File size: 3,784 Bytes
f417a58
99fa603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f417a58
99fa603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
623b0ff
d7446d8
ccba46d
 
 
 
99fa603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
annotations_creators:
- other
language_creators:
- other
language:
- en
expert-generated license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
size_categories:
- n<1K 
source_datasets:
- original 
task_categories:
- question-answering
- text-retrieval
- text2text-generation
- other
- translation
- conversational
task_ids:
- extractive-qa
- closed-domain-qa
- utterance-retrieval
- document-retrieval
- closed-domain-qa
- open-book-qa
- closed-book-qa 
paperswithcode_id: acronym-identification
pretty_name: Massive E-commerce Dataset for Retail and Insurance domain.
train-eval-index:
- config: nsds
  task: token-classification 
  task_id: entity_extraction
  splits: 
    train_split: train
    eval_split: test
  col_mapping:
    sentence: text
    label: target
  metrics:
    - type: nsme-com
      name: NSME-COM
      config:
        nsds
tags:
- chatbots
- e-commerce
- retail
- insurance
- consumer
- consumer goods
configs:
- nsds
---
# Dataset Card for NSME-COM

## Table of Contents

- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

### Dataset Description

- **Homepage**: [NeuralSpace Homepage](https://huggingface.co/neuralspace)
- **Repository:** [NSME-COM Dataset](https://huggingface.co/datasets/neuralspace/NSME-COM)
- **Point of Contact:** [Ankur Saxena](mailto:[email protected])
- **Point of Contact:** [Ayushman Dash](mailto:[email protected])
- **Size of downloaded dataset files:** 10.86 KB

### Dataset Summary

NSME-COM, the NeuralSpace Massive E-commerce Dataset is a collection of resources for training, evaluating, and analyzing natural language understanding systems.

### Supported Tasks and Leaderboards


#### nsds

A manually-curated domain specific dataset by Data Engineers at NeuralSpace for rare E-commerce domains such as Insurance and Retail for NL researchers and practitioners to evaluate state of the art models [here](https://www.neuralspace.ai/) in 100+ languages. The dataset files are available in JSON format.

### Languages

The language data in NSME-COM is in English (BCP-47 `en`)

## Dataset Structure

### Data Instances

- **Size of downloaded dataset files:** 10.86 KB

An example of 'test' looks as follows.

``` {
  "text": "is it good to add roadside assistance?",
  "intent": "Add",
  "type": "Test"
 }
 ```

An example of 'train' looks as follows.

```{
  "text": "how can I add my spouse as a nominee?",
  "intent": "Add",
  "type": "Train"
 },
```

### Data Fields

The data fields are the same among all splits.

#### nsds

- `text`: a `string` feature.
- `intent`: a `string` feature.
- `type`: a classification label, with possible values including `train` or `test`.

### Data Splits

#### nsds
|    |train|test|
|----|----:|---:|
|nsds| 1725| 406|

### Contributions
Ankur Saxena ([email protected])