File size: 10,107 Bytes
4bd55ae
 
 
 
 
 
3830efe
4bd55ae
3830efe
4bd55ae
 
 
 
 
 
 
 
 
 
 
62239a3
4365cab
e21ce12
 
3cd2386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bd55ae
 
0ddc52b
4bd55ae
 
 
 
62239a3
4bd55ae
 
 
62239a3
 
4bd55ae
 
 
 
 
 
 
 
 
 
 
 
 
e66e896
4bd55ae
 
 
 
 
 
 
 
 
 
 
0ddc52b
 
 
 
 
 
 
 
4bd55ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ddc52b
 
 
 
4bd55ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ddc52b
4bd55ae
 
 
 
 
 
 
 
 
 
 
 
e66e896
 
 
e21ce12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
- expert-generated
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|sharc
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: null
pretty_name: SharcModified
tags:
- conversational-qa
dataset_info:
- config_name: mod
  features:
  - name: id
    dtype: string
  - name: utterance_id
    dtype: string
  - name: source_url
    dtype: string
  - name: snippet
    dtype: string
  - name: question
    dtype: string
  - name: scenario
    dtype: string
  - name: history
    list:
    - name: follow_up_question
      dtype: string
    - name: follow_up_answer
      dtype: string
  - name: evidence
    list:
    - name: follow_up_question
      dtype: string
    - name: follow_up_answer
      dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 15138034
    num_examples: 21890
  - name: validation
    num_bytes: 1474239
    num_examples: 2270
  download_size: 21197271
  dataset_size: 16612273
- config_name: mod_dev_multi
  features:
  - name: id
    dtype: string
  - name: utterance_id
    dtype: string
  - name: source_url
    dtype: string
  - name: snippet
    dtype: string
  - name: question
    dtype: string
  - name: scenario
    dtype: string
  - name: history
    list:
    - name: follow_up_question
      dtype: string
    - name: follow_up_answer
      dtype: string
  - name: evidence
    list:
    - name: follow_up_question
      dtype: string
    - name: follow_up_answer
      dtype: string
  - name: answer
    dtype: string
  - name: all_answers
    sequence: string
  splits:
  - name: validation
    num_bytes: 1553940
    num_examples: 2270
  download_size: 2006124
  dataset_size: 1553940
- config_name: history
  features:
  - name: id
    dtype: string
  - name: utterance_id
    dtype: string
  - name: source_url
    dtype: string
  - name: snippet
    dtype: string
  - name: question
    dtype: string
  - name: scenario
    dtype: string
  - name: history
    list:
    - name: follow_up_question
      dtype: string
    - name: follow_up_answer
      dtype: string
  - name: evidence
    list:
    - name: follow_up_question
      dtype: string
    - name: follow_up_answer
      dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 15083103
    num_examples: 21890
  - name: validation
    num_bytes: 1468604
    num_examples: 2270
  download_size: 21136658
  dataset_size: 16551707
- config_name: history_dev_multi
  features:
  - name: id
    dtype: string
  - name: utterance_id
    dtype: string
  - name: source_url
    dtype: string
  - name: snippet
    dtype: string
  - name: question
    dtype: string
  - name: scenario
    dtype: string
  - name: history
    list:
    - name: follow_up_question
      dtype: string
    - name: follow_up_answer
      dtype: string
  - name: evidence
    list:
    - name: follow_up_question
      dtype: string
    - name: follow_up_answer
      dtype: string
  - name: answer
    dtype: string
  - name: all_answers
    sequence: string
  splits:
  - name: validation
    num_bytes: 1548305
    num_examples: 2270
  download_size: 2000489
  dataset_size: 1548305
---

# Dataset Card for SharcModified

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [More info needed]
- **Repository:** [github](https://github.com/nikhilweee/neural-conv-qa)
- **Paper:** [Neural Conversational QA: Learning to Reason v.s. Exploiting Patterns](https://arxiv.org/abs/1909.03759)
- **Leaderboard:** [More info needed]
- **Point of Contact:** [More info needed]

