Datasets:
Tasks:
Question Answering
Sub-tasks:
extractive-qa
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
conversational-qa
License:
File size: 10,107 Bytes
4bd55ae 3830efe 4bd55ae 3830efe 4bd55ae 62239a3 4365cab e21ce12 3cd2386 4bd55ae 0ddc52b 4bd55ae 62239a3 4bd55ae 62239a3 4bd55ae e66e896 4bd55ae 0ddc52b 4bd55ae 0ddc52b 4bd55ae 0ddc52b 4bd55ae e66e896 e21ce12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
- expert-generated
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|sharc
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: null
pretty_name: SharcModified
tags:
- conversational-qa
dataset_info:
- config_name: mod
features:
- name: id
dtype: string
- name: utterance_id
dtype: string
- name: source_url
dtype: string
- name: snippet
dtype: string
- name: question
dtype: string
- name: scenario
dtype: string
- name: history
list:
- name: follow_up_question
dtype: string
- name: follow_up_answer
dtype: string
- name: evidence
list:
- name: follow_up_question
dtype: string
- name: follow_up_answer
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 15138034
num_examples: 21890
- name: validation
num_bytes: 1474239
num_examples: 2270
download_size: 21197271
dataset_size: 16612273
- config_name: mod_dev_multi
features:
- name: id
dtype: string
- name: utterance_id
dtype: string
- name: source_url
dtype: string
- name: snippet
dtype: string
- name: question
dtype: string
- name: scenario
dtype: string
- name: history
list:
- name: follow_up_question
dtype: string
- name: follow_up_answer
dtype: string
- name: evidence
list:
- name: follow_up_question
dtype: string
- name: follow_up_answer
dtype: string
- name: answer
dtype: string
- name: all_answers
sequence: string
splits:
- name: validation
num_bytes: 1553940
num_examples: 2270
download_size: 2006124
dataset_size: 1553940
- config_name: history
features:
- name: id
dtype: string
- name: utterance_id
dtype: string
- name: source_url
dtype: string
- name: snippet
dtype: string
- name: question
dtype: string
- name: scenario
dtype: string
- name: history
list:
- name: follow_up_question
dtype: string
- name: follow_up_answer
dtype: string
- name: evidence
list:
- name: follow_up_question
dtype: string
- name: follow_up_answer
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 15083103
num_examples: 21890
- name: validation
num_bytes: 1468604
num_examples: 2270
download_size: 21136658
dataset_size: 16551707
- config_name: history_dev_multi
features:
- name: id
dtype: string
- name: utterance_id
dtype: string
- name: source_url
dtype: string
- name: snippet
dtype: string
- name: question
dtype: string
- name: scenario
dtype: string
- name: history
list:
- name: follow_up_question
dtype: string
- name: follow_up_answer
dtype: string
- name: evidence
list:
- name: follow_up_question
dtype: string
- name: follow_up_answer
dtype: string
- name: answer
dtype: string
- name: all_answers
sequence: string
splits:
- name: validation
num_bytes: 1548305
num_examples: 2270
download_size: 2000489
dataset_size: 1548305
---
# Dataset Card for SharcModified
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [More info needed]
- **Repository:** [github](https://github.com/nikhilweee/neural-conv-qa)
- **Paper:** [Neural Conversational QA: Learning to Reason v.s. Exploiting Patterns](https://arxiv.org/abs/1909.03759)
- **Leaderboard:** [More info needed]
- **Point of Contact:** [More info needed]
### Dataset Summary
ShARC, a conversational QA task, requires a system to answer user questions based on rules expressed in natural language text.
However, it is found that in the ShARC dataset there are multiple spurious patterns that could be exploited by neural models.
SharcModified is a new dataset which reduces the patterns identified in the original dataset.
To reduce the sensitivity of neural models, for each occurence of an instance conforming to any of the patterns,
we automatically construct alternatives where we choose to either replace the current instance with an alternative
instance which does not exhibit the pattern; or retain the original instance.
The modified ShARC has two versions sharc-mod and history-shuffled.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset is in english (en).
## Dataset Structure
### Data Instances
Example of one instance:
```
{
"annotation": {
"answer": [
{
"paragraph_reference": {
"end": 64,
"start": 35,
"string": "syndactyly affecting the feet"
},
"sentence_reference": {
"bridge": false,
"end": 64,
"start": 35,
"string": "syndactyly affecting the feet"
}
}
],
"explanation_type": "single_sentence",
"referential_equalities": [
{
"question_reference": {
"end": 40,
"start": 29,
"string": "webbed toes"
},
"sentence_reference": {
"bridge": false,
"end": 11,
"start": 0,
"string": "Webbed toes"
}
}
],
"selected_sentence": {
"end": 67,
"start": 0,
"string": "Webbed toes is the common name for syndactyly affecting the feet . "
}
},
"example_id": 9174646170831578919,
"original_nq_answers": [
{
"end": 45,
"start": 35,
"string": "syndactyly"
}
],
"paragraph_text": "Webbed toes is the common name for syndactyly affecting the feet . It is characterised by the fusion of two or more digits of the feet . This is normal in many birds , such as ducks ; amphibians , such as frogs ; and mammals , such as kangaroos . In humans it is considered unusual , occurring in approximately one in 2,000 to 2,500 live births .",
"question": "what is the medical term for webbed toes",
"sentence_starts": [
0,
67,
137,
247
],
"title_text": "Webbed toes",
"url": "https: //en.wikipedia.org//w/index.php?title=Webbed_toes&oldid=801229780"
}
```
### Data Fields
- `example_id`: a unique integer identifier that matches up with NQ
- `title_text`: the title of the wikipedia page containing the paragraph
- `url`: the url of the wikipedia page containing the paragraph
- `question`: a natural language question string from NQ
- `paragraph_text`: a paragraph string from a wikipedia page containing the answer to question
- `sentence_starts`: a list of integer character offsets indicating the start of sentences in the paragraph
- `original_nq_answers`: the original short answer spans from NQ
- `annotation`: the QED annotation, a dictionary with the following items and further elaborated upon below:
- `referential_equalities`: a list of dictionaries, one for each referential equality link annotated
- `answer`: a list of dictionaries, one for each short answer span
- `selected_sentence`: a dictionary representing the annotated sentence in the passage
- `explanation_type`: one of "single_sentence", "multi_sentence", or "none"
### Data Splits
The dataset is split into training and validation splits.
| | train | validation |
|--------------|------:|-----------:|
| N. Instances | 7638 | 1355 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Unknown.
### Citation Information
```
@misc{lamm2020qed,
title={QED: A Framework and Dataset for Explanations in Question Answering},
author={Matthew Lamm and Jennimaria Palomaki and Chris Alberti and Daniel Andor and Eunsol Choi and Livio Baldini Soares and Michael Collins},
year={2020},
eprint={2009.06354},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |