Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
parquet
Languages:
Chinese
Size:
10M - 100M
ArXiv:
License:
Update README.md
Browse files
README.md
CHANGED
@@ -33,7 +33,7 @@ size_categories:
|
|
33 |
|
34 |
During the data selection process, the **Chinese Fineweb Edu** dataset adopted a strategy similar to that of Fineweb-Edu, with a focus on the educational value and content quality of the data. The specific selection steps are as follows:
|
35 |
|
36 |
-
1. **Educational Value Assessment**: Initially, the
|
37 |
2. **Scoring Model Training**: Using these 100,000 samples, a BERT model was trained to score a larger pre-training dataset. This step ensured that the model could effectively identify content with high educational value.
|
38 |
3. **Data Selection**: Next, the trained BERT model was used to comprehensively score the raw data, retaining only data with a score greater than 4. This selection process significantly enhanced the quality and relevance of the dataset, ensuring its applicability in the educational domain.
|
39 |
4. **MinHash Deduplication**: To avoid the negative impact of duplicate content on model training, the dataset was deduplicated using the MinHash algorithm. This method ensured the uniqueness of the data while preserving a diverse range of educational content.
|
|
|
33 |
|
34 |
During the data selection process, the **Chinese Fineweb Edu** dataset adopted a strategy similar to that of Fineweb-Edu, with a focus on the educational value and content quality of the data. The specific selection steps are as follows:
|
35 |
|
36 |
+
1. **Educational Value Assessment**: Initially, the csg-wukong-enterprise scoring model was used to evaluate the educational value of the samples. The model provided a score ranging from 0 to 5 based on the relevance and quality of the content. In the preliminary selection phase, we selected approximately 100,000 high-scoring samples.
|
37 |
2. **Scoring Model Training**: Using these 100,000 samples, a BERT model was trained to score a larger pre-training dataset. This step ensured that the model could effectively identify content with high educational value.
|
38 |
3. **Data Selection**: Next, the trained BERT model was used to comprehensively score the raw data, retaining only data with a score greater than 4. This selection process significantly enhanced the quality and relevance of the dataset, ensuring its applicability in the educational domain.
|
39 |
4. **MinHash Deduplication**: To avoid the negative impact of duplicate content on model training, the dataset was deduplicated using the MinHash algorithm. This method ensured the uniqueness of the data while preserving a diverse range of educational content.
|