### Dataset Summary

ShARC, a conversational QA task, requires a system to answer user questions based on rules expressed in natural language text.
However, it is found that in the ShARC dataset there are multiple spurious patterns that could be exploited by neural models.
SharcModified is a new dataset which reduces the patterns identified in the original dataset.
To reduce the sensitivity of neural models, for each occurence of an instance conforming to any of the patterns,
we automatically construct alternatives where we choose to either replace the current instance with an alternative
instance which does not exhibit the pattern; or retain the original instance.
The modified ShARC has two versions sharc-mod and history-shuffled.


### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

The dataset is in english (en).

## Dataset Structure

### Data Instances

Example of one instance:
```
{
    "annotation": {
        "answer": [
            {
                "paragraph_reference": {
                    "end": 64,
                    "start": 35,
                    "string": "syndactyly affecting the feet"
                },
                "sentence_reference": {
                    "bridge": false,
                    "end": 64,
                    "start": 35,
                    "string": "syndactyly affecting the feet"
                }
            }
        ],
        "explanation_type": "single_sentence",
        "referential_equalities": [
            {
                "question_reference": {
                    "end": 40,
                    "start": 29,
                    "string": "webbed toes"
                },
                "sentence_reference": {
                    "bridge": false,
                    "end": 11,
                    "start": 0,
                    "string": "Webbed toes"
                }
            }
        ],
        "selected_sentence": {
            "end": 67,
            "start": 0,
            "string": "Webbed toes is the common name for syndactyly affecting the feet . "
        }
    },
    "example_id": 9174646170831578919,
    "original_nq_answers": [
        {
            "end": 45,
            "start": 35,
            "string": "syndactyly"
        }
    ],
    "paragraph_text": "Webbed toes is the common name for syndactyly affecting the feet . It is characterised by the fusion of two or more digits of the feet . This is normal in many birds , such as ducks ; amphibians , such as frogs ; and mammals , such as kangaroos . In humans it is considered unusual , occurring in approximately one in 2,000 to 2,500 live births .",
    "question": "what is the medical term for webbed toes",
    "sentence_starts": [
        0,
        67,
        137,
        247
    ],
    "title_text": "Webbed toes",
    "url": "https: //en.wikipedia.org//w/index.php?title=Webbed_toes&amp;oldid=801229780"
}
```

### Data Fields

- `example_id`: a unique integer identifier that matches up with NQ
- `title_text`: the title of the wikipedia page containing the paragraph
- `url`: the url of the wikipedia page containing the paragraph
- `question`: a natural language question string from NQ
- `paragraph_text`: a paragraph string from a wikipedia page containing the answer to question
- `sentence_starts`: a list of integer character offsets indicating the start of sentences in the paragraph
- `original_nq_answers`: the original short answer spans from NQ
- `annotation`: the QED annotation, a dictionary with the following items and further elaborated upon below:
  - `referential_equalities`: a list of dictionaries, one for each referential equality link annotated
  - `answer`: a list of dictionaries, one for each short answer span
  - `selected_sentence`: a dictionary representing the annotated sentence in the passage
  - `explanation_type`: one of "single_sentence", "multi_sentence", or "none"


### Data Splits

The dataset is split into training and validation splits.

|              | train | validation |
|--------------|------:|-----------:|
| N. Instances |  7638 |       1355 |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

[More Information Needed]

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

[More Information Needed]

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

Unknown.

### Citation Information

```
@misc{lamm2020qed,
    title={QED: A Framework and Dataset for Explanations in Question Answering},
    author={Matthew Lamm and Jennimaria Palomaki and Chris Alberti and Daniel Andor and Eunsol Choi and Livio Baldini Soares and Michael Collins},
    year={2020},
    eprint={2009.06354},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```
### Contributions

Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset.