shape-ukidss_no-bulge_fraction
dtype: float32
- name: spiral-winding-ukidss_tight
dtype: int32
- name: spiral-winding-ukidss_tight_fraction
dtype: float32
- name: spiral-winding-ukidss_total-votes
dtype: int32
- name: spiral-winding-ukidss_medium
dtype: int32
- name: spiral-winding-ukidss_medium_fraction
dtype: float32
- name: spiral-winding-ukidss_loose
dtype: int32
- name: spiral-winding-ukidss_loose_fraction
dtype: float32
- name: spiral-arm-count-ukidss_1
dtype: int32
- name: spiral-arm-count-ukidss_1_fraction
dtype: float32
- name: spiral-arm-count-ukidss_total-votes
dtype: int32
- name: spiral-arm-count-ukidss_2
dtype: int32
- name: spiral-arm-count-ukidss_2_fraction
dtype: float32
- name: spiral-arm-count-ukidss_3
dtype: int32
- name: spiral-arm-count-ukidss_3_fraction
dtype: float32
- name: spiral-arm-count-ukidss_4
dtype: int32
- name: spiral-arm-count-ukidss_4_fraction
dtype: float32
- name: spiral-arm-count-ukidss_more-than-4
dtype: int32
- name: spiral-arm-count-ukidss_more-than-4_fraction
dtype: float32
- name: spiral-arm-count-ukidss_cant-tell
dtype: int32
- name: spiral-arm-count-ukidss_cant-tell_fraction
dtype: float32
- name: summary
dtype: string
splits:
- name: train
num_bytes: 62935806.0
num_examples: 566
- name: test
num_bytes: 15637560.0
num_examples: 141
download_size: 78648500
dataset_size: 78573366.0
---
# GZ Campaign Datasets
## Dataset Summary
[Galaxy Zoo](www.galaxyzoo.org) volunteers label telescope images of galaxies according to their visible features: spiral arms, galaxy-galaxy collisions, and so on.
These datasets share the galaxy images and volunteer labels in a machine-learning-friendly format. We use these datasets to train [our foundation models](https://arxiv.org/abs/2404.02973). We hope they'll help you too.
- **Curated by:** [Mike Walmsley](https://walmsley.dev/)
- **License:** [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en). We specifically require **all models trained on these datasets to be released as source code by publication**.
## Downloading
Install the Datasets library
pip install datasets
and then log in to your HuggingFace account
huggingface-cli login
All unpublished* datasets are temporarily "gated" i.e. you must have requested and been approved for access. Galaxy Zoo team members should go to https://huggingface.co/mwalmsley/datasets/gz_ukidss, click "request access", ping Mike, then wait for approval.
Gating will be removed on publication.
*Currently: the `gz_h2o` and `gz_ukidss` datasets
## Usage
```python
from datasets import load_dataset
# . split='train' picks which split to load
dataset = load_dataset(
'mwalmsley/gz_ukidss', # each dataset has a random fixed train/test split
split='train'
# some datasets also allow name=subset (e.g. name="tiny" for gz_evo). see the viewer for subset options
)
dataset.set_format('torch') # your framework of choice e.g. numpy, tensorflow, jax, etc
print(dataset_name, dataset[0]['image'].shape)
```
Then use the `dataset` object as with any other HuggingFace dataset, e.g.,
```python
from torch.utils.data import DataLoader
dataloader = DataLoader(ds, batch_size=4, num_workers=1)
for batch in dataloader:
print(batch.keys())
# the image key, plus a key counting the volunteer votes for each answer
# (e.g. smooth-or-featured-gz2_smooth)
print(batch['image'].shape)
break
```
You may find these HuggingFace docs useful:
- [PyTorch loading options](https://huggingface.co/docs/datasets/en/use_with_pytorch#data-loading).
- [Applying transforms/augmentations](https://huggingface.co/docs/datasets/en/image_process#apply-transforms).
- [Frameworks supported](https://huggingface.co/docs/datasets/v2.19.0/en/package_reference/main_classes#datasets.Dataset.set_format) by `set_format`.
## Dataset Structure
Each dataset is structured like:
```json
{
'image': ..., # image of a galaxy
'smooth-or-featured-[campaign]_smooth': 4,
'smooth-or-featured-[campaign]_featured-or-disk': 12,
... # and so on for many questions and answers
}
```
Images are loaded according to your `set_format` choice above. For example, ```set_format("torch")``` gives a (3, 424, 424) CHW `Torch.Tensor`.
The other keys are formatted like `[question]_[answer]`, where `question` is what the volunteers were asked (e.g. "smooth or featured?" and `answer` is the choice selected (e.g. "smooth"). **The values are the count of volunteers who selected each answer.**
`question` is appended with a string noting in which Galaxy Zoo campaign this question was asked e.g. `smooth-or-featured-gz2`. For most datasets, all questions were asked during the same campaign. For GZ DESI, there are three campaigns (`dr12`, `dr5`, and `dr8`) with very similar questions.
GZ Evo combines all the published datasets (currently GZ2, GZ DESI, GZ CANDELS, GZ Hubble, and GZ UKIDSS) into a single dataset aimed at multi-task learning. This is helpful for [building models that adapt to new tasks and new telescopes]((https://arxiv.org/abs/2404.02973)).
(we will shortly add keys for the astronomical identifiers i.e. the sky coordinates and telescope source unique ids)
## Key Limitations
Because the volunteers are answering a decision tree, the questions asked depend on the previous answers, and so each galaxy and each question can have very different total numbers of votes. This interferes with typical metrics that use aggregated labels (e.g. classification of the most voted, regression on the mean vote fraction, etc.) because we have different levels of confidence in the aggregated labels for each galaxy. We suggest a custom loss to handle this. Please see the Datasets and Benchmarks paper for more details (under review, sorry).
