Datasets:

File size: 7,491 Bytes
ef6756f
2eed7e8
05e756a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0cc6a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7050fa
c0cc6a5
b7050fa
 
 
 
c0cc6a5
 
 
 
b7050fa
c0cc6a5
 
b7050fa
c0cc6a5
 
 
 
 
 
 
 
 
 
b7050fa
c0cc6a5
 
b7050fa
c0cc6a5
 
b7050fa
c0cc6a5
 
b7050fa
ef6756f
b7050fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
---
license: cc-by-sa-4.0
task_categories:
- text-generation
- text-classification
language:
- ja
pretty_name: Japanese Multi-domain Wizard-of-Oz
size_categories:
- 1K<n<10K
task_ids:
- dialogue-modeling
- parsing
multilinguality:
- monolingual
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
source_datasets:
- original
dataset_info:
  features:
  - name: dialogue_id
    dtype: int32
  - name: dialogue_name
    dtype: string
  - name: system_name
    dtype: string
  - name: user_name
    dtype: string
  - name: goal
    sequence:
    - name: domain
      dtype: string
    - name: task
      dtype: string
    - name: slot
      dtype: string
    - name: value
      dtype: string
  - name: goal_description
    sequence:
    - name: domain
      dtype: string
    - name: text
      dtype: string
  - name: turns
    sequence:
    - name: turn_id
      dtype: int32
    - name: speaker
      dtype: string
    - name: utterance
      dtype: string
    - name: dialogue_state
      struct:
      - name: belief_state
        sequence:
        - name: domain
          dtype: string
        - name: slot
          dtype: string
        - name: value
          dtype: string
      - name: book_state
        sequence:
        - name: domain
          dtype: string
        - name: slot
          dtype: string
        - name: value
          dtype: string
      - name: db_result
        struct:
        - name: candidate_entities
          sequence:
            dtype: string
            id: entity_name
          id: candidate_entities
        - name: active_entity
          sequence:
          - name: slot
            dtype: string
            id: active_entity/slot
          - name: value
            dtype: string
            id: active_entity/value
      - name: book_result
        sequence:
        - name: domain
          dtype: string
        - name: success
          dtype: string
        - name: ref
          dtype: string
  splits:
  - name: train
    num_bytes: 60731411
    num_examples: 3646
  - name: validation
    num_bytes: 5000420
    num_examples: 300
  - name: test
    num_bytes: 5085276
    num_examples: 300
  download_size: 11016438
  dataset_size: 70817107
---

# Dataset Card for JMultiWOZ

## Dataset Description

- **Repository:** [nu-dialouge/jmultiwoz](https://github.com/nu-dialogue/jmultiwoz)
- **Paper:** [JMultiWOZ: A Large-Scale Japanese Multi-Domain Task-Oriented Dialogue Dataset]()
- **Point of Contact:** [Atsumoto Ohashi]([email protected])

### Dataset Summary

JMultiWOZ is a large-scale Japanese multi-domain task-oriented dialogue dataset. The dataset is collected using the Wizard-of-Oz (WoZ) methodology, where two human annotators simulate the user and the system. The dataset contains 4,246 dialogues across 6 domains, including restaurant, hotel, attraction, shopping, taxi, and weather. Available annotations include user goal, dialogue state, and utterances.

### Supported Tasks

- **Dialogue State Tracking**: The dataset can be used to train models for dialogue state tracking, which is the task of predicting the user's belief state at each turn in the dialogue.
- **Dialogue Generation**: The dataset can be used to train models for dialogue generation, which is the task of generating a response given the dialogue history.

### Languages

The text in the dataset is in Japanese (`ja`).

## Dataset Usage
```python
from datasets import load_dataset

dataset = load_dataset("nu-dialogue/jmultiwoz", trust_remote_code=True)
```

## Dataset Structure

### Data Instances

A data instance is a full multi-turn dialogue between a `USER` and a `SYSTEM`. Each turn has an `utterance`:
```json
[
  "福岡へ行くよていなのですが、値段が普通くらいの宿泊施設を探してもらっていいですか?",
  "かしこまりました。ではWITH THE STYLE FUKUOKAはいかがでしょうか。"
]
```

`SYSTEM` turn also has a `dialogue_state` which contains `belief_state`, `book_state`, `db_result`, and `book_result`:

`belief_state`:
```json
{
  "domain": ["general", "general", "hotel", ...],
  "slot": ["active_domain", "city", "pricerange", ...],
  "value": ["hotel", "福岡", "普通", ...]
}
```

`book_state`:
```json
{
  "domain": ["hotel", "hotel", "hotel", ...],
  "slot": ["people", "day", "stay", ...],
  "value": [None, None, None, ...]
}
```

`db_result`:
```json
{
  "candidate_entities": ["WITH THE STYLE FUKUOKA", "ANA クラウンプラザホテル福岡", ...],
  "active_entity": {
    "slot": ["city", "name", "genre", ...],
    "value": ["福岡", "WITH THE STYLE FUKUOKA", "リゾートホテル", ...]
}
```

### Data Fields

Each dialogue instance has the following fields:
- `dialogue_id` (int32): A unique identifier for the dialogue.
- `dialogue_name` (string): A name for the dialogue.
- `system_name` (string): The name of the wizard.
- `user_name` (string): The name of the user.
- `goal` (sequence): The user's goal for the dialogue.
  - `domain` (string): The domain of the goal.
  - `task` (string): The task of the goal.
  - `slot` (string): The slot of the goal.
  - `value` (string): The value of the goal.
- `goal_description` (sequence): A description of the user's goal.
  - `domain` (string): The domain of the goal.
  - `text` (string): The text of the goal.
- `turns` (sequence): The turns in the dialogue.
  - `turn_id` (int32): A unique identifier for the turn.
  - `speaker` (string): The speaker of the turn.
  - `utterance` (string): The utterance of the turn.
  - `dialogue_state` (struct): The dialogue state of the turn.
    - `belief_state` (sequence): The belief state of the turn.
      - `domain` (string): The domain of the belief state.
      - `slot` (string): The slot of the belief state.
      - `value` (string): The value of the belief state.
    - `book_state` (sequence): The book state of the turn.
      - `domain` (string): The domain of the book state.
      - `slot` (string): The slot of the book state.
      - `value` (string): The value of the book state.
    - `db_result` (struct): The database result of the turn.
      - `candidate_entities` (sequence): The candidate entities of the database result.
        - `entity_name` (string): The name of the entity.
      - `active_entity` (sequence): The active entity of the database result.
        - `slot` (string): The slot of the active entity.
        - `value` (string): The value of the active entity.
    - `book_result` (sequence): The book result of the turn.
      - `domain` (string): The domain of the book result.
      - `success` (string): The success of the book result.
      - `ref` (string): The reference of the book result.

### Data Splits

The dataset is split into a train, validation, and test split with the following sizes:

|                     | train   | validation  | test  |
|---                  | ---:    | ---:        | ---:  |
| Number of dialogues | 3646    | 300         | 300   |
| Number of turns     | 52,405  | 4,346       | 4,435 |


## Citation Information
```bibtex
@inproceedings{ohashi-etal-2024-jmultiwoz,
    title = "JMultiWOZ: A Large-Scale Japanese Multi-Domain Task-Oriented Dialogue Dataset",
    author = "Ohashi, Atsumoto and Hirai, Ryu and Iizuka, Shinya and Higashinaka, Ryuichiro",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation",
    year = "2024",
    url = "",
    pages = "",
}
```