Fix a Not Defined Variable `filepath` in streaming=False mode, and reshape ndim of timestamp from 0 to 1
Browse files- Fix 1:
add an argument `filepath` to fix the undefined variable `filepath` in `_split_generators()` function when `streaming=False`
- Fix 2
fix the `TypeError: object of type 'numpy.datetime64' has no len()`, reshape the values of `"timestamp"` in dict `value` in `_generate_examples()` function to a `numpy.array` such that `len(value["timestamp"])=1`
- test code block
```
from datasets import load_dataset
ds = load_dataset(path='openclimatefix/gfs-reforecast',
revision='main',
streaming=False,
trust_remote_code=True,
filepath="path to a local json file consists of relative paths to data files we want to load w.r.t. the gfs-reforecast folder"
)
```
- gfs-reforecast.py +13 -2
gfs-reforecast.py
CHANGED
@@ -72,6 +72,17 @@ class GFEReforecastDataset(datasets.GeneratorBasedBuilder):
|
|
72 |
|
73 |
DEFAULT_CONFIG_NAME = "gfs_v16" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def _info(self):
|
76 |
features = {}
|
77 |
if "v16" in self.config.name:
|
@@ -133,7 +144,7 @@ class GFEReforecastDataset(datasets.GeneratorBasedBuilder):
|
|
133 |
if streaming:
|
134 |
urls = dl_manager.download_and_extract(urls)
|
135 |
else:
|
136 |
-
with open(filepath, "r") as f:
|
137 |
filepaths = json.load(f)
|
138 |
data_dir = dl_manager.download_and_extract(filepaths)
|
139 |
return [
|
@@ -186,7 +197,7 @@ class GFEReforecastDataset(datasets.GeneratorBasedBuilder):
|
|
186 |
data_t1 = dataset.isel(time=(t+1))
|
187 |
value = {"current_state": np.stack([data_t[v].values for v in sorted(data_t.data_vars)], axis=2),
|
188 |
"next_state": np.stack([data_t1[v].values for v in sorted(data_t.data_vars)], axis=2),
|
189 |
-
"timestamp": data_t["time"].values,
|
190 |
"latitude": data_t["latitude"].values,
|
191 |
"longitude": data_t["longitude"].values}
|
192 |
idx += 1
|
|
|
72 |
|
73 |
DEFAULT_CONFIG_NAME = "gfs_v16" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
74 |
|
75 |
+
def __init__(self, filepath="https://huggingface.co/datasets/openclimatefix/gfs-reforecast/resolve/main/gfs_v16.json", **kwargs):
|
76 |
+
"""BuilderConfig for GFEReforecastDataset.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
filepath: *string*, the path of a json file, which consists of the relative path of https://huggingface.co/datasets/openclimatefix/gfs-reforecast
|
80 |
+
to the data files we want to load, default = "https://huggingface.co/datasets/openclimatefix/gfs-reforecast/resolve/main/gfs_v16.json"
|
81 |
+
**kwargs: keyword arguments forwarded to super.
|
82 |
+
"""
|
83 |
+
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
|
84 |
+
self.filepath = filepath
|
85 |
+
|
86 |
def _info(self):
|
87 |
features = {}
|
88 |
if "v16" in self.config.name:
|
|
|
144 |
if streaming:
|
145 |
urls = dl_manager.download_and_extract(urls)
|
146 |
else:
|
147 |
+
with open(self.filepath, "r") as f:
|
148 |
filepaths = json.load(f)
|
149 |
data_dir = dl_manager.download_and_extract(filepaths)
|
150 |
return [
|
|
|
197 |
data_t1 = dataset.isel(time=(t+1))
|
198 |
value = {"current_state": np.stack([data_t[v].values for v in sorted(data_t.data_vars)], axis=2),
|
199 |
"next_state": np.stack([data_t1[v].values for v in sorted(data_t.data_vars)], axis=2),
|
200 |
+
"timestamp": data_t["time"].values.reshape(-1),
|
201 |
"latitude": data_t["latitude"].values,
|
202 |
"longitude": data_t["longitude"].values}
|
203 |
idx += 1
|