File size: 3,281 Bytes
6e4e336
 
171f21f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e4e336
171f21f
1d5700a
171f21f
1d5700a
 
 
 
 
171f21f
1d5700a
171f21f
1d5700a
 
43ff331
 
 
171f21f
b2c57c6
a089cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
171f21f
a089cd1
171f21f
 
 
b2c57c6
171f21f
9eb5100
 
 
 
171f21f
9eb5100
171f21f
 
875e7d0
171f21f
9eb5100
 
 
171f21f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
task_categories:
- table-question-answering
- question-answering
- translation
- text2text-generation
language:
- es
tags:
- CelebA
- Spanish
- celebFaces attributes
- face detection
- face recognition
pretty_name: Sent2vec+CelebA training corpus in Spanish
size_categories:
- 100M<n<1B
---

## Corpus Summary

This corpus has 192050 entries made up of descriptive sentences of the faces of the CelebA dataset.
The preprocessing of the corpus has been to translate into Spanish the captions of the CelebA dataset with the algorithm used in [Text2FaceGAN](https://arxiv.org/pdf/1911.11378.pdf). 
In particular, all sentences are combined to generate a larger corpus. Additionally, a data preprocessing was applied that consists of eliminating stopwords, separation symbols and complementary elements that are not useful for training.
Finally, using the Sent2vec library and the corpus, training was done to obtain an encoder model for sentences in the Spanish language. Specifically for captions from the CelebA 
dataset

The training of Sent2vec + CelebA, using the present corpus was developed, resulting in the new model [Sent2vec-CelebA-Sp](https://huggingface.co/oeg/Sent2vec_CelebA_Sp).

## Corpus Fields
Each corpus entry is composed of:
- Descriptive sentence of a face from the CelebA dataset applied the corresponding preprocessing.

You can download the file with a _.txt_ or _.csv_ extension as appropriate. 

## Citation information
**Citing**: If you used CelebA_Sent2vec_Sp corpus in your work, please cite the paper publish in **[Information Processing and Management](https://doi.org/10.1016/j.ipm.2024.103667)**:

```bib
@article{YAURILOZANO2024103667,
title = {Generative Adversarial Networks for text-to-face synthesis & generation: A quantitative–qualitative analysis of Natural Language Processing encoders for Spanish},
journal = {Information Processing & Management},
volume = {61},
number = {3},
pages = {103667},
year = {2024},
issn = {0306-4573},
doi = {https://doi.org/10.1016/j.ipm.2024.103667},
url = {https://www.sciencedirect.com/science/article/pii/S030645732400027X},
author = {Eduardo Yauri-Lozano and Manuel Castillo-Cara and Luis Orozco-Barbosa and Raúl García-Castro}
}
```

## License

This corpus is available under the **[Apache License 2.0](https://github.com/manwestc/TINTO/blob/main/LICENSE)**.

## Autors
- [Eduardo Yauri Lozano](https://github.com/eduar03yauri)
- [Manuel Castillo-Cara](https://github.com/manwestc)
- [Raúl García-Castro](https://github.com/rgcmme)

[*Universidad Nacional de Ingeniería*](https://www.uni.edu.pe/), [*Ontology Engineering Group*](https://oeg.fi.upm.es/), [*Universidad Politécnica de Madrid.*](https://www.upm.es/internacional)

## Contributors
See the full list of contributors [here](https://github.com/eduar03yauri/DCGAN-text2face-forSpanish).

<kbd><img src="https://www.uni.edu.pe/images/logos/logo_uni_2016.png" alt="Universidad Politécnica de Madrid" width="100"></kbd>
<kbd><img src="https://raw.githubusercontent.com/oeg-upm/TINTO/main/assets/logo-oeg.png" alt="Ontology Engineering Group" width="100"></kbd> 
<kbd><img src="https://raw.githubusercontent.com/oeg-upm/TINTO/main/assets/logo-upm.png" alt="Universidad Politécnica de Madrid" width="100"></kbd>