|
import csv |
|
import datasets |
|
|
|
_PROMPTS_URLS = { |
|
"train": "train.csv", |
|
"validation": "validation.csv", |
|
"test": "test.csv", |
|
} |
|
|
|
_ARCHIVES = { |
|
"train": "train.tar.gz", |
|
"validation": "validation.tar.gz", |
|
"test": "test.tar.gz", |
|
} |
|
|
|
_PATH_TO_CLIPS = { |
|
"train": "train", |
|
"validation": "validation", |
|
"test": "test", |
|
} |
|
|
|
class MUPEASRDataset(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"audio_id": datasets.Value("int64"), |
|
"audio_name": datasets.Value("string"), |
|
"file_path": datasets.Value("string"), |
|
"speaker_type": datasets.Value("string"), |
|
"speaker_code": datasets.Value("string"), |
|
"speaker_gender": datasets.Value("string"), |
|
"education": datasets.Value("string"), |
|
"birth_state": datasets.Value("string"), |
|
"birth_country": datasets.Value("string"), |
|
"age": datasets.Value("int64"), |
|
"recording_year": datasets.Value("int64"), |
|
"audio_quality": datasets.Value("string"), |
|
"start_time": datasets.Value("float32"), |
|
"end_time": datasets.Value("float32"), |
|
"duration": datasets.Value("float32"), |
|
"normalized_text": datasets.Value("string"), |
|
"original_text": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
} |
|
) |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
prompts_path = dl_manager.download(_PROMPTS_URLS) |
|
archive = dl_manager.download(_ARCHIVES) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name = datasets.Split.VALIDATION, |
|
gen_kwargs = { |
|
"prompts_path": prompts_path["validation"], |
|
"path_to_clips": _PATH_TO_CLIPS["validation"], |
|
"audio_files": dl_manager.iter_archive(archive["validation"]), |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name = datasets.Split.TEST, |
|
gen_kwargs = { |
|
"prompts_path": prompts_path["test"], |
|
"path_to_clips": _PATH_TO_CLIPS["test"], |
|
"audio_files": dl_manager.iter_archive(archive["test"]), |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name = datasets.Split.TRAIN, |
|
gen_kwargs = { |
|
"prompts_path": prompts_path["train"], |
|
"path_to_clips": _PATH_TO_CLIPS["train"], |
|
"audio_files": dl_manager.iter_archive(archive["train"]), |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, prompts_path, path_to_clips, audio_files): |
|
examples = {} |
|
with open(prompts_path, "r") as f: |
|
csv_reader = csv.DictReader(f) |
|
for row in csv_reader: |
|
audio_id = row['audio_id'] |
|
audio_name = row['audio_name'] |
|
file_path = row['file_path'] |
|
speaker_type = row['speaker_type'] |
|
speaker_code = row['speaker_code'] |
|
speaker_gender = row['speaker_gender'] |
|
education = row['education'] |
|
birth_state = row['birth_state'] |
|
birth_country = row['birth_country'] |
|
age = row['age'] |
|
recording_year = row['recording_year'] |
|
audio_quality = row['audio_quality'] |
|
start_time = row['start_time'] |
|
end_time = row['end_time'] |
|
duration = row['duration'] |
|
normalized_text = row['normalized_text'] |
|
original_text = row['original_text'] |
|
|
|
examples[file_path] = { |
|
"audio_id" : audio_id, |
|
"audio_name" : audio_name, |
|
"file_path" : file_path, |
|
"speaker_type" : speaker_type, |
|
"speaker_code" : speaker_code, |
|
"speaker_gender" : speaker_gender, |
|
"education" : education, |
|
"birth_state" : birth_state, |
|
"birth_country" : birth_country, |
|
"age" : age, |
|
"recording_year" : recording_year, |
|
"audio_quality" : audio_quality, |
|
"start_time" : start_time, |
|
"end_time" : end_time, |
|
"duration" : duration, |
|
"normalized_text" : normalized_text, |
|
"original_text" : original_text, |
|
} |
|
inside_clips_dir = False |
|
id_ = 0 |
|
for path, f in audio_files: |
|
if path.startswith(path_to_clips): |
|
inside_clips_dir = True |
|
if path in examples: |
|
audio = {"path": path, "bytes": f.read()} |
|
yield id_, {**examples[path], "audio": audio} |
|
id_ += 1 |
|
elif inside_clips_dir: |
|
break |