import faiss import json import numpy as np import zipfile from sentence_transformers import SentenceTransformer class Retriever: def __init__(self): self.archive = zipfile.ZipFile('data/en/paragraphs.zip', 'r') self.index = faiss.read_index("data/en/embs_IVF16384_HNSW32_2lvl_full.idx") self.index.nprobe = 128 self.model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2', device='cuda') self.model.max_seq_length = 512 def get_paragraph_by_vec_idx(self, vec_idx): chunk_id = vec_idx // 100000 line_id = vec_idx % 100000 with self.archive.open('enwiki_paragraphs_clean/enwiki_paragraphs_%03d.jsonl' % chunk_id) as f: for i,l in enumerate(f): if i == line_id: data = json.loads(l) break return data def search(self, query, k=5): emb = self.model.encode(query) _, neighbors = self.index.search(emb[np.newaxis, ...], k) results = [] for n in neighbors[0]: data = get_paragraph_by_vec_idx(n) results.append(data) return results