All labels are imperfect. The vote counts may not always reflect the true appearance of each galaxy. Additionally,
the true appearance of each galaxy may be uncertain - even to expert astronomers.
We therefore caution against over-interpreting small changes in performance to indicate a method is "superior". **These datasets should not be used as a precise performance benchmark.**
## Citation Information
The machine-learning friendly versions of each dataset are described in a recently-submitted paper. Citation information will be added if accepted.
For each specific dataset you use, please also cite the original Galaxy Zoo data release paper (listed below) and the telescope description paper (cited therein).
### Galaxy Zoo 2
@article{10.1093/mnras/stt1458,
author = {Willett, Kyle W. and Lintott, Chris J. and Bamford, Steven P. and Masters, Karen L. and Simmons, Brooke D. and Casteels, Kevin R. V. and Edmondson, Edward M. and Fortson, Lucy F. and Kaviraj, Sugata and Keel, William C. and Melvin, Thomas and Nichol, Robert C. and Raddick, M. Jordan and Schawinski, Kevin and Simpson, Robert J. and Skibba, Ramin A. and Smith, Arfon M. and Thomas, Daniel},
title = "{Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {435},
number = {4},
pages = {2835-2860},
year = {2013},
month = {09},
issn = {0035-8711},
doi = {10.1093/mnras/stt1458},
}
### Galaxy Zoo Hubble
@article{2017MNRAS.464.4176W,
author = {Willett, Kyle W. and Galloway, Melanie A. and Bamford, Steven P. and Lintott, Chris J. and Masters, Karen L. and Scarlata, Claudia and Simmons, B.~D. and Beck, Melanie and {Cardamone}, Carolin N. and Cheung, Edmond and Edmondson, Edward M. and Fortson, Lucy F. and Griffith, Roger L. and H{\"a}u{\ss}ler, Boris and Han, Anna and Hart, Ross and Melvin, Thomas and Parrish, Michael and Schawinski, Kevin and Smethurst, R.~J. and {Smith}, Arfon M.},
title = "{Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging}",
journal = {Monthly Notices of the Royal Astronomical Society},
year = 2017,
month = feb,
volume = {464},
number = {4},
pages = {4176-4203},
doi = {10.1093/mnras/stw2568}
}
### Galaxy Zoo CANDELS
@article{10.1093/mnras/stw2587,
author = {Simmons, B. D. and Lintott, Chris and Willett, Kyle W. and Masters, Karen L. and Kartaltepe, Jeyhan S. and Häußler, Boris and Kaviraj, Sugata and Krawczyk, Coleman and Kruk, S. J. and McIntosh, Daniel H. and Smethurst, R. J. and Nichol, Robert C. and Scarlata, Claudia and Schawinski, Kevin and Conselice, Christopher J. and Almaini, Omar and Ferguson, Henry C. and Fortson, Lucy and Hartley, William and Kocevski, Dale and Koekemoer, Anton M. and Mortlock, Alice and Newman, Jeffrey A. and Bamford, Steven P. and Grogin, N. A. and Lucas, Ray A. and Hathi, Nimish P. and McGrath, Elizabeth and Peth, Michael and Pforr, Janine and Rizer, Zachary and Wuyts, Stijn and Barro, Guillermo and Bell, Eric F. and Castellano, Marco and Dahlen, Tomas and Dekel, Avishai and Ownsworth, Jamie and Faber, Sandra M. and Finkelstein, Steven L. and Fontana, Adriano and Galametz, Audrey and Grützbauch, Ruth and Koo, David and Lotz, Jennifer and Mobasher, Bahram and Mozena, Mark and Salvato, Mara and Wiklind, Tommy},
title = "{Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS★}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {464},
number = {4},
pages = {4420-4447},
year = {2016},
month = {10},
doi = {10.1093/mnras/stw2587}
}
### Galaxy Zoo DESI
(two citations due to being released over two papers)
@article{10.1093/mnras/stab2093,
author = {Walmsley, Mike and Lintott, Chris and Géron, Tobias and Kruk, Sandor and Krawczyk, Coleman and Willett, Kyle W and Bamford, Steven and Kelvin, Lee S and Fortson, Lucy and Gal, Yarin and Keel, William and Masters, Karen L and Mehta, Vihang and Simmons, Brooke D and Smethurst, Rebecca and Smith, Lewis and Baeten, Elisabeth M and Macmillan, Christine},
title = "{Galaxy Zoo DECaLS: Detailed visual morphology measurements from volunteers and deep learning for 314 000 galaxies}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {509},
number = {3},
pages = {3966-3988},
year = {2021},
month = {09},
issn = {0035-8711},
doi = {10.1093/mnras/stab2093}
}
@article{10.1093/mnras/stad2919,
author = {Walmsley, Mike and Géron, Tobias and Kruk, Sandor and Scaife, Anna M M and Lintott, Chris and Masters, Karen L and Dawson, James M and Dickinson, Hugh and Fortson, Lucy and Garland, Izzy L and Mantha, Kameswara and O’Ryan, David and Popp, Jürgen and Simmons, Brooke and Baeten, Elisabeth M and Macmillan, Christine},
title = "{Galaxy Zoo DESI: Detailed morphology measurements for 8.7M galaxies in the DESI Legacy Imaging Surveys}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {526},
number = {3},
pages = {4768-4786},
year = {2023},
month = {09},
issn = {0035-8711},
doi = {10.1093/mnras/stad2919}
}
### Galaxy Zoo UKIDSS
Not yet published.
### Galaxy Zoo Cosmic Dawn (a.k.a. H2O)
Not yet published. |