File size: 7,491 Bytes
ef6756f 2eed7e8 05e756a c0cc6a5 b7050fa c0cc6a5 b7050fa c0cc6a5 b7050fa c0cc6a5 b7050fa c0cc6a5 b7050fa c0cc6a5 b7050fa c0cc6a5 b7050fa c0cc6a5 b7050fa ef6756f b7050fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
---
license: cc-by-sa-4.0
task_categories:
- text-generation
- text-classification
language:
- ja
pretty_name: Japanese Multi-domain Wizard-of-Oz
size_categories:
- 1K<n<10K
task_ids:
- dialogue-modeling
- parsing
multilinguality:
- monolingual
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
source_datasets:
- original
dataset_info:
features:
- name: dialogue_id
dtype: int32
- name: dialogue_name
dtype: string
- name: system_name
dtype: string
- name: user_name
dtype: string
- name: goal
sequence:
- name: domain
dtype: string
- name: task
dtype: string
- name: slot
dtype: string
- name: value
dtype: string
- name: goal_description
sequence:
- name: domain
dtype: string
- name: text
dtype: string
- name: turns
sequence:
- name: turn_id
dtype: int32
- name: speaker
dtype: string
- name: utterance
dtype: string
- name: dialogue_state
struct:
- name: belief_state
sequence:
- name: domain
dtype: string
- name: slot
dtype: string
- name: value
dtype: string
- name: book_state
sequence:
- name: domain
dtype: string
- name: slot
dtype: string
- name: value
dtype: string
- name: db_result
struct:
- name: candidate_entities
sequence:
dtype: string
id: entity_name
id: candidate_entities
- name: active_entity
sequence:
- name: slot
dtype: string
id: active_entity/slot
- name: value
dtype: string
id: active_entity/value
- name: book_result
sequence:
- name: domain
dtype: string
- name: success
dtype: string
- name: ref
dtype: string
splits:
- name: train
num_bytes: 60731411
num_examples: 3646
- name: validation
num_bytes: 5000420
num_examples: 300
- name: test
num_bytes: 5085276
num_examples: 300
download_size: 11016438
dataset_size: 70817107
---
# Dataset Card for JMultiWOZ
## Dataset Description
- **Repository:** [nu-dialouge/jmultiwoz](https://github.com/nu-dialogue/jmultiwoz)
- **Paper:** [JMultiWOZ: A Large-Scale Japanese Multi-Domain Task-Oriented Dialogue Dataset]()
- **Point of Contact:** [Atsumoto Ohashi]([email protected])
### Dataset Summary
JMultiWOZ is a large-scale Japanese multi-domain task-oriented dialogue dataset. The dataset is collected using the Wizard-of-Oz (WoZ) methodology, where two human annotators simulate the user and the system. The dataset contains 4,246 dialogues across 6 domains, including restaurant, hotel, attraction, shopping, taxi, and weather. Available annotations include user goal, dialogue state, and utterances.
### Supported Tasks
- **Dialogue State Tracking**: The dataset can be used to train models for dialogue state tracking, which is the task of predicting the user's belief state at each turn in the dialogue.
- **Dialogue Generation**: The dataset can be used to train models for dialogue generation, which is the task of generating a response given the dialogue history.
### Languages
The text in the dataset is in Japanese (`ja`).
## Dataset Usage
```python
from datasets import load_dataset
dataset = load_dataset("nu-dialogue/jmultiwoz", trust_remote_code=True)
```
## Dataset Structure
### Data Instances
A data instance is a full multi-turn dialogue between a `USER` and a `SYSTEM`. Each turn has an `utterance`:
```json
[
"福岡へ行くよていなのですが、値段が普通くらいの宿泊施設を探してもらっていいですか?",
"かしこまりました。ではWITH THE STYLE FUKUOKAはいかがでしょうか。"
]
```
`SYSTEM` turn also has a `dialogue_state` which contains `belief_state`, `book_state`, `db_result`, and `book_result`:
`belief_state`:
```json
{
"domain": ["general", "general", "hotel", ...],
"slot": ["active_domain", "city", "pricerange", ...],
"value": ["hotel", "福岡", "普通", ...]
}
```
`book_state`:
```json
{
"domain": ["hotel", "hotel", "hotel", ...],
"slot": ["people", "day", "stay", ...],
"value": [None, None, None, ...]
}
```
`db_result`:
```json
{
"candidate_entities": ["WITH THE STYLE FUKUOKA", "ANA クラウンプラザホテル福岡", ...],
"active_entity": {
"slot": ["city", "name", "genre", ...],
"value": ["福岡", "WITH THE STYLE FUKUOKA", "リゾートホテル", ...]
}
```
### Data Fields
Each dialogue instance has the following fields:
- `dialogue_id` (int32): A unique identifier for the dialogue.
- `dialogue_name` (string): A name for the dialogue.
- `system_name` (string): The name of the wizard.
- `user_name` (string): The name of the user.
- `goal` (sequence): The user's goal for the dialogue.
- `domain` (string): The domain of the goal.
- `task` (string): The task of the goal.
- `slot` (string): The slot of the goal.
- `value` (string): The value of the goal.
- `goal_description` (sequence): A description of the user's goal.
- `domain` (string): The domain of the goal.
- `text` (string): The text of the goal.
- `turns` (sequence): The turns in the dialogue.
- `turn_id` (int32): A unique identifier for the turn.
- `speaker` (string): The speaker of the turn.
- `utterance` (string): The utterance of the turn.
- `dialogue_state` (struct): The dialogue state of the turn.
- `belief_state` (sequence): The belief state of the turn.
- `domain` (string): The domain of the belief state.
- `slot` (string): The slot of the belief state.
- `value` (string): The value of the belief state.
- `book_state` (sequence): The book state of the turn.
- `domain` (string): The domain of the book state.
- `slot` (string): The slot of the book state.
- `value` (string): The value of the book state.
- `db_result` (struct): The database result of the turn.
- `candidate_entities` (sequence): The candidate entities of the database result.
- `entity_name` (string): The name of the entity.
- `active_entity` (sequence): The active entity of the database result.
- `slot` (string): The slot of the active entity.
- `value` (string): The value of the active entity.
- `book_result` (sequence): The book result of the turn.
- `domain` (string): The domain of the book result.
- `success` (string): The success of the book result.
- `ref` (string): The reference of the book result.
### Data Splits
The dataset is split into a train, validation, and test split with the following sizes:
| | train | validation | test |
|--- | ---: | ---: | ---: |
| Number of dialogues | 3646 | 300 | 300 |
| Number of turns | 52,405 | 4,346 | 4,435 |
## Citation Information
```bibtex
@inproceedings{ohashi-etal-2024-jmultiwoz,
title = "JMultiWOZ: A Large-Scale Japanese Multi-Domain Task-Oriented Dialogue Dataset",
author = "Ohashi, Atsumoto and Hirai, Ryu and Iizuka, Shinya and Higashinaka, Ryuichiro",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation",
year = "2024",
url = "",
pages = "",
}
```
|