|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
csv.field_size_limit(int(1e6)) |
|
|
|
|
|
_CITATION = """\ |
|
@mastersthesis{chumpolsathien_2020, |
|
title={Using Knowledge Distillation from Keyword Extraction to Improve the Informativeness of Neural Cross-lingual Summarization}, |
|
author={Chumpolsathien, Nakhun}, |
|
year={2020}, |
|
school={Beijing Institute of Technology} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
ThaiSum is a large-scale corpus for Thai text summarization obtained from several online news websites namely Thairath, |
|
ThaiPBS, Prachathai, and The Standard. This dataset consists of over 350,000 article and summary pairs |
|
written by journalists. |
|
""" |
|
|
|
|
|
class ThaiSumConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for ThaiSum.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for ThaiSum. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ThaiSumConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Thaisum(datasets.GeneratorBasedBuilder): |
|
"""ThaiSum: The largest dataset for Thai text summarization""" |
|
|
|
_DOWNLOAD_URL = "https://archive.org/download/thaisum_datasets/data.zip" |
|
_TRAIN_FILE = "train.csv" |
|
_VAL_FILE = "valid.csv" |
|
_TEST_FILE = "test.csv" |
|
|
|
BUILDER_CONFIGS = [ |
|
ThaiSumConfig( |
|
name="thaisum", |
|
version=datasets.Version("1.0.0"), |
|
description="ThaiSum: The largest dataset for Thai text summarization", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"title": datasets.Value("string"), |
|
"body": datasets.Value("string"), |
|
"summary": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"tags": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("body", "summary"), |
|
homepage="https://github.com/nakhunchumpolsathien/ThaiSum", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
arch_path = dl_manager.download_and_extract(self._DOWNLOAD_URL) |
|
data_dir = os.path.join(arch_path, "data") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(data_dir, self._TRAIN_FILE)}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": os.path.join(data_dir, self._VAL_FILE)}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(data_dir, self._TEST_FILE)}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
csv_reader = csv.reader(f) |
|
next(csv_reader) |
|
for id_, row in enumerate(csv_reader): |
|
yield id_, { |
|
"title": row[0], |
|
"body": row[1], |
|
"summary": row[2], |
|
"type": row[3], |
|
"tags": row[4], |
|
"url": row[5], |
|
} |
|
|