File size: 3,784 Bytes
f417a58 99fa603 f417a58 99fa603 623b0ff d7446d8 ccba46d 99fa603 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
annotations_creators:
- other
language_creators:
- other
language:
- en
expert-generated license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- question-answering
- text-retrieval
- text2text-generation
- other
- translation
- conversational
task_ids:
- extractive-qa
- closed-domain-qa
- utterance-retrieval
- document-retrieval
- closed-domain-qa
- open-book-qa
- closed-book-qa
paperswithcode_id: acronym-identification
pretty_name: Massive E-commerce Dataset for Retail and Insurance domain.
train-eval-index:
- config: nsds
task: token-classification
task_id: entity_extraction
splits:
train_split: train
eval_split: test
col_mapping:
sentence: text
label: target
metrics:
- type: nsme-com
name: NSME-COM
config:
nsds
tags:
- chatbots
- e-commerce
- retail
- insurance
- consumer
- consumer goods
configs:
- nsds
---
# Dataset Card for NSME-COM
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
### Dataset Description
- **Homepage**: [NeuralSpace Homepage](https://huggingface.co/neuralspace)
- **Repository:** [NSME-COM Dataset](https://huggingface.co/datasets/neuralspace/NSME-COM)
- **Point of Contact:** [Ankur Saxena](mailto:[email protected])
- **Point of Contact:** [Ayushman Dash](mailto:[email protected])
- **Size of downloaded dataset files:** 10.86 KB
### Dataset Summary
NSME-COM, the NeuralSpace Massive E-commerce Dataset is a collection of resources for training, evaluating, and analyzing natural language understanding systems.
### Supported Tasks and Leaderboards
#### nsds
A manually-curated domain specific dataset by Data Engineers at NeuralSpace for rare E-commerce domains such as Insurance and Retail for NL researchers and practitioners to evaluate state of the art models [here](https://www.neuralspace.ai/) in 100+ languages. The dataset files are available in JSON format.
### Languages
The language data in NSME-COM is in English (BCP-47 `en`)
## Dataset Structure
### Data Instances
- **Size of downloaded dataset files:** 10.86 KB
An example of 'test' looks as follows.
``` {
"text": "is it good to add roadside assistance?",
"intent": "Add",
"type": "Test"
}
```
An example of 'train' looks as follows.
```{
"text": "how can I add my spouse as a nominee?",
"intent": "Add",
"type": "Train"
},
```
### Data Fields
The data fields are the same among all splits.
#### nsds
- `text`: a `string` feature.
- `intent`: a `string` feature.
- `type`: a classification label, with possible values including `train` or `test`.
### Data Splits
#### nsds
| |train|test|
|----|----:|---:|
|nsds| 1725| 406|
### Contributions
Ankur Saxena ([email protected]